
Lecture 8: Selection Models and Policy

Evaluation

Chris Walters

University of California, Berkeley and NBER

Introduction

I This lecture discusses structural selection models and control function
estimators of these models

I Selection models are mathematical descriptions of how non-random
samples are generated

I Control function estimators adjust for non-random selection, allowing
estimation of the parameters of unselected distributions

I As we will see, this approach is intimately linked to the IV methods from
previous lectures. We will emphasize the connection between these
approaches

I Structural models o↵er the opportunity to extrapolate and predict
economic parameters that are not identified by the experiment at hand,
at the cost of stronger assumptions

I “Harmful” econometrics coming – tread carefully!
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Selection Model Example: Labor Supply

I Simple example of a selection model: Labor supply problem

max
c,h

c � v(h) s.t. c  wh + V

I At interior solutions:

v 0(h⇤) = w

I At corner solutions:

v 0(0) > w

I Reservation wage is w⇤ = v 0(0); work if w � w⇤
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Selection Model Example

I Suppose individuals’ reservation wages are described by

w⇤
i
= X 0

i
✓ + ⌘i

I O↵ered wages are

wi = X 0
i
� + ✏i

I Assume E [✏i |Xi ] = 0, so X 0
i
� is the population CEF

I Individual i works (Di = 1) when

X 0
i
� + ✏i � X 0

i
✓ + ⌘i

() X 0
i
(� � ✓) + (✏i � ⌘i ) � 0

() X 0
i
 � vi
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Selection Model Example

I D⇤
i
= X 0

i
 � vi is a latent index determining Di

I We observe outcomes in the sample with Di = 1. CEF in this sample is

E [wi |Xi ,Di = 1] = X 0
i
� + E

⇥
✏i |Xi , vi < X 0

i
 
⇤

I If ✏i and vi are independent, the last term is E [✏i |Xi ] = 0 and OLS recovers �

I This is equivalent to saying we have a random sample – selection into the
sample is unrelated to outcomes

I If ✏i and vi aren’t independent, we’ll have E [✏i |Xi ,Di = 1] 6= 0, and OLS on
observed sample is inconsistent
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Selection Model Example

E [wi |Xi ,Di = 1] = X 0
i � + E [✏i |Xi , vi < X 0

i  ]

I Suppose that ✏i and vi are joint normal:

(✏i , vi )|Xi ⇠ N

✓
(0, 0),


�2
✏ ⇢�✏

⇢�✏ 1

�◆

I Then we can work out the expected error conditional on Di = 1

I Under normality, conditional expectations are linear:

E [✏i |Xi , vi ] = ⇢�✏vi .
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Selection Model Example

I The CEF of wi in the observed sample is

E [wi |Xi ,Di = 1] = X 0
i � + E [✏i |Xi , vi < X 0

i  ]

= X 0
i � + ⇢�✏E [vi |Xi , vi < X 0

i  ]

= X 0
i � + ⇢�✏ · � (X 0

i �)

I Here �(x) is the conditional expectation of a standard normal random
variable truncated from above, also known as the inverse Mills ratio:

�(x) = � �(x)
�(x)

.
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Heckit

E [wi |Xi ,Di = 1] = X 0
i � + ⇢�✏ · � (X 0

i  )

I  can be consistently estimated via a first-step probit of Di on Xi

I Then run a second-step regression in the Di = 1 sample:

wi = X 0
i � + ⇢�✏ · �

⇣
X 0

i  ̂
⌘
+ ui

I This two-step procedure generates consistent estimates of �; bootstrap or
apply two-step correction for inference

I The Mills ratio is a control function or selection correction that
accounts for selection into the observed sample

I This is Heckman’s (1974, 1976, 1979) two-step selection correction
(“Heckit”)
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Heckit Identification

I Suppose Xi is just a constant. Then the second-step regression is

wi = � + ⇢�✏ · �
⇣
 ̂
⌘
+ ui

= � + ui

I The constant here is � = (� + ⇢�✏�( )), so � and ⇢�✏ are not separately
identified

I More generally, if outcome and selection equations are saturated in Xi ,
main e↵ects and Mills ratio term are not separately identified

I This is unattractive – there is typically no reason to believe E [wi |Xi ] is
linear in Xi
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Heckit Identification

I Solution: Suppose there are additional variables Zi in the selection
equation, so

