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Motivation

• We care about model misspecification in economic environments
• Agents often work with misspecified models

true model unknown, approx. with incorrectmodels

• A departure from the traditional rational expectations framework

cognitive biases, complexity, simplified perspectives...

• Selective examples
• Maximum likelihood estimation of misspecified linear models (White (1982, ECMA))
• Monopolist learning with misspecified demandmodel (Nyarko (1991, JET))
• Portfolio choice with misspecified asset returns (Uppal‑Wang (2003, JF))
• Interest rate/GDP forecasting with misspecified models (Farmer et al. (2024, JPE))
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Motivation

• The Berk‑Nash solution (Esponda and Pouzo (2016 (ECMA), 2021 (TE)))
• Agent hasmisspecifiedmodels, takes action based on them, observes outcome, Bayesian
updates on the models, and repeats...

• The equilibrium/steady state characterization: optimal action/distribution and best incorrect
model, both dependent on each other

• Important because misspecification made explicit, allows for choice between different
misspecified models to adjust for observed behavior

• Enriching economic environments with misspecified models
• Captures limit outcomes of Bayesian learning when agents have misspecified models
• One such environment of interest: Markov Decision Processes (MDPs)

• This paper: Monotone comparative staticswith misspecified MDPs
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Motivation

• For e.g.‑ the infinite‑horizon expected discounted utility problem

max
{xt}∞

t=0

EQ

[ ∞∑
t=0

δtu(st, xt)

]
, t = 0, 1, 2, . . .

• V is the solution to the Bellman equation in (1)

V (s) = max
x∈X

{
u (s, x) + δ

∫
S
V (s′)Q (ds′ | s, x)

}
(1)
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Motivation

V (s) = max
x∈X

{
u (s, x) + δ

∫
S
V (s′)Q (ds′ | s, x)

}

• Corresponding to (1), one can ask important comparative statics questions
• ↑ inQ ?−→↑ in optimal policy; ↑ inQ ?−→↑ in stationary distribution
• Results in the literature provide conditions, e.g. Hopenhayn‑Prescott (1992)

“Stochastic Monotonicity and Stationary Distributions for Dynamic Economies (ECMA)”

• Insteadmisspecified models, {Qθ}θ∈Θ, Q /∈ {Qθ}θ∈Θ, (Esponda‑Pouzo (2021))

V (s, µ) = max
x∈X

{
u (s, x) + δ

∫
S
V (s′, µ′) Q̄µ (ds

′ | s, x)
}

(2)

where Q̄µ =

∫
Θ

Qθµ(dθ) and µ′ updated using Bayes’ rule onmodels
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Motivation

•
V (s, µ) = max

x∈X

{
u (s, x) + δ

∫
S
V (s′, µ′) Q̄µ (ds

′ | s, x)
}

where Q̄µ =

∫
Θ

Qθµ(dθ) and µ′ updated using Bayes’ rule onmodels

• Steady‑state prediction: Berk‑Nash solution (Esponda‑Pouzo (2021), Berk (1966))
• (a) stationary distribution over states and actions dependent on best‑fit model
• (b) best‑fit model (KL divergence) dependent on stationary distribution

• Monotone comparative statics of Berk‑Nash solution w.r.t. primitives (u, δ,Q,QΘ,Θ)
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MCS Results in Markov Environments

Environment Change in Primitives Sufficient Conditions

•••• Markov Processes
• Positive Shocks×

• Q ↑ =⇒ ΘQ(m) ↑

• Θ ↑ =⇒ ΘQ(m) ↑

• Q ↑: log(Qθ2

Qθ1

) ↑

• Milgrom‑Shannon (94)

• Markov Decision
Processes

• Positive Shocks✓

• Patience (δ ↑)
• Utility primitives (u ↑)
• Beliefs (µ ↑)

• Assumptions 1 and 2
• Inc. diff. in x and p

• Assumptions 1 and 2

Table 1: MCS and Berk‑Nash solution
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Outline of the Paper

Results

• Theorem 1: Existence of such a Berk‑Nash solution (a new proof based onmonotonicity)

