AEA CONTINUING EDUCATION PROGRAM

INEQUALITY AND INNOVATION

UFUK AKCIGIT, UNIVERSITY OF CHICAGO

JANUARY 6-8, 2019

INEQUALITY AND INNOVATION Lecture Slides 1: Innovation and Inventors of the Golden Age ¹

Ufuk Akcigit University of Chicago

January 6, 2019

¹Based on Akcigit, Grigsby, Nicholas (2017)

- ► Innovation is the engine of long-run growth.
- However little empirical work over long horizons.
- Little is known about the creators of new ideas and their backgrounds.
- ► Particularly important to discipline alternative growth theories on
 - agglomeration,
 - market size,
 - reallocation,
 - misallocation,
 - direction of technical change, and
 - ► inequality.

And to understand the "inclusivity" of economic growth.

Akcigit, Grigsby, Nicholas'18 (AGN)

Major data collection effort. AGN generate novel **microdata** to study regional performance as well as the background of the Inventors of the Golden Age.

Akcigit, Grigsby, Nicholas'18 (AGN)

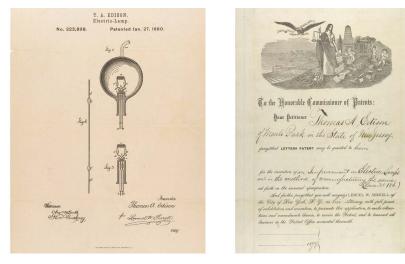
Major data collection effort. AGN generate novel **microdata** to study regional performance as well as the background of the Inventors of the Golden Age.

- ► Digitize the USPTO patents (OCR + hand entry).
- ▶ Newly-released decennial census data (1880-1940) and merge.
- Present key facts about innovation at regional and individual levels.

Akcigit, Grigsby, Nicholas'18 (AGN)

Major data collection effort. AGN generate novel **microdata** to study regional performance as well as the background of the Inventors of the Golden Age.

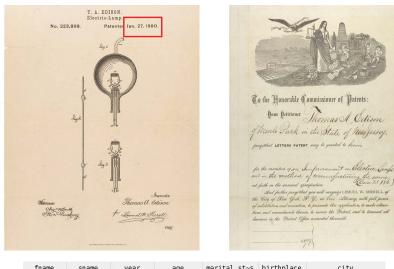
- ► Digitize the USPTO patents (OCR + hand entry).
- ► Newly-released decennial census data (1880-1940) and merge.
- Present key facts about innovation at regional and individual levels.


Main Goal:

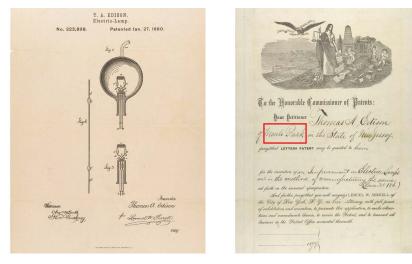
AGN use this new data to test the basic predictions of the innovation-based growth models and identify the missing pieces.

Ufuk Akcigit (University of Chicago)

To the Honorable Commissioner of Patents : Pour Petitioner Thomas A. Edison of Mente Park in the State of neighersey prayethal LETTERS PATENT may be granted to kim for the invention of an Information of in Cletter Campar and in the methode of mean of section for the some Care No 186.) set forth in the annexed specification. And further pray that you will recognize LEMUEL W. SERRELL of the City of New York, S. Y. as his Attorney, with full porces of substitution and revocation, to presecute this application, to make alterations and amendments therein, to receive the Fatent, and to transact all business in the Patent Office connected therewith.



fname	sname	year	age	marital_st~s	birthplace	city
THOMAS	EDISON	1880	32	Married	OHIO	MENLO PARK
THOMAS	EDISON	1900	52	Married	OHIO	MENLO PARK
WILLIAM	WINE	1920	38	Married	VIRGINIA	TOLEDO WARD 4
ADIEL	DODGE	1940	48	Married	MISSOURI	ROCKFORD


T. A. EDISON. Electric-Lamp. No. 223,898. Patented Jan. 27, 1880. Sig 1. To the Honorable Commissioner of Patents : Pour Petitioner Thomas A. Edison Ligh of mento Park in the State of neighersey prayethal LETTERS PATENT may be granted to him for the mountain of an Anfrevennert on Clestrice Camples and in the mothered of manufacturing the some set forth in the annexed specification. And further pray that you will recognize LEMUEL W. SERRELL of Inventor the City of Stew York, St. Y., as his Attorney, with full power Thomas a Edison of substitution and revocation, to presecute this application, to make altera-Lemuel W. Serrell tions and amendments therein, to receive the Fatent, and to transact all business in the Fatent Office connected therewith. an

fname	sname	year	age	marital_st~s	birthplace	city
THOMAS	EDISON	1880	32	Married	OHIO	MENLO PARK
THOMAS	EDISON	1900	52	Married	OHIO	MENLO PARK
WILLIAM	WINE	1920	38	Married	VIRGINIA	TOLEDO WARD 4
ADIEL	DODGE	1940	48	Married	MISSOURI	ROCKFORD

