MODULE THREE, PART TWO: PANEL DATA ANALYSIS IN ECONOMIC EDUCATION RESEARCH USING LIMDEP (NLOGIT)

Part Two of Module Three provides a cookbook-type demonstration of the steps required to use LIMDEP (NLOGIT) in panel data analysis. Users of this model need to have completed Module One, Parts One and Two, and Module Three, Part One. That is, from Module One users are assumed to know how to get data into LIMDEP, recode and create variables within LIMDEP, and run and interpret regression results. They are also expected to know how to test linear restrictions on sets of coefficients as done in Module One, Parts One and Two. Module Three, Parts Three and Four demonstrate in STATA and SAS what is done here in LIMDEP.

THE CASE

As described in Module Three, Part One, Becker, Greene and Siegfried (2009) examine the extent to which undergraduate degrees (BA and BS) in economics or Ph.D. degrees (PhD) in economics drive faculty size at those U.S. institutions that offer only a bachelor degree and those that offer both bachelor degrees and PhDs . Here we retrace their analysis for the institutions that offer only the bachelor degree. We provide and demonstrate the LIMDEP (NLOGIT) code necessary to duplicate their results.

DATA FILE

The following panel data are provided in the comma separated values (CSV) text file "bachelors.csv", which will automatically open in EXCEL by simply double clicking on it after it has been downloaded to your hard drive. Your EXCEL spreadsheet should look like this:
"College" identifies the bachelor degree-granting institution by a number 1 through 18 .
"Year" runs from 1996 through 2006.
"Degrees" is the number of BS or BA degrees awarded in each year by each college.
"DegreBar" is the average number of degrees awarded by each college for the 16-year period.
"Public" equals 1 if the institution is a public college and 2 if it is a private college.
"Faculty" is the number of tenured or tenure-track economics department faculty members.
"Bschol" equals 1 if the college has a business program and 0 if not.
" T " is the time trend running from -7 to 8 , corresponding to years from 1996 through 2006.
"MA_Deg" is a three-year moving average of degrees (unknown for the first two years).

College	Year	Degrees	DegreBar	P Public	Faculty	Bschol	T	MA_Deg
1	1991	50	47.375	2	11	1	-7	0
1	1992	32	47.375	2	8	1	-6	0
1	1993	31	47.375	2	10	1	-5	37.667
1	1994	35	47.375	2	9	1	-4	32.667
\downarrow		\downarrow						
1	2003	57	47.375	2	7	1	5	56
1	2004	57	47.375	2	10	1	6	55.667
1	2005	57	47.375	2	10	1	7	57
1	2006	51	47.375	2	10	1	8	55
2	1991	16	8.125	2	3	1	-7	0
2	1992	14	8.125	2	3	1	-6	0
2	1993	10	8.125	2	3	1	-5	13.333
\downarrow		\downarrow						
2	2004	10	8.125	2	3	1	6	12.667
2	2005	7	8.125	2	3	1	7	11.333
2	2006	6	8.125	2	3	1	8	7.667
3	1991	40	35.5	2	8	1	-7	0
3	1992	31	37.125	2	8	1	-6	0
\downarrow		\downarrow						
17	2004	64	39.3125	2	5	0	6	54.667
17	2005	37	39.3125	2	4	0	7	51.333
17	2006	53	39.3125	2	4	0	8	51.333
18	1991	14	8.4375	2	4	0	-7	0
18	1992	10	8.4375	2	4	0	-6	0
18	1993	10	8.4375	2	4	0	-5	11.333
18	1994	7	8.4375	2	3.5	0	-4	9
\downarrow		\downarrow						
18	2005	4	8.4375	2	2.5	0	7	7.333
18	2006	7	8.4375	2	3	0	8	6

If you opened this CSV file in a word processor or text editing program, it would show that each of the 289 lines (including the headers) corresponds to a row in the EXCEL table, but variable values would be separated by commas and not appear neatly one on top of the other as in EXCEL.

As discussed in Module One, Part Two, older versions of LIMDEP (NLOGIT) have a data matrix default restriction of no more than 222 rows (records per variable), 900 columns (number of variables) and 200,000 cells. LIMDEP 9 and NLOGIT 4.0 automatically adjust the data constraints but in older versions the number of cells must be increased to accommodate work with our data set. After opening LIMDEP, the number of working cells can be increased by clicking the Project button on the top ribbon, going to Settings, and changing the number of cells. Going from the default 200,000 cells to 900,000 cells (1,000 Rows and 900 columns) is more than sufficient for this panel data set.