• Theorems 2‑4: Robust MCS of Berk‑Nash solution with primitives (identify a positive shock)

• Theorem 5: Bound on the cost of misspecification in terms of primitives (entropic bounds)

Technical Contribution

• Non‑lattice fixed point techniques for endogenous MDPs with misspecification
• Precursors: Smithson (1971), Acemoglu‑Jensen (2015) (exogenous shocks with no
misspecification in large economies)

Contribution to the literature

• Provide MCS for dynamic programming (MDPs) with misspecified learning and give robust
predictions, without specific knowledge of primitives of the environment
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Plan of the Talk

• Framework

• Examples

• Theorems

• Extensions

• Conclusion
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Model ‑ Objective MDP

• Markov decision process (MDP) is a list ⟨S,X, u,Q, δ⟩, where
• (a) S ⊆ R is a compact set of states, (b)X ⊆ R is a compact set of actions,
(c) u : S× X → R is a per‑period payoff function, (d)Q : S× X → M1(S) is a transition
probability function, (e) δ ∈ [0, 1) is the discount factor

• Choose feasible policy rule {xt}∞t=1 to maximize expected discounted utility

E
Q

[ ∞∑
t=0

δtu (st, xt)
]

(st, xt)

Time period t

st+1 ∼ Q(.|st, xt)

Time period t+ 1 ∞

9



Model ‑ Objective MDP

• The Bellman for this problem

V (s) = max
x∈X

{
u (s, x) + δ

∫
S
V (s′)Q (ds′ | s, x)

}
(3)

• Corresponding to (3), action x̂ is optimal given s in the MDP(Q) if

x̂ ∈ G(s) ≡ argmax
x∈X

{
u (s, x) + δ

∫
S
V (s′)Q (ds′ | s, x)

}
(4)
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Model ‑ Subjective MDP

• Uni‑dimensional compact parameterizedmisspecifiedmodelsΘ

(MDP(Q),QΘ)

whereQΘ = {Qθ : θ ∈ Θ ⊆ R} , Q /∈ QΘ

• The Kullback‑Liebler (KL) divergence of a modelQθ w.r.t. Q

KL(Qθ||Q) ≡ EQ[ln(Q/Qθ)] (finite) (5)

where the best‑fit set is
ΘQ ≡ argmin

θ∈Θ
KL(Qθ||Q)

• For infinite spaces, one uses the Radon‑Nikodym derivativeDθ ofQwith respect toQθ
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Model ‑ Berk‑Nash Solution

Definition 1 (Esponda‑Pouzo (2021)1)
A probability distributionm∗ ∈ ∆(S× X) is a Berk‑Nash solution of the regular‑SMDP if there
exists a belief µ∗ ∈ ∆(Θ) such that the following conditions hold.

(i) Action x∗ optimal given s in the MDP(Q̄µ∗), Q̄µ∗ =

∫
Θ

Qθµ
∗(dθ), ∀(s, x) in support ofm∗

(ii) Belief µ∗ ∈ ∆(ΘQ(m
∗))whereΘQ(m

∗) ≡ argminθ∈Θ

∫
S×X

KL(Qθ||Q)m∗(ds, dx)

(iii) Invariant measure on state, for allA ⊆ S,m∗
S (A) =

∫
S×X

Q (A |s, x)m∗(ds, dx)

Regular SMDP: continuity (absolute), compact parameter space, U.I. Radon‑Nikodym derivatives
1Anderson‑Duanmu‑Ghosh‑Khan (2024, JET), hereafter ADGK
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Model ‑ Behavior of Fixed Points

• Fixed points of the Berk‑Nash solution mapping

T : Z × P → 2Z

whereZ = ∆(S× X)×∆(Θ) and P =< u, δ,Q,QΘ,Θ > are our primitives

The set of fixed points
Λ(p) ≡ {z ∈ Z : z ∈ T (z, p)}, p ∈ P

• Question:
change in primitives ?−→ change in Berk‑Nash solution
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Example I : Inference with No Role for Actions

Forecasting problem

• True process, st+1 ∼ Q(·|st),where

st+1 = ρst + ξt+1, ξt+1 ∼ 0.5F(µ1,σ2) + 0.5F(µ2,σ2) (6)

where F denotes the cumulative density function for a normal distribution. The
components have different means (µ1 ̸= µ2) but identical variances (σ2

1 = σ2
2).

