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Introduction

I This lecture gives an introduction to Bayesian and machine learning
(ML) methods

I Useful for “regularizing” or “shrinking” estimates to reduce the influence
of statistical noise (“overfitting”)

I Often motivated as methods for dealing with “big data”

I But primarily useful for dealing with finite-sample problems in
settings with many predictor variables

I Perhaps more accurate to think of these as “rich data” methods

I ML methods focus on prediction rather than causal inference

I Open question (Angrist and Frandsen, 2020): Is ML useful for
estimating causal e↵ects?
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Empirical Bayes

I Empirical Bayes (EB) methods are used in settings with large numbers
of parameters

I Examples:

I Teacher/school e↵ects

I Firm e↵ects

I Neighborhood e↵ects

I We are often interested both in individual parameters (how e↵ective is a
specific teacher?) and in the distribution of parameters (how much does
e↵ectiveness vary across teachers?)

I Useful for analyzing hierarchical data: students within classrooms,
workers within firms, etc.

I See Robbins (1964) and Morris (1983) for background
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EB Framework: Level I

I We’ll start with an abstract description of EB, then illustrate with an
example

I Let j 2 {1...J} index groups (e.g. classes), and let i 2 {1...N} index
individuals within groups (e.g. students)

I ✓j is an unknown parameter for group j (e.g. the causal e↵ect of teacher
j)

I Yij is an observed outcome for individual i in group j , assumed to follow
the distribution

Yij |✓j ⇠ f (y ; ✓j)
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EB Framework: Level II

I At the next level of the hierarchy, we posit a second distribution that
governs the cross-group distribution of parameters:

✓j ⇠ g(✓;⌦)

I In the Bayesian framework, g(·) is a prior distribution, and ⌦ is a
hyperparameter describing the prior

I Equivalently, think of this as a random coe�cients model with g(·) the
distribution of random coe�cients

I We hope to estimate

I The individual ✓j ’s, which tell us about specific groups

I The hyperparameter ⌦, which tells us about cross-group
heterogeneity
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EB Framework: Estimating Hyperparameters

I To estimate ⌦, construct an integrated likelihood function that expresses
the distribution of the data for group j , Yj = (Y1j ...YNj), as a function of
the hyperparameters:

L (Yj |⌦) =
Z NY

i=1

f (Yij ; ✓) g (✓;⌦) d✓

I EB maximum likelihood estimator:

⌦̂EB = argmax
⌦

JX

j=1

logL(Yj |⌦)

I Alternatively, we could estimate ⌦ by method of moments
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EB Posteriors

I Using Bayes’ rule, the posterior density for the group-specific parameter
✓j conditional on the observed data is:

h(✓j |Yj ;⌦) =

Q
i f (Yij ; ✓j)g(✓j ;⌦)

L (Yj |⌦)

I Often we are interested in a particular feature of the posterior
distribution, such as the posterior mean:

✓⇤j =
R
✓h(✓|Yj ;⌦)d✓

I Putting the “E” in “EB”: an empirical Bayes posterior mean plugs ⌦̂EB

into this formula
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EB Example: Teacher E↵ects

I Suppose students are randomly assigned to classrooms, and student test
scores are given by

Yij = ✓j + ✏ij ,

✏ij |✓j ⇠ N
�
0,�2

✏

�

I ✓j is the mean potential score for teacher j , which measures teacher j ’s
e↵ectiveness

I The distribution of teacher e↵ects is

✓j ⇠ N(µ✓,�
2
✓)

I Here µ✓ and �2
✓ are hyperparameters
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EB Example: Teacher E↵ects

I With equal class sizes of N, estimates of hyperparameters in the teacher e↵ects
model are

µ̂✓ = 1
J

X

j

Ȳj ,

�̂2
✓ = 1

J

X

j

�
Ȳj � µ̂✓

�2 � �̂2
✏/N

�̂2
✏ = 1

NJ

X

i

X

j

�
Yij � Ȳj

�2

I Here Ȳj =
1
N

P
i Yij is the mean for class j

I The variance of teacher e↵ects, �2
✓, is inferred from overdispersion in class

averages beyond what we’d expect from random chance
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EB Example: Teacher E↵ects

