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A World of Potentials

Acts demolish their alternatives, that is the paradox.

- James Salter (1975)

The road without electronics leads to Y0i
The road to distraction leads to Y1i

Let Di indicate treatment or exposure to an intervention of interest

Like classroom electronics allowed ... or health insurance

These are potential outcomes, only one is seen:

Yi = Y0i (1−Di ) + Y1iDi = Y0i + (Y1i − Y0i )Di

Y1i − Y0i is an unknowable individual electronics causal e§ect
We seek, therefore, after average causal e§ects

RCT Theory

We observe E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1i |Di = 1]− E [Y0i |Di = 0]
= E [Y1i − Y0i |Di = 1]| {z }

TOT

+ E [Y0i |Di = 1]− E [Y0i |Di = 0]| {z }
selection bias

a fundamental causal conundrum (the attentive are anyway better;

the insured anyway healthier)
Models often assume constant e§ects: Y1i = Y0i + k
When Di is randomly assigned,

E [Y0i |Di = 1] = E [Y0i |Di = 0],

and
E [Yi |Di = 1]− E [Yi |Di = 0] = k

Random assignment removes selection bias
(with or w/o constant e§ects)



HEY, WHERE’D YA GO TO SCHOOL?

Regression Replaces Randomization

We can’t always run RCTs — and regressions are run more easily and
faster! Yet, can regression really be causal?

Define potential outcomes for two roads, public and private college

American private schools are elite: expensive and selective (like MIT)

Does private education pay? Write

Y1i for graduate i ’s earnings having gone private (Pi = 1)
Y0i for graduate i ’s counterfactual (Pi = 0)

Get personal: most of my students are headed to Google & Goldman;
yet, others there went to state schools

Does MIT matter for you? (Michigan is cheaper!)



Two College Roads

Regression and the CIA

Private Y0i ’s are better (on average)

Regression reduces—maybe even eliminates—the resulting selection bias

Let Y0i = a+ hi ; assume Y1i − Y0i = b

Though E [hi |Pi ] 6= 0, we assume controls Xi satisfy a conditional
independence assumption (CIA):

E [hi |Pi ,Xi ] = E [hi |Xi ] = g0Xi

This leads to
Yi = a+ g0Xi + bPi + ui ,

where

b is causal
g is inconsequential
E [uiXi ] = 0 by construction

Note the asymmetry: in our design-based paradigm, regressors are not
all created equal



Appraising Degrees (with Regression)

APPENDIX 1: SCHOOL-AVERAGE SAT SCORE AND NET TUITION OF C&B INSTITUTIONS 

School-average 1976 
Institution SAT score in 1978 Net tuition ($) 

Barnard College 1210 3530 
Bryn Mawr College 1370 3171 
Columbia University 1330 3591 
Denison University 1020 3254 
Duke University 1226 3052 
Emory University 1150 3237 
Georgetown University 1225 3304 
Hamilton College 1246 3529 
Kenyon College 1155 3329 
Miami University (Ohio) 1073 1304 
Northwestern University 1240 3676 
Oberlin College 1227 3441 
Pennsylvania State University 1038 1062 
Princeton University 1308 3613 
Rice University 1316 1753 
Smith College 1210 3539 
Stanford University 1270 3658 
Swarthmore College 1340 3122 
Tufts University 1200 3853 
Tulane University 1080 3269 
University of Michigan (Ann Arbor) 1110 1517 
University of North Carolina (Chapel Hill) 1080 541 
University of Notre Dame 1200 3216 
University of Pennsylvania 1280 3266 
Vanderbilt University 1162 3155 
Washington University 1180 3245 
Wellesley College 1220 3312 
Wesleyan University 1260 3368 
Williams College 1255 3541 
Yale University 1360 3744 

The SAT scores were obtained from and to freshmen. Net tuition for 1970 

MM Chpt 2 (based on DK 2002) compares grads of these schools,
conditional on where they applied/were admitted

Matchmaker, Matchmaker . . . Find Me a College!

Ambition and opportunity definedRegression 53

Table 2.1
The college matching matrix

Private Public

Applicant Altered 1996
group Student Ivy Leafy Smart All State Tall State State earnings

A 1 Reject Admit Admit 110,000

2 Reject Admit Admit 100,000

3 Reject Admit Admit 110,000

B 4 Admit Admit Admit 60,000

5 Admit Admit Admit 30,000

C 6 Admit 115,000

7 Admit 75,000

D 8 Reject Admit Admit 90,000

9 Reject Admit Admit 60,000

Note: Enrollment decisions are highlighted in gray.

