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This is Part One of Module One.  It highlights the nature of data and the data-generating process, 
which is one of the key ideas of modern day econometrics.  The difference between cross-section 
and time-series data is presented and followed by a discussion of continuous and discrete 
dependent variable data-generating processes.  Least-squares and maximum-likelihood 
estimation is introduced along with analysis of variance testing.  This module assumes that the 
user has some familiarity with estimation and testing previous statistics and introductory 
econometrics courses.  Its purpose is to bring that knowledge up-to-date.  These contemporary 
estimation and testing procedures are demonstrated in Parts Two, Three and Four, where data are 
respectively entered into LIMDEP, STATA and SAS for estimation of continuous and discrete 
dependent variable models.      
 
 
CROSS-SECTION AND TIME-SERIES DATA 
 
In the natural sciences, researchers speak of collecting data but within the social sciences it is 
advantageous to think of the manner in which data are generated either across individuals or over 
time.  Typically, economic education studies have employed cross-section data. The term cross-
section data refer to statistics for each in a broad set of entities in a given time period, for 
example 100 Test of Economic Literacy (TEL) test scores matched to time usage for final 
semester 12th graders in a given year.  Time-series data, in contrast, are values for a given 
category in a series of sequential time periods, i.e., the total number of U.S. students who 
completed a unit in high school economics in each year from 1980 through 2008.  Cross-section 
data sets typically consist of observations of different individuals all collected at a point in time.  
Time-series data sets have been primarily restricted to institutional data collected over particular 
intervals of time.   
 
 More recently empirical work within education has emphasized panel data, which are a 
combination of cross-section and time-series data.  In panel analysis, the same group of 
individuals (a cohort) is followed over time.  In a cross-section analysis, things that vary among 
individuals, such as sex, race and ability, must either be averaged out by randomization or taken 
into account via controls.  But sex, race, ability and other personal attributes tend to be constant 
from one time period to another and thus do not distort a panel study even though the assignment 
of individuals among treatment/control groups is not random.  Only one of these four modules 
will be explicitly devoted to panel data.  
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CONTINUOUS DEPENDENT (TEST SCORE) VARIABLES  
 
Test scores, such as those obtained from the TEL or Test of Understanding of College 
Economics (TUCE), are typically assumed to be the outcome of a continuous variable Y that may 
be generated by a process involving a deterministic component (e.g., the mean of Y, yμ , which 
might itself be a function of some explanatory variables X1, X2 …Xk) and the purely random 
perturbation or error term components v and ε : 
  

it y itY vμ= +   or 1 2 2 3 3 4 4it it it it itY X X Xβ β β β ε= + + + + , 
 
where Yit is the test score of the ith person at time t and the it subscripts similarly indicate 
observations for the ith  person on the X explanatory variables at time t.  Additionally, normality 
of the continuous dependent variable is ensured by assuming the error term components are 
normally distributed with means of zero and constant variances: 2~ (0, )it vv N σ and 2~ (0, )it N εε σ .   
 

As a continuous random variable, which gets its normal distribution from epsilon, at least 
theoretically any value is possible.  But as a test score, Y is only supported for values greater than 
zero and less than the maximum test score, which for the TUCE is 30.  In addition, multiple-
choice test scores like the TUCE can only assume whole number values between 0 and 30, which 
poses problems that are addressed in these four modules.  

 
 The change score model (also known as the value-added model, gain score model or 
achievement model) is just a variation on the above basic model: 
 

 1 1 2 2 3 3 4 4it it it it it itY Y X X X uλ λ λ λ−− = + + + + , 
 
where Yit-1 is the test score of the ith person at time t−1.  If one of the X variables is a bivariate 
dummy variable included to capture the effect of a treatment over a control, then this model is 
called a difference in difference model: 
 

[(mean treatment effect at time t) – (mean control effect at time t)] – 
[(mean treatment effect at time t−1) − (mean control effect at time t−1)]  

      = [E(Yit |treatment =1) − E(Yit |treatment =0)] – [E(Yit-1 |treatment =1) − E(Yit-1 |treatment =0)] 
      = [E(Yit |treatment =1) − E(Yit-1 |treatment =1)] – [E(Yit |treatment =0) − E(Yit-1 |treatment =0)] 
      = the lambda on the bivariate treatment variable. 
 
Yit is now referred to as the post-treatment score or posttest and Yit-1 is the pre-treatment score or 
pretest.   Again, the dependent variable Yit −Yit-1 can be viewed as a continuous random variable, 
but for multiple-choice tests, this difference is restricted to whole number values and is bounded 
by the absolute value of the test score’s minimum and maximum.   
 
 This difference in difference model is often used with cross-section data that ignores 
time-series implications associated with the dependent variable (and thus the error term) 
involving two periods.  For such models, ordinary least-squares estimation as performed in 
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EXCEL and all other computer programs is sufficient.  However, time sequencing of testing can 
cause problems.  For example, as will be demonstrated in Module Three on sample selection, it 
is not a trivial problem to work with observations for which there is a pretest (given at the start of 
the term) but no posttest scores because the students dropped out of the class before the final 
exam was given.  Single equation least-squares estimators will be biased and inconsistent if the 
explanatory variables and error term are related because of time-series problems. 
 

Following the lead of Hanushek (1986, 1156-57), the change-score model has been 
thought of as a special case of an allegedly superior regression involving a lagged dependent 
variable, where the coefficient of adjustment ( *

0λ ) is set equal to one for the change-score model:  
 

 * * * * *
0 1 1 2 2 3 3 4 4it it it it it itY Y X X Xλ λ λ λ λ ω−= + + + + + . 

