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State Space Representation of Structural Models

Structural State Space Model

st = Gst−1 + Fϵt
zt = Ast−1 +Dϵt

st is a Ns × 1 vector of (unobserved) state variables

ϵt is an Nϵ × 1 vector of orthogonal white noise, or structural shocks,

E [ϵt ] = 0 , E
[
ϵtϵ

′
t

]
= I , E

[
ϵtϵ

′
s

]
= 0 for s ̸= t

zt is an Nz × 1 vector of (observed) variables of interest

G is Ns × Ns , F is Ns × Nϵ, A is Nz × Ns and D is Nz × Nϵ

The solution of linear dynamic models can generally be written as an SS model.

In structural models, {G,F ,A,D} are specific functions of deep structural parameters
(preferences, technology, ...)

One-Step-Ahead Forecasts:

z⊥t = zt − E [zt |st−1] = Dϵt with E [z⊥t z⊥′
t ] = DD′



Example: New Keynesian Model

Simple New Keynesian model, e.g. Gaĺı (2015)

Rt = ϕππt (Taylor Rule/LM curve)

Et∆gapt+1 = Rt − Etπt+1 − sdt (Eq. Cons Euler/IS curve)

πt = κgapt + βEtπt+1 + sst (Phillips curve/AS curve)

where κ > 0, ϕπ > 1, 0 ≤ β < 1

gapt : output gap , πt : inflation

sst : cost push factor

sdt : demand factor

sst and sdt are stationary exogenous processes



Example: New Keynesian Model

Iterating forward, [
gapt
πt

]
= Et

∞∑
i=0

C−(i+1)

[
sdt+i
sst+i

]
where

C−1 =
1

1 + ϕπκ

[
1 1− βϕπ
κ β + κ

]
C−1 has eigenvalues strictly less than one in modulus if ϕπ > 0, i.e. the Taylor

principle holds. check



Example: New Keynesian Model

Suppose the exogenous factors follow the (stable) process:[
sdt
sst

]
︸ ︷︷ ︸

st

= Λ︸︷︷︸
G

[
sdt−1
sst−1

]
+ Σϵ︸︷︷︸

F

ϵt

Then, [
gapt
πt

]
︸ ︷︷ ︸

zt

=
∞∑
j=0

C−(j+1)Λj

[
sdt
sst

]

= (C − Λ)−1 Λ︸ ︷︷ ︸
A

[
sdt−1
sst−1

]
︸ ︷︷ ︸

st−1

+ (C − Λ)−1 Σϵ︸ ︷︷ ︸
D

ϵt

This describes the (rational expectations) solution to the model in state space form.



Highlighting Some Key Assumptions

Assumption: Linearity

st = Gst−1 + Fϵt
zt = Ast−1 +Dϵt

Assumption: Stationarity

Ns × Ns matrix G has all eigenvalues strictly less than one in modulus, i.e.

det(G − λI) ̸= 0 for | λ |≥ 1, or equivalently

det(I − Gλ) ̸= 0 for | λ |≤ 1

As a result, st follows a stable VAR(1) process and st =
∑∞

i=0 G iFϵt−i .

st and zt are covariance stationary, i.e. the first and second moments are time
invariant.

Assumption: No Deterministic Terms

st and zt are purely nondeterministic processes



Time Series Representations

Section 2 of the course will discuss the estimation of state space models

Under appropriate assumptions, zt can also be represented in other ways

Structural Moving Average Process (SMA)

Structural Vector Autoregressive Moving Average Process (SVARMA)

Structural Vector Autoregressive Process (SVAR)



Moving Average (MA) Process

Moving Average (MA) Process

MA(q) : zt = M(L)υt =

q∑
i=0

Miυt−i

whereM(L) = M0+M1L+...+MqLq , L is the lag operator L (i.e. Lkxt = xt−k ),
and υt is white noise, i.e.

E [υt ] = 0 , E
[
υtυ

′
t

]
= Συ , E

[
υtυ

′
s

]
= 0 for s ̸= t

The MA process above is causal, i.e. E [ztυ′t−i ] = 0 for all i < 0



SMA(∞) Representation

Structural MA(∞) representation

zt = M(L)ϵt =
∞∑
h=0

Mhϵt−h

where M0 = D and Mh = AGh−1F for h ≥ 1

zt = A
∞∑
i=1

G i−1Fϵt−i︸ ︷︷ ︸
st−1

+Dϵt = A(I − GL)−1Fϵt−1 +Dϵt

=
(
D +A(I − GL)−1FL

)
ϵt

zt is a linear function of all current and past realizations of ϵt

Note it is not necessarily the case that Nz = Nϵ

One-Step-Ahead Forecasts:

z⊥t = zt − E [zt |ϵt−1, ϵt−2, . . .] = Dϵt with E [z⊥t z⊥′
t ] = DD′



SMA(∞) and Dynamic Causal Effects

Dynamic Causal Effect

The dynamic causal effect of a unit intervention in ϵj,t ∈ ϵt on zt+h is
E [zt+h|ϵj,t = 1, ϵt−1, ...]− E [zt+h|ϵj,t = 0, ϵt−1, ...]