• Agent has a set of models {Qθ}, indexed by |θ| ∈ [0, 1), Q /∈ {Qθ}

st+1 = θst + ϵt+1, ϵt+1 ∼ N(0, σ2)
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Example I : Inference with No Role for Actions

True distribution
Model distribution

µ1 µ2

Figure 1: AR(1) models with misspecified Gaussian noise

• Best‑fit inferred AR(1) parameter θ∗ in the Berk‑Nash equilibriumm∗
S has the following form,

θ∗ =

∫
S
θ̂(s)m∗

S = ρ+

∫
S

(µ1 + µ2)

s
m∗

S

• A digression: notice when µ1 + µ2 = 0? The comparative statics of true persistence ρ and
inferred persistence at the steady state θ∗ is one‑to‑one
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Example II: Inference and Actions Together ‑ Misinference Channel

Savings with misperceived wealth process (based on Esponda‑Pouzo (2021), ADGK)

• The agent learns about the return on their wealth process while optimally deciding
consumption and savings

• Each period, the agent realizes wealth yt, an i.i.d. preference shock zt, and chooses savings
xt ∈ [0, yt] = X ⊆ R+

• State variables s = (y, z) belong to S = R+ × [0, 1]

• Period t payoffs are u(yt, zt, xt) = zt ln(yt − xt), with discount factor δ
• True process:

ln yt+1 = α∗ + β∗ lnxt + εt,

where the unobserved productivity shock εt = γ∗zt + ξt, with ξt ∼ N (0, 1), zt ∼ U [0, 1],

and γ∗ > 0 (correlated shocks)
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Example II: Inference and Actions Together ‑ Misinference Channel

• Misspecified process:
ln yt+1 = α+ β lnxt + εt,

where εt ∼ N (0, 1), ignoring the correlation between productivity and preference shocks.
Higher γ∗, starker the misspecification

• A key comparative static for the Berk‑Nash solution: an increase in γ∗ leads to:
• m∗: The long‑run perceived distribution of the wealth process (↓)
• β̂: The best‑fit parameter inferred for the return on the process (↓)

• Misinference channel: A higher γ∗ leads to a larger negative bias in the inferred return,
driven by lower preference shocks and higher savings
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Model ‑ Orders on Primitives and Eqm. Objects

• Set Y dominatesX in the strong‑set order if for any x inX and y in Y , we have sup {x, y}
in Y and inf {x, y} inX .

• Parameter spaceΘ ⊆ R (strong‑set order), utility and discount factor (natural order)

• f : Rn → R, is increasing if for x ⩾ y in the component‑wise order, f(x) ⩾ f(y)

• For all bounded, increasing, andmeasurable f ′s,

m2 ≿st m1 ≡
∫

S×X

f(s, x)m2(ds, dx) ⩾
∫

S×X

f(s, x)m1(ds, dx)

• Poset (X,≿) is a lattice if for any x, x′ ∈ X, the meet x ∧ x′ and the join x ∨ x′ are inX

• For e.g. (R,≿st) is a lattice. However, the poset (S× X,≿st) is not a lattice (Kamae, Krengel,
O’Brien (1977))
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Model ‑ Assumptions

Assumption 1 (Standard)

S,X,Θ are lattices, u(s, x) is supermodular in (s, x), increasing in s.

Supemodularity: u(s1, x1) + u(s2, x2) ⩽ u((s1, x1) ∨ (s2, x2)) + u((s1, x1) ∧ (s2, x2))

For an increasing f : S → R :

Assumption 2 (Models)

The following are true for all models θ in the family of models,QΘ = {Qθ : θ ∈ Θ} .

