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Motivation

« We care about model misspecification in economic environments

« Agents often work with misspecified models
true model unknown, approx. with incorrect models
« Adeparture from the traditional rational expectations framework
cognitive biases, complexity, simplified perspectives...

« Selective examples

« Maximum likelihood estimation of misspecified linear models (White (1982, ECMA))
« Monopolist learning with misspecified demand model (Nyarko (1991, JET))

« Portfolio choice with misspecified asset returns (Uppal-Wang (2003, JF))

« Interest rate/GDP forecasting with misspecified models (Farmer et al. (2024, JPE))



Motivation

« The Berk-Nash solution (Esponda and Pouzo (2016 (ECMA), 2021 (TE)))

« Agent has misspecified models, takes action based on them, observes outcome, Bayesian
updates on the models, and repeats...

« The equilibrium/steady state characterization: optimal action/distribution and best incorrect
model, both dependent on each other

+ Important because misspecification made explicit, allows for choice between different
misspecified models to adjust for observed behavior

« Enriching economic environments with misspecified models

« Captures limit outcomes of Bayesian learning when agents have misspecified models
« One such environment of interest: Markov Decision Processes (MDPs)

« This paper: Monotone comparative statics with misspecified MDPs



Motivation

« Fore.g.- the infinite-horizon expected discounted utility problem

Zétu(st,xt)] ,t=0,1,2,...
t=0

max [E
o,

« Visthe solution to the Bellman equationin (1)

Vis) = max{u (s,z) + 5/V (s Q (ds' | s, 1)}

zeX S



Motivation

V(s)—max (s, +5/ ds’\@r)}

« Corresponding to (1), one can ask important comparative statics questions
« 1inQ AN 1 in optimal policy; Tin Q AN 1 in stationary distribution

« Results in the literature provide conditions, e.g. Hopenhayn-Prescott (1992)

“Stochastic Monotonicity and Stationary Distributions for Dynamic Economies (ECMA)”

+ Instead misspecified models, {Qs }yco, @ ¢ {Qo}oco, (Esponda-Pouzo (2021))

Vo) = mase{u(s,2) 48 [V (5.0) Qu (05| 5.0)) @)

where Q, = [ Qgu(df) and i’ updated using Bayes’ rule on models
" g
e



Motivation

Vs, pu) = max{u (s,z) + 5/SV (s', 1) Q, (ds | s,.r)}

reX

where QN = / Qo(df) and 1’ updated using Bayes’ rule on models
)

« Steady-state prediction: Berk-Nash solution (Esponda-Pouzo (2021), Berk (1966))

+ (a) stationary distribution over states and actions dependent on best-fit model
« (b) best-fit model (KL divergence) dependent on stationary distribution

+ Monotone comparative statics of Berk-Nash solution w.r.t. primitives (u, , Q, Qo, ©)



MCS Results in Markov Environments

Environment

Change in Primitives

Sufficient Conditions

» Markov Processes

« Positive Shocks x

*cQT= Oqg(m)1?

¢+ Ot = Og(m) 1

Qo
Qo,

« Milgrom-Shannon (94)

. Q 1:log(£2) 1

« Markov Decision
Processes

« Positive Shocks v/

« Patience (6 1)
« Utility primitives (u 1)
+ Beliefs (1 1)

« Assumptions 1 and 2
« Inc. diff. inz and p

+ Assumptions 1 and 2

Table 1: MCS and Berk-Nash solution




Outline of the Paper

Results

« Theorem 1: Existence of such a Berk-Nash solution (a new proof based on monotonicity)
« Theorems 2-4: Robust MCS of Berk-Nash solution with primitives (identify a positive shock)

« Theorem 5: Bound on the cost of misspecification in terms of primitives (entropic bounds)

Technical Contribution

« Non-lattice fixed point techniques for endogenous MDPs with misspecification
+ Precursors: Smithson (1971), Acemoglu-Jensen (2015) (exogenous shocks with no
misspecification in large economies)