 
Allison (1990) rightfully called this interpretation into question, arguing that these are two 
separate models (change score approach and regressor variable approach) involving different 
assumptions about the data generating process.  If it is believed that there is a direct causal 
relationship or if the other explanatory X variables are related to the Yit-1 to Yit 

transition, then the regressor variable approach is justified.  But, as demonstrated to economic 
educators as far back as Becker (1983), the regressor variable model has a built-in bias 
associated with the regression to the mean phenomenon. Allison concluded, “The important 
point is that there should be no automatic preference for either model and that the only proper 
basis for a choice is a careful consideration of each empirical application . . . . In ambiguous 
cases, there may be no recourse but to do the analysis both ways and to trust only those 
conclusions that are consistent across methods.” (p. 110) 

1it itY Y− ⇒

 
 As pointed out by Allison (1990) and Becker, Greene and Rosen (1990), at roughly the 
same time, and earlier by Becker and Salemi (1977) and later by Becker (2004),  models to avoid 
are those that place a change score on the left-hand side and a pretest on the right.  Yet, 
educational researchers continue to employ this inherently faulty design.   For example, Hake 
(1998) constructed a “gap closing variable (g)” as the dependent variable and regressed it on the 
pretest: 
 

( ...)posttest score pretest scoreg gap closing f pretest score
maximum  score pretest score

−
= = =

−
 

where the pretest and posttest scores where classroom averages on a standardized physics test, 
and maximum score was the highest score possible.  Apparently, Hake was unaware of the 
literature on the gap-closing model.  The outcome measure g is algebraically related to the 
starting position of the student as reflected in the pretest:  g falls as the pretest score rises, for 
maximum score > posttest score  >  pretest score.i  Any attempt to regress a posttest-minus-
pretest change score, or its standardized gap-closing measure g on a pretest score yields a biased 
estimate of the pretest effect.ii 
 

As an alternative to the change-score models [ of the type posttest − pretest= 
f(treatement, . . . ) or posttest = f(pretest, treatment, …)], labor economics have turned to a 
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difference-in-difference model employing a panel data specification to assess treatment effects.  
But not all of these are consistent with the change score models discussed here.  For example, 
Bandiera, Larcinese and Rasul (2010) wanted to assess the effect in the second period of 
providing students with information on grades in the first period.  In the first period, numerical 
grade scores were assigned to each student for course work, but only those in the treatment were 
told their scores, and in the second period numerical grade score were given on essays.  That is, 
the treatment dummy variable reflected whether or not the student obtained grade information 
(feedback) on at least 75 percent of his or her course work in the first period, and zero if not.   
This treatment dummy then entered in the second period as an explanatory variable for the essay 
grade.     
 

More specifically, Bandiera, Larcinese and Rasul estimated the following panel data 
model for the ith student, enrolled on a degree program offered by department d, in time period t, 

 
' '

'
     [   ]     idct i c t t c d id idct

d
g F T T X TDα β γ δ μ= + × + + + + ε∑

 
 

where gidct is the ith student’s grade in department d for course (or essay) c at time t and αi is a 
fixed effect that captures time-invariant characteristics of the student that affect his or her grade 
across time periods, such as his or her underlying motivation, ability, and labor market options 
upon graduation.  Because each student can only be enrolled in one department or degree 
program, αi also captures all department and program characteristics that affect grades in both 
periods, such as the quality of teaching and the grading standards.  Fc is a equal to one if the 
student obtains feedback on his or her grade on course c and Tt identifies the first or second time 
period, Xc includes a series of course characteristics that are relevant for both examined courses 
and essays, and all other controls are as previously defined.   TDidˊ is equal to one if student i 
took any examined courses offered by department dˊ and is zero otherwise; it accounts for 
differences in grades due to students taking courses in departments other than their own 
department d.  Finally, εidct is a disturbance term. 

 
As specified, this model does not control for past grades (or expected grades), which is 

the essence of a change-score model.   It should have been specified as either 
 

1 '
'

      [   ]     idct i idct c t t c d id idct
d

g g F T T X TD 'α ω β γ δ μ−= + + × + + + + ε∑
 

or 
 

1 1 ' '
'

        [   ]     idct idct i idct c t t c d id idct
d

g g g F T T X TDα ω β γ δ μ− −= + + × + + + + ε∑
 

 
Obviously, there is no past grade for the first period and that is in part why a panel data 

set up has historically not been used when only “pre” and “post” measures of performance are 
available.  Notice that the treatment dummy variable coefficient β is inconsistently estimated 
with bias if the relevant past course grades in the second period essay-grade equation are 
omitted.  As discuss in Module Three on panel data studies, bringing in a lagged dependent 
variable into panel data analysis poses more estimation problems.  The thing emphasized here is 
that a change-score model must be employed in assessing a treatment effect.  In Module Four, 
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propensity score matching models are introduced for a means of doing this as an alternative to 
the least squares method employed in this module.  

 
 
DISCRETE DEPENDENT VARIABLES 
 
In many problems, the dependent variable cannot be treated as continuous.  For example, 
whether one takes another economics course is a bivariate variable that can be represented by Y = 
1, if yes or 0, if not, which is a discrete choice involving one of two options.  As another 
example, consider count data of the type generated by the question how many more courses in 
economics will a student take?  0, 1, 2 … where increasing positive values are increasingly 
unlikely.  Grades provide another example of a discrete dependent variable where order matters 
but there are no unique number line values that can be assigned.   The grade of A is better than B 
but not necessarily by the same magnitude that B is better than C.  Typically A is assigned a 4, B 
a 3 and C a 2 but these are totally arbitrary and do not reflect true number line values.  The 
dependent variable might also have no apparent order, as the choice of a class to take in a 
semester – for example, in the decision to enroll in economics 101, sociology 101, psychology 
101 or whatever, one course of study cannot be given a number greater or less than another with 
the magnitude having meaning on a number line.   
 

In this module we will address the simplest of the discrete dependent variable models; 
namely, those involving the bivariate dependent variable in the linear probability, probit and 
logit models.  

 
 

Linear Probability Model 
 
Consider the binary choice model where Yi = 1, with probability Pi , or Yi = 0, with probability 
(1–Pi.).  In the linear probability regression model iii xY εββ ++= 21 , 0)( =iE ε  implies 

iii xxYE 21)|( ββ += , where also iii xP |)iii xPxP |)(1()]|(ii xYE 1)[0()|( =+−= .  Thus, 

iiiii xPxxYE |)|( 21 =+= ββ , which we will write simply as Pi.  That is, the expected value of the 
0 or 1 bivariate dependent variable, conditional on the explanatory variable(s), is the probability 
of a success (Y = 1).  We can interpret a computer-generated, least-squares prediction of E(Y|x) 
as the probability that Y = 1 at that x value.   
 

In addition, the mean of the population error in the linear probability model is zero:   
 

  1 2 1 2

1 2

( ) (1 ) (0 )(1 )
( | ) 0 for ( | )

E x P x P
P x P E Y x P E Y x

ε β β β β
β β

= − − + − − −
= − − = − = =

 

 
However, the least squares Ŷ can be negative or greater than one, which makes it a peculiar 
predictor of probability.  Furthermore, the variance of epsilon is 
 

var(ε )  = Pi[ )(1 21 ixββ +− ]2 + (1–Pi ) ( )21 ixββ + 2= Pi( iP−1 )2 + (1–Pi )Pi
2 = Pi(1–Pi),  
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which (because Pi depends on xi) means that the linear probability model has a problem of 
heteroscedasticity. 
 