(i) Qθ is stochastically increasing in (s, x) i.e.
∫
S
f(s′)Qθ(ds

′|s, x) is increasing in (s, x)

(ii) Qθ is stochastically supermodular in (s, x) i.e.
∫
S
f(s′)Qθ(ds

′|s, x) is supermodular in (s, x)

Examples 1 and 2 satisfy such requirements, for e.g., AR (1) process. Further,Q is assumed to be
monotone in (s, x).
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Model ‑ Assumptions

Assumption 3 (Point Identification)

For any givenm ∈ ∆(S× X), a SMDP (Q,QΘ) is point‑identified, i.e.

θ, θ′ ∈ Θ(m;Q) =⇒ θ = θ
′

Assumption 4 (Single Crossing)

KQ(θ;m) satisfies the single crossing property in (θ;m), θ1 ⩽ θ2,m2 ⪰st m1

KQ(θ2;m1)−KQ(θ1;m1) ⩾ 0 =⇒ KQ(θ2;m2)−KQ(θ1;m2) ⩾ 0.

ΘQ(m) ≡ argmin
θ∈Θ

KQ(m, θ)

Invoke Milgrom‑Shannon (1994): quasi‑supermodularity trivially satisfied
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Results ‑ Existence

Under standard (lattice and increasing payoffs), increasing and supermodular models, point
identification : Assumptions 1‑3

Theorem 1 (Existence and Compactness)
Under assumptions 1‑3, every regular SMDP (Q,QΘ)with a bounded and continuous utility
function has a Berk‑Nash equilibrium and the set of such equilibria is compact.

A new existence proof:

• Esponda‑Pouzo (2021): Only for finite spaces
• ADGK: Uses nonstandard analysis for infinite (compact and non‑compact) spaces
• Theorem 1: A standard proof for compact spaces using ADGK andmonotonicity
assumptions
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Main Result ‑ Comparative Statics

Fix any belief µ over models, define the optimal policy correspondenceG :

G(s, µ, p) ≡ argmax
x∈X

{
u (s, x) + δ

∫
S
V (s′) Q̄µ (ds

′ | s, x)
}

(7)

Positive Shock:
A∆ in a primitive from p1 to p2 is a positive shock (SSO) if:

For all y1 ∈ G (s, µ, p1) and y2 ∈ G (s, µ, p2) , y1∨y2 ∈ G (s, µ, p2) and y1∧y2 ∈ G (s, µ, p1)

Fix p ∈ P . A∆ in the model distribution from µ1 to µ2 is a positive shock (SSO) if:

G(s, µ, p) is ascending in µ from µ1 to µ2
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Main Result ‑ Comparative Statics (via Positive Shock)

Under standard (lattice and increasing payoffs), increasing and supermodular models, point
identification (assumptions 1‑3), and single‑crossing differences (assumption 4)

Theorem 2 (Main Result)

Suppose assumptions 1‑4 hold. Then a positive shock to the primitives of the regular SMDPwill
lead to an increase in the least and the greatest equilibrium best‑fit models. Further, a positive
shock to the primitives will lead to

(a) an increase in the least and greatest Berk‑Nash equilibrium in the usual stochastic order
dominance if changes in beliefs over models are positive shocks.

(b) a decrease in the least and greatest Berk‑Nash equilibrium in the usual stochastic order
dominance if changes in beliefs over models are negative shocks.

Think of the unique Berk‑Nash solution!
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Identifying Positive Shocks in Misspecified Environments

Environment Change in Primitives Sufficient Conditions

•••• Markov Processes
• Positive Shocks×

• Q ↑ =⇒ ΘQ(m) ↑

• Θ ↑ =⇒ ΘQ(m) ↑

• Q ↑: log(Qθ2

Qθ1

) ↑

• Milgrom‑Shannon (94)

• Markov Decision
Processes

• Positive Shocks✓

• Patience (δ ↑)
• Utility primitives (u ↑)
• Beliefs (µ ↑)

• Assumptions 1 and 2
• Inc. diff. in x and p

• Assumptions 1 and 2

Table 2: MCS and Berk‑Nash solution
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Other Results ‑ (more) Comparative Statics, Welfare Costs

Theorem 3 (Increasing Models)
Suppose the hypothesis in Theorem 1 continue to hold. If a change in beliefs over models is a
positive shock, then an increase in the parameter set under the strong set order leads to an
increase in the least and the greatest equilibrium best‑fit models.