Also known as ‘structural’ impulse response function (IRF) coefficients and equal to
∂zt+h/∂ϵj,t for h = 0, 1, ... in linear models.

The structural impulse response coefficients of zt to shock ϵj,t at horizon h are the
elements in the j-th column of Mh in the SMA(∞) representation

zt = M(L)ϵt =
∞∑
h=0

Mhϵt−h

The SMA(∞) representation contains the dynamic causal effects/structural impulse
responses to all shocks ϵt



Example: New Keynesian Model

State Space Representation:[
sdt
sst

]
= Λ

[
sdt−1
sst−1

]
+Σϵϵt[

gapt
πt

]
= (C − Λ)−1 Λ

[
sdt−1
sst−1

]
+ (C − Λ)−1 Σϵϵt

SMA Representation [
gapt
πt

]
=

∞∑
h=0

(C − Λ)−1 ΛhΣϵϵt−h

The impulse response coefficients are

(C − Λ)−1 Σϵ︸ ︷︷ ︸
h=0

, (C − Λ)−1 ΛΣϵ︸ ︷︷ ︸
h=1

, (C − Λ)−1 Λ2Σϵ︸ ︷︷ ︸
h=2

, . . . , (C − Λ)−1 ΛhΣϵ︸ ︷︷ ︸
h

, . . . , 02×2︸ ︷︷ ︸
h=∞



Vector Autoregressive Moving Average Process

Vector Autoregressive Moving Average (VARMA) Process

VARMA(p,q) : A(L)zt = C(L)vt

where

A(L) = I − A1L− ...− ApL
p

C(L) = C0 + C1L+ ...+ CqL
q

E [vt ] = 0 , E
[
vtv

′
t

]
= Σv , E

[
vtv

′
s

]
= 0 for s ̸= t

To arrive at a finite-order structural VARMA representation, consider

Nonsingularity of A:

Nz = Ns and A is an Nz × Nz nonsingular matrix



SVARMA Representation

Structural VARMA(1,1) Representation

Under nonsingularity of A,

zt = A1zt−1 + C0ϵt + C1ϵt−1

where A1 = AGA−1, C0 = D and C1 = A(F − GA−1D)

Recall the SMA(∞) representation, zt = A(I − GL)−1Fϵt−1 +Dϵt .
Under nonsingularity of A,

A−1zt = (I − GL)−1Fϵt−1 +A−1Dϵt
(I − GL)A−1zt = Fϵt−1 + (I − GL)A−1Dϵt

zt = AGA−1zt−1 +Dϵt +A(F − GA−1D)ϵt−1

zt is a linear function of zt−1, ϵt and ϵt−1

Note it is not necessarily the case that Nz = Nϵ

One-Step-Ahead Forecasts:

z⊥t = zt − E [zt |zt−1, ϵt−1] = Dϵt with E [z⊥t z⊥′
t ] = Σv = DD′



Vector Autoregressive Process

Vector Autoregressive Process

VAR(p) : B(L)zt = ut

where

B(L) = I − B1L− ...− BpL
p

E [ut ] = 0 , E
[
utu

′
t

]
= Σu , E

[
utu

′
s

]
= 0 for s ̸= t

To arrive at a structural VAR representation, consider

Assumption: Stochastic Nonsingularity

Nz = Nϵ and D is an Nz × Nz nonsingular matrix

Assumption: Eigenvalue Condition for Invertibility in the Past (IP)

The eigenvalues of G − FD−1A are strictly less then one in modulus.



SVAR Representation

Structural VAR(∞) Representation Fernández-Villaverde, Rubio-Raḿırez, Sargent, and Watson

(2007)

Under stochastic nonsingularity and the IP eigenvalue condition,

zt =
∞∑
i=1

Bizt−i +Dϵt

where Bi = A
(
G − FD−1A

)i−1 FD−1

Recall
zt = Ast−1 +Dϵt

Under stochastic nonsingularity

ϵt = D−1(zt −Ast−1)