Di = 1 {X 0
i  + Z 0

i ⇡ > vi}

I Assume E [✏i |Xi ,Zi ] = 0. Then second-step CEF is

E [wi |Xi ,Zi ,Di = 1] = X 0
i � + ⇢�✏� (X 0

i  + Z 0
i ⇡)

I If ⇡ 6= 0 this can be estimated even if Xi is saturated since variation in Zi

separately identifies the selection term

I Identifying a Heckit without relying on functional form restrictions
requires finding a Zi that shifts the probability of selection but is
excludable from the outcome equation

I Sound familiar?
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Heckit with Instruments

I The requirements for a good Zi in the Heckit model are the same as the
requirements for a good instrument when we’re doing IV

I This is not a coincidence. Control function and IV are methods for
solving the same problem
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Selection and Treatment E↵ects

I To see the connection between control function and IV, consider a
heterogeneous treatment e↵ects model:

Yi (1) = ↵1 + ✏i1

Yi (0) = ↵0 + ✏i0

I Here ↵d = E [Yi (d)] so E [✏id ] = 0

I If we had random samples of Yi (1) and Yi (0) we could run OLS (i.e.,
take means) and estimate ATE = ↵1 � ↵0
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Selection and Treatment E↵ects

Yi (1) = ↵1 + ✏i1

Yi (0) = ↵0 + ✏i0

I But we only observe Yi (1) when Di = 1, and we only observe Yi (0) when
Di = 0

I These are not random samples if treatment is not as good as randomly
assigned

I We therefore have sample selection problems for both Yi (1) and Yi (0)

I Treatment e↵ects estimation is a two-sided sample selection problem

I An instrument is needed to solve this problem
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IV and Selection Models

I We have seen that IV and control function are two methods for solving
the same problem

I How should we think about the relationship between parametric sample
selection models and the nonparametric LATE model of Imbens and
Angrist (1994)?

I How should we think about the relationship between estimates produced
by IV and control function?

Chris Walters (UC Berkeley) Selection Models 14/42



IV and Selection Models

I To better understand the relationships between latent index models and
the LATE model, consider a treatment e↵ects model with a binary
treatment and binary instrument:

Yi (1) = ↵1 + ✏i1

Yi (0) = ↵0 + ✏i0

I Suppose selection into the Di = 1 sample follows the rule

Di = 1 { 0 +  1Zi > vi}

(✏i1, ✏i0, vi ) ?? Zi

vi ⇠ F (v)

I F (v) is some strictly increasing parametric distribution function (e.g. the
normal CDF)
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IV and Selection Models

Yi (1) = ↵1 + ✏i1

Yi (0) = ↵0 + ✏i0

Di = 1 { 0 +  1Zi > vi}

(✏i1, ✏i0, vi ) ?? Zi

vi ⇠ F (v)

I This selection model appears to be more restrictive than the LATE
model, which involves no distributional assumptions
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LATE Model and Selection Model: Equivalence

I Vytlacil (2002) shows that this selection model is the LATE model, in the

sense that

I The selection model satisfies the LATE assumptions

I The LATE assumptions imply that the selection model rationalizes
the observed and counterfactual outcomes and treatments
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LATE Model and Selection Model: Equivalence

I The first part of the proof is straightforward. Note that

Yi (0) = ↵0 + ✏i0, Yi (1) = ↵1 + ✏i1,

Di (0) = 1 { 0 > vi} , Di (1) = 1 { 0 +  1 > vi}

I Yi (d) and Di (z) are functions of (✏i0, ✏i1, vi ) which are independent of Zi ,
so independence/exclusion are satisfied

I If  1 > 0, then Di (1) � Di (0) and monotonicity is satisfied

I Pr [Di (1) > Di (0)] = Pr [ 0 +  1 > vi �  0] > 0 since F (·) is strictly
increasing, so there is a first stage

I The selection model therefore satisfies the assumptions of the LATE
framework
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LATE Model and Selection Model: Equivalence

I To show that the LATE model implies the selection model representation,
first note that the “parametric” assumption vi ⇠ F (v) is not really a
restriction

I For any strictly increasing distribution function G(·) we can write

Di = 1
�
G�1 (F ( 0 +  1Zi )) > G�1(F (vi ))

 