Theorem 4 (Increasing and Convex Order)

Suppose assumptions 1‑3 and single‑crossing holds for increasing and convex order. Then a
positive (negative) shock to the primitives will lead to an increase in the least and greatest
Berk‑Nash equilibrium in the increasing and convex order if changes in beliefs over models are
positive (negative) shocks.
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Technical Contribution

• Berk‑Nash equilibriummap T : W → 2W ,W = ∆(S× X)×∆(Θ)

• Space of probability measures ordered by≿st not lattice ‑
Tarski/Topkis/Knaster‑Tarski/Hopenhayn‑Prescott×

• But it is chain‑complete: a chain that has both infimum and supremum
p1 = 0.5(ϵa + ϵb), p2 = 0.5(ϵa + ϵc), p3 = 0.5(ϵc + ϵb), p4 = 0.5(ϵa + ϵd).

a = (0,0)

b = (0,3) c = (3,3)

d = (3,0)

• Apply non‑lattice techniques that we tailor for endogenous MDPs with misspecification
• Endogenous MDPs require stronger conditions of supermodularity on the Bellman
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Technical Contribution

• Non‑lattice structure of the Berk‑Nash solution:
• Endogenous misspecified MDPs require stronger conditions for uniqueness, including
supermodularity of the Bellman function (assumptions 1 and 2).

• The proof technique follows a three‑step structure:
• Step 1: For Theorem 2, show stationary distributionsm∗ induced byG are Type I (Type II)
monotonic in p for µ ∈ ∆(Θ)

• Step 2: Construct a mapping θ̂ that, for each µ and p, gives model distributions µ′. Fixed points
are equilibrium distributions µ∗

• Step 3: Show least and greatest selections of the map increase in p, also provides a new
existence proof for Theorem 1 based onmonotonicity and identification of T
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Back to Example II ‑ Analysis

An increase (decrease) in γ∗ is a negative (positive) shock

• The state, action, and parameter spaces are lattices; utility is increasing in y and z. The
concave payoff function with d2u(y,z,x)

dx dy > 0 is supermodular, satisfying Assumption 1
• Model distributions are Gaussian with mean α+ β lnx and unit variance, satisfying
Assumption 2 via stochastic dominance of higher x

• Assumption 3 holds as Gaussian distributions are strictly log‑concave, ensuring unique
identification. Thus, Theorem 1 guarantees the Berk‑Nash equilibrium

• Assumption 4 is verified via the sufficient condition
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Concluding Remarks

• We establish new results onmonotone comparative statics for misspecified dynamic
programs and provide novel predictions for misspecified behavior

• The results are of applied interest across a variety of domains, including forecasting,
consumption‑saving models, and effort‑choice problems (In paper)

• The machinery to establish the results are powerful and relies on non–lattice
characterizations

• Paper link: Here!
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Other Results ‑ Welfare Ranking

• Objective welfare

W (s, θ̄) = EQ(·|s,g(s,θ̄))

[ ∞∑
t=0

βtu(st, g(st, θ̄))

]
, t = 0, 1, 2, . . . . (8)

• θ̄ = θ∗ (correct), θ∗ (misspecified)

• Approximation error in optimal policy

||g(s, θ∗)− g(s, θ∗)|| < γ

• u : S× X → R is continuously differentiable in actions
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Other Results ‑ Welfare Ranking

Theorem 5

• W (s, θ∗) ⩾ W (s, θ∗)

• For a given approximation error γ,

||W (s, θ∗)−W (s, θ∗)|| ⩽
2βm0(1− e−k∗

) +m1γ

1− β
, (9)

wherem0 andm1 denote the absolute upper bound on the utility and the marginal utility
function, respectively, and k∗ is the supremum on the KL entropy betweenQwith the optimal
policy and theQwith the misspecified policy

Inspired by Santos (2000), Theorem 5 is potentially useful in the numerical approximation of the
Berk‑Nash equilibria.
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