Contribution to the literature

« Provide MCS for dynamic programming (MDPs) with misspecified learning and give robust
predictions, without specific knowledge of primitives of the environment



Plan of the Talk

» Framework
« Examples
« Theorems
« Extensions

« Conclusion



Model - Objective MDP

« Markov decision process (MDP) is a list (S, X, u, @), §), where
« (a) S C Ris acompact set of states, (b) X C R is a compact set of actions,
(c)u:S x X — Risa per-period payoff function, (d) @ : S x X — M (S) is a transition
probability function, (e) § € [0, 1) is the discount factor

+ Choose feasible policy rule {z;}$2, to maximize expected discounted utility

E, {iétu (st,xt)}

t=0

Time period ¢ Time period ¢ + 1 00

I ] ]
T T 1

(8¢, ) Ser1 ~ Q( |s¢, @)




Model - Objective MDP

« The Bellman for this problem

V(s) = max {u (s,) + 5/Sv (s) Q (ds' | s,x)}

zeX

« Corresponding to (3), action & is optimal given s in the MDP(Q) if

% € G(s) = argmax {u(s,x) +5/V(5')Q(ds’ | 5,2)

zeX S

}
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Model - Subjective MDP

+ Uni-dimensional compact parameterized misspecified models ©
(MDP(Q), Qo)
whereQ@:{ngﬁe@gR},Qgé Qo

« The Kullback-Liebler (KL) divergence of a model Qg w.r.t. Q

KL(Q0]|Q) = E@[In(Q/Qy)] (finite) (5)

where the best-fit set is
Oq = argmin KL(Qs[|Q)

dl



Model - Subjective MDP

+ Uni-dimensional compact parameterized misspecified models ©
(MDP(Q), Qo)
whereQ@:{ngﬁe@gR},Qgé Qo

« The Kullback-Liebler (KL) divergence of a model Qg w.r.t. Q

KL(Q0]|Q) = E@[In(Q/Qy)] (finite) (5)

where the best-fit set is
Oq = argmin KL(Qs[|Q)

« For infinite spaces, one uses the Radon-Nikodym derivative Dy of Q with respect to Qg

dl



Model - Berk-Nash Solution

Definition 1 (Esponda-Pouzo (2021))
A probability distribution m* € A(S x X) is a Berk-Nash solution of the regular-SMDP if there
exists a belief 1* € A(©) such that the following conditions hold.

(i) Actionz* optimal given s in the MDP(Q,,+), Q.+ = / Qop™(dO),V(s,x) in support of m*
e

(i) Belief u* € A (O¢g(m*)) where O¢g(m™*) = arg mingco / KL(Qs||Q)m™ (ds, dx)
SxX

(i) Invariant measure on state, forall A C S, m{ (A) = / Q (Als,z)m*(ds,dx)
SxX

Regular SMDP: continuity (absolute), compact parameter space, U.l. Radon-Nikodym derivatives

1Anderson-Duanmu-Ghosh-Khan (2024, JET), hereafter ADGK
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Model - Behavior of Fixed Points

« Fixed points of the Berk-Nash solution mapping

T:ZxP—2%

where Z = A(S x X) x A(B)and P =< u, 4, Q, Qo, © > are our primitives

The set of fixed points
Alp)={z€Z:2€T(zp)}, peP

» Question:
?
change in primitives — change in Berk-Nash solution
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Example | : Inference with No Role for Actions

Forecasting problem

+ True process, s;+1 ~ Q(-|s¢), where
St41 = PS¢+ &t &1 ~ 0.5F(,, 02) + 0.5F(, 02)

where F' denotes the cumulative density function for a normal distribution. The
components have different means (u; # p2) butidentical variances (03 = o3).