I In the normal/normal model, the posterior mean takes a simple form:

✓⇤j = ⌧ Ȳj + (1� ⌧)µ✓,

⌧ =
�2
✓

�2
✓ + �2

✏/N

I The EB posterior mean plugs µ̂✓, �̂
2
✓ and �̂2

✏ into this formula

I The posterior mean shrinks the unbiased estimate Ȳj towards the grand
mean µ✓ in proportion to one minus the signal-to-noise ratio

I With large enough classes, ⌧ ! 1 and shrinkage disappears
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To Shrink or Not to Shrink?

I Note that the sample mean Ȳj is an unbiased estimate of ✓j . Why should we
prefer the shrunken posterior mean ✓⇤j ?

I It’s a matter of perspective. Consider the mean squared error (MSE) of Ȳj and
✓⇤j , treating teacher j ’s e↵ect ✓j as a fixed parameter:

E
h�
Ȳj � ✓j

�2 |✓j
i
= �2

✏/N

E

⇣
✓⇤j � ✓j

⌘2
|✓j

�
= ⌧2�2

✏/N + (1� ⌧)2
�
✓j � µ✓

�2

I For any particular teacher, it is not clear which is better – it depends on the
(unknown) true e↵ect ✓j

I ✓⇤j is also biased, in the sense that E
h
✓⇤j |✓j

i
6= ✓j

I If we only cared about one specific teacher’s e↵ect, we might prefer the sample
mean
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To Shrink or Not to Shrink?

I But ✓⇤j has lower mean squared error averaged over all teachers:

E
h�
Ȳj � ✓j

�2i
= �2

✏/N

E
h
(✓⇤j � ✓j )2

i
= ⌧�2

✏/N

I If we care about getting the answer right for every teacher, ✓⇤j does better (in

an MSE sense) than Ȳj

I In this sense ✓⇤j is the minimum MSE predictor of ✓j

I We assumed a normal distribution, but ✓⇤j is the Best Linear Predictor (BLP) of
✓j even if the normality assumption is wrong
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EB Application: Teacher Value-Added

I Chetty, Friedman and Rocko↵ (CFR; 2014) look at the e↵ects of teachers on
short-run test scores and long-run outcomes

I CFR study value-added models: OLS estimates of teacher e↵ects, controlling
for previous test scores and demographics

I Motivated by a selection-on-observables assumption: this year’s teacher is as
good as random conditional on last year’s score

I Re-interpret Ȳj from our simple example as a class average residual after
adjusting for past test scores

I CFR introduce some subtlety by allowing e↵ects for a given teacher to “drift”
over time, but the core EB approach is the same as in our example
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EB Application: Teacher Value-Added

I CFR are interested in the regression:

Incomei = ↵+ �✓j(i) + X 0
i � + ✏i

I ✓j is the test score value-added of teacher j , j(i) is i ’s teacher, Incomei is
income in adulthood, and Xi is a vector of control variables

I If teachers are as good as random conditional on Xi , the OLS coe�cient �
answers the question: Do teachers who improve short-run test scores improve
long-run outcomes?

I Problem: We don’t observe ✓j

I Substituting in the unbiased but noisy estimate Ȳj would cause attenuation bias,
pulling the OLS estimate of � towards 0
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EB Application: Teacher Value-Added

I A useful fact: putting the posterior mean ✓⇤j on the right-hand side of a
regression fixes attenuation bias

I If the model is right, EB shrinkage reduces variance to exactly o↵set
measurement error

I A regression of Incomei on ✓⇤j(i) therefore produces the same coe�cient
we’d get if we knew the true ✓j(i) (though the estimate is less precise)

I Note: Shrinkage fixes bias when applied to a right-hand side variable, but
causes bias when applied to a left-hand side variable (recall that classical
measurement error on the left does not generate bias)
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sample. Under these assumptions, the mean present value of lifetime earnings at age 
12 in the US population is approximately $522,000.27 Hence, the financial value 
of having a one standard deviation higher VA teacher (i.e., a teacher at the eighty-
fourth percentile instead of the median) is 1.34 percent × $522, 000 ≃ $7, 000 per 
grade. The undiscounted lifetime earnings gain (assuming a 2 percent growth rate 
but 0 percent discount rate) is approximately $39,000 per student.