= 1
n
 ̃0 +  ̃1Zi > ṽi

o
,

I where

 ̃0 = G�1 (F ( 0)), �̃1 = G�1(F ( 0 +  1))� G�1(F ( 0))

ṽi = G�1(F (vi ))
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LATE Model and Selection Model: Equivalence

Di = 1
n
 ̃0 +  ̃1Zi > ṽi

o
,

I The new selection error ṽi = G�1(F (vi )) has CDF G(·)

I The same selection model can be represented with any distribution
function

I It is therefore su�cient to show that the LATE model implies a selection
model representation for SOME distribution function
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LATE Model and Selection Model: Equivalence

I Let ui ⇠ U(0, 1) be independent of Zi , and define

Ui =

8
><

>:

ui ⇥ Pr [Di (0) = 1] , Di (0) = 1

Pr [Di (0) = 1] + ui ⇥ Pr [Di (1) > Di (0)] , Di (1) > Di (0)

Pr [Di (1) = 1] + ui ⇥ Pr [Di (1) = 0] , Di (1) = 0

I Then we can write

Di = 1 { 0 +  1Zi > Ui}

I Here  0 = Pr [Di (0) = 1],  1 = Pr [Di (1) > Di (0)], and Ui ⇠ U(0, 1)
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LATE Model and Selection Model: Equivalence

I Ui is uniform on (0, 0) for always takers, on ( 0, 0 +  1) for compliers,
and on ( 0 +  1, 1) for never takers

I This model implies the same observed and counterfactual treatment
choices and outcomes as the LATE model

I We can equivalently represent the selection model with the distribution
F (·) by applying F�1(·) to both sides of the treatment selection equation

I We have therefore shown that the LATE model and the selection model
are equivalent: They are two ways of representing the same information

I Vytlacil (2002) shows that this applies to the more general LATE model
with multiple instruments

I Caveat: An F (·) with unbounded support only works if there are always-
and never-takers. Otherwise F�1( 0) ! �1 or F�1( 0 +  1) ! 1.
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IV and Control Function

I Selection model with uniform representation of selection error:

Yi (1) = ↵1 + ✏i1

Yi (0) = ↵0 + ✏i0

Di = 1 { 0 +  1Zi > Ui}

Ui ⇠ U(0, 1)

(✏i1, ✏i0,Ui ) ?? Zi

I We’ve shown that this is the LATE model

I Does this mean that IV and control function estimates of treatment
e↵ects are also equivalent?
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IV and Control Function

I No. In fact, we cannot estimate this model by control function without
further assumptions

I To form control functions we need to specify E [✏id |Ui ], which we haven’t
done

I Control function yields estimates of ↵1 and ↵0, and therefore the ATE
↵1 � ↵0

I The ATE is not identified in the LATE model – we can only get the LATE

I We have to assume more if we want to extrapolate from LATE to ATE
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IV and Control Function

I In selection model notation, our three subgroups are defined:

I Always takers: Ui <  0

I Compliers:  0  Ui <  0 +  1

I Never takers: Ui �  0 +  1

I Then

I E [Ui |AT ] =  0
2

I E [Ui |C ] =  0 +
 1
2

I E [Ui |NT ] = 1+ 0+ 1
2
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IV and Control Function

I Recall that in the LATE framework we can identify:

I E [Yi (1)|AT ]

I E [Yi (0)|NT ]

I E [Yi (1)|C ]

I E [Yi (0)|C ]

I Mean Yi (1) for always takers is observable in the (Di = 1,Zi = 0) group

I Mean Yi (0) for never takers is observable in the (Di = 0,Zi = 1) group

I Mean Yi (1) for compliers is obtained by removing the AT mean from the
Di = Zi = 1 mix

I Mean Yi (0) for compliers is obtained by removing the NT mean from the
Di = Zi = 0 mix
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IV and Control Function

I We can therefore identify means of Yi (1) and Yi (0) for two groups
each

I This yields two points on the curve E [Yi (d)|Ui ] for each potential
outcome
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Extrapolation from LATE

I Without further assumptions we cannot identify any other
treatment e↵ects

I But by specifying a functional form for E [Yi (d)|Ui ], we can
“connect the dots” and extrapolate to predict e↵ects for always
takers and never takers

I This allows us to predict the e↵ects of policies that a↵ect
di↵erent subpopulations than the instrument at hand
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Extrapolation