+ Agent has a set of models {Qg}, indexed by |0| € [0,1),Q ¢ {Qs}

2
Si+1 = 0s; + €41, €41~ N(0,07)
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Example | : Inference with No Role for Actions

True distribution

Model distribution

Figure 1: AR(1) models with misspecified Gaussian noise

+ Best-fitinferred AR(1) parameter 6* in the Berk-Nash equilibrium mg has the following form,

6" = /é(s)m§ - p+/ (11 +M2lm§
S S

S

+ Adigression: notice when p; + s = 0?7 The comparative statics of true persistence p and
inferred persistence at the steady state 6* is one-to-one
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Example II: Inference and Actions Together - Misinference Channel

Savings with misperceived wealth process (based on Esponda-Pouzo (2021), ADGK)

The agent learns about the return on their wealth process while optimally deciding
consumption and savings

Each period, the agent realizes wealth y;, ani.i.d. preference shock z;, and chooses savings
zt €0,y ] =X C Ry

State variables s = (y, z) belongto S = R, x [0, 1]

Period ¢ payoffs are u(y¢, 2+, #t) = z: In(y: — ), with discount factor ¢

True process:

h'lyt+1 =a* + ﬁ* lnxt + &g,

where the unobserved productivity shock e; = v*2; + &, with & ~ N(0,1), z; ~ U[0, 1],
and 4* > 0 (correlated shocks)
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Example II: Inference and Actions Together - Misinference Channel

+ Misspecified process:
lnyt+1 =a+ 6111%‘15 + &g,

where ¢; ~ A/(0, 1), ignoring the correlation between productivity and preference shocks.

Higher v*, starker the misspecification

« A key comparative static for the Berk-Nash solution: an increase in v* leads to:

« m™: The long-run perceived distribution of the wealth process (])
« B: The best-fit parameter inferred for the return on the process ()

« Misinference channel: A higher v* leads to a larger negative bias in the inferred return,
driven by lower preference shocks and higher savings
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Model - Orders on Primitives and Egm. Objects

+ SetY dominates X in the strong-set order if forany x in X and y in Y, we have sup {z, y}
inY andinf {x,y} in X.

« Parameter space © C R (strong-set order), utility and discount factor (natural order)

« f:R"™ — Risincreasing if for z > y in the component-wise order, f(z) > f(y)

For all bounded, increasing, and measurable f’s,

ma ., m / f(s,z)ma(ds, dx) / f(s,2)mq(ds, dz)

SxX SxX

Poset (X, ) is a lattice if for any =, 2’ € X, the meet x A 2’ and the joinz VV 2’ are in X

« Fore.g. (R, 74 ) is a lattice. However, the poset (S x X, ;) is not a lattice (Kamae, Krengel,
O’Brien (1977))
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Model - Assumptions

Assumption 1 (Standard)

S, X, © are lattices, u(s, x) is supermodular in (s, x), increasing in s.

Supemodularity: u(s1, z1) + u(s2, 22) < u((s1,21) V (52, 22)) + u((s1,21) A (s2, 22))
Foranincreasing f : S — R :

Assumption 2 (Models)

The following are true for all models 6 in the family of models, Qo = {Qp : 0 € O} .
(i) Qo isstochastically increasing in (s, x) i.e./ f(s")Qq(ds'|s, ) is increasing in (s, )
S

(i) Qg is stochastically supermodularin (s, x) i.e. /f(s’)Qg(ds’|s,a:) is supermodular in (s, )
]

Examples 1 and 2 satisfy such requirements, for e.g., AR (1) process. Further, @ is assumed to be
monotonein (s, z).
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Model - Assumptions

Assumption 3 (Point Identification)

For any given m € A(S x X), a SMDP (Q, Qo) is point-identified, i.e.

0,0 cO(m;Q) = =0

Assumption 4 (Single Crossing)

K (6;m) satisfies the single crossing property in (8;m), 61 < 62, ma =g M1

KQ(@Q;ml) = KQ(Ql;ml) > 0 — KQ(QQ;WLQ) = KQ(al;mQ) > 0.