The students in Table 2.1 are organized in four groups de-
fined by the set of schools to which they applied and were ad-
mitted. Within each group, students are likely to have similar
career ambitions, while they were also judged to be of similar
ability by admissions staff at the schools to which they applied.
Within-group comparisons should therefore be considerably
more apples-to-apples than uncontrolled comparisons involv-
ing all students.

The three group A students applied to two private schools,
Leafy and Smart, and one public school, Tall State. Although
these students were rejected at Leafy, they were admitted to
Smart and Tall State. Students 1 and 2 went to Smart, while
student 3 opted for Tall State. The students in group A have
high earnings, and probably come from upper middle class
families (a signal here is that they applied to more private
schools than public). Student 3, though admitted to Smart,
opted for cheaper Tall State, perhaps to save her family money
(like our friends Nancy and Mandy). Although the students in

Angrist third pages 2014/10/16 10:34 p. 53 (chap02) Princeton Editorial Associates, PCA ZzTEX 16.2



Regs Run in MM Chapter 2

With one control variable, Ai , indicating group A in a sample
containing A and B, an alma mater reg can be written:

Yi = a+ bPi + gAi + ei (1)

With many groups and a few other covs:

lnYi = a+ bPi +
150

Â
j=1

gjGROUPji + d1SATi + d2 lnPIi + ei (2)

This controls for 151 groups instead of two as in the example
Parameters gj , for j = 1 to 150, are the coe¢cients on 150 Barron’s
selectivity-group dummies, denoted GROUPji

The CIA makes this causal:

E [Y0i | Pi|{z}
poof !

;GROUPi ,SATi , lnPIi ] = E [Y0i |GROUPi ,SATi , lnPIi ]

Make Me a Match . . . Run Me a Regression

2.5. APPENDIX: REGRESSION THEORY 81

1 

 No Selection Controls Selection Controls 
 (1) (2) (3) (4) (5) (6) 
Private School 0.135 0.095 0.086 0.007 0.003 0.013
 (0.055) (0.052) (0.034) (0.038) (0.039) (0.025) 
Own SAT score/100  0.048 0.016  0.033 0.001 
  (0.009) (0.007)  (0.007) (0.007) 
Predicted log(Parental Income)   0.219   0.190 
   (0.022)   (0.023) 
Female   -0.403   -0.395 
   (0.018)   (0.021) 
Black   0.005   -0.040 
   (0.041)   (0.042) 
Hispanic   0.062   0.032 
   (0.072)   (0.070) 
Asian   0.170   0.145 
   (0.074)   (0.068) 
Other/Missing Race   -0.074   -0.079 
   (0.157)   (0.156) 
High School Top 10 Percent   0.095   0.082 
   (0.027)   (0.028) 
High School Rank Missing   0.019   0.015 
   (0.033)   (0.037) 
Athlete   0.123   0.115 
   (0.025)   (0.027) 
Selection Controls N N N Y Y Y 
Notes: Columns (1)-(3) include no selection controls. Columns (4)-(6) include a dummy for each group 
formed by matching students according to schools at which they were accepted or rejected. Each model 
is estimated using only observations with Barron’s matches for which different students attended both 
private and public schools. The sample size is 5,583. Standard errors are shown in parentheses. 

Table 2.2: Private School E§ects: Barron’s Matches



 No Selection Controls Selection Controls 
 (1) (2) (3) (4) (5) (6) 
Private School 0.212 0.152 0.139 0.034 0.031 0.037
 (0.060) (0.057) (0.043) (0.062) (0.062) (0.039) 
Own SAT Score/100  0.051 0.024  0.036 0.009 
  (0.008) (0.006)  (0.006) (0.006) 
Predicted log(Parental Income)   0.181   0.159 
   (0.026)   (0.025) 
Female   -0.398   -0.396 
   (0.012)   (0.014) 
Black   -0.003   -0.037 
   (0.031)   (0.035) 
Hispanic   0.027   0.001 
   (0.052)   (0.054) 
Asian   0.189   0.155 
   (0.035)   (0.037) 
Other/Missing Race   -0.166   -0.189 
   (0.118)   (0.117) 
High School Top 10 Percent   0.067   0.064 
   (0.020)   (0.020) 
High School Rank Missing   0.003   -0.008 
   (0.025)   (0.023) 
Athlete   0.107   0.092 
   (0.027)   (0.024) 
Average SAT Score of    0.110 0.082 0.077 
Schools Applied to/100    (0.024) (0.022) (0.012) 
Sent Two Application    0.071 0.062 0.058 
  (0.013) (0.011) (0.010)
Sent Three Applications    0.093 0.079 0.066 
    (0.021) (0.019) (0.017) 
Sent Four or more Applications    0.139 0.127 0.098 
    (0.024) (0.023) (0.020) 

Note: Standard errors are shown in parentheses.  The sample size is 14,238. 
 