Substituting into st = Gst−1 + Fϵt yields

st =
(
G − FD−1A

)
st−1 + FD−1zt



SVAR Representation

Under the IP eigenvalue condition,

st =
∞∑
i=0

(
G − FD−1A

)i FD−1zt−i

Substituting into zt = Ast−1 +Dϵt leads to

zt =
∞∑
i=1

A
(
G − FD−1A

)i−1 FD−1zt−i +Dϵt

One-Step-Ahead Forecasts:

z⊥t = zt − E [zt |zt−1, zt−2, ...] = ut = Dϵt with E [z⊥t z⊥′
t ] = Σu = DD′



Example: New Keynesian Model

State Space Representation:[
sdt
sst

]
= Λ

[
sdt−1
sst−1

]
+Σϵϵt[

gapt
πt

]
= (C − Λ)−1 Λ

[
sdt−1
sst−1

]
+ (C − Λ)−1 Σϵϵt

SMA Representation [
gapt
πt

]
=

∞∑
h=0

(C − Λ)−1 ΛhΣϵϵt−h

SVAR/SVARMA Representation[
gapt
πt

]
= (C − Λ)−1 Λ (C − Λ)

[
gapt−1

πt−1

]
+ (C − Λ)−1 Σϵϵt

Note that G − FD−1A = 0 such that eigenvalue condition for IP holds.

In this example, there is an exact finite-order SVAR representation.



Example: New Keynesian Model

[
gapt
πt

]
= (C − Λ)−1 Λ (C − Λ)︸ ︷︷ ︸

B1

[
gapt−1

πt−1

]
+ (C − Λ)−1 Σϵ︸ ︷︷ ︸

D

ϵt

Structural impulse responses by repeated substitution

h = 0 : D = (C − Λ)−1 Σϵ

h = 1 : B1D = (C − Λ)−1 ΛΣϵ

h = 2 : B2
1D = (C − Λ)−1 Λ2Σϵ

...

Bh
1D = (C − Λ)−1 ΛhΣϵ

...

h = ∞ : B∞
1 D = 02×2



Alternative Derivation: From SMA to SVAR

Rewrite SMA(∞) representation under stochastic nonsingularity:

zt =
(
I +A(I − GL)−1FD−1L

)
υt , υt = Dϵt

From SMA(∞) to SVAR(∞)

Under the eigenvalue condition for IP, υt is fundamental for zt

Using the matrix determinant lemma,

det
(
I +A(I − GL)−1FD−1L

)
= det

(
I − (G − FD−1A)L

)
/det(I − GL)

Fundamentalness of vt for zt requires that

det
(
I − (G − FD−1A)λ

)
̸= 0 for | λ |≤ 1

which is equivalent to

det
(
(G − FD−1A)− Iλ

)
̸= 0 for | λ |≥ 1

which holds if G − FD−1A has all eigenvalues strictly less then one in modulus.

Equivalently εt is fundamental for zt .



Alternative Derivation: From SVARMA to SVAR

Rewrite the SVARMA(1,1) representation under stochastic nonsingularity:

(I −AGA−1L)zt =
(
I −A

(
G − FD−1A

)
A−1L

)
vt , vt = Dϵt

From SVARMA(1,1) to SVAR(∞)

Under the eigenvalue condition for IP, vt is fundamental for zt

Fundamentalness of vt for zt requires that

det
(
I −A

(
G − FD−1A

)
A−1λ

)
̸= 0 for | λ |≤ 1

which is equivalent to

det
((
G − FD−1A

)
− Iλ

)
̸= 0 for | λ |≥ 1

which holds if G − FD−1A has all eigenvalues strictly less then one in modulus.

Equivalently εt is fundamental for zt .



From S(VAR)MA to SVAR in General: Fundamentalness

Fundamentalness

Consider a VARMA process A(L)zt = C(L)vt with dim(zt) = dim(vt). The
innovations vt are fundamental for observables zt if there is an S(L) in

S(L)A(L)zt = S(L)C(L)vt = vt

such that S(L)C(L) = I and S(L) only has nonnegative powers of L.

This requires that det(C(λ)) ̸= 0 for | λ |< 1, i.e. the zeroes of det(C(λ)) do
not lie strictly within the unit circle of the complex plane.

See e.g. Hansen and Sargent (1980), Hansen and Sargent (1991).

Fundamentalness implies a (one-sided) VAR representation B(L)zt = ut ,
where B(L) = S(L)A(L) and vt = ut .

Invertibility in the past:
The inverse of C(L) only involves non-negative powers of L (i.e. no leads).



Estimating Dynamic Causal Effects

Suppose the economic structure {G,F ,A,D} is unknown but we observe {zt}Tt=1

How can we estimate the causal effects of ϵj,t on zt+h for h = 0, 1, 2... with minimal
assumptions on {G,F ,A,D}?

Knowledge of dynamic covariances of zt is not enough for identification of structural
impulse responses.

We will discuss identification later in Section 4.