O¢g(m) = arg min Kg(m,0)
Invoke Milgrom-Shannon (1994): quasi-supermodularity trivially satisfied
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Results - Existence

Under standard (lattice and increasing payoffs), increasing and supermodular models, point
identification : Assumptions 1-3

Theorem 1 (Existence and Compactness)
Under assumptions 1-3, every regular SMDP (@, Qg ) with a bounded and continuous utility
function has a Berk-Nash equilibrium and the set of such equilibria is compact.

A new existence proof:

« Esponda-Pouzo (2021): Only for finite spaces

« ADGK: Uses nonstandard analysis for infinite (compact and non-compact) spaces

« Theorem 1: A standard proof for compact spaces using ADGK and monotonicity
assumptions

2,



Main Result - Comparative Statics

Fix any belief 1 over models, define the optimal policy correspondence G :

G(s, u, p) = arg max {u(s,z) + 5/SV (s") Q. (ds | s,x)}

zeX

Positive Shock:

A Ain a primitive from p; to ps is a positive shock (SSO) if:
Forally, € G (s, p1,p1) andya € G (s, ,p2) ,y1Vy2 € G (s, 1, p2) and y1Ay2 € G (s, i1, p1)

Fixp € P. A Ainthe model distribution from p to us is a positive shock (SSO) if:

G(s, u,p) is ascending in u from p; to ug
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Main Result - Comparative Statics (via Positive Shock)

Under standard (lattice and increasing payoffs), increasing and supermodular models, point
identification (assumptions 1-3), and single-crossing differences (assumption 4)

Theorem 2 (Main Result)

Suppose assumptions 1-4 hold. Then a positive shock to the primitives of the regular SMDP will

lead to anincrease in the least and the greatest equilibrium best-fit models. Further, a positive
shock to the primitives will lead to

(a) anincrease in the least and greatest Berk-Nash equilibrium in the usual stochastic order
dominance if changes in beliefs over models are positive shocks.

(b) adecrease in the least and greatest Berk-Nash equilibrium in the usual stochastic order
dominance if changes in beliefs over models are negative shocks.

Think of the unique Berk-Nash solution!

23



Identifying Positive Shocks in Misspecified Environments

Environment Change in Primitives Sufficient Conditions

« Markov Processes « Q1= Ou(m)? C Q4 log(?;Q) "
9
+ Positive Shocks x _ !
¢+ Ot = Og(m) 1 + Milgrom-Shannon (94)

+ Markov Decision + Patience (6 1) + Assumptions 1 and 2

Processes « Utility primitives (u 1) « Inc. diff. inzand p
» Positive Shocks v/ « Beliefs (1 1) « Assumptions 1 and 2

Table 2: MCS and Berk-Nash solution



Other Results - (more) Comparative Statics, Welfare Costs

Theorem 3 (Increasing Models)

Suppose the hypothesis in Theorem 1 continue to hold. If a change in beliefs over modelsis a
positive shock, then an increase in the parameter set under the strong set order leads to an
increase in the least and the greatest equilibrium best-fit models.

Theorem 4 (Increasing and Convex Order)

Suppose assumptions 1-3 and single-crossing holds for increasing and convex order. Then a
positive (negative) shock to the primitives will lead to an increase in the least and greatest
Berk-Nash equilibrium in the increasing and convex order if changes in beliefs over models are
positive (negative) shocks.
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Technical Contribution

« Berk-Nash equilibriummap 7 : W — 2W W = A(S x X) x A(0)
« Space of probability measures ordered by - ;; not lattice -
Tarski/Topkis/Knaster-Tarski/Hopenhayn-Prescott x

« Butitis chain-complete: a chain that has both infimum and supremum
p1 = 0.5(eq + €),p2 = 0.5(eq + €.),p3 = 0.5(ec. + €5), P4 = 0.5(¢4 + €4q).-

b=(0,3)

c=(3,3)

@

Q

o
a=(0,0)

)
d=(3,0)

« Apply non-lattice techniques that we tailor for endogenous MDPs with misspecification
« Endogenous MDPs require stronger conditions of supermodularity on the Bellman

26



Technical Contribution

 Non-lattice structure of the Berk-Nash solution:
+ Endogenous misspecified MDPs require stronger conditions for uniqueness, including
supermodularity of the Bellman function (assumptions 1 and 2).