Table 2.3: Private School E§ects: Average SAT Controls

REGRESSION THEORY



Population Regression

Population regression solves a theoretical best linear prediction (BLP)
problem. The k×1 regression slope vector, b, can be defined as:

b = argmin
b

E
h&
yi −X0i b

'2i

Using the first-order condition,

E
)
Xi
&
yi −X0i b

'*
= 0,

the solution for b can be written

b = E
)
XiX0i

*−1 E [Xiyi ]

By construction, E [Xi (yi −X0i b)] = 0: the pop resid, defined as
yi−X0i b = ei , is uncorrelated with the regressors, Xi

ei owes its meaning and existence to b

Three Reasons to Love Regression Fearlessly

1 Regression solves the population least squares problem: it’s the
MMSE BLP of yi given Xi

2 If the conditional expectation function (CEF) is linear, regression is it
3 Regression is the best linear approximation to the CEF:

b = argmin
b

E{(E [yi |Xi ]−X0i b)
2}.

What do these properties depend on?

Nothing!
If the regression you’ve got is not be the one you want, that’s your fault



The CEF is All You Need (but weight!)

!" !"#$%&' () *#+,-. '&.'&//,0- *#+& /&-/&

A - Individual-level data

. regress earnings school, robust

      Source |       SS       df       MS        Number of obs =  409435

-------------+------------------------------     F(  1,409433) =49118.25

       Model | 22631.4793      1  22631.4793     Prob > F      =  0.0000

    Residual |  188648.31 409433  .460755019     R-squared     =  0.1071

-------------+------------------------------     Adj R-squared =  0.1071

       Total | 211279.789 409434   .51602893     Root MSE      =  .67879

-------------+----------------------------------------------------------
             |               Robust                  Old Fashioned      

    earnings |      Coef.   Std. Err.      t           Std. Err.       t 
-------------+----------------------------------------------------------
      school |   .0674387   .0003447   195.63          .0003043   221.63

      const. |   5.835761   .0045507  1282.39          .0040043  1457.38
------------------------------------------------------------------------

B - Means by years of schooling

. regress average_earnings school [aweight=count], robust

(sum of wgt is   4.0944e+05)

      Source |       SS       df       MS        Number of obs =      21

-------------+------------------------------     F(  1,    19) =  540.31

       Model |  1.16077332     1  1.16077332     Prob > F      =  0.0000

    Residual |  .040818796    19  .002148358     R-squared     =  0.9660

-------------+------------------------------     Adj R-squared =  0.9642

       Total |  1.20159212    20  .060079606     Root MSE      =  .04635

-------------+----------------------------------------------------------
     average |               Robust                  Old Fashioned      

   _earnings |      Coef.   Std. Err.      t           Std. Err.       t 
-------------+----------------------------------------------------------
      school |   .0674387   .0040352    16.71         .0029013     23.24

      const. |   5.835761   .0399452   146.09         .0381792    152.85
------------------------------------------------------------------------

#$%&'( )*+*), -$.'/01232 241 %'/&5(101232 (63$723(6 /8 '(3&'46 3/ 6.9//:$4%* ;/&'.(, +<=> ?(46&6 0 @AB-;C
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Regression for Dummies

The CEF for any dummy Di takes on two values:

E [Yi |Di = 0] = a (3)

E [Yi |Di = 1] = a+ b (4)

This CEF is linear in Di , so regression fits it perfectly:

E [Yi |Di ] = E [Yi |Di = 0] + bDi = a+ bDi

where
b = E [Yi |Di = 1]− E [Yi |Di = 0]

Now add controls: consider (2) w/group dummies only. Here, the
private coe¢cient is

E {(E [Yi |Pi = 1,GROUPi ]− E [Yi |Pi = 0,GROUPi ])w(GROUPi )}

for weights w(GROUPi ) proportional to V (Pi |GROUPi )