Ufuk Akcigit (University of Chicago)

fname	sname	year	age	marital_st~s	birthplace	city
THOMAS	EDISON	1880	32	Married	OHIO	MENLO PARK
THOMAS	EDISON	1900	52	Married	OHIO	MENLO PARK
WILLIAM	WINE	1920	38	Married	VIRGINIA	TOLEDO WARD 4
ADIEL	DODGE	1940	48	Married	MISSOURI	ROCKFORD

fname	sname	year	age	marital_st~s	birthplace	city
THOMAS	EDISON	1880	32	Married	OHIO	MENLO PARK
THOMAS	EDISON	1900	52	Married	OHIO	MENLO PARK
WILLIAM	WINE	1920	38	Married	VIRGINIA	TOLEDO WARD 4
ADIEL	DODGE	1940	48	Married	MISSOURI	ROCKFORD

Thomas A. Edison

Melvin De Groote

Nikola Tesla

Thomas A. EdisonLight bulb.Holds 1093 patents.Moved, $OH \rightarrow NJ$.Built Menlo Park Lab.Had to borrow:Bank + Patent Sale

Melvin De Groote

Nikola Tesla

Thomas A. EdisonLight bulb.Holds 1093 patents.Moved, $OH \rightarrow NJ$.Built Menlo Park Lab.Had to borrow:Bank + Patent Sale

Melvin De Groote Chocolate ice cream. Holds 925 Patents. Got 2 degrees in Chemical Engineering.

<u>Nikola Tesla</u>

Thomas A. EdisonLight bulb.Holds 1093 patents.Moved, $OH \rightarrow NJ$.Built Menlo Park Lab.Had to borrow:Bank + Patent Sale

Melvin De Groote Chocolate ice cream. Holds 925 Patents. Got 2 degrees in Chemical Engineering.

<u>Nikola Tesla</u> Alternating Current. Holds 278 Patents. Immigrant from Croatia. College dropout. Asocial, never married.

Additional Data Sources

1. State-level Output.

- ► Bureau of Economic Analysis (BEA) for 1929 present.
- ► Gross state products in 1880, 1890, 1900, 1910 from Klein (2013).
- State incomes from 1919 to 1938 from Martin (1939).
- 2. Sector Output and Full-time Equivalent Employment. BEA.
- 3. **Financial Development Measures**. Federal Deposit Insurance Corporation (FDIC) data from the University of Michigan's ICPSR repository. It provides information on the amount of lending in 1920-1936.
- 4. Transportation Cost. Donaldson and Hornbeck (2016).
- 5. Scientific Research and Development (SRD) Contracts. Library of Congress on Office of SRD contracts for technological development efforts during WW II.

Summary Statistics

Ufuk Akcigit (University of Chicago)

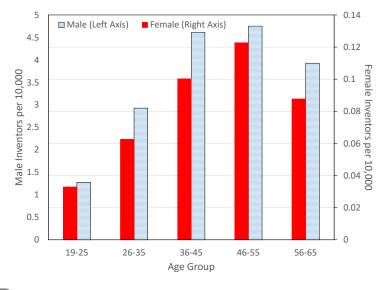
Data Sources & Summary

DATA:

- 1. Complete-count data from 1880, 1900-1940 U.S. Censuses
 - ► Name, residence, age, race, sex, marital status, occupation, birthplace
 - ► 1940: labor income, education, labor force status
- 2. USPTO patent documents, 1836-2004
 - Inventor names, patent class, patent filing location, grant year, assignee, citation counts (1947-2008)

SUMMARY:

- ► Working age population (18-65) in U.S.
- Over 320 million individual observations
- ► 63,515 inventors
- ► 380,338 patents.


Patent

Ufuk Akcigit (University of Chicago)

SUMMARY STATISTICS

	Inventors	Full U.S.
Percent White	97.9%	89.4%
Percent Black	1.8%	9.1%
Percent Male	97.9%	51.0%
Single	16.1%	27.7%
Married	80.2%	65.4%
Percent 19-25	8.4%	22.6%
Percent 26-35	23.8%	27.5%
Percent 36-45	31.0%	22.5%
Percent 46-55	24.1%	16.6%
Percent 56-65	12.7%	10.8%
Av. # Children: \leq 35 yrs old	1.9	2.3
Av. # Children: > 35 yrs old	3.2	4.7
Percent Interstate Migrant	58.8%	42.8%
Percent International Migrant	21.1%	17.4%
Percent of Population	0.02%	99.98%

Inventors More Likely To Be Middle Aged

marriage

Ufuk Akcigit (University of Chicago)

Baseline Model

Ufuk Akcigit (University of Chicago)

Baseline Model (1/5) - Production Side

► Final good (*Y*) production:

$$\ln Y = \int_0^1 \ln y_i di$$

- Intermediate good (y_i) production by monopolists: $y_i = q_i l_i$
 - l_i : production worker paid w
- ► Labor productivity (*q*_i) improves through innovation:

 $q_i^{new} = (1+\lambda)q_i^{old}$

Baseline Model (2/5) - Production Side Equilibrium

$$\ln Y = \int_0^1 \ln y_i di$$

$$\max_{y_i} \{ \exp\left[\int_0^1 \ln y_i di\right] - \int_0^1 p_i y_i di \} \implies \boxed{y_i = Y^{demand} / p_i} \quad (1)$$
$$y_i = q_i l_i$$

$$\pi_i = \max_{y_i, p_i} \{ p(y_i) y_i - \frac{w}{q_i} y_i \}$$
 subject to (1)

$$q_i^{new} = (1+\lambda)q_i^{old}$$

$$\pi_i = rac{\lambda}{1+\lambda} Y^{demand}$$

 \Longrightarrow

►

• Moreover, the equilibrium output is:

 $Y^{demand} = L_P \times Q$ where $L_P \equiv \int_0^1 l_i di$ and $Q \equiv \exp\left[\int_0^1 \ln q_i di\right]$

• Moreover, the equilibrium output is:

 $Y^{demand} = L_P \times Q$ where $L_P \equiv \int_0^1 l_i di$ and $Q \equiv \exp\left[\int_0^1 \ln q_i di\right]$

Market value of an invention:

$$\rho V_i = \pi_i - \tau V_i$$

• Moreover, the equilibrium output is:

 $Y^{demand} = L_P \times Q$ where $L_P \equiv \int_0^1 l_i di$ and $Q \equiv \exp\left[\int_0^1 \ln q_i di\right]$

Market value of an invention:

$$\rho V_i = \pi_i - \tau V_i$$

Hence:

$$V_i = \frac{\pi_i}{\rho + \tau}$$

• Moreover, the equilibrium output is:

 $Y^{demand} = L_P \times Q$ where $L_P \equiv \int_0^1 l_i di$ and $Q \equiv \exp\left[\int_0^1 \ln q_i di\right]$

Market value of an invention:

$$\rho V_i = \pi_i - \tau V_i$$

Hence:

$$V_i = \frac{\pi_i}{\rho + \tau}$$

• Inventor "sells" its invention with Nash bargaining power β :

 $P_t = \beta V_t$

- Measure 1 + *L* individuals working in three capacities:
 - ▶ 1) firm owners of measure 1,
 - ► 2) production workers of measure *L*_{*P*},
 - ► 3) inventors of measure *L*_{*I*}.

- ► Measure 1 + *L* individuals working in three capacities:
 - ▶ 1) firm owners of measure 1,
 - ► 2) production workers of measure *L*_{*P*},
 - ► 3) inventors of measure *L*_{*I*}.
- Hence: $L = L_P + L_I$

- ► Measure 1 + *L* individuals working in three capacities:
 - ▶ 1) firm owners of measure 1,
 - ► 2) production workers of measure *L*_{*P*},
 - ► 3) inventors of measure *L*_{*I*}.
- ► Hence:

$$L = L_P + L_I$$

- Each person decides for his/her career:
 - production worker: w
 - ▶ inventor:
 - Has an idea with probability *h*.
 - *j* pays ηQ as monetary education cost and Q/a hassle cost.
 - ▶ *j* has schooling ability a_j that comes from Pareto: $P(\tilde{a} > a) = \left(\frac{a_{\min}}{a}\right)^{\zeta}$
 - ξ fraction can borrow against their future return.

- ► Measure 1 + *L* individuals working in three capacities:
 - ▶ 1) firm owners of measure 1,
 - ► 2) production workers of measure *L*_{*P*},
 - ► 3) inventors of measure *L*_{*I*}.
- ► Hence:

$$L = L_P + L_I$$

- Each person decides for his/her career:
 - production worker: w
 - ▶ inventor:
 - Has an idea with probability *h*.
 - *j* pays ηQ as monetary education cost and Q/a hassle cost.
 - ▶ *j* has schooling ability a_j that comes from Pareto: $P(\tilde{a} > a) = \left(\frac{a_{\min}}{a}\right)^{\zeta}$
 - ξ fraction can borrow against their future return.
- Occupational choice:

$$hP - \eta Q - \frac{Q}{a} = w$$

$$s^* = \xi \left([h\beta V/Q - \eta - \omega] a_{min}
ight)^{\zeta}$$

$$s^* = \xi \left([h\beta V/Q - \eta - \omega] a_{min} \right)^{\zeta}$$

Predictions:

1) More inventive (τ) economies grow (g) faster.

$$s^* = \xi \left([h\beta V/Q - \eta - \omega] a_{min} \right)^{\zeta}$$

Predictions:

2) Market size (*L* : population, geographical connection) increases demand, and therefore, innovation.

$$s^* = \xi \left([h\beta V/Q - \eta - \omega] a_{min} \right)^{\zeta}$$

Predictions:

3) Financially-developed economies are more inventive.

$$s^* = \xi \left([h\beta V/Q - \eta - \omega] a_{min} \right)^{\zeta}$$

Predictions:

4) Innovation is done by new entrants. Innovation incentives decline once becoming an incumbent (Arrow's replacement effect).