« The proof technique follows a three-step structure:
« Step 1: For Theorem 2, show stationary distributions m™ induced by G are Type | (Type Il)
monotonic in p for u € A(©)

«+ Step 2: Construct a mapping 6 that, for each w and p, gives model distributions y’. Fixed points
are equilibrium distributions p*

« Step 3: Show least and greatest selections of the map increase in p, also provides a new
existence proof for Theorem 1 based on monotonicity and identification of T'

27



Back to Example Il - Analysis

An increase (decrease) in v* is a negative (positive) shock

The state, action, and parameter spaces are lattices; utility is increasing in y and z. The
2
concave payoff function with %{fy’z) > 0 is supermodular, satisfying Assumption 1

Model distributions are Gaussian with mean « + 5 In x and unit variance, satisfying
Assumption 2 via stochastic dominance of higher

Assumption 3 holds as Gaussian distributions are strictly log-concave, ensuring unique
identification. Thus, Theorem 1 guarantees the Berk-Nash equilibrium

Assumption 4 is verified via the sufficient condition

28



Concluding Remarks

« We establish new results on monotone comparative statics for misspecified dynamic
programs and provide novel predictions for misspecified behavior

« The results are of applied interest across a variety of domains, including forecasting,
consumption-saving models, and effort-choice problems (In paper)

« The machinery to establish the results are powerful and relies on non-lattice
characterizations

« Paper link: Here!
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https://www.dropbox.com/scl/fi/goayx26z83brjjhw876dn/Comp_BNE_Markov.pdf?rlkey=u2chzx1rumihiu1vb85t4sxfp&e=2&st=q4iyizhv&dl=0

References

Robert E Smithson. Fixed points of order preserving multifunctions. Proceedings of the
American Mathematical Society, 28(1), 304-310, 1971.

Kenneth J Arrow and Jerry R Green. Notes on expectations equilibria in Bayesian settings.

Institute for Mathematical Studies in the Social Sciences, 1973.

Robert H Berk. Limiting behavior of posterior distributions when the model is incorrect.
The Annals of Mathematical Statistics, 37(1): 51-58, 1966.

Daron Acemoglu and Martin Jensen. Robust comparative statics in large dynamic
economies. Journal of Political Economy, 123(3), 587-640, 2015.

Ignacio Esponda and Demian Pouzo. Equilibrium in misspecified markov decision
processes. Theoretical Economics, 16: 717-757, 2021.

30



Other Results - Welfare Ranking

 Objective welfare

W(S’ é) = EQ(|5(](&,(§)) lz Btu(shg(sh 0))‘| ,t=0,1,2,....

t=0

« 6 = 0* (correct), 6, (misspecified)

« Approximation error in optimal policy

llg(s,6%) = g(s,0.)[ <~

« u:S x X — Ris continuously differentiable in actions
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Other Results - Welfare Ranking

Theorem 5

o« Wi(s,0%) = W(s,0,)

« For a given approximation error -y,

W (s,0%) = W(s,0.)|| <

policy and the @ with the misspecified policy

28mo(1 — %) + miy

1-0 ’

where mg and m; denote the absolute upper bound on the utility and the marginal utility
function, respectively, and k* is the supremum on the KL entropy between @ with the optimal

Inspired by Santos (2000), Theorem 5 is potentially useful in the numerical approximation of the

Berk-Nash equilibria.
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