Regression Anatomy Lesson

Bivariate reg recap: b1 =
Cov (yi ,xi )
V (xi )

; a = E [yi ]− b1E [Xi ]

With multiple regressors, the k-th slope coe¢cient is:

bk =
Cov (yi , x̃ki )
V (x̃ki )

, (5)

where x̃ki is the residual from a regression of xki on all other covariates

Each coe¢cient in a multivariate regression is the bivariate slope
coe¢cient for the corresponding regressor, after "partialing out" other
variables in the model

Verify regression-anatomy by subbing

yi = b0 + b1x1i + ...+ bk xki + ...+ bkxki + ei

in the numerator of (5) to find that Cov (yi , x̃ki ) = bkV (x̃ki )

Omitted Variables Bias

The omitted variables bias (OVB) formula connects regression
coe¢cients in models with di§erent controls

Go long: regress wages on schooling, si , controlling for ability (Ai )

yi = a+ rsi + A0ig+ #i (6)

Ability is hard to measure. What if we omit it? The result is

Cov(yi , si )
V (si )

= r+ g0dAs ,

where dAs is the vector of coe¢cients from regressions of the
elements of Ai on si . . .

Short equals long plus the e§ect of omitted times the regression of
omitted on included

Short equals long when omitted and included are uncorrelated

when included is a dummy, "no OVB"="covariate balance"



OVB in a Wage Equation
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62 Chapter 3

Table 3.2.1
Estimates of the returns to education for men in the NLSY

(1) (2) (3) (4) (5)
Col. (2) and Col. (4), with

Age Additional Col. (3) and Occupation
Controls: None Dummies Controls∗ AFQT Score Dummies

.132 .131 .114 .087 .066
(.007) (.007) (.007) (.009) (.010)

Notes: Data are from the National Longitudinal Survey of Youth (1979 cohort, 2002
survey). The table reports the coefficient on years of schooling in a regression of log
wages on years of schooling and the indicated controls. Standard errors are shown in
parentheses. The sample is restricted to men and weighted by NLSY sampling weights.
The sample size is 2,434.
∗Additional controls are mother’s and father’s years of schooling, and dummy variables
for race and census region.

Although simple, the OVB formula is one of the most impor-
tant things to know about regression. The importance of the
OVB formula stems from the fact that if you claim an absence
of omitted variables bias, then typically you’re also saying
that the regression you’ve got is the one you want. And the
regression you want usually has a causal interpretation. In
other words, you’re prepared to lean on the CIA for a causal
interpretation of the long regression estimates.

At this point, it’s worth considering when the CIA is most
likely to give a plausible basis for empirical work. The best-
case scenario is random assignment of si, conditional on Xi,
in some sort of (possibly natural) experiment. An example is
the study of a mandatory retraining program for unemployed
workers by Black et al. (2003). The authors of this study
were interested in whether the retraining program succeeded
in raising earnings later on. They exploited the fact that eli-
gibility for the training program they studied was determined
on the basis of personal characteristics and past unemploy-
ment and job histories. Workers were divided into groups
on the basis of these characteristics. While some of these
groups of workers were ineligible for training, workers in other
groups were required to take training if they did not take a
job. When some of the mandatory training groups contained

Checking the CIA in the DK Design: no OVB

 Dependent Variable 
 Own SAT score/100 Predicted log(Parental Income) 
 (1) (2) (3) (4) (5) (6)
Private School 1.165 1.130 0.066 0.128 0.138 0.028 
 (0.196) (0.188) (0.112) (0.035) (0.037) (0.037) 
Female  -0.367   0.016  
  (0.076)   (0.013)  
Black  -1.947   -0.359  
  (0.079)   (0.019)  
Hispanic  -1.185   -0.259  
  (0.168)   (0.050)  
Asian  -0.014   -0.060  
  (0.116)   (0.031)  
Other/Missing Race  -0.521   -0.082  
  (0.293) (0.061) 
High School Top 10 Percent  0.948   -0.066  
  (0.107)   (0.011)  
High School Rank Missing  0.556   -0.030  
  (0.102)   (0.023)  
Athlete  -0.318   0.037  
  (0.147)   (0.016)  
Average SAT Score of    0.777   0.063 
Schools Applied To/100   (0.058)   (0.014) 
Sent Two Application   0.252   0.020 
   (0.077)   (0.010) 
Sent Three Applications   0.375   0.042 
   (0.106)   (0.013) 