A second benchmark is the increase in earnings from an additional year of school-
ing, which is around 9  percent (Gunderson and Oreopoulos 2010, Oreopoulos 
and Petronijevic 2013). Having a teacher in the first percentile of the value-added 
distribution (2.33 standard deviations below the mean) is equivalent to miss-
ing   2.33 × 1.34 percent

  __  9 percent   =  one-third of the school year when taught by a teacher of 
average quality.

A third benchmark is the cross-sectional relationship between test scores and 
earnings. A one standard deviation increase in teacher quality raises end-of-year 
scores by 0.13 standard deviations of the student test score distribution on aver-
age across grades and subjects. A one standard deviation increase in student test 
scores, controlling for the student- and class-level characteristics  X it , is associated 
with a 12 percent increase in earnings at age 28 (online Appendix Table 3, column 3, 
row 2). The predicted impact of a one standard deviation increase in teacher VA 

27 We calculate this number using the mean wage earnings of a random sample of the US population in 2007 to obtain 
an earnings profile over the life cycle, and then inflate these values to 2010 US$. See Chetty et al. (2011) for details.

Table 3—Impacts of Teacher Value-Added on Earnings

Earnings
at age 28

Earnings
at age 28

Earnings
at age 28

Working
at age 28

Total income
at age 28

Wage growth 
ages 22–28

($) ($) ($) (%) ($) ($)
(1) (2) (3) (4) (5) (6)

Teacher VA 349.84 285.55 308.98 0.38 353.83 286.20
  (91.92) (87.64) (110.17) (0.16) (88.62) (81.86)
             
Mean of dep. var. 21,256 21,256 21,468 68.09 22,108 11,454

           

Baseline controls X X X X X X
           

Parent chars.   X        
 controls            

Lagged score     X      
 controls            

Observations 650,965 650,965 510,309 650,965 650,965 650,943

Notes: Each column reports coefficients from an OLS regression, with standard errors clustered by school-cohort in 
parentheses. The regressions are estimated on the linked analysis sample (as described in the notes to Table 1). There is 
one observation for each student-subject-school year. Teacher value-added is estimated using data from classes taught 
by a teacher in other years, following the procedure described in Section IIIA. The dependent variable in columns 1–3 
is the individual’s wage earnings reported on W-2 forms at age 28. The dependent variable in column 4 is an indicator 
for having positive wage earnings at age 28. The dependent variable in column 5 is total income (wage earnings plus 
self-employment income). The dependent variable in column 6 is wage growth between ages 22 and 28. All columns 
control for the baseline class-level control vector; column 2 additionally controls for parent characteristics, while col-
umn 3 additionally controls for twice-lagged test scores (see notes to Table 2 for details). We use within-teacher varia-
tion to identify the coefficients on all controls as described in Section IA; the estimates reported are from regressions 
of outcome residuals on teacher VA with school by subject level fixed effects.