For now, we will assume either of the following:

A sample of the shock of interest {ϵj,t}Tt=0 is observed

The impact response coefficients Dj are known



Estimating Dynamic Causal Effects

Suppose we observe {ϵj,t}Tt=0.

The SMA(∞) representation motivates the following two approaches:

Distributed Lag Model

zt =

H−1∑
h=0

M j
hϵj,t−h + wt , wt =

∞∑
h=H

M j
hϵj,t−h +

∞∑
h=0

M−j
h ϵ−j,t−h

Since E [ϵj,t−hwt ] = 0, the H structural IRF coefficients M j
0, . . .M

j
H−1 can be

estimated by OLS in a regression of zt on a distributed lag ϵj,t , . . . , ϵj,t−H+1

Jordà (2005) Local Projections

zt+h = M j
hϵj,t + wh,t , wh,t = M−j

h ϵ−j,t +
∞∑

i=0,h ̸=i

Mi ϵt+h−i , h = 0, . . .H − 1

Since E [ϵj,twh,t ] = 0, the structural IRF coefficients M j
h at horizon h can be estimated

by OLS in a regression of zt+h on ϵj,t



Estimating Dynamic Causal Effects

Suppose we do not observe ϵj,t , but we know M j
0 = Dj (j-th column in D).

Assume ϵt is fundamental for zt

VAR Projection

zt =
∑∞

i=0 Bizt−i + ut , B(L) = I −
∑∞

i=1 BiL
i

zt = G(L)ut

where G(L) = B(L)−1 =
∑∞

h=0 GhL
h are the reduced form IRF coefficients

Linear projection (population analogue of OLS regression) of zt on zt−1, zt−2, . . .

Local Projections on Current and Lagged Observables

zt+h = µhzt +
∑∞

i=1 δizt−i + wh,t , h = 1, 2, ...

Linear projection of zt+h on zt and zt−1, zt−2, . . .



Estimating Dynamic Causal Effects

Equivalence of VAR and LPs Plagborg-Møller and Wolf (2021)

In population, µh = Gh

In population, we can equivalently obtain the reduced form IRF coefficients G(L) by
VAR projection or LPs on current and lagged observables

Since ϵt is fundamental for zt , zt = G(L)Dϵt

The structural IRF coefficients associated with shock ϵj,t are in G(L)Dj .

These are just linear combinations of the reduced form IRF coefficients in G(L).

Fundamentalness and knowledge of Dj is equivalent to observing ϵj,t



Estimating Dynamic Causal Effects

In finite samples, we cannot include infinite lags of zt . Truncate the lag length to p.

Near-Equivalence of Truncated VAR and LPs Plagborg-Møller and Wolf (2021)

In population, µh ≈ Gh for h ≤ p

Estimated IRF of output gap to interest rate shock, p = 4, Nz = 7, T = 5000:

LP with p lags of zt VAR(p)
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Mean and 95% percentiles across 5000 Monte Carlo samples generated from Smets
and Wouters (2007) model.



Estimating Dynamic Causal Effects

At short forecast horizons, LPs and VARs are close equivalents in population

At longer horizons (h > p), IRFs from finite-order VARs show lag truncation bias

VAR’s extrapolate from the first p autocovariances of zt by G(L) = B(L)−1

G0 = I , Gh =
h∑

i=1

Gh−iBi ,Bi = 0 for h > p

Severity of extrapolation error depends on DGP

Other options to estimate G(L) and avoid lag truncation bias:

Reduced Form State Space Models: Aoki (1987), Durbin and Koopman (2001)

Reduced Form VARMA Models: Lütkepohl (2005), Kascha and Mertens (2009)



Estimating Dynamic Causal Effects

In finite samples, there is a bias-variance trade-off between LPs and VARs.

See Schorfheide (2005), Li, Plagborg-Møller, and Wolf (2022)

Estimated IRF of output gap to interest rate shock, p = 4, Nz = 7, T = 250:

LP with p lags of zt VAR(p)
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Mean and 95% percentiles across 5000 Monte Carlo samples generated from Smets
and Wouters (2007) model.



Estimating a VAR

Sample of T + p observations of an Nz × 1 vector zt :

{zt−p+1, zt−p+2, . . . , zT−1, zT }

Define the Nz × T matrix z such that:

z =
[

z1 z2 · · · zT
]

Define a pNz × 1 vector Zt :

Zt =


zt−1

zt−2

...
zt−p


Let Z be a pNz × T matrix collecting T observations of Zt :

Z =
[

Z1 Z2 · · · Zp
]



Estimating a VAR

Let u be a Nz × T matrix of Nz × 1 residuals ut :

u =
[

u1 u2 · · · uT
]

Let B be a Nz × pNz matrix of coefficients:

B =
[

B1 B2 · · · Bp
]

Introduce the vectorization operator:

z = vec(z)

u = vec(u)

Where z is a NzT × 1 vector of the stacked columns of z. The variance-covariance
matrix of u is:

Var(u) ≡ Σu = IT ⊗ Σu



Estimating a VAR

Re-write the VAR(p) as:

z = BZ + u

Or as:

z = (Z ′ ⊗ INz )β + u

Where ⊗ is the Kronecker product.