Equilibrium share of inventors:

$$s^* = \xi \left([h\beta V/Q - \eta - \omega] a_{min}
ight)^{\zeta}$$

Predictions:

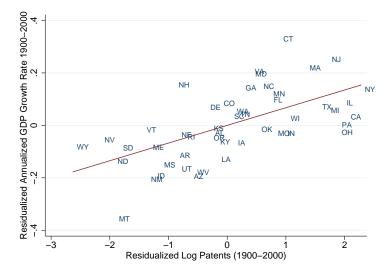
5) Higher quality innovations (λ) are associated with higher income (II).

Equilibrium share of inventors:

$$s^* = \xi \left([h\beta V/Q - \eta - \omega] a_{min} \right)^{\zeta}$$

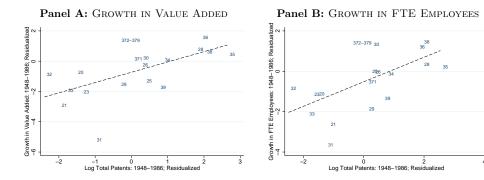
Predictions:

6) Innovation is associated with turnover in the society (social mobility).


Ufuk Akcigit (University of Chicago)

Empirical Analysis

Ufuk Akcigit (University of Chicago)


- ► 25-year old Endogenous Growth literature on innovation and aggregate growth (e.g., Romer, 1990; Aghion and Howitt, 1992; Grossman and Helpman, 1991).
- Empirical evidence comes from modern, firm-level data. No historical evidence at the aggregate level.
- ► We will look at state- and sector-level performance using data from Bureau of Economic Analysis.

Inventive States Rise up over Long Run: 1900-2000

Fact 1: *More inventive states grew faster on average.*

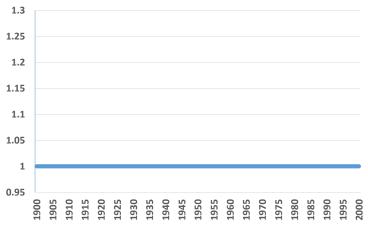
Inventive Sectors Rise up over Long Run: 1948-1986

100-year Growth and Innovation: 1900-2000

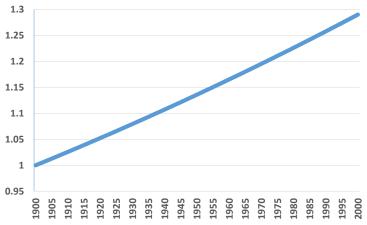
	Annualized	l Growth Rate	DHS Growth Ra	
	(1)	(2)	(3)	(4)
Log Patents	0.066***	0.054^{***}	0.031^{***}	0.026***
	(0.013)	(0.012)	(0.008)	(0.007)
Initial GDP per Capita	-0.877***	-0.891***	-0.324^{***}	-0.330***
	(0.036)	(0.036)	(0.025)	(0.026)
Population Density		1.145^{*}		0.517^{*}
		(0.588)		(0.304)
Observations	48	48	48	48
Mean Growth	2.154	2.154	1.552	1.552
Std. Dev. of Growth	0.417	0.417	0.159	0.159

Table 4: Innovation and Long Run Growth: US States between 1900-2000

Ufuk Akcigit (University of Chicago)


Interpretation of the 100-year Growth Regressions

GDP Per Capita Ratio: Massachusetts/Wyoming


Interpretation of the 100-year Growth Regressions

GDP Per Capita Ratio: Massachusetts/Wyoming

Interpretation of the 100-year Growth Regressions

Shift in Innovation: Wartime Government Projects

- ► The OSRD (Office of Scientific Research and Development) was established under Roosevelt's Executive Order (1941-47).
- The OSRD was responsible for major wartime innovations:
 - proximity fuze, navigation systems, solid fuel rockets, detonators, and most famously the basic science used in the Manhattan Project.
- ► OSRD spent \$450 million (= 6,5× the 1940 federal budget for science).
- We collected data on all contracts granted by the OSRD during its operation from OSRD archives held at the Library of Congress.
- We observe 1,717 contracts across 39 U.S. States.

Ufuk Akcigit (University of Chicago)

State-level Cross-Section: Patent Counts, 1947-1987

	I	Annualized Growth Rate	
	OLS	OLS	
	(1)	(2)	
Log Patents (1945-1950)	0.123***	0.101***	
	(0.028)	(0.031)	
OSRD Contracts			
Log GDP per Capita (1945)	-1.655***	-1.688***	
	(0.148)	(0.148)	
Population Density (1945)		1.064	
		(0.652)	
Observations	48	48	
Mean Growth	2.501	2.501	
Std. Dev. of Growth	0.439	0.439	
F-Statistic	0.100	0.100	

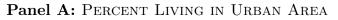
Table 6: Innovation and Long Run Growth: U.S. States between 1947-1987