Combining Estimators

I Bayesian methods are also useful in settings where multiple estimates of the
e↵ect of interest are available

I Suppose we observe experimental or quasi-experimental estimates ✓̂Ej , as well as

(possibly biased) non-experimental estimates, ✓̂NEj :

✓̂Ej = ✓j + uEj

✓̂NEj = ✓j + bj + uNEj

I uEj and uNEj are mean-zero estimation errors

I bj is bias in the non-experimental estimate for group j

I The experimental estimates are unbiased, but also less precise:
Var(uEj ) >> Var(uNEj )

I This creates a bias/variance tradeo↵. What is our best estimate of ✓j using all
available information?
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Combining Estimators: Examples

✓̂Ej = ✓j + uEj

✓̂NEj = ✓j + bj + uNEj

I Chetty and Hendren (2018) study causal e↵ects of neighborhoods on child
income

I ✓̂Ej are quasi-experimental estimates based on families that move between
neighborhoods

I ✓̂NEj are OLS estimates based on permanent residents

I Angrist, Hull, Pathak and Walters (2017) study causal e↵ects of schools on test
scores

I ✓̂Ej are quasi-experimental estimates based on randomized admission
lotteries

I ✓̂NEj are OLS value-added estimates that control for past test scores
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Combining Estimators
I Suppose causal e↵ects, bias, and estimation errors are normally distributed.

Then the posterior mean is

✓⇤j = ⌧E ✓̂Ej + ⌧NE
⇣
✓̂NEj � µb

⌘
+

�
1� ⌧E � ⌧NE

�
µ✓

I The posterior mean is a weighted average of the unbiased experimental estimate,
the biased non-experimental estimate (net of mean bias), and the prior mean

I When Var(uNEj ) ⇡ 0, the shrinkage factors are

⌧E =
�2
✓(1�R2)

�2
✓(1�R2)+Var(uEj )

, ⌧NE =  
�
1� ⌧E

�

I Here  = Cov(✓j , ✓j + bj )/Var(✓j + bj ) is the reliability ratio from a regression
of the true e↵ect on the non-experimental estimate, and R2 is the R-squared
from this regression

I This “hybrid” approach trades o↵ the bias in non-experimental estimates
against variance in experimental estimates to minimize MSE

I EB version plugs in estimates of prior means and shrinkage factors
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Notes: This figure plots root mean squared error (RMSE) for posterior predictions of sixth grade math value-
added. Conventional predictions are posterior means constructed from OLS value-added estimates. Hybrid 
predictions are posterior modes constructed from OLS and lottery estimates. The total height of each bar 
indicates RMSE. Dark bars display shares of mean squared error due to bias, and light bars display shares due 
to variance. RMSE is calculated from 500 simulated samples drawn from the data generating processes implied 
by the estimates in Table VI. The random coefficients model is re-estimated in each simulated sample.

Figure VI. Root Mean Squared Error for Value-Added Posterior Predictions
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EB vs. Full B

I A fully Bayesian analysis of teacher e↵ects would add a third level to the
hierarchy: a hyperprior distribution over (µ✓,�✓), with parameters
chosen by the researcher rather than estimated

I We would then compute posterior distributions for µ✓, �✓, and ✓j

I Why should we opt for empirical Bayes rather than fully Bayesian
methods?
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EB vs. Full B

I Pros of full Bayes:

I If you’re a committed Bayesian, none! But if you’re a frequentist...

I EB posteriors do not account for estimation error in hyperparameters, so
can overstate precision (though we can adjust for this; see Morris, 1983)

I In some cases hyperparameters are di�cult to estimate, and smoothing
via a hyperprior can help

I Cons of full Bayes:

I Fully Bayesian estimation requires simulation methods (Markov Chain
Monte Carlo, MCMC), which are harder to implement and less transparent

I Where do the parameters of the hyperprior come from? To the extent
that these a↵ect the estimates, why should we believe the results?