I We can maintain the uniform representation of the selection error, Ui ⇠ (0, 1),

and choose di↵erent functional forms for E [Yi (d)|Ui ]

I E [Yi (d)|Ui ] = ↵d + �dUi : Linear selection model

I E [Yi (d)|Ui ] = ↵d + �d��1(Ui ): Heckit model

I Equivalently, we can maintain the linearity restriction E [Yi (d)|Ui ] = ↵d + �dUi ,

and choose di↵erent distribution functions for Ui

I Ui ⇠ U(0, 1): Linear selection model

I Ui ⇠ N(0, 1): Heckit model

I Specifying both a distribution for Ui and a functional form for E [Yi (d)|Ui ] pins
down the missing potential outcomes for ATs/NTs, allowing extrapolation from
LATE
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Marginal Treatment E↵ects

I Letting Ui ⇠ U(0, 1), choosing E [Yi (d)|Ui ] implies a functional form for
marginal treatment e↵ects (MTE):

MTE(u) = E [Yi (1)� Yi (0)|Ui = u]

I MTEs are average treatment e↵ects for individuals at a particular percentile of
the unobserved cost of taking treatment (Heckman et al., 1999, 2005, 2006;
Carneiro et al., 2009, 2010)

I MTE(u) can be thought of as the LATE associated with a hypothetical
instrument that shifts the probability of treatment from u to u +� for small �

I With a continuous instrument, MTEs can be estimated as derivatives of average
Yi with respect to the conditional probability of treatment (local IV; Heckman
and Vytlacil, 1999)

I With a discrete instrument, estimation requires parametric assumptions on
E [Yi (d)|Ui ] (Brinch et al., 2017)
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Marginal Treatment E↵ects

I Many treatment e↵ects of interest can be defined as weighted averages of
MTEs – useful for thinking about external validity:

R 1
0 !(u)MTE(u)du

I Let ⇡(z) = Pr [Di = 1|Zi = z], and p = Pr [Zi = 1]

I Weights for notable treatment e↵ects:

ATE : !(u) = 1

TOT : !(u) =
p1 {u < ⇡(1)}+ (1� p)1 {u < ⇡(0)}

⇡(1)p + ⇡(0)(1� p)

TNT : !(u) =
p1 {u � ⇡(1)}+ (1� p)1 {u � ⇡(0)}

(1� ⇡(1))p + (1� ⇡(0))(1� p)

LATE : !(u) =
1 {⇡(0)  u < ⇡(1)}

⇡(1)� ⇡(0)
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MTE and Policy Counterfactuals

I Models for MTE can be used to predict the e↵ects of policies that have not
been implemented

I Example: Suppose an experiment reduces the price of purchasing health
insurance from p0 to p1, and the probability of purchase rises from ⇡0 to ⇡1

I Individuals with Ui = ⇡1 are on the margin between purchasing and not
purchasing – we might expect them to purchase in response to a further price
cut

I Heckit prediction of e↵ect for marginal population:

\MTE(⇡1) = ↵̂1 � ↵̂0 + (�̂1 � �̂0)��1 (⇡̂1)

I More generally, we can use estimates of MTEs to predict TOT , TNT , ATE , or
e↵ects of other hypothetical policies
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Through the Looking Glass

I CF estimate of LATE:

ˆLATE = ↵̂1 � ↵̂0 + Ê [✏i1 � ✏i0|�0  Ui < �0 + �1]

I In the binary treatment/binary instrument case with two-sided
non-compliance, the two-step estimate of LATE produced by any
parametric selection model is algebraically equal to the IV estimate (Kline
and Walters, 2019)

I The CF estimator exactly fits the IV estimates of mean potential
outcomes regardless of functional form – it connects the dots in sample

I In binary/binary case IV and CF coincide when both are used to estimate
LATE

I Equivalence serves as a natural benchmark for assessing
overidentified selection models

I The assumption for E [✏it |Ui ] only matters when it is used to predict
treatment e↵ects for other subpopulations
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When to Extrapolate?

I When is it reasonable to extrapolate from LATE and predict the e↵ects of
new policies?

I It depends on the interpretation of Ui , and hence on the instrument

I Equivalent to asking: when is the relationship between always
taker/complier Yi (1)’s likely to be a reliable guide to the relationship
between complier/never taker Yi (1)’s?