An adjustment for heteroscedasticity in the linear probability model can be made via a 
generalized least-squares procedure but the problem of constraining ix21 ββ +  to the zero – one 
interval cannot be easily overcome.  Furthermore, although predictions are continuous, epsilon 
cannot be assumed to be normally distributed as long as the dependent variable is bivariate, 
which makes suspect the use of the computer-generated t statistic.  It is for these reasons that 
linear probability models are no longer widely used in educational research. 
 
 
Probit Model 
 
Ideally, the estimates of the probability of success (Y = 1) will be consistent with probability 
theory with values in the 0 to 1 interval.   One way to do this is to specify a probit model, which 
is then estimated by computer programs such as LIMDEP, SAS and STATA that use maximum 
likelihood routines.  Unlike least squares, which selects the sample regression coefficient to 
minimize the squared residuals, maximum likelihood selects the coefficients in the assumed 
data-generating model to maximize the probability of getting the observed sample data.   
 
 The probit model starts by building a bridge or mapping between the 0s and 1s to be 
observed for the bivariate dependent variable and an unobservable or hidden (latent) variable that 
is assumed to be the driving force for the 0s and 1s:  
 
  *

1 2 2 3 3 4 4i i i i i iI X X X Xβ β β β ε= + + + + = β , where ~ (0,1)it Nε . 
 
and I* > 0 implies Y = 1 and  I* < 0 implies Y = 0 and 

( 1 | ) ( * 0) ( )i i i i iP P Y X G I G Z X β  . = = = > = ≤
 
G( ) and g( ) are the standard normal distribution and density functions, and  

∫
∞−

==
βX

dttgYP )()1( . 

 
 Within economics the latent variable I* is interpreted as net utility or propensity to take 
action.  For instance, I* might be interpreted as the net utility of taking another economics 
course. If the net utility of taking another economics course is positive, then I* is positive, 
implying another course is taken and Y = 1.  If the net utility of taking another economics course 
is negative, then the other course is not taken, I* is negative and Y = 0.   
 

The idea behind maximum likelihood estimation of a probit model is to maximize the 
density L with respect to σβ and  where the likelihood function is 
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2 / 2 2

2 / 2 2

( ) (2 ) exp( / 2 )
(2 ) exp[ β β / 2 ]

n

n

L f ε πσ σ

πσ σ

−

−

= = −

= − − −

ε'ε
(y X )'(y X )

 

 
The calculation of β∂∂ /L is not convenient but the logarithm (ln) of the likelihood function is 
easily differentiated  

 
 .  ββ ∂∂=∂∂ − //ln 1 LLL

 
Intuitively, the strategy of maximum likelihood (ML) estimation is to maximize (the log of) this 
joint density for the observed data with respect to the unknown parameters in the beta vector, 
where σ is set equal to one.  The probit maximum likelihood computation is a little more difficult 
than for the standard classical regression model because it is necessary to compute the integrals 
of the standard normal distribution.  But computer programs can do the ML routines with ease in 
most cases if the sample sizes are sufficiently large.  See William Greene, Econometric Analysis 
(5th Edition, 2003, pp. 670-671) for joint density and likelihood function that leads to the 
likelihood equations for β∂∂ /ln L . 
 

The unit of measurement and thus the magnitude of the probit coefficients are set by the 
assumption that the variance of the error term ε  is unity.  That is, the estimated probit 
coefficients along a number line have no meaning.  If the explanatory variables are continuous, 
however, the probit coefficients can be employed to calculate a marginal probability of success 
at specific values of the explanatory variables: 

 
xXgxxp ββ )(/)( =∂∂ , where g( ) is density zzGzg ∂∂= /)()( . 

 
Interpreting coefficients for discrete explanatory variables is more cumbersome as demonstrated 
graphically in Becker and Waldman (1989) and Becker and Kennedy (1992). 
 
 
Logit Model 
 
An alternative to the probit model is the logit model, which has nearly identical properties to the 
probit, but has a different interpretation of the latent variable I*.   To see this, again let  
 
  . )

)iz

|1( ii XYEP ==
 
The logit model is then obtained as an exponential function  
 
  ; thus, )1/()1/(1)1/(1 iiii zzzX

i eeeeP +=+=+= −− β

  1 1 , and  /(1 ) 1/(1i iz z
iP e e e− = − + = +

/(1 ) iz
i iP P e− = , which is the odd ratio for success (Y = 1) 

 
The log odds ratio is the latent variable logit equation 
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⎛ ⎞
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A graph of the logistic function G(z) = exp(z)/[1+exp(z)] looks like the standard normal, as seen 
in the following figure, but does not rise or fall to 1.00 and 0.00 as fast: 
 
 

Graph of Logistic Function 
 

 
 
 
Nonparametrics 
 
As outlined in Becker and Greene (2001), recent developments in theory and computational 
procedures enable researchers to work with nonlinear modeling of all sorts as well as 
nonparametric regression techniques. As an example of what can be done consider the widely 
cited economic education application in Spector and Mazzeo (1980).  They estimated a probit 
model to shed light on how a student's performance in a principles of macroeconomics class 
relates to his/her grade in an intermediate macroeconomics class, after controlling for such things 
as grade point average (GPA) going into the class.  The effect of GPA on future performance is 
less obvious than it might appear at first.  Certainly it is possible that students with the highest 
GPA would get the most from the second course. On the other hand, perhaps the best students 
were already well equipped, and if the second course catered to the mediocre (who had more to 
gain and more room to improve) then a negative relationship between GPA and increase in 
grades (GRADE) might arise.  A negative relationship might also arise if artificially high grades 
were given in the first course.   The below figure provides an analysis similar to that done by 
Spector and Mazzeo (using a subset of their data).   
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In this figure, the horizontal axis shows the initial grade point average of students in the 

study.  The vertical axis shows the relative frequency of the incremental grades that increase 
from the first to the second course.  The solid curve shows the estimated relative frequency of 
grades that improve in the second course using a probit model (the one used by the authors).  
These estimates suggest a positive relationship between GPA and the probability of grade 
improvement in the second macroeconomics throughout the GPA range.  The dashed curve in 
the figure provides the results using a much less-structured nonparametric regression model.iii  
The conclusion reached with this technique is qualitatively similar to that obtained with the 
probit model for GPAs above 2.6, where the positive relationship between GPA and the 
probability of grade improvement can be seen, but it is materially different for those with GPAs 
lower than 2.6, where a negative relationship between GPA and the probability of grade 
improvement is found.  Possibly these poorer students received gift grades in the introductory 
macroeconomics course.   
 