I EB estimates have desirable frequentist properties and are easier to understand
– arguably less “harmful”

I If hyperparameters are estimated precisely, there won’t be much di↵erence
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Machine Learning

I Machine learning (ML) refers to a class of data-driven statistical methods for
selecting and estimating predictive models

I The challenge is avoiding overfitting: with N observations and N predictors, we
can fit the data perfectly in-sample, and (probably) fail miserably out of sample

I ML techniques penalize model complexity (regularize) to improve out-of-sample
fit

I In econometrics we are typically interested in causal inference, not prediction

I One explanatory treatment variable Di is often privileged at the expense
of other controls Xi

I We don’t usually care about correctly specifying E [Yi |Xi ] – controls are
only included to increase precision

I After introducing ML, we will discuss prospects for improving causal
inference
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ML Prediction Problem

I Suppose we are interested in predicting the value of some variable Yi using a
vector of P predictors Xi = (Xi1...XiP ), with Xik ’s normalized to mean zero and
variance 1

I We observe (Yi ,Xi ) for a sample of size N

I Goal is out of sample prediction: use Xi to predict Yi in a new sample drawn
from the same population

I Minimum MSE predictor is E [Yi |Xi ]. The challenge is getting a good estimate
of this CEF

I Obvious first impulse: Run an OLS regression of Yi on Xi

I Problem: What if P > N? We can’t run OLS

I Even if P < N, OLS will likely perform poorly out of sample if P is close to N
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Regularized Regression

I Regularized least squares regression:

�̂ = argmin
�

NX

i=1

⇥
Yi � X 0

i �
⇤2

+ �p(�)

I p(·) is a penalty function that depends on the complexity of the model
through �

I � is a tuning parameter that determines how severely to penalize

I Several common ML procedures have this structure
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LASSO

I Common approach: Least Absolute Shrinkage and Selection Operator (LASSO)

I LASSO uses the penalty function

p(�) =
PX

p=1

|�p |

I LASSO penalizes the absolute value of each coe�cient

I Penalty function is kinked at zero, so will result in lots of coe�cients set
exactly to zero

I This makes LASSO useful for variable selection

I Motivated by the idea of sparsity: the set of variables with non-zero coe�cients
in the true model is small (equivalently, a lot of totally irrelevant variables are
included in Xi )

I LASSO may not work as well if the true model is not sparse
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Variants of LASSO

I Post-LASSO

I First, run LASSO. Then, take the set of predictors selected to have
non-zero coe�cients, and run OLS without regularization

I LASSO penalizes coe�cients for both irrelevant variables and variables
that belong in the model, pushing all coe�cients towards zero

I Post-LASSO gets rid of “shrinkage bias” by eliminating the penalty for
variables selected for inclusion

I p
LASSO

I Objective function:
qP

i [Yi � X 0
i �]

2 + �
P

p |�p |

I Unlike LASSO, the optimal � for
p
LASSO does not depend on unknown

parameters (more on this later)
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Ridge Regression

I Ridge regression uses the penalty function:

p(�) =
PX

p=1

�2
p

I Quadratic penalty rather than linear

I Unlike LASSO, Ridge will not set coe�cients to exactly zero – Ridge does not
perform variable selection

I But Ridge’s convex penalty punishes large coe�cients more harshly

I Ridge tends to perform better than LASSO when the true model is dense rather
than sparse (few exact zero coe�cients)

I See Abadie and Kasy (forthcoming) for more on the relative performance of
LASSO and Ridge
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Choosing the Tuning Parameter

I Choice of the tuning parameter � is crucial for good performance of regularized
models

I � = 0 recovers OLS, while �! 1 shrinks all coe�cients to zero

I How should we choose �?

I There are some theoretical results on optimal (MSE-minimizing) penalization,
but these often involve unknown parameters

I Optimal �’s for LASSO and Ridge depend on �, the unknown standard
deviation of errors in the true model (Bickel et al., 2009)

I Optimal � for
p
LASSO is independent of �, a virtue of this approach

(Belloni et al., 2011)

I Researchers commonly select � with a data-driven approach such as k-fold cross
validation
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Cross Validation

I K -fold cross validation algorithm:

I Randomly partition the sample into k separate subsets (folds)

I For a given value of �, leave out one fold, and estimate the model on the
remaining k � 1 folds

I Compute the fit (MSE) of the estimated model on the left-out fold

I Do this k times, once for each fold, and combine results to compute
overall goodness of fit