BAD CONTROL
(finish up )

When More Isn’t Better

Short equals long plus the e§ect of omitted times the regression of
omitted on included

An algebraic fact, devoid of causal content

Bad control creates selection bias

A parable

College is randomly assigned: simple college comparisons are causal
College boosts earnings by $500/week
College allows some to get better jobs, specifically, to move from blue
to white collar employment

College changes the conditional-on-occ composition of the workforce

The white collar group of non-college grads includes only AW
The white collar group of college grads includes some BW’s, who are
weaker than the AWs

Flip it for the blues: blue non-college include some who could be white



216 Chapter 6

Table 6.1
How bad control creates selection bias

Potential Average earnings
occupation Potential earnings by occupation

Without With Without With Without With
college college college college college college

Type of worker (1) (2) (3) (4) (5) (6)

Always Blue (AB) Blue Blue 1,000 1,500
Blue

1,500
Blue

1,500
Blue White (BW) Blue White 2,000 2,500

White
3,000

Always White (AW) White White 3,000 3,500
White
3,000

Suppose, for the sake of argument, the value of college is
the same $500 per week for all three groups. Although the
three types of workers enjoy the same gains from a college
education, their potential earnings (that is, their Y0i values) are
likely to differ. To be concrete, suppose the AW group earns
$3,000 per week without a college degree, the AB group earns
only $1,000 per week without a college degree, and the BWs
earn something in the middle, say, $2,000 per week without
a college degree. Columns (3) and (4) of Table 6.1 summarize
these facts.

Limiting the college/noncollege comparison to those who
have white collar jobs, the average earnings of college gradu-
ates is given by the average of the $3,500 earned by the AWs
with a college degree and the $2,500 earned by the BWs, while
the average for noncollege graduates is the constant $3,000
earned by the AWs without a college degree. Because the aver-
age of $3,500 and $2,500 also equals $3,000, the conditional-
on-white-collar comparison by college graduation status is
zero, a misleading estimate of the returns to college, which is
$500 for everyone. The comparison of earnings by graduation
status among blue collar workers is an equally misleading zero.
Although random assignment of college ensures equal propor-
tions of apples and oranges (types or groups) in the college and
noncollege barrels, conditioning on white collar employment,

Angrist third pages 2014/10/16 10:34 p. 216 (chap06) Princeton Editorial Associates, PCA ZzTEX 16.2

Lessons Learned

Regression always makes sense ... in the sense that it provides a
best-in-class linear approximation to the CEF

Regression is a matchmaker; regression is matching

MFX from non-linear models are usually indistinguishable from the
corresponding regression estimates (MHE 3.4.2)

We’re not always content to run regressions, but that’s where we start

Our first line of attack on a non-RCT identification problem: it’s all
about control

If the regression you’ve got is not the one you want, that’s because
the underlying relationship is unsatisfactory

What’s to be done with an unsatisfactory relationship?

Move on, grasshopper ... to IV!
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Figure U2.1

Tables and Figures
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Figure 3.1.2 - A conditional expectation function and weighted regression line
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Table 1.1
Health and demographic characteristics of insured and uninsured

couples in the NHIS

Husbands Wives

Some HI No HI Difference Some HI No HI Difference
(1) (2) (3) (4) (5) (6)

A. Health

Health index 4.01 3.70 .31 4.02 3.62 .39
[.93] [1.01] (.03) [.92] [1.01] (.04)

B. Characteristics

Nonwhite .16 .17 −.01 .15 .17 −.02
(.01) (.01)

Age 43.98 41.26 2.71 42.24 39.62 2.62
(.29) (.30)

Education 14.31 11.56 2.74 14.44 11.80 2.64
(.10) (.11)

Family size 3.50 3.98 −.47 3.49 3.93 −.43
(.05) (.05)

Employed .92 .85 .07 .77 .56 .21
(.01) (.02)

Family income 106,467 45,656 60,810 106,212 46,385 59,828
(1,355) (1,406)

Sample size 8,114 1,281 8,264 1,131

Notes: This table reports average characteristics for insured and uninsured married
couples in the 2009 National Health Interview Survey (NHIS). Columns (1), (2), (4), and
(5) show average characteristics of the group of individuals specified by the column heading.
Columns (3) and (6) report the difference between the average characteristic for individuals
with and without health insurance (HI). Standard deviations are in brackets; standard errors
are reported in parentheses.
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