 There are other alternatives to least squares that economic education researchers can 
employ in programs such as LIMDEP, STATA and SAS.  For example, the least-absolute-
deviations approach is a useful device for assessing the sensitivity of estimates to outliers. It is 
likely that examples can be found to show that even if least-squares estimation of the conditional 
mean is a better estimator in large samples, least-absolute-deviations estimation of the 
conditional median performs better in small samples.  The critical point is that economic 
education researchers must recognize that there are and will be new alternatives to modeling and 
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estimation routines as currently found in Journal of Economic Education articles and articles in 
the other journals that publish this work, as listed in Lo, Wong and Mixon (2008).  In this 
module and in the remaining three, only passing mention will be given to these emerging 
methods of analysis.   The emphasis will be on least-squares and maximum-likelihood 
estimations of continuous and discrete data-generating processes that can be represented 
parametrically. 
 
 
INDIVIDUAL OBSERVATIONS OR GROUP AVERAGES:  
WHAT IS THE UNIT OF ANALYSIS? 
 
In Becker (2004), I called attention to the implications of working with observations on 
individuals versus working with averages of individuals in different groupings.  For example, 
what is the appropriate unit of measurement for assessing the validity of student evaluations of 
teaching (as reflected, for example, in the relationship between student evaluations of teaching 
and student outcomes)?  In the case of end-of-term student evaluations of instructors, an 
administrator’s interest may not be how students as individuals rate the instructor but how the 
class as a whole rates the instructor.  Thus, the unit of measure is an aggregate for the class.  
There is no unique aggregate, although the class mean or median response is typically used.iv   
For the assessment of instructional methods, however, the unit of measurement may arguably be 
the individual student in a class and not the class as a unit.  Is the question: how is the ith 
student’s learning affected by being in a classroom where one versus another teaching method is 
employed?  Or is the question: how is the class’s learning affected by one method versus 
another?   The answers to these questions have implications for the statistics employed and 
interpretation of the results obtained.v   
 
 Hake (1998) reported that he has test scores for 6,542 individual students in 62 
introductory physics courses.  He works only with mean scores for the classes; thus, his effective 
sample size is 62, and not 6,542.   The 6,542 students are not irrelevant, but they enter in a way 
that I did not find mentioned by Hake.  The amount of variability around a mean test score for a 
class of 20 students versus a mean for 200 students cannot be expected to be the same.  
Estimation of a standard error for a sample of 62, where each of the 62 means receives an equal 
weight, ignores this heterogeneity.vi   Francisco, Trautman, and Nicoll (1998) recognized that the 
number of subjects in each group implies heterogeneity in their analysis of average gain scores in 
an introductory chemistry course.  Similarly, Kennedy and Siegfried (1997) made an adjustment 
for heterogeneity in their study of class size on student learning in economics. 
 
 Fleisher, Hashimoto, and Weinberg (2002) considered the effectiveness (in terms of 
student course grades and persistences) of 47 foreign graduate student instructors versus 21 
native English speaking graduate student instructors in an environment in which English is the 
language of the majority of their undergraduate students.  Fleisher, Hashimoto, and Weinberg 
recognized the loss of information in using the 92 mean class grades for these 68 graduate 
student instructors, although they did report aggregate mean class grade effects with the 
corrected heterogeneity adjustment for standard errors based on class size.  They preferred to 
look at 2,680 individual undergraduate results conditional on which one of the 68 graduate 
student instructors each of the undergraduates had in any one of 92 sections of the course.  To 
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ensure that their standard errors did not overstate the precision of their estimates when using the 
individual student data, Fleisher, Hashimoto, and Weinberg explicitly adjusted their standard 
errors for the clustering of the individual student observations into classes using a procedure akin 
to that developed by Moulton (1986).vii   
 
 Whatever the unit of measure for the dependent variable (aggregate or individual) the 
important point here is recognition of the need for one of two adjustments that must be made to 
get the correct standard errors.  If an aggregate unit is employed (e.g., class means) then an 
adjustment for the number of observations making up the aggregate is required.  If individual 
observations share a common component (e.g., students grouped into classes) then the standard 
errors reflect this clustering.  Computer programs such as LIMDEP (NLOGIT), SAS and 
STATA can automatically perform both of these adjustments.  
 
 
ANALYSIS OF VARIANCE (ANOVA) AND HYPOTHESES TESTING 
 
Student of statistics are familiar with the F statistic as computed and printed in most computer 
regression routines under a banner “Analysis of Variance” or just ANOVA.  This F is often 
presented in introductory statistics textbooks as a test of the overall all fit or explanatory power 
of the regression.   I have learned from years of teaching econometrics that it is better to think of 
this test as one of all population model slope coefficients are zero (the explanatory power is not 
sufficient to conclude that there is any relations between the xs and y in the population)  versus 
the alternative that at least one slope coefficient is not zero (there is some explanatory power).  
Thinking of this F statistic as just a joint test of slope coefficients, makes it easier to recognize 
that an F statistics can be calculated for any subset of coefficients to test for joint significance 
within the subset.   Here I present the theoretical underpinnings for extensions of the basic 
ANOVA to tests of subsets of coefficients.  Parts two three and four provide the corresponding 
commands to do these tests in LIMDEP, STATA and SAS. 
 
 As a starting point to ANOVA consider the F statistics that is generated by most 
computer programs.  This F calculation can be viewed as a decomposition or partitioning of the 
dependent variable into two components (intercept and slopes) and a residual:  
 

1 2b= + +2y i X b e  
 
where i  is the column of 1’s in the X matrix associated with the intercept and X2 is the 
remaining (k–1) explanatory x variables associated with the (k–1) slope coefficients in the  
vector.   The total sum of squared deviations  

1b

2b

 

  TotSS = 2 2 2

1 1

( ) ( ) (
n n

i i
i i

2 )y y y ny ny
= =

′− = − = −∑ ∑ y y   

measures the amount of variability in y around y , which ignoring any effect of the xs (in essence 
the b2 vector is assumed to be a vector of zeros).  The residual sum of squares  

  ResSS =  2

1

( )
n

i
i

e
=

′=∑ e e
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measures the amount of variability in y around , which lets b1 and b2 assume their least squares 
values.  

ŷ

  
 Partitioning of y in this manner enables us to test the contributions of the xs to explaining 
variability in the dependent variable.  That is,  
 

0 2 3H : ... 0kβ = β = β =  versus H :A at least one slope coefficient is not zero. 
 