I Repeat for many �’s to find the tuning parameter that generates best fit

I Common choices for k: 5, 10, and N (leave one out)

I Cross validation is useful more generally for assessing out-of-sample fit
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ML and Bayesian Methods

I Let’s return to our teacher e↵ects example to explore the connection
between ML and Bayesian methods

I Since we assumed a normal prior and normal data, the posterior
distribution for ✓j is normal, so the posterior mean ✓⇤j is also the posterior
mode

I This implies that ✓⇤j maximizes the posterior density:

✓⇤j = argmax
✓

log h (✓|Yj ;⌦)

= argmax
✓

log
�Q

i f (Yij ; ✓)
�
+ log g (✓;⌦)

I The posterior mode is also known as a maximum a posteriori (MAP)
estimate
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ML and Bayesian Methods

✓⇤j = argmax
✓

log
�Q

i f (Yij ; ✓)
�
+ log g (✓;⌦)

I Plugging in normal densities gives

✓⇤j = argmax
✓

� 1
2�2

✏

NX

i=1

[Yij � ✓]2 � 1
2�2

✓
(✓ � µ✓)

2

= argmin
✓

NX

i=1

[Yij � ✓]2 + �2
✏|{z}
�

⇥
⇣

✓�µ✓
�✓

⌘2

| {z }
p(✓)

I The Bayesian posterior mean can be rewritten as a regularized least
squares estimate with a Ridge-style quadratic penalty
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ML and Bayesian Methods

I ML procedures often have a Bayesian interpretation

I LASSO estimates can be interpreted as posterior modes from a
model with double exponential (Laplace) priors on the elements of �

I Ridge estimates can be interpreted as posterior means from a model
with normal priors on the elements of �

I The Bayesian posterior mode solves a regularized maximum likelihood
problem, with the prior density serving as the regularization term

I No clear distinction between ML and Bayesian approaches
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Other Useful ML Methods
I Decision trees

I Classify observations via a sequence of nodes defined by values of
predictor variables. Useful method for capturing complex nonlinearities
and interactions

I “Prune” trees by introducing a cost for the number of nodes

I Bagging (bootstrap aggregating): Construct many trees on random
samples of size N, drawn with replacement. Final classification for an
observation is based on a “vote” of these trees

I Random forest: Modify bagging by using a random subset of the predictor
variables at each node

I K-means clustering

I Assign observations to k groups to minimize sum of squared errors
relative to a group-specific mean

I Example of an unsupervised learning algorithm: infer latent grouping
structure in the data, rather than predicting one variable as a function of
others (supervised learning)

I There are many variations on these themes, and many other ML techniques –
see Varian (2014) for an overview from an economist’s perspective
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8     Journal of Economic Perspectives

classifi cation problem. A common example would be classifying email into “spam” or . A common example would be classifying email into “spam” or 
“not spam” based on characteristics of the email. Economists would typically use a “not spam” based on characteristics of the email. Economists would typically use a 
generalized linear model like a logit or probit for a classifi cation problem.generalized linear model like a logit or probit for a classifi cation problem.

A quite different way to build a classifi er is to use a decision tree. Most econo-A quite different way to build a classifi er is to use a decision tree. Most econo-
mists are familiar with decision trees that describe a sequence of decisions that results mists are familiar with decision trees that describe a sequence of decisions that results 
in some outcome. A tree classifi er has the same general form, but the decision at the in some outcome. A tree classifi er has the same general form, but the decision at the 
end of the process is a choice about how to classify the observation. The goal is to end of the process is a choice about how to classify the observation. The goal is to 
construct (or “grow”) a decision tree that leads to good out-of-sample predictions.construct (or “grow”) a decision tree that leads to good out-of-sample predictions.