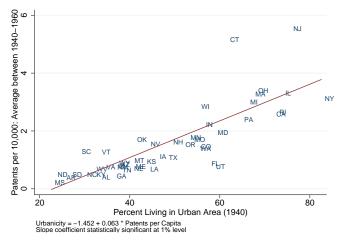
State-level Cross-Section: Patent Counts, 1947-1987

	A	Annualized Growth Rate		
	OLS	OLS	IV	_
	(1)	(2)	(3)	
Log Patents (1945-1950)	0.123***	0.101***	0.127***	
	(0.028)	(0.031)	(0.038)	
OSRD Contracts				
Log GDP per Capita (1945)	-1.655***	-1.688***	-1.738***	
	(0.148)	(0.148)	(0.147)	
Population Density (1945)		1.064	0.798	
		(0.652)	(0.575)	
Observations	48	48	48	
Mean Growth	2.501	2.501	2.501	
Std. Dev. of Growth	0.439	0.439	0.439	
F-Statistic				

Table 6: Innovation and Long Run Growth: U.S. States between 1947-1987

State-level Cross-Section: Patent Counts, 1947-1987


	1	Annualized Growth Rate				
	OLS	OLS	IV	IV	OLS	
	(1)	(2)	(3)	(4)	(5)	
Log Patents (1945-1950)	0.123^{***}	0.101^{***}	0.127^{***}	0.082**		
	(0.028)	(0.031)	(0.038)	(0.039)		
OSRD Contracts					0.698^{***}	
					(0.083)	
Log GDP per Capita (1945)	-1.655^{***}	-1.688^{***}	-1.738^{***}	-1.511^{***}	0.250	
	(0.148)	(0.148)	(0.147)	(0.125)	(0.638)	
Population Density (1945)		1.064	0.798	0.820	0.574	
		(0.652)	(0.575)	(0.588)	(2.291)	
1900-1940 GDP/cap. Annual Growth Rate				0.146^{**}	0.391^{*}	
				(0.067)	(0.214)	
Observations	48	48	48	48	48	
Mean Growth	2.501	2.501	2.501	2.501	6.698	
Std. Dev. of Growth	0.439	0.439	0.439	0.439	1.502	
F-Statistic					66.126	


Table 6: INNOVATION AND LONG RUN GROWTH: U.S. STATES BETWEEN 1947-1987

Why Might Population Density Matter?

- Often hypothesized that exchange of ideas central to growth
 - Lucas (2009), Benhabib, Perla & Tonetti (2014), Perla and Tonetti (2014), Lucas & Moll (2014), Luttmer (2014), Caicedo, Lucas, & Rossi-Hansberg (2014), Akcigit, Caicedo, Stantcheva, Miguelez, & Sterzi (2016) etc.
 - Ellison & Glaeser (1999), Glaeser & Kahn (2001), Ellison, Glaeser, & Kerr (2010), Duranton & Puga (2001) etc
- ► Close geographic proximity ⇒ exchange of ideas?
- Growth of cities

Population Density and Innovation

Fact 2: Densely-populated states were more inventive.

Population Density and Innovation (robustness)

	(1)	(2)	(3)	(4)
% Urban	0.817^{***}	0.414^{**}		
	(0.139)	(0.176)		
% Living on Farm			-0.858^{***}	-0.484^{**}
			(0.096)	(0.242)
% Agricultural Occupation		-0.426^{***}		-0.391^{**}
		(0.112)		(0.163)
% Manufacturing Occupation		-0.021		-0.142
		(0.093)		(0.107)
State Fixed Effects	Ν	Y	Ν	Y
Observations	3087	3062	3087	3062

Table 8: Population Density and Innovation: County-Level Results

Ufuk Akcigit (University of Chicago)

Market Size, Geographical Connectedness

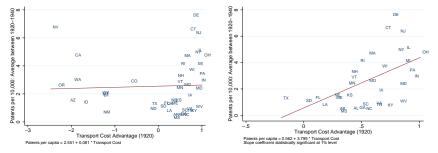
- Market size is argued to be important for innovation
 - Sokoloff (1988) in early 19th century US, Murphy, Shleifer, Vishny (1989) for the big push into industrialization, Acemoglu and Linn (2004) in Pharma, Aghion et al (2016) in Auto industry.
- We construct two measures to capture market size.
- ► 1) Cost Advantage: Average cost to ship goods (weighted by the average income \u03c6_{c'}):

$$ar{\kappa}_c = rac{1}{N} \sum_{c'} \omega_{c,c'} \kappa_{c,c'}$$
 and Cost_Advantage $= rac{\mu - ar{\kappa}_c}{\sigma}$

where $\kappa_{c,c'}$: cost of shipment from *c* to *c'*.

► 2) Market size:

$$Market_Size_c = \sum_{c' \in M(c)} P_c$$

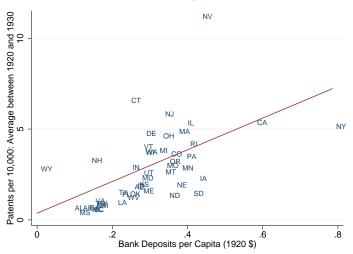

where $M(c) = c' : \kappa_{c,c'} \le \pi^{50}$ and P(c)=population in county *c*.