For calculating the F statistic, computer programs use the equivalent of the following: 
 

 F=
2 2[( ) ] /[( 1) ( )] [( ) ] /( 1) (TotSS ResSS) /( 1)

/( ) /( ) ResSS /( )
ny n n K ny K K

n K n K n K
′ ′− − − − − − − − − −

= =
′ ′− −

y'y e e y'y e e
e e e e −

 

 
This F is the ratio of two independently distributed Chi-square random variables adjusted for 
their respective degrees of freedom.  The relevant decision rule for rejecting the null hypothesis 
is that the probability of this calculated F value or something greater, with K − 1 and n − K 
degrees of freedom, is less than the typical (0.10, 0.05 or 0.01) probabilities of a Type I error.  
   

Calculation of the F statistic in this manner, however, is just a special case of running two 
regressions: a restricted and an unrestricted.  One regression was computed with all the slope 
coefficients set equal (or restricted) to zero so Y is regressed only on the column of ones.  This 
restricted regression is the same as using Y to predict Y regardless of the values of the xs.  This 
restricted residual sum of squares, rree′ , is what is usually called the total sum of squares, 
TotSS = 2yn−yy' .  The unrestricted regression allows all of the slope coefficients to find their 
values to minimize the residual sum of squares, which is thus called the unrestricted residual 
sum of squares, , and is usually just list in a computer printout as the residual sum of 
squares ResSS= .   

uuee′
′e e

 
 The idea of a restricted and unrestricted regression can be extended to test any subset of 
coefficients.  For example, say the full model for a posttest Y is  
 

1 2 2 3 3 4 4i i i iY x x x= β +β +β +β + εi . 
 
Let’s say the claim is made that x3 and x4 do not affect Y.  One way to interpret this is to specify 
that , but .   The dependent variable is again decomposed into two components 
but now x1 is included with the intercept in the partitioning of the X matrix:  

3 4 0β = β = 2 0β ≠

 
ebXbXy 2211 ++= . 

 
where X1 is the matrix, with the first column containing ones and the second observations 
on x1 (b1 contains the y intercept and x1 slope coefficient) and X2 is the 

2n ×
2n × matrix, with two 

columns for x3 and x4  (b2 contains  x3 and x4  slope coefficients).   If the claim about x3 and x4  not 
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belonging in the explanation of Y is true, then the two slope coefficients in b2 should be set to 
zero because the true model is the restricted specification 
 

1 2 2i iY x= β +β + εi . 
 
 The null hypotheses is ; i.e., x2 might affect Y but x3 and x4  do not affect Y. 0 3 4H :β =β =0
 
 The alternative hypothesis is H :A 3 4β 0 or β 0≠ ≠ ; i.e.,. x3 and x4  both affect Y. 
 
 

The F statistic to test the hypotheses is then 
 

F  =
)/(

)]()/[(][

uuu

uruu

Kn
KnKn

−′
−−−′−′

ee
eeee rr  , 

 
where the restricted residual sum of squares rree′  is obtained from a simple regression of Y on x2, 
including a constant, and the unrestricted sum of squared residuals u u′e e is obtained from a 
regression of Y on x2, x3 and x4 , including a constant.  
 
 In general, it is best to test the overall fit of the regression model before testing any subset 
or individual coefficients.  The appropriate hypotheses and F statistic are  
 

0 2 3H : ... 0Kβ = β = = β =   (or 2
0H : 0R = ) 

H :A at least one slope coefficient is not zero  (or 2
0H : 0R ≠ ) 

 

F =
)/(

)1/(])[( 2

Kn
Kyn

−′
−′−−

ee
eeyy' . 

 
If the calculated value of this F is significant, then subsets of the coefficients can be tested as  
 

0H : ... 0s tβ = β = =    
H :A at least one of these slope coefficient is not zero 
   

   F = 
)/(

)]/[(][

uuu

uuu

Kn
qK

−′
−′−′

ee
eeee rr , for q =  k – number of restrictions. 

 
The restricted residual sum of squares rree′ is obtained by a regression on only the q xs that did 
not have their coefficients restricted to zero. Any number of subsets of coefficients can be tested 
in this framework of restricted and unrestricted regressions as summarized in the following table. 
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SUMMARY FOR ANOVA TESTING 
 
PANEL A.  TRADITIONAL ANOVA FOR TESTING  

0versus0 22 ≠= RR  
        Degrees of Mean 
Sum of Squares   Source   Freedom Square 
------------------------------------- -------------  -------------- ------- 
Total (to be explained)  2yn−yy'   n – 1   2

ys

Residual or Error (unexplained) ee′    n – k   2
es

Regression or Model (explained) 2yn−yX'b'   k – 1 
 

F = 
2

2
1 [1 (ResSS/TotSS)]/( 1) (TotSS-ResSS) /( 1)

1 ( ) (ResSS/TotSS) /( ) ResSS /( )
R /(K ) K K

( R )/ n K n K n K
− − −

= =
− − − −

−  

 
 
PANEL B. RESTRICTED REGRESSION FOR TESTING ALL THE  
SLOPES 0...32 ==== Kβββ  
        Degrees of Mean 
Sum of Squares      Source   Freedom Square 
-------------------------------     ---------------  -------------- ------- 
Restricted (all slopes = 0)     rree′ = 2yn−yy'  n – 1   2

ys

Unrestricted    uuee′ = ee′   n  – k   2
es

Improvement    2yn−yX'b'   k – 1 
 

 F = [Restricted ResSS( 0) Unrestricted ResSS]( 1)
Unrestricted ResSS /( )

slopes K
n k

= − −
−

 

 
 
PANEL C.  RESTRICTED REGRESSION FOR TESTING A SUBSET OF 
COEFFICIENTS === ...ts ββ 0 
       Degrees of   
Sum of Squares       Source  Freedom   
----------------------------------    ----------------  --------------   
Restricted ( === ...ts ββ 0)       n – q, for q =  k – number of restrictions  rree′
Unrestricted         n – k   uuee′
Improvement     r – ree′ uuee′    K – q 
 

F = [Restricted ResSS( 0) Unrestricted ResSS]( )
Unrestricted ResSS /( )

subset K q
n k

= − −
−
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 The F test of subsets of coefficients is ideal for testing interactions.  For instance, to test 
for the treatment effect in the following model both 4 and 5β β must be jointly tested against zero: 
 
 1 2 3 4 5ChangeScore female femaletreatment treatment GPAβ β β β β= + + + + +ε

0

 
 
  4 5 4 5: 0 : oro AH Hβ β β= = ≠β  
 

where "ChangeScore" is the difference between a student's test scores at the end and 
beginning of a course in economics, female = 1, if female and 0 if male, "treatment" = 1, 
if in the treatment group and 0 if not, and "GPA" is the student's grade point average 
before enrolling in the course. 