We can estimate β with Generalized Least Squares (GLS) by minimizing

u′Σu
−1u = (z− (Z ′ ⊗ INz )β)

′Σu
−1(z− (Z ′ ⊗ INz )β)

= z′Σu
−1z+ β′(Z ⊗ INz )Σu

−1(Z ′ ⊗ INz )β − 2β′(Z ⊗ INz )Σu
−1z

= z′(IT ⊗ Σ−1
u )z+ β′(ZZ ′ ⊗ Σ−1

u )β − 2β′(Z ⊗ Σ−1
u )z



Estimating a VAR

First order condition:

2(ZZ ′ ⊗ Σ−1
u )β − 2(Z ⊗ Σ−1

u )z = 0

The GLS estimator is therefore:

β̂ = ((ZZ ′)−1Z ⊗ INz )z

Equivalent to ‘system’ OLS, equation-by-equation OLS, or Maximum Likelihood under
Gaussianity.

Asymptotic normality:

√
T (β̂ − β)

d→ N (0, Γ−1 ⊗ Σ)

where ZZ ′/T
p→ Γ and the estimators are

Γ̂ =
ZZ ′

T

Σ̂ =
1

T − pNz − 1
z(IT − Z ′(ZZ ′)−1Z)z ′



Estimating Dynamic Causal Effects using a VAR

Note that β̂ = vec(B̂) where B̂ = (ZZ ′)−1Zu′ =
[

B̂1 B̂2 · · · B̂p

]

zt = B̂1zt−1 + . . .+ B̂pzt−p + ût

The estimates of the structural impulse responses to ϵj,t are

h = 0 : M̂ j
0 = Dj

h = 1 : M̂ j
1 = B̂1M̂

j
0

h = 2 : M̂ j
2 = B̂1M̂

j
1 + B̂2M̂

j
0

h = 3 : M̂ j
3 = B̂1M̂

j
2 + B̂2M̂

j
1 + B̂3M̂

j
0

...

any h > 0 : M̂h =
h∑

i=1

B̂iM̂
j
h−i = ĜhM

j
0 =

h∑
i=1

Ĝh−i B̂iM
j
0



What Can Go Wrong? Sources of Misspecification

We will discuss three potential sources of misspecification

1 Nonfundamentalness

2 Nonlinearities

3 Time Aggregation



Nonfundamentalness

Consider the SMA representation zt = M(L)ϵt with dim(zt) = dim(ϵt)

Nonfundamentalness and Noninvertibility

If det(M(λ)) = 0 for at least one |λ| < 1, ϵt is nonfundamental for zt

If det(M(λ)) = 0 for at least one |λ| = 1, the MA process is noninvertible

If ϵt is nonfundamental for zt , but det(M(λ)) has no zeroes on the unit circle, M(L) is
still invertible, just not invertible in the past only.

There is an F (L) =
∑∞

i=−∞ FiL
i with F (L)M(L) = I such that F (L)zt = ϵt

ϵt can only be recovered from all past, current, and future observations of zt .

zt therefore does not admit an SVAR representation

If only Dj is known, fundamentalness is also required for estimating structural IRFs
with local projections

Note: it is common to use ‘nonfundamentalness’ and ‘noninvertibility’ interchangeably



Nonfundamentalness and Omitted Variables

One-step ahead forecast errors by economic agents in theoretical models are

zt − E [zt |st−1] = zt − E [zt |ϵt−1, ϵt−2, ...]

Fundamentalness implies that

zt − E [zt |ϵt−1, ϵt−2, ...] = zt − E [zt |zt−1, zt−2, ...]

Observing the history of ϵt is equivalent to observing the history of zt

If zt is the data available to the econometrician, than nonfundamentalness

zt − E [zt |ϵt−1, ϵt−2, ...] ̸= zt − E [zt |zt−1, zt−2, ...]

means that the observables zt available to the econometrician are informationally
insufficient

Nonfundamentalness is mostly an omitted variables problem

Trivially, ϵj,t is fundamental for z̃t = [ϵj,t zt ].