We could write a "READ" command to bring this text data file into LIMDEP but like EXCEL it can be imported into LIMDEP directly by clicking the Project button on the top ribbon, going to Import, and then clicking on Variables, from which the bachelors.cvs file can be located wherever it is stored (in our case in the "Greene programs 2 " folder). Hitting the Open button will bring the data set into LIMDEP, which can be checked by clicking the "Activate Data Editor" button, which is second from the right on the tool bar or go to Data Editor in the Window's menu, as described and demonstrated in Module One, Part Two.

In addition to a visual inspection of the data via the "Activate Data Editor," we use the "dstat" command to check the descriptive statistics. First, however, we need to remove the two years (1991 and 1992) for which no data are available for the degree moving average measure. This is done with the "Reject" command. In our "File:New Text/Command Document" (which was described in Module One, Part Two), we have
reject ; year < 1993 \$
dstat;rhs=*\$
which upon highlighting and pressing "Go" yields

CONSTANT COEFFICIENT REGRESSION

The constant coefficient panel data model for the faculty size data-generating process for bachelor degree-granting undergraduate departments is given by

$$
\begin{aligned}
& \text { Faculty size }_{i t}=\beta_{1}+\beta_{2} T_{t}+\beta_{3} \text { BA\&S } S_{i t}+\beta_{4} \text { MEANBA\& } S_{i}+\beta_{5} \text { PUBLIC }_{i} \\
& +\beta_{6} \text { Bschl }+\beta_{7} \text { MA_Deg }_{i t}+\varepsilon_{i t}
\end{aligned}
$$

where the error term $\varepsilon_{i t}$ is independent and identically distributed (iid) across institutions and over time and $\mathrm{E}\left(\varepsilon_{i t}{ }^{2} \mid \mathbf{x}_{\mathrm{it}}\right)=\sigma^{2}$, for $I=18$ colleges and $T=14$ years (-5 through 8) for 252 complete records. The LIMDEP OLS regression command that needs to be entered into the command document (again, following the procedure for opening the command document window shown in Module One, Part Two), including the standard error adjustment for clustering is

```
reject ; year < 1993 $
regress
;lhs=faculty;rhs=one,t,degrees,degrebar,public,bschool,MA_deg
;cluster=14$
```

Upon highlighting and hitting the "Go" button the Output file shows the following results

```
--> reject ; year < 1993 $
--> regress;lhs=faculty;rhs=one,t,degrees,degrebar,public,bschool,MA_deg
    ; cluster=14$
|
+----------------------------------------------------------------------------
| Covariance matrix for the model is adjusted for data clustering.
    Sample of 252 observations contained }18\mathrm{ clusters defined by
| 14 observations (fixed number) in each cluster.
Sample of 252 observations contained 1 strata defined by
    2 5 2 \text { observations (fixed number) in each stratum}
+-----------------------------------------------------------------------------
+--------+-------------+----------------+-----------------------------------
|Variable| Coefficient | Standard Error |t-ratio |P[|T|>t]| Mean of X|
+--------+-------------+-----------------------------------------------------
```



```
|DEGREES | -.01636 .01866 23.1111|
|DEGREBAR| [rrrrrer
```



```
+-------+--------------------------------------------------------------------
| Note: ***, **, * = Significance at 1%, 5%, 10% level.
```

Contemporaneous degrees have little to do with current faculty size but both overall number of degrees awarded (the school means) and the moving average of degrees (MA_DEG) have significant effects. It takes an increase of 26 or 27 bachelor degrees in the moving average to expect just one more faculty position. Whether it is a public or a private college is highly significant. Moving from a public to a private college lowers predicted faculty size by nearly four members for otherwise comparable institutions. There is an insignificant erosion of tenured and tenure-track faculty size over time. Finally, while economics departments in colleges with a business school tend to have a larger permanent faculty, ceteris paribus, the effect is small and insignificant.