 
The F test of subsets of coefficients is also ideal for testing for fixed effects as reflected in sets of 
dummy variables.  For example, in Parts Two, Three and Four an F test is performed to check 
whether there is any fixed difference in test performance among four classes taking economics 
using the following assumed data generating process: 
 
 1 2 3 4 51 2 3post pre class class classβ β β β β= + + + + + ε

0

 
 
  3 4 5 3 4 5: 0 : , oro AH Hβ β β β β β= = = ≠  
 

where  “post” is a student’s post-course test score, “pre” is the student’s pre-course test 
score, and “class” identifies to which one of the four classes the students was assigned, 
e.g., class3 = 1 if student was in the third class and class3 = 0 if not.  The fixed effect for 
students in the fourth class (class1, class2 and class3 are zero)) is captured in the 
intercept 1β . 

 
It is important to notices in this test of fixed class effects that the relationship between the post 
and pre test (as reflected in the slope coefficient 2β ) is assumed to be the same regardless of the 
class to which the student was assigned.   The next section described a test for any structural 
difference among the groups. 
 
 
TESTING FOR A SPECIFICATION DIFFERENCE ACROSS GROUPS 
 
Earlier in our discussion of the difference in difference or change score model,  a 0-1 bivariate 
dummy variable was introduced to test for a difference in intercepts between a treatment and 
control group, which could be done with a single coefficient t test.   However, the expected 
difference in the dependent variable for the two groups might not be constant.  It might vary with 
the level of the independent variables.  Indeed, the appropriate model might be completely 
different for the two groups.  Or, it might be the same.   
 
 Allowing for any type of difference between the control and experimental variables 
implies that the null and alternative hypotheses are 
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   H0: = β 21 ββ =
   HA: , 21 ββ ≠
 
where the are KΧ1 column vectors containing the K coefficients for the 
control and the experimental groups .  Let 

2ββ and1 1 2 3 Kβ ,β ,β ,...β

1β 2β 1X and 2X contain the observations on the 
explanatory variables corresponding to the , including the column of ones for the 
constant β .  The unrestricted regression is captured by two separate regressions:  

2β1 βand

1

 

    . 
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1 1 1

2 2 2

y X 0 β ε
y 0 X β ε

1

2

1

2

 
 That is, the unrestricted model is estimated by fitting the two regressions separately.  The 
unrestricted residual sum of squares is obtained by adding the residuals from these two 
regressions.  The unrestricted degrees of freedom are similarly obtained by adding the degrees of 
freedom of each regression.  
 
 The restricted regression is just a regression of y on the xs with no group distinction in 
beta coefficients: 
 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
[ ]1 1

2 2

y X 0 ε
β

y 0 X ε
. 

 
That is , the restricted residual sum of squares is obtained from a regression in which the data 
from the two groups are pooled and a single set of coefficients is estimated for the pooled data 
set.  
 

The appropriate F statistic is  
 

      F  =  [Restricted ResSS( ) Unrestricted ResSS]/
Unrestricted ResSS /[ 2 ]

K
n K

= −
−

1 2β β , 

 
where unrestricted ResSS = residuals sum of squares from a regression on only those in the 
control plus residuals from a regression on only those in the treatment groups.  
 

Thus, to test for structure change over J regimes, run separate regressions on each and 
add up the residuals to obtain the unrestricted residual sum of squares, ResSSu,with df = n – JK.  
The restricted residual sum of squares is ResSSr, with df = n – K.   
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0

r u

u

: and : ' are not equal

(ResSS ResSS ) / ( 1)
ResSS /( )

aH H s

K JF
n JK

= = =

− −
=

−

1 2 Jβ β . . . β β

 

 
This form of testing for a difference among groups is known in economics as a Chow 

Test.  As demonstrated in Part Two using LIMDEP and Parts Three and Four using STATA and 
SAS, any number of subgroups could be tested by adding up their individual residual sums of 
squares and degrees of freedom to form the unrestricted residual sums of squares and matching 
degrees of freedom.   
 
 
OTHER TEST STATISTICS 
 
Depending on the nature of the model being estimated and the estimation method, computer 
programs will produce alternatives to the F statistics for testing (linear and nonlinear) restrictions 
and structural changes.   What follows is only an introduction to these statistics that should be 
sufficient to give meaning to the numbers produced based on our discussion of ANOVA above.  
 
 The Wald (W) statistic follows the Chi-squared distribution with J degrees of freedom, 
reflecting the number of restrictions imposed: 
 

2( ) ~ ( )
/

r r u u

u u

W J
n

χ−
=

e 'e e 'e
e 'e

. 

 
If the model and the restriction are linear, then 
 

,
1 ( / )

nJ JW F
n k k n

= =
− −

F  

 
which for large n yields the asymptotic results 
 

W JF= . 
 
 
 The likelihood ratio (LR) test is formed by twice the difference between the log-
likelihood function for an unrestricted regression ( Lur ) and its value for the restricted regression 
(Lr ).  
 

LR =  2(Lur  − Lr ) > 0 . 
 
Under the null hypothesis that the J  restrictions are true, LR is distributed Chi-square with J 
degrees of freedom. 
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The relationship between the likelihood ratio test and Wald test can be shown to be 
 

2( ) ( )
2

r r u u r r u u

u u u u

n nLR W− −
= −

e 'e e 'e e 'e e 'e
e 'e e 'e

≤ . 

 
 The Lagrange multiplier test (LM) is based on the gradient (or score) vector 
 

⎥
⎦

⎤
⎢
⎣

⎡

+−
=⎥

⎦

⎤
⎢
⎣

⎡
∂∂
∂∂

)2/()2/(
/

/
/

42

2

2 σσ
σ

σ
β

εε'
εX'

nL
L

. 

 
where, as before, to evaluate this score vector with the restrictions we replace e = y − Xb with  
er = y − Xbr .   After sufficient algebra, the Lagrange statistic is defined by 
 

2 2~ ( )r r r rLM n nR Jχ−= =1e 'X(X'X) X'e /e 'e , 
 
where R2 is the conventional coefficient of determination from a regression of er on X, where er 
has a zero mean (i.e., only slopes are being tested).  It can also be shown that  
 

( )[1 /( )] 1 ( /
nJ WLM F

n k JF n k W n
= =

− + − + )
. 

 
Thus, LM LR W≤ ≤ . 
 