But dim(zt) = dim(ϵt) does not guarantee fundamentalness



Example: News Shocks in the New Keynesian Model

Consider again the simple NK model[
gapt
πt

]
= Et

∞∑
i=0

C−(i+1)

[
sst+i

sdt+i

]

where κ > 0, ϕπ > 1, 0 ≤ β < 1 and C−1 = 1
1+ϕπκ

[
1 1− βϕπ
κ β + κ

]

If the shocks follow a VAR(1) process

[
sst
sdt

]
= Λ

[
sst−1

sdt−1

]
+Σϵϵt ,

there is a VAR(1) representation for gapt and πt[
gapt
πt

]
= (C − Λ)−1 Λ (C − Λ)

[
gapt−1

πt−1

]
+ (C − Λ)−1 Σϵϵt

The assumed shock process delivers fundamentalness



Example: News Shocks in the New Keynesian Model

But now suppose sdt = ϵdt is iid white noise and

sst = ϵst−1 , ϵ
s
t is iid

The solution is :[
gapt
πt

]
=

(
C−1

[
L 0
0 1

]
+ C−2

[
1 0
0 0

])[
ϵst
ϵdt

]
= C−1

[
L+ 1

1+ϕπκ
κ

1+ϕπκ

0 1

] [
ϵst
ϵdt

]
The MA term looses rank at L = − 1

1+ϕπκ
, which is inside the unit circle.

Hence there is no SVAR representation for [gapt , πt ] for this shock process.



Nonfundamentalness

Nonfundamentalness is not a theoretical curiosity.

Many examples in the literature:

News Shocks Leeper, Walker, and Yang (2013)

Noninvertible MA shock processes Lippi and Reichlin (1993)

Multistep prediction errors as observables Hansen and Hodrick (1980)

Heterogeneous Information Blanchard, L’Huillier, and Lorenzoni (2013), Chahrour and Jurado (2021)

etc.



Nonfundamentalness

So if ϵt is nonfundamental for zt , what is the residual ut in the VAR(∞) projection
zt =

∑∞
i=1 Bizt−i + ut?

Wold Representation Theorem

If zt is covariance stationary, there is an MA(∞) represention zt = G(L)ut
where the Wold innovation process ut is white noise

E [ut ] = 0 , E
[
utu

′
t

]
= Σu , E

[
utu

′
s

]
= 0 for s ̸= t

Note that ut is fundamental for zt

But, we cannot rotate G(L) by D and obtain the structural IRFs, since ut ̸= Dϵt

Connection between SMA and Wold Representation

zt = M(L)ϵt = M(L)B(L)−1D−1DB(L)ϵt = G(L)ut

G(L)DB(L) = M(L) and ut = DB(L)ϵt where B(L) is a Blaschke matrix

The Blaschke matrix B(L) ‘flips’ the roots of G(L)D to obtain the SMA



Nonfundamentalness

Blaschke Matrix Lippi and Reichlin (1994)

All (rational) Blaschke matrices have the form

B(L) = R(λ1, L)K1R(λ2, L)K2 . . .R(λr , L)Kr

where r is an integer, Ki is an orthogonal matrix (i.e. KiK
′
i = I) and

R(λi , L) =

[
L−λi
1−λ∗

i L
0

0 I

]

where λ∗i is the complex conjugate of λi

If ϵt is iid white noise than ut = DB(L)ϵt is white noise, but ut is generally not iid
unless ϵt is Gaussian

Let λ−1
i be the roots of G(L), where we know that |λi | < 1 since ut is fundamental

for zt .

To construct the true nonfundamental SMA representation we need to know the Ki ’s
and which roots of G(L) to flip.

To recover ϵt , we need to know not only D but also the right Blaschke matrix.



Example: Government Spending News Shocks in RBC Model

News shocks are typically nonfundamental for ‘conventional’ zt Leeper, Walker, and Yang (2013)

Example from Mertens and Ravn (2010) on anticipated government spending shocks

U = E0

∞∑
t=0

βt C
1−σ
t

(
1− ψNθ

t

)1−σ − 1

1− σ
(preferences)

Ct + Kt+1 + Gt = (1− δ)Kt + Kα
t (XtNt)

1−α (budget constraint)

Exogenous processes:

µg (L) ln (Gt) = µg (1) ln(ḡ) + σg ϵ
g
0,t + σgλϵ

g
q,t−q (govt. spending)

ϵq,t−q : Anticipated shocks enter the information set at date t − q but affect
government spending only in period t

λ parametrizes the variance contribution of anticipated shocks



Example: Government Spending News Shocks in RBC Model

The solution to a log-linearized approximation of the model in terms of detrended
variables can be formulated as

kt+1 = ϕkkkt + ϕkggt +

q−1∑
i=0

ϕk,q−i ϵq,t−i ,

ct = ϕckkt + ϕcggt +

q−1∑
i=0

ϕc,q−i ϵq,t−i ,

The coefficients relating to the impact of anticipated government spending shocks can
be expressed as