Ironically, one of the earliest papers on the automatic construction of deci-Ironically, one of the earliest papers on the automatic construction of deci-
sion trees (Morgan and Sonquist 1963) was coauthored by an economist. However, sion trees (Morgan and Sonquist 1963) was coauthored by an economist. However, 
the technique did not really gain much traction until 20 years later in the work of the technique did not really gain much traction until 20 years later in the work of 
Breiman, Friedman, Olshen, and Stone (1984). Nowadays this prediction technique Breiman, Friedman, Olshen, and Stone (1984). Nowadays this prediction technique 
is known as “classifi cation and regression trees,” or “CART.”is known as “classifi cation and regression trees,” or “CART.”

To illustrate the use of tree models, I used the To illustrate the use of tree models, I used the R package  package rpart to fi nd a tree to fi nd a tree 
that predicts that predicts Titanic survivors using just two variables: age and class of travel. survivors using just two variables: age and class of travel.11 The  The 
resulting tree is shown in Figure 1, and the rules depicted in the tree are shown in resulting tree is shown in Figure 1, and the rules depicted in the tree are shown in 
Table 2. The rules fi t the data reasonably well, misclassifying about 30 percent of the Table 2. The rules fi t the data reasonably well, misclassifying about 30 percent of the 
observations in the testing set.observations in the testing set.

This classifi cation can also be depicted in the “partition plot” (Figure 2), which This classifi cation can also be depicted in the “partition plot” (Figure 2), which 
shows how the tree divides up the space of age and class pairs into rectangular shows how the tree divides up the space of age and class pairs into rectangular 

1 All data and code used in this paper can be found in the online Appendix available at http://e-jep.org.

Figure 1
A Classifi cation Tree for Survivors of the Titanic

Note: See text for interpretation.

class >= 2.5

age >= 16

class >= 1.5

died
370 / 501

died
145 / 233

lived
174 / 276

lived
34 / 36

yes no

ML and Causation

I Sophisticated prediction algorithms give more accurate measures of
correlation, but they do not distinguish causation from selection bias

I ML is not a substitute for a research design

I In some cases, however, accurate predictive models are important for
estimating causal relationships. Examples:

I Selection on observables with a high-dimensional set of control
variables

I Instrumental variables estimation with many/weak instruments

I Angrist and Frandsen (2020): In labor applications, ML seems to do
better at selecting control variables than picking instruments
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ML Example: Dale and Krueger Redux

I Angrist and Frandsen (AF; 2020) consider the use of ML methods in a
reanalysis of Dale and Krueger (DK; 2002, 2014)

I DK seek to estimate the causal returns to college selectivity

I For future earnings, is it better to attend UPenn, or Penn State?

I Research design = selection on observables: compare students who
applied/were admitted to the same schools but made di↵erent attendance
choices, assuming CIA

I Basic finding: matching on application/admission sets eliminates the
apparent returns to selectivity

I DK control for a large set of application/attendance dummies, reducing sample
size and precision

I AF ask whether ML can find a su�cient but more parsimonious control set,
maintaining CIA

I Post double selection (Belloni et al., 2014): LASSO regressions of Yi and
Di on Xi ; retain union of variables selected in either model
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Table 1: OLS Estimates of Elite College Effects

DK02 Selection controls

Barron's 
sample Full sample

(1) (2) (3) (4) (5) (6)

Estimated Effect 0.212 0.139 0.007 0.013 0.036 0.037

(0.060) (0.043) (0.038) (0.025) (0.029) (0.039)

R**2 0.019 0.107 0.058 0.138 0.111 0.114

No. of controls 0 10 150 160 13 14

N

Estimated Effect 0.109 0.076 0.008 0.004 0.004 0.000

(0.026) (0.016) (0.029) (0.016) (0.017) (0.018)

R**2 0.019 0.107 0.066 0.140 0.107 0.113

No. of controls 0 10 334 344 13 14

N

Estimated Effect 0.225 0.153 0.018 0.022 0.031 0.068

(0.046) (0.030) (0.047) (0.035) (0.032) (0.029)

R**2 0.020 0.108 0.048 0.129 0.106 0.114

No. of controls 0 10 128 138 13 14

N

A. Private School Effects

14238

B. Effects of School Average SAT/100

14238

5583

9166

Basic Controls

None

Personal 
charac‐
teristics

Barron s 
matches 
w/pers. 
char.