 
DATA ENTRY AND ESTIMATION 
 
I like to say to students in my classes on econometrics that theory is easy, data are hard – hard to 
find and hard to get into a computer program for statistical analysis.  In this first of four parts in 
Module One, I provided an introduction to the theoretical data generating processes associated 
with continuous versus discrete dependent variables.  Parts Two, Three and Four concentrate on 
getting the data into one of three computer programs: LIMDEP (NLOGIT), STATA and SAS.  
Attention is also given to estimation and testing within regressions employing individual cross-
sectional observations within these programs.  Later modules will address complications 
introduced by panel data and sources of endogeneity.  
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ENDNOTES 

 
][ 01 yyyi  Let the change or gain score be −=Δ , which is the posttest score minus the pretest 

score, and let the maximum change score be ][ 0maxmax yyy −=Δ , then 
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ii Let the posttest score ( ) and pretest score ( ) be defined on the same scale, then the model 
of the ith student’s pretest is  
 

β ,  
 
where 0β is the slope coefficient to be estimated, v is the population error in predicting the ith 
student’s  pretest score with ability, and all variables are measured as deviations from their 
means.  The ith student’s posttest is similarly defined by 

i0

iii vabilityy 111 )( +=
 

β   
 
The change or gain score model is then 
 

iiii vvabilityyy 010101 )( −+−=− ββ  

And after substituting the pretest for unobserved true ability we have  
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The least squares slope estimator  has an expected value of 
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Although v and are unrelated, E( v ) = 0, and are positively related, E( v ) > 0; 
thus, ββΔ≤Δ bbE . Becker and Salemi (1977) suggested an instrumental variable 
technique to address this source of bias and Salemi and Tauchen (1987) suggested a modeling of 
the error term structure. 
 
Hake (1998) makes no reference to this bias when he discusses his regressions and correlation of 
average normalized gain, average gain score and posttest score on the average pretest score.  In 
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http://www.consecol.org/vol5/iss2/art28/, he continued to be unaware of, unable or unwilling to 
specify the mathematics of the population model from which student data are believed to be 
generated and the method of parameter estimation employed.  As the algebra of this endnote 
suggests, if a negative relationship is expected between the gap closing measure 
 

g  = (posttest−pretest)/(maxscore−pretest)  
 
and the pretest, but a least-squares estimator does not yield a significant negative relationship for 
sample data, then there is evidence that something is peculiar.  It is the lack of independence 
between the pretest and the population error term (caused, for example, by measurement error in 
the pretest, simultaneity between g and the pretest, or possible missing but relevant variables) 
that is the problem.  Hotelling received credit for recognizing this endogenous regressor problem 
(in the 1930s) and the resulting regression to the mean phenomenon.  Milton Friedman received 
a Nobel prize in economics for coming up with an instrumental variable technique (for 
estimation of consumption functions in the 1950s) to remove the resulting bias inherent in least-
squares estimators when measurement error in a regressor is suspected.  Later Friedman (1992, 
p. 2131) concluded: “I suspect that the regression fallacy is the most common fallacy in the 
statistical analysis of economic data ...”  Similarly, psychologists Campbell and Kenny (1999, p. 
xiii) stated: “Regression toward the mean is a artifact that as easily fools statistical experts as lay 
people.” But unlike Friedman, Campbell and Kenny did not recognize the instrumental variable 
method for addressing the problem. 
 
In an otherwise innovative study, Paul Kvam (2000) correctly concluded that there was 
insufficient statistical evidence to conclude that active-learning methods (primarily through 
integrating students’ projects into lectures) resulted in better retention of quantitative skills than 
traditional methods, but then went out on a limb by concluding from a scatter plot of individual 
student pretest and posttest scores that students who fared worse on the first exam retain 
concepts better if they were taught using active-learning methods.  Kvan never addressed the 
measurement error problem inherent in using the pretest as an explanatory variable.  Wainer 
(2000) called attention to others who fail to take measurement error into account in labeling 
students as “strivers” because their observed test scores exceed values predicted by a regression 
equation.   
 
 
iii The plot for the probability model was produced by first fitting a probit model of the binary 
variable GRADE, as a function of GPA.  This produces a functional relationship of the form 
Prob(GRADE = 1) = Φ(α + βGRADE), where estimates of α and β are produced by maximum 
likelihood techniques.  The graph is produced by plotting the standard normal distribution 
function, Φ(α + βGRADE) for the values of GRADE in the sample, which range between 2.0 
and 4.0, then connecting the dots.  The nonparametric regression, although intuitively appealing 
because it can be viewed as making use of weighted relative frequencies, is computationally 
more complicated.  [Today the binomial probit model can be fitted with just about any statistical 
package but software for nonparametric estimation is less common.  LIMDEP (NLOGIT) 
version 8.0 (Econometric Software, Inc., 2001) was used for both the probit and nonparametric 
estimations.]   The nonparametric approach is based on the assumption that there is some as yet 

http://www.consecol.org/vol5/iss2/art28/
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unknown functional relationship between the Prob(GRADE = 1) and the independent variable, 
GPA, say Prob(Grade = 1 | GPA) = F(GPA).   The probit model based on the normal distribution 
is one functional candidate, but the normality assumption is more specific than we need at this 
point.  We proceed to use the data to find an approximation to this function.  The form of the 
‘estimator’ of this function is F(GPA*)  =  Σi = all observations w(GPA* −  GPAi )GRADEi.  The 
weights, ‘w(.),’ are positive weight functions that sum to 1.0, so for any specific value GPA*, the 
approximation is a weighted average of the values of GRADE.  The weights in the function are 
based on the desired value of GPA, that is GPA*, as well as all the data.  The nature of the 
computation is such that if there is a positive relationship between GPA and GRADE =1, then as 
GPA* gets larger, the larger weights in the average shown above will tend to be associated with 
the larger values of GRADE.  (Because GRADE is zeros and ones, this means that for larger 
values of GPA*, the weights associated with the observations on GRADE that equal one will 
generally be larger than those associated with the zeros.)  The specific form of these weights is as 
follows: w(GPA* −  GPAi)  =  (1/A)×(1/h)K[(GPA* − GPAi)/h].  The ‘h’ is called the smoothing 
parameter, or bandwidth, K[.] is the ‘kernel density function’ and A is the sum of the functions, 
ensuring that the entire expression sums to one.  Discussion of nonparametric regression using a 
kernel density estimator is given in Greene (2003, pp. 706-708).  The nonparametric regression 
of GRADE on GPA plotted in the figure was produced using a logistic distribution as the kernel 
function and the following computation of the bandwidth: let r equal one third of the sample 
range of GPA and let s equal the sample standard deviation of GPA.  The bandwidth is then h = 
.9×Min(r,s)/n1/5.  (In spite of their apparent technical cache, bandwidths are found largely by 
experimentation.  There is no general rule that dictates what one should use in a particular case, 
which is unfortunate because the shapes of kernel density plots are heavily dependent upon 
them.) 
 