ϕc,q−i = ωq−1−iϕc,1 for i = 0, . . . , q − 1 ,

ϕk,q−i = ωq−1−iϕk,1 for i = 0, . . . , q − 1 .

where ω is the inverse of the unstable eigenvalue of the RE system.

| ω |< 1 is the anticipation rate Ljungqvist and Sargent (2012))

Constant discounting of news



Example: Government Spending News Shocks in RBC Model

Vector of observables zt = [gt ct ]′ has SMA representation

zt = Υ(L)Σϵϵt ,D = Υ(0)Σϵ , ϵt =

[
ϵg0,t
ϵgq,t

]
Σϵ = σg

[
1 0
0 λ

]

Fundamentalness requires that all roots of det(Υ (L)) are outside the unit circle

det(Υ (L)) =

(
ϕckϕk,1

1− ϕkkL
L+ ϕc,1

)
µg (L)Θ(L)

Υ (L) inherits the roots of Θ(L) = ωq−1 + ωq−2L+ · · ·+ ωLq−2 + Lq−1

For q > 1 (but not q = 1!), roots lie on a circle in the complex plane with radius ω < 1



Example: Government Spending News Shocks in RBC Model

The Blaschke matrix that recovers the shocks from the Wold innovations in
ϵt = B(L)−1D−1ut is

B(L)−1 = KR(ω1, L)R(ω2, L) . . .R(ωq−1, L) ,

R(ωi , L) =

[
1 0

0 1−ωiL
L−ω∗

i

]
,

K =
1√

1 + (λωq)2

[
1 −λωq

λωq 1

]
,

where ωi , i = 1, ..., q − 1 are the roots of the polynomial Θ(L) and ω∗
i denotes the

complex conjugate.

Depends only on three additional parameters λ, ω and q.



Partial Invertibility/Fundamentalness

Assuming fundamentalness is assuming that ϵt is a linear combination of ut = B(L)zt

In practice, it is only required that the shock of interest is fundamental for zt

Partial Invertibility/Fundamentalness

ϵj,t is fundamental for zt if ϵj,t is a linear combination of ut in zt = G(L)ut

Semi-Structural VAR Representation Stock and Watson (2018), Miranda-Agrippino and Ricco

(2019)

Let ϵj,t be fundamental for zt such that ϵj,t = λ′jut . There exists a Λ = [λj λ−j ]

where λ−j is Nz × (Nz − 1) and Λ′ΣuΛ = I such that

B(L)zt = Dj ϵj,t + ξt , where Dj = Σuλj , ξt = Σuλ−jλ
′
−jut , E [ϵj,tξ

′
t ] = 0



Detecting Nonfundamentalness

Checking nonfundamentalness given an economic model

Given a DGP {G,F ,A,D}, fundamentalness of ut for zt can be verified by
checking the eigenvalue condition for IP Fernández-Villaverde, Rubio-Raḿırez, Sargent, and Watson

(2007).

A measure of the informational deficiency for ϵj,t is the unexplained variation in
regression of ϵj,t on ut Sims and Zha (2006), Forni, Gambetti, and Sala (2019)

Testing the null of fundamentalness with additional macroeconomic variables xt

Test whether any xj,t ∈ xt Granger-causes zt Giannone and Reichlin (2006)

Test whether Wold innovations ut+j for j ≥ 1 predict xt Canova and Hamidi Sahneh (2017)

Testing the null of fundamentalness under non-Gaussianity

For iid non-Gaussian ϵt , test whether ut is a martingale difference sequence
Chen, Choi, and Escanciano (2017)



Adressing Nonfundamentalness

Think carefully about selection of variables in zt , and include variables that are
predictive for the main outcome variables of interest

Measure the shock of interest directly
Romer and Romer (1989), Romer and Romer (2010), Ramey (2011)

Large information sets (e.g. Factor models)
Giannone and Reichlin (2006), Alessi, Barigozzi, and Capasso (2011)

Impose additional structure (beyond Dj ) Mertens and Ravn (2010), Chahrour and Jurado (2021)



What Can Go Wrong? Sources of Misspecification

1 Nonfundamentalness

2 Nonlinearities

3 Time Aggregation



Nonlinearities

Linearity imposes some strong properties on structural impulse responses:

responses scale linearly with the size of the shocks ϵt

responses are symmetric with respect to sign of the shocks

responses are independent of t (e.g. state of the economy)

What if the true DGP is nonlinear?



Nonlinearities

Suppose zt is generated by a nonlinear (causal) process

zt = M∗(ϵt , ϵt−1, ...)

where the nonlinear function M∗(·) generates the covariance stationary process zt .