FIXED-EFFECTS REGRESSION

To estimate the fixed-effects model we can either insert seventeen $(0,1)$ covariates to capture the unique effect of each of the 18 colleges (where each of the 17 dummy coefficients are measured relative to the constant term) or the insert of 18 dummy variables with no overall constant term in the OLS regression. The results for the other coefficients and for R^{2} will be identical either way, while the the constant terms, since they measure the difference of each college from the $18^{\text {th }}$ in the first case, or the difference of all 18 from zero in the second, will differ. This difference is inconsequential for the regression of interest. Which way the model is estimated is purely a matter of convenience and preference.

An important implication of the fixed effects specification is that no time invariant variables can be included in the equation because they would be perfectly correlated with the respective college dummies. Thus, the overall school mean number of degrees, the public or private dummy variables, and business school dummy variables must all be excluded from the fixed effects model.

A LIMDEP (NLOGIT) program to be run from the Test/Command Document, including the commands to create the dummy variables then run the regression is shown below. (An alternative, more compact way to create the dummies and run the regression is shown in the Appendix.)

```
reject ; year < 1993 $
create
;Col1=college=1
;Col2=college=2
;Col3=college=3
;Col4=college=4
;Col5=college=5
;Col6=college=6$
create
;Col7=college=7
;Col8=college=8
;Col9=college=9
;Col10=college=10
;Col11=college=11
;Col12=college=12$
create
;Col13=college=13
;Col14=college=14
;Col15=college=15
;Col16=college=16
;Col17=college=17
;Col18=college=18$
regress;lhs=faculty;rhs=one,t,degrees,MA_deg,
Col1,Col2,Col3,Col4,Col5,Col6,Col7, Col8,Col9,
Col10,Col11,Col12,Col13,Col14,Col15,Col16,Col17; cluster=14$
```

The resulting regression information appearing in the output window is

Once again, contemporaneous degrees is not a driving force in faculty size. An F test is not needed to assess if at least one of the 17 colleges differ from college 18 . With the exception of college 17, each of the other colleges are significantly different. The moving average of degrees is again significant.

The preceding approach, of computing all the dummy variables and building them into the regression, is likely to become unduly cumbersome if the number of colleges (units) is very large. Most contemporary software, including LIMDEP will do this computation automatically without explicitly computing the dummy variables and including them in the equation. As an alternative to specifying all the dummies in the regression command, the same results can be obtained with the simpler "FixedEffects" command:

;Panel;Str=College ;FixedEffects;Robust\$					
Least Squares with Group Dummy Variables					
Ordinary least squares regression					
LHS=FACULTY	Mean	$=$	6.51786		
	Standard de	viation =	3.13677		
	Number of ob	bservs. =	252		
Model size	Parameters	=	21		
	Degrees of	freedom =	231		
Residuals	Sum of squa	res =	46.63709		
	Standard er	ror of e =	. 79674		
Fit	R -squared	=	. 94062		
	Adjusted R-	squared =	. 93548		
Model test	F[20, 231]	1] $($ prob $)=183$.	0(.0000)		
Diagnostic	Log likelih	ood $=-28$	89.34751		
	Restricted($\mathrm{b}=0)=$-6	45.15625		
	Chi-sq [20]] $($ prob $)=711$.	6(.0000)		
Info criter.	LogAmemiya	Prd. Crt. =	-. 37441		
	Akaike Info	. Criter. =	-. 37480		
	Bayes Info.	Criter =	-. 08068		
Model was estimated on Sep 23, 2009 at 06:44:38 PM					
Estd. Autocorrelation of e(i,t) = . 293724					
Robust cluster corrected covariance matrix used					
Panel:Groups	Empty	0, Valid data			
	Smallest 1	4, Largest	14		
	Average group	up size in panel	14.00		
Variable\| Coefficient		Standard Error	-ratio	$\mathrm{P}[\|\mathrm{T}\|>\mathrm{t}]$	Mean of X
T	-. 02853	. 02245	-1.271	. 2050	1.50000
DEGREES\|	-. 01608	. 01521	-1.058	. 2912	23.1111
MA_DEG\|	.03985***	. 01485	2.683	. 0078	23.1931
Note: ***, **, * = Significance at 1\%, 5\%, 10\% level.					