Transportation: Market Size Effect

Panel A: All STATES

Panel B: NON-WESTERN STATES

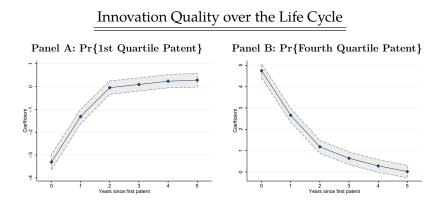
Fact 2: Geographically-connected states were more inventive.


robustness rr

- Large literature on the importance of finance for innovation and growth.
 - Schumpeter (1912), Aghion and Tirole (1994), Acemoglu and Zilibotti (1997), Rajan and Zingales (1998), Gompers and Lerner (2004), Levine (2005), Aghion et al (2007), among many others.
- We will focus on Bank lending in 1920.
- Banking data comes from FDIC: Federal Deposit Insurance Corporation Data on Banks in the U.S.

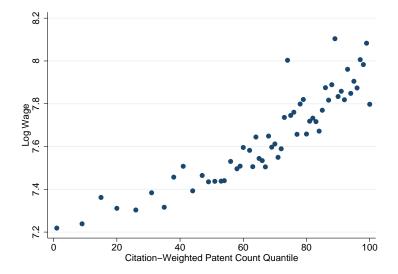
Ufuk Akcigit (University of Chicago)

Banking


1920-1930 Patents per 10,000

Fact 3: Financially-developed states were more inventive.

Table: Financial Development and Innovation: County-Level Results


	Non-C	Corporate	Patents	Corp	orate Pate	ents
	County	County	State	County	County	State
	(1)	(2)	(3)	(4)	(5)	(6)
Deposits per Capita	0.300***	0.185^{*}	0.400***	0.164***	0.034	0.125
	(0.114)	(0.103)	(0.139)	(0.062)	(0.035)	(0.146)
% Agricultural Occupation		-0.383***	-0.184		-0.400^{***}	-0.614
		(0.085)	(0.308)		(0.057)	(0.681)
% Manufacturing Occupation		-0.027	0.142		0.116**	0.244
		(0.067)	(0.314)		(0.059)	(0.574)
State Fixed Effects	Ν	Y	Ν	Ν	Y	Ν
Observations	3013	2279	48	3013	2279	48

Fact 4. New inventors received more citations on average.

- Thin literature due to lack of micro data:
 - ► Toivanen and Vaananen (2012, 2015)
 - ► Aghion, Akcigit, Hyytinen, Toivanen (2016)
 - ► Bell, Chetty, Jaravel, Petkova, Van Reenen (2016)

The Rewards to Innovation

Fact 5. *Inventor's income was correlated with the quality of invention.*

Income Distribution of Inventors

Figure: Share of Inventors with Incomes Below Each Income Percentile

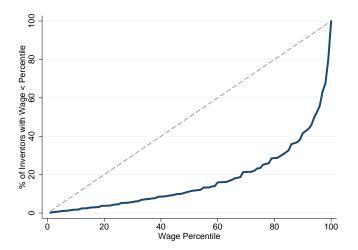
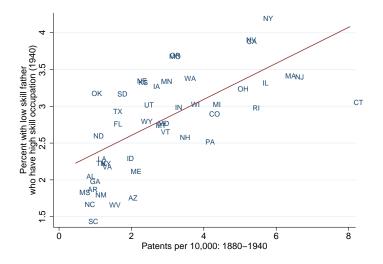


Table 16: What determined inventor income? Regressions of log wages on innovation measures

	Age: Under 35		Age: C	Over 35
	(1)	(2)	(3)	(4)
Log Patents Pre-1940	-0.022		0.060***	
	(0.018)		(0.014)	
Log Patents Post-1940	0.087^{***}		0.040***	
	(0.016)		(0.011)	
Log Citations Pre-1940		0.002		0.030***
		(0.009)		(0.007)
Log Citations Post-1940		0.039^{***}		0.030***
		(0.010)		(0.008)
Observations	1602	1602	4458	4458
R-squared	0.482	0.480	0.302	0.302
Mean of Dep. Var.	7.275	7.275	7.765	7.765
S.D. of Dep. Var.	0.927	0.927	0.781	0.781

Table 16: What determined inventor income? Regressions of log wages on innovation measures

	Age: U	nder 35	Age: C	Over 35
	(1)	(2)	(3)	(4)
Log Patents Pre-1940	-0.022		0.060***	
	(0.018)		(0.014)	
Log Patents Post-1940	0.087^{***}		0.040***	
	(0.016)		(0.011)	
Log Citations Pre-1940		0.002		0.030***
		(0.009)		(0.007)
Log Citations Post-1940		0.039***		0.030***
		(0.010)		(0.008)
Observations	1602	1602	4458	4458
R-squared	0.482	0.480	0.302	0.302
Mean of Dep. Var.	7.275	7.275	7.765	7.765
S.D. of Dep. Var.	0.927	0.927	0.781	0.781