I If Zi is a price shift, Ui may be viewed as (minus) willingness to pay and
extrapolation may be sensible

I What would extrapolation mean in other IV examples?

Chris Walters (UC Berkeley) Selection Models 34/42

Application: Kline and Walters (2016)

I Selection model example: Kline and Walters (2016) investigate e↵ect
heterogeneity with respect to counterfactual treatment choices

I Setting: Randomized evaluation of Head Start program

I Public preschool for disadvantaged children

I Largest preschool program in the US

I Basic experimental impacts less impressive than earlier
non-experimental analyses of HS

I But alternative publicly subsidized preschools are now widely
available for HS-eligible children. Are e↵ects larger for kids who
would otherwise stay home?
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TABLE II

EXPERIMENTAL IMPACTS ON TEST SCORES

Three-year-old cohort Four-year-old cohort Cohorts pooled

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Time period Reduced form First stage IV Reduced form First stage IV Reduced form First stage IV

Year 1 0.194 0.699 0.278 0.141 0.663 0.213 0.168 0.682 0.247
(0.029) (0.025) (0.041) (0.029) (0.022) (0.044) (0.021) (0.018) (0.031)

N 1,970 1,601 3,571
Year 2 0.087 0.356 0.245 !0.015 0.670 !0.022 0.046 0.497 0.093

(0.029) (0.028) (0.080) (0.037) (0.023) (0.054) (0.024) (0.020) (0.049)
N 1,760 1,416 3,176
Year 3 !0.010 0.365 !0.027 0.054 0.666 0.081 0.019 0.500 0.038

(0.031) (0.028) (0.085) (0.040) (0.025) (0.060) (0.025) (0.020) (0.050)
N 1,659 1,336 2,995
Year 4 0.038 0.344 0.110 — —

(0.034) (0.029) (0.098)
N 1,599

Notes. This table reports experimental estimates of the effects of Head Start on test scores. The outcome is the average of standardized PPVT and WJIII scores, with each score
standardized to have mean 0 and standard deviation 1 in the control group separately by applicant cohort and year. Columns (1), (4), and (7) report coefficients from regressions of
test scores on an indicator for assignment to Head Start. Columns (2), (5), and (8) report coefficients from first-stage regressions of Head Start attendance on Head Start
assignment. The attendance variable is an indicator equal to 1 if a child attends Head Start at any time prior to the test. Columns (3), (6), and (9) report coefficients from
two-stage least squares (2SLS) models that instrument Head Start attendance with Head Start assignment. All models weight by the reciprocal of a child’s experimental assign-
ment, and control for sex, race, Spanish language, teen mother, mother’s marital status, presence of both parents in the home, family size, special education status, income quartile
dummies, urban, and a cubic polynomial in baseline score. Missing values for covariates are set to 0, and dummies for missing are included. Standard errors are clustered by center
of random assignment.
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TABLE III

PRESCHOOL CHOICES BY YEAR, COHORT, AND OFFER STATUS

Offered Not offered

(1) (2) (3) (4) (5) (6) (7)
Time period Cohort Head Start Other centers No preschool Head Start Other centers No preschool C-complier share

Year 1 3-year-olds 0.851 0.058 0.092 0.147 0.256 0.597 0.282
4-year-olds 0.787 0.114 0.099 0.122 0.386 0.492 0.410
Pooled 0.822 0.083 0.095 0.136 0.315 0.550 0.338

Year 2 3-year-olds 0.657 0.262 0.081 0.494 0.379 0.127 0.719

Notes. This table reports shares of offered and nonoffered students attending Head Start, other center-based preschools, and no preschool, separately by year and age cohort.
All statistics are weighted by the reciprocal of the probability of a child’s experimental assignment. Column (7) reports estimates of the share of compliers drawn from other
preschools, given by minus the ratio of the offer’s effect on attendance at other preschools to its effect on Head Start attendance.
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Kline and Walters (2016): Notation

I Zi 2 {0, 1}: Randomized experimental o↵er

I Di (z): Potential preschool choice.