RANDOM-EFFECTS REGRESSION

Finally, consider the random-effects model in which we employ Mundlak's (1978) approach to estimating panel data. The Mundlak model posits that the fixed effects in the equation, $\beta_{1 i}$, can be projected upon the group means of the time-varying variables, so that

$$
\beta_{1 i}=\beta_{1}+\delta^{\prime} \bar{x}_{i}+w_{i}
$$

where \bar{x}_{i} is the set of group (school) means of the time-varying variables and w_{i} is a (now) random effect that is uncorrelated with the variables and disturbances in the model. Logically, adding the means to the equations picks up the correlation between the school effects and the other variables. We could not incorporate the mean number of degrees awarded in the fixedeffects model (because it was time invariant) but this variable plays a critical role in the Mundlak approach to panel data modeling and estimation.

The random effects model for BA and BS degree-granting undergraduate departments is

$$
\begin{aligned}
\text { FACULTY size }_{i t}=\beta_{1}+ & \beta_{2} T_{t}+\beta_{3} B A \& S_{i t}+\beta_{4} M E A N B A \& S_{i}+\beta_{5} M O V A V B A \& B S \\
& +\beta_{6} P U B L I C_{i}+\beta_{7} \text { Bschl }+\varepsilon_{i t}+u_{i}
\end{aligned}
$$

where error term ε is iid over time, $\mathrm{E}\left(\varepsilon_{i t}{ }^{2} \mid \mathbf{x}_{\mathrm{it}}\right)=\sigma^{2}$ for $I=18$ and $T_{i}=14$ and $\mathrm{E}\left[u_{i}{ }^{2}\right]=\theta^{2}$ for $I=$ 18. The LIMDEP program to be run from the Text/Command Document (with 1991 and 1992 data suppressed) is

```
regress
;lhs=faculty
;rhs=one,t,degrees,degrebar,public,bschool,MA_deg
; pds=14
;panel
;random
;robust$
```

The resulting regression information appearing in the output window is

```
--> regress
    ;lhs=faculty;rhs=one,t,degrees,degrebar,public,bschool,MA_deg
    ;pds=14;panel;random;robust$
```



```
-----+--------------------------------------------------------------
Note: ***, **, * = Significance at 1%, 5%, 10% level.
```


The marginal effect of an additional economics major is again insignificant but slightly negative within the sample. Both the short-term moving average number and long-term average number of bachelor degrees are significant. A long-term increase of about 10 students earning degrees in economics is required to predict that one more tenured or tenure-track faculty member is in a department. Ceteris paribus, economics departments at private institutions are smaller than comparable departments at public schools by a large and significant number of four members. Whether there is a business school present is insignificant. There is no meaningful trend in faculty size.

CONCLUDING REMARKS

The goal of this hands-on component of this third of four modules is to enable economic education researchers to make use of panel data for the estimation of constant coefficient, fixedeffects and random-effects panel data models in LIMDEP (NLOGIT). It was not intended to explain all of the statistical and econometric nuances associated with panel data analysis. For this an intermediate level econometrics textbook (such as Jeffrey Wooldridge, Introductory Econometrics) or advanced econometrics textbook (such as William Greene, Econometric Analysis) should be consulted.

APPENDIX:

ALTERNATIVES FOR CREATING COLLEGE DUMMY VARIABLES AND RUNNING REGRESSIONS IN LIMDEP (NLOGIT)

There are two alternative ways to create the college dummy variables for use in the regression.
First is the "create ; expand(college)\$" command, where COLLEGE is expanded as _COLLEG_, with the following resulting output:

```
COLLEGE was expanded as _COLLEG_.
Largest value = 18. 18 N
Category
```


The second method for creating dummies and running the regression is an even more condensed, and as yet an undocumented feature in the LIMDEP (NLOGIT) manual:

```
regress;lhs=faculty;rhs=one,t,degrees,MA_deg,expand(college)
    ;cluster=college$
```

which produces the same results as the fixed effects regression command we used at the beginning of this duscussion.

REFERENCES

Becker, William, William Greene and John Siegfried (2009). "Does Teaching Load Affect Faculty Size? " Working Paper (July).

Greene, William (2008). Econometric Analysis. $6^{\text {th }}$ Edition, New Jersey: Prentice Hall.
Mundlak, Yair (1978). "On the Pooling of Time Series and Cross Section Data," Econometrica. Vol. 46. No. 1 (January): 69-85.

Wooldridge, Jeffrey (2009). Introductory Econometrics. $4^{\text {th }}$ Edition, Mason OH: SouthWestern.