Best Linear Approximation Plagborg-Møller and Wolf (2021)

The nonlinear process zt = M∗(ϵt , ϵt−1, ...) has an SMA(∞) representation

zt = M(L)ϵt + N(L)ζt

where M(L) = M0 +M1L+M2L2 + ... and N(L) = N0 + N1L+ N2L2 + ...,
ζt is Nz -dimensional white noise with Eζtϵ′s = 0 for all s, t and

{M0,M1, ...} = argmin
M̃0,M̃1,...

{
E
[(
M∗(ϵt , ϵt−1, ...)−

∞∑
i=0

M̃i ϵt−i

)2]}

[ϵ′t ζ
′
t ]
′ is in general nonfundamental for zt , so the Wold innovations ut = B(L)zt are

not linear combinations of ϵt



Nonlinearities

Conditional Dynamic Causal Effect

In nonlinear models, the conditional dynamic causal effect of a δ intervention
in ϵj,t ∈ ϵt on zt+h is

E [M∗(ϵt+h, ϵt+h−1, ...)|ϵj,t = δ, ϵt−1, ...]

− E [M∗(ϵt+h, ϵt+h−1, ...)|ϵt−1, ...] ̸= Mh

Expectations integrate over ϵ−j,t and all shocks from t + 1 to t + h

Unconditional Dynamic Causal Effect

In nonlinear models, the unconditional dynamic causal effect of a δ intervention
in ϵj,t ∈ ϵt on zt+h is

E [M∗(ϵt+h, ϵt+h−1, ...)|ϵj,t = δ]

− E [M∗(ϵt+h, ϵt+h−1, ...)] ̸= Mh

Expectations additionally integrate over all shocks (but ϵj,t) from −∞ to t

Both objects depend on δ (sign and size of the shock)
The ‘best linear approximation’ Mh can differ substantially from either object



Nonlinearities

There are various ways to introduce nonlinearities in VAR models

Include nonlinear transformations of individual series in zt

Markov-Switching VARs

Threshold/Smooth Transition VARs

Time-Varying Parameter VARs

Nonparametric VARs

Curse of dimensionality, use with care



What Can Go Wrong? Sources of Misspecification

1 Nonfundamentalness

2 Nonlinearities

3 Time Aggregation



Time Aggregation

What if the true DGP has higher frequency than that of data collection?

Suppose the model for high frequency data is a VAR(p)

N(L)z∗τ = Dϵτ , τ = 1, ..., kT

where N(L) = In − N1L − ...− NpLp , L is the lag operator Ljxτ = xτ−j .

Suppose the econometrician observes average sampled data

zt = (I + L+ ...Lk−1)z∗tk , t = 1, ..,T

where t indexes the lower frequency. For concreteness, assume that p ≥ k − 1.

Can we fit a VAR for zt and do structural VAR analysis?



Time Aggregation

Generally no.

The time aggregated data has a VARMA representation

A(L)zt = C(L)vt , t = 1, ...,T

where
E [vt ] = 0 , E

[
vtv

′
t

]
= Σv , E

[
vtv

′
s

]
= 0 for s ̸= t

Some Results on Time Aggregation Marcellino (1999)

A(L) has order p or less – generally the same order as N(L)
The order of C(L) is bounded by p if p = k − 1, or otherwise by
p + 1 + q where q is the smallest positive integer that satisfies
qk ≤ k − p − 2 < (q + 1)k

vt ̸= D(I +L+ ...Lk−1)ϵtk . Instead vt is a linear combination of current
and up to (p + 1)(k − 1) lags of shocks.

Similar results hold for point-in-time sampling.



Time Aggregation

We cannot expect to uncover high frequency dynamics with low frequency data.

Possible solutions:

High frequency macro data
Lewis, Mertens, Stock, and Trivedi (2022), Baumeister, Leiva-León, and Sims (2022), Jacobson, Matthes, and Walker (2022)

Mixed Frequency models

Mixed-Frequency VARs and factor models

Mariano and Murasawa (2010), Bańbura, Giannone, Modugno, and Reichlin (2013), Schorfheide and Song (2015)

MIxed DAta Sampling (MIDAS)-VARs: Ghysels (2016)



Footnote: Local Uniqueness

In matrix form

Et

[
ŷgap
t+1
πt+1

]
= C

[
ŷgap
t
πt

]
−

[
ut
vt

]
, C ≡

1

β

[
β + κ βϕπ − 1
−κ 1

]
The companion matrix C has the characteristic polynomial

P(φ) = φ
2 − tr(C)φ + det(C)

tr(C) = 1 + 1/β + κ/β > 1

det(C) = (1 + κϕπ)/β > 1

which has roots outside the unit circle if tr(C) < 1 + det(C) or

ϕπ > 1 (Taylor Principle)

Back
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