 
iv Unlike the mean, the median reflects relative but not absolute magnitude; thus, the median may 
be a poor measure of change.  For example, the series 1, 2, 3 and the series 1, 2, 300 have the 
same median (2) but different means (2 versus 101). 
 
 
v To appreciate the importance of the unit of analysis, consider a study done by Ramsden (1998, 
pp. 352-354) in which he provided a scatter plot showing a positive relationship between a y-axis 
index for his “deep approach” (aimed at student understanding versus “surface learning”) and an 
x-axis index of “good teaching” (including feedback of assessed work, clear goals, etc.): 
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Ramsden’s regression ( ) seems to imply that a decrease (increase) in the 
good teaching index by one unit leads to a 0.35307 decrease (increase) in the predicted deep 
approach index; that is, good teaching positively affects deep learning.  But does it? 

xy 35307.0960.18 +=

 
Ramsden (1998) ignored the fact that each of his 50 data points represent a type of institutional 
average that is based on multiple inputs; thus, questions of heteroscedasticity and the calculation 
of appropriate standard errors for testing statistical inference are relevant.  In addition, because 
Ramsden reports working only with the aggregate data from each university, it is possible that 
within each university the relationship between good teaching (x) and the deep approach (y) 
could be negative but yet appear positive in the aggregate. 
 
When I contacted Ramsden to get a copy of his data and his coauthored “Paper presented at the 
Annual Conference of the Australian Association for Research in Education, Brisbane 
(December 1997),” which was listed as the source for his regression of the deep approach index 
on the good teaching index in his 1998 published article, he confessed that this conference paper 
never got written and that he no longer had ready access to the data (email correspondence 
August 22, 2000).  
 
Aside from the murky issue of Ramsden citing his 1997 paper, which he subsequently admitted 
does not exist, and his not providing the data on which the published 1998 paper is allegedly 
based, a potential problem of working with data aggregated at the university level can be seen 
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)1(4516.03881.21)1(ˆ xy −=

)2(0297.04847.17)2(ˆ xy −=

)3(4664.01663.17)3(ˆ xy −=

)(1848.06105.18)(ˆ meansxmeansy +=

ity

it

with three hypothetical data sets.  The three regressions for each of the following hypothetical 
universities show a negative relationship for y (deep approach) and x (good teaching), with slope 
coefficients of  –0.4516, –0.0297, and –0.4664, but a regression on the university means shows a 
positive relationship, with slope coefficient of +0.1848.  This is a demonstration of “Simpson’s 
paradox,” where aggregate results are different from dissaggregated results.  
 
University One 
 

     Std. Error = 2.8622  R2 = 0.81 n = 4 
y(1):  21.8  15.86  26.25  14.72 
x(1):  -4.11  6.82   -5.12  17.74 
 
University Two 
 

     Std. Error = 2.8341  R2 = 0.01 n = 8 
y(2):    12.60   17.90  19.00  16.45    21.96  17.1  18.61  17.85 
x(2):  -10.54  -10.53  -5.57  -11.54  -15.96  -2.1   -9.64   12.25 
 
University Three 
 

     Std. Error = 2.4286  R2 = 0.91 n = 12 
y(3):   27.10    2.02  16.81  15.42   8.84    22.90  12.77  17.52    23.20  22.60    25.90  
x(3):  -23.16  26.63   5.86    9.75  11.19  –14.29  11.51  –0.63  –19.21  –4.89  –16.16 
 
University Means 
 

     Std. Error = 0.7973     R2 = 0.75     n = 3 
 y(means):  19.658  17.684  17.735 
 x(means):    3.833   -6.704   -1.218 
 
 
vi Let  be the observed test score index of the ith student in the tth class, who has an expected 
test score index value of μ .  That is, ititity εμ += , where itε is the random error in testing such 

that its expected value is zero, 0)( =itE ε , and variance is , , for all and . 
Let

2σ 22 )( σε =itE i t

ty tnbe the sample mean of a test score index for the tth class of students.  That is, 

ttty εμ +=  and tt nE 22 )( σε = .  Thus, the variance of the class mean test score index is 
inversely related to class size. 
 
 
vii  As in Fleisher, Hashimoto, and Weinberg (2002), let giy be the performance measure of the ith  
student in a class taught by instructor g, let gF  be a dummy variable reflecting a characteristics 
of the instructor (e.g., nonnative English speaker), let gix  be a (1×n) vector of the student’s 
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observable attributes, and let the random error associated with the ith student taught by the gth 
instructor be giε .  The performance of the ith  student is then generated by 
 
    gi g gi giy F xγ β ε= + +  
 
where γ andβ are parameters to be estimated.  The error term, however, has two components: 
one unique to the ith student in the gth instructor’s class ( giu ) and one that is shared by all 
students in this class ( gξ ):  gi g giuε ξ= + .  It is the presence of the shared error gξ for which an 
adjustment in standard errors is required.  The ordinary least squares routines employed by the 
standard computer programs are based on a model in which the variance-covariance matrix of 
error terms is diagonal, with element 2

uσ .  The presence of the gξ terms makes this matrix block 

diagonal, where each student in the gth instructor’s class has an off-diagonal element 2
ξσ . 

 
In (May 11, 2008) email correspondence, Bill Greene called my attention to the fact that 
Moulton (1986) gave a specific functional form for the shared error term component 
computation.  Fleisher, Hashimoto, and Weinberg actually used an approximation that is aligned 
with the White estimator (as presented in Parts Two, Three and Four of this module), which is 
the "CLUSTER" estimator in STATA.  In LIMDEP (NLOGIT), Moulton’s shared error term 
adjustment is done by first arranging the data as in a panel with the groups contained in 
contiguous blocks of observations.  Then, the command is “REGRESS ; ... ; CLUSTER = spec. 
$” where "spec" is either a fixed number of observations in a group, or the name of an 
identification variable that contains a class number. The important point is to recognize that 
heterogeneity could be the result of each group having its own variance and each individual 
within a group having its own variance.  As discussed in detail in Parts Two, Three and Four, 
heteroscedasticity in general is handled in STATA with the “ROBUST” command and in 
LIMDEP with the “HETRO” command.   
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