Table 16: What determined inventor income? Regressions of log wages on innovation measures

	Age: U	nder 35	Age: 0	Over 35
	(1)	(2)	(3)	(4)
Log Patents Pre-1940	-0.022		0.060***	
	(0.018)		(0.014)	
Log Patents Post-1940	0.087^{***}		0.040***	
	(0.016)		(0.011)	
Log Citations Pre-1940		0.002		0.030***
		(0.009)		(0.007)
Log Citations Post-1940		0.039***		0.030***
		(0.010)		(0.008)
Observations	1602	1602	4458	4458
R-squared	0.482	0.480	0.302	0.302
Mean of Dep. Var.	7.275	7.275	7.765	7.765
S.D. of Dep. Var.	0.927	0.927	0.781	0.781

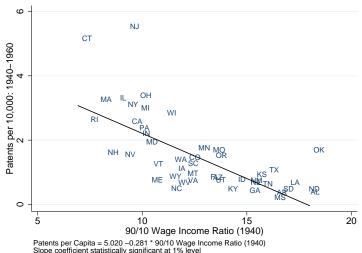
Table 16: What determined inventor income? Regressions of log wages on innovation measures

	Age: U	nder 35	Age: (Over 35
	(1)	(2)	(3)	(4)
Log Patents Pre-1940	-0.022		0.060***	
	(0.018)		(0.014)	
Log Patents Post-1940	0.087^{***}		0.040***	
	(0.016)		(0.011)	
Log Citations Pre-1940		0.002		0.030**
		(0.009)		(0.007)
Log Citations Post-1940		0.039^{***}		0.030***
_		(0.010)		(0.008)
Observations	1602	1602	4458	4458
R-squared	0.482	0.480	0.302	0.302
Mean of Dep. Var.	7.275	7.275	7.765	7.765
S.D. of Dep. Var.	0.927	0.927	0.781	0.781

Social Mobility Positively Correlated w/ Innovation

Fact 6. Innovation was positively correlated with social mobility.

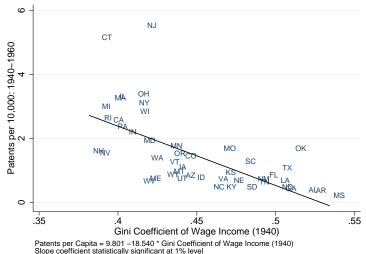
Evaluation of the Stylized Facts So Far...


- ✓ More inventive states and sectors **grew faster** on average.
- Densely-populated and geographically-connected states were more inventive.
- ✓ **Financially-developed** states were more inventive.
- ✓ The patents of **new inventors received more citations** on average.
- ✓ Inventor's income was correlated with the **quality of invention**.
- ✓ Innovation was positively correlated with **social mobility**.

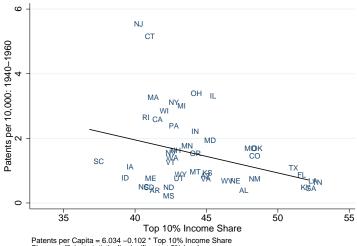
Ufuk Akcigit (University of Chicago)

What About Inequality and Innovation?

Ufuk Akcigit (University of Chicago)


Inequality and Innovation

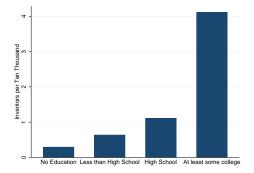
Fact 7. Inequality (90/10 ratio) is negatively associated with innovation.


Ufuk Akcigit (University of Chicago)

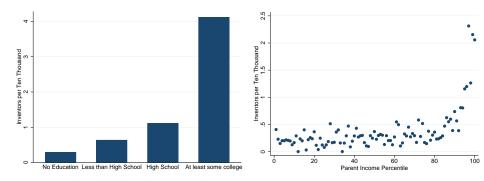
Inequality and Innovation

Fact 7. Inequality (Gini) is negatively associated with innovation.

Inequality and Innovation



Slope coefficient statistically significant at 5% level


Fact 7. *Inequality (Top10 fraction) is negatively associated with innovation.*

Ufuk Akcigit (University of Chicago)

Who Becomes an Inventor?

Who Becomes an Inventor?

Fact 8. More educated kids, and kids with richer parents were more likely to be *an inventor.*

Ufuk Akcigit (University of Chicago)

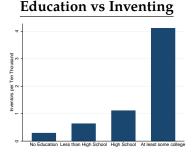
What Did the Standard Model Fail to Explain?

Standard model has been silent on:

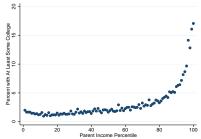
- The link between parental resources, child education, and becoming an inventor.
- The interaction between financial development, inequality, and becoming an inventor.

Remark: This could shed light on Goolsbee or Jones critique!