Self‐revelationBarron's 
matches 
only

14238

14238

14238

Notes: This table reports OLS estimates of the effect of college characteristics on graduate earnings, estimated
with various sets of controls. Estimates use College and Beyond sampling weights and cluster standard errors
on institution. Controls used for column 2 include graduates' SAT scores, log parental income, indicators for
female, black, Hispanic, Asian, other/missing race, high school top 10 percent, high school rank missing, and
athlete. Controls for estimates reported in Panel A, column 3 include 150 dummies (for 151 categories)
indicating the Barron's selectivity mix of schools to which graduates applied and were admitted. Controls for
column 4 include Barron's dummies and the personal charcteristics used for column 2. The Barron's model in
Panel B includes 334 dummies; the Barron's model in Panel C includes 128 dummies. Columns 5‐6 models
replace dummies for Barron's selectivity groups with the average SAT score of schools applied to, along with
indicators for applying to two, three, and four or more schools.  

C. Effects of Attending Schools Rated Highly Competitive +

14238 4945
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Table 2: Post-Lasso Estimates of Elite College Effects

All controls
plugin (16) C.V. λ cvlasso plugin (16) C.V. λ cvlasso OLS

(1) (2) (3) (4) (5) (6) (7)

Estimated Effect 0.038 0.020 0.040 0.046 0.043 0.042 0.017
(0.040) (0.039) (0.041) (0.041) (0.043) (0.043) (0.039)

No. of controls 18 100 112 10 35 50 303

Estimated Effect ‐0.009 ‐0.013 ‐0.009 ‐0.008 ‐0.009 ‐0.008 ‐0.012
(0.020) (0.018) (0.019) (0.020) (0.019) (0.019) (0.018)

No. of controls 24 151 58 10 34 43 303

Estimated Effect 0.068 0.051 0.073 0.076 0.080 0.082 0.053
(0.033) (0.033) (0.033) (0.031) (0.032) (0.032) (0.033)

No. of controls 17 185 106 10 34 43 303

Notes: The sample size is 14,238. Estimates in columns 1‐3 are from a post‐double‐selection (PDS) lasso procedure. Results in
columns 4‐6 are from a procedure applying lasso to a reduced‐form regression of the the outcome on the dictionary of controls.
Estimates in columns 1 and 4 were computed using the Stata 16 lasso linear command to select controls with a plug‐in penalty,
and OLS to compute the estimates. Estimates in columns 2 and 5 use lasso linear with 10‐fold cross validation to select the
penalty. Estimates in columns 3 and 6 use Stata 15 (Lassopack) cvlasso to select the penalty, rlasso to select controls, and
OLS to compute estimates. See the appendix for detals. Column 7 reports OLS estimates incuding the entire set of
controls. Controls include those used for column 5 of the previous table plus the following: indicators for being accepted to two
colleges, three colleges, and four or more colleges; indicators for being rejected from one college, two colleges, three colleges,
and four or more colleges; the number of schools applied to; the average SAT score among schools at which the applicant was
accepted; the average SAT score among schools from which the applicant was rejected; the highest average SAT score across
schools at which the applicant was accepted; the highest average SAT score across schools from which the applicant was rejected;
the lowest average SAT score among schools at which the applicant was accepted; the lowest average SAT score among schools
from which the applicant was rejected, and all two‐way interactions of the above variables. The control dictionary contains 405
variabless. OLS estimates use weights, and are reported with robust standard errors clustering on institution. All lasso commands
use regressor‐specific penalty loadings.  

Double‐selection (PDS) Outcome selection

A. Private School Effects

B. Effects of School Average SAT/100

C. Effects of Attending Schools Rated Highly Competitive +
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