I h: Head Start
I c: Other preschool center
I n: No preschool

I Monotonicity restriction:

Di (1) 6= Di (0) =) Di (1) = h

I People only respond to a Head Start o↵er by enrolling in Head Start
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Kline and Walters (2016): Compliance Groups

I Monotonicity implies that the population can be partitioned into five

groups:

I n-compliers: Di (1) = h, Di (0) = n

I c-compliers: Di (1) = h, Di (0) = c

I n-never takers: Di (1) = Di (0) = n

I c-never takers: Di (1) = Di (0) = c

I Always takers: Di (1) = Di (0) = h
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Kline and Walters (2016): LATE

I The Head Start experiment identifies a LATE:

E [Yi |Zi = 1]� E [Yi |Zi = 0]

E [1 {Di = h} |Zi = 1]� E [1 {Di = h} |Zi = 0]

= E [Yi (h)� Yi (Di (0))|Di (1) 6= Di (0)]

⌘ LATEh

I This is an e↵ect relative to a mix of counterfactuals:

LATEh = ScLATEch + (1� Sc )LATEnh

I LATEnh and LATEch are e↵ects for n and c compliers relative to specific
counterfactuals

I Sc is the share of c-compliers among all compliers
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Kline and Walters (2016): Selection Model

I “SubLATEs” LATEnh and LATEch aren’t nonparametrically identified

I Estimate via 3-alternative selection model:

Ui (h) =  h(Xi ,Zi ) + vih

Ui (c) =  c(Xi ) + vic

Ui (n) = 0

(vih, vic)|Xi ,Zi ⇠ N

✓
0,


1 ⇢(Xi )

⇢(Xi ) 1

�◆

I Xi is a vector of covariates, including demographics and experimental sites
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Kline and Walters (2016): Control Functions

I Restrictions on potential outcome CEFs:

E [Yi (d)|Xi ,Zi , vih, vic ] = µd (Xi ) + �dhvih + �dcvic

I Averaging over individuals in a particular care alternative gives

E [Yi (d)|Xi ,Zi ,Di = d ] = µd (Xi ) + �dh�h (Xi ,Zi , d) + �dc�c (Xi ,Zi , d)

I �d (Xi ,Zi ,Di ) are bivariate versions of the Heckit Mills ratio

I Additive separability between observables and unobservables is key

I Estimates of µd (x), �dh, and �dc are used to construct model-based estimates of
subLATEs
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(i.e., subLATEs).18 Estimates of the subLATE for n-compliers,
LATEnh, are stable across specifications and indicate that the
impact of moving from home care to Head Start is large—on the
order of 0.37 standard deviations. By contrast, estimates of
LATEch, though more variable across specifications, never differ
significantly from zero.

Our estimates of LATEnh are somewhat smaller than the
average treatment effects of Head Start relative to home care
displayed in Table VII. This is a consequence of the reverse Roy
pattern captured by the control function coefficients: families
willing to switch from home care to Head Start in response to
an offer have stronger than average tastes for Head Start, imply-
ing smaller than average gains. We can reject that predicted

TABLE VIII

TREATMENT EFFECTS FOR SUBPOPULATIONS

Control function

(1) (2) (3) (4)
Parameter IV Covariates Sites Full model

LATEh 0.247 0.261 0.190 0.214
(0.031) (0.032) (0.076) (0.042)

LATEnh 0.386 0.341 0.370
(0.143) (0.219) (0.088)

LATEch 0.023 !0.122 !0.093
(0.251) (0.469) (0.154)

Lowest predicted
quintile:

LATEh 0.095 0.114 0.027
(0.061) (0.112) (0.067)

LATEh with fixed Sc 0.125 0.125 0.130
(0.060) (0.434) (0.119)

Highest predicted
quintile:

LATEh 0.402 0.249 0.472
(0.042) (0.173) (0.079)

LATEh with fixed Sc 0.364 0.289 0.350
(0.056) (1.049) (0.126)

Notes. This table reports estimates of treatment effects for subpopulations. Column (1) reports an IV
estimate of the effect of Head Start. Columns (2)–(4) show estimates of treatment effects computed from
the control function models displayed in Table VII. The bottom rows show effects in the lowest and highest
quintiles of model-predicted LATE. Rows with fixed c-complier shares weight subLATEs using the full-
sample estimate of this share (0.34). Standard errors are bootstrapped and clustered at the center level.

18. We compute the subLATEs by integrating over the relevant regions of Xi,
vih, and vic as described in Online Appendix F.
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