Ufuk Akcigit (University of Chicago)

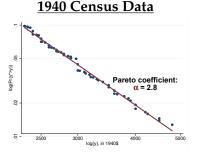

Back to the Model

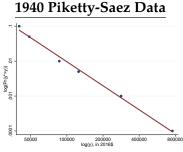
Model Ingredients


- Endogenous growth where population is split into two groups:
 - 1. production workers
 - 2. inventors
- We consider a new environment:
 - $\rightarrow\,$ A model with inequality and financial frictions.

Model Ingredients

- Endogenous growth where population is split into two groups:
 - 1. production workers
 - 2. inventors
- We consider a new environment:
 - \rightarrow A model with inequality and financial frictions.




Parental Income vs Education

Model Ingredients

- Endogenous growth where population is split into two groups:
 - 1. production workers
 - 2. inventors
- We consider a new environment:
 - \rightarrow A model with inequality and financial frictions.

Extension with Financial Frictions (1/3)

► Assume parental resources (*y*_{*j*}) are distributed with Pareto:

$$P(y^* > y) = \left(\frac{y_{\min}}{y}\right)^{\alpha}$$
 for $y \ge y_{\min}$ and $\alpha \ge 1$

Children rely on parental resources to pay for schooling cost η.
 Assume there are sufficient resources to send everybody to school:

$$y_{\min} = \frac{\alpha - 1}{\alpha} \eta.$$

► Individuals are heterogeneous in terms of their schooling ability *a_j*. Then the total cost of schooling is

$$\eta + \frac{1}{a_j}$$
.

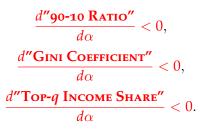
► For $\beta \in [0, 1]$ of the population, perfect assortative matching

$$a_j = y_j$$

• For $1 - \beta$, ability cost is independent of parental type (resources).

Extension with Financial Frictions (2/3)

► Note that:


"90-10 Ratio"
$$\equiv \frac{y_{90}}{y_{10}} = 9^{\frac{1}{\alpha}}$$
 (M1)
"Gini Coefficient" $\equiv G = \frac{1}{2\alpha - 1}$ (M2)
"Top-q Income Share" $\equiv \left(\frac{q}{100}\right)^{\frac{\alpha - 1}{\alpha}}$ (M3)

Extension with Financial Frictions (2/3)

► Note that:

"90-10 Ratio"
$$\equiv \frac{y_{90}}{y_{10}} = 9^{\frac{1}{\alpha}}$$
 (M1)
"Gini Coefficient" $\equiv G = \frac{1}{2\alpha - 1}$ (M2)
"Top-q Income Share" $\equiv \left(\frac{q}{100}\right)^{\frac{\alpha - 1}{\alpha}}$ (M3)

► Moreover:

Extension with Financial Frictions (3/3)

• Then the occupational choice becomes:

 $hP - \eta Q - Q/a_j = w$

► In this version of the model, the inventor fraction is

$$s = \beta \times \Pr(a_j > a^*) + (1 - \beta) \times \Pr(a_j > a^*) \times \Pr(y_j > \eta)$$
$$= \left[\beta + (1 - \beta) \times \left(\frac{\alpha - 1}{\alpha}\right)^{\alpha}\right] \times \left[(hV - \omega - \eta)a_{\min}\right]^{\zeta}$$

Extension with Financial Frictions (3/3)

• Then the occupational choice becomes:

 $hP - \eta Q - Q/a_j = w$

• In this version of the model, the inventor fraction is

$$s = \beta \times \Pr(a_j > a^*) + (1 - \beta) \times \Pr(a_j > a^*) \times \Pr(y_j > \eta)$$
$$= \underbrace{\left[\beta + (1 - \beta) \times \left(\frac{\alpha - 1}{\alpha}\right)^{\alpha}\right]}_{\text{misallocation term}} \times [(hV - \omega - \eta)a_{\min}]^{\zeta}$$

Extension with Financial Frictions (3/3)

• Then the occupational choice becomes:

 $hP - \eta Q - Q/a_j = w$

• In this version of the model, the inventor fraction is

$$s = \beta \times \Pr(a_j > a^*) + (1 - \beta) \times \Pr(a_j > a^*) \times \Pr(y_j > \eta)$$
$$= \underbrace{\left[\beta + (1 - \beta) \times \left(\frac{\alpha - 1}{\alpha}\right)^{\alpha}\right]}_{\text{misallocation term}} \times [(hV - \omega - \eta)a_{\min}]^{\zeta}$$

Proposition *The kids of the rich parents are more likely to be an inventor.* $\beta = 1$, *this is due to higher ability, if* $\beta = 0$ *this is due to financial frictions*

Table: WHO BECOMES AN INVENTOR?

	(1)	(2)	(3)	(4)
Father Income $90^{th} - 95^{th}$ %ile	0.411***	0.409***	0.297**	-0.070
	(0.119)	(0.120)	(0.124)	(0.127)
Father Income 95 th %ile and above	1.084***	1.061***	0.770***	0.009
	(0.227)	(0.228)	(0.193)	(0.147)
Father Inventor		16.074**	15.859**	15.464**
		(7.545)	(7.544)	(7.552)
Father: High School Graduate			0.563***	-0.173
			(0.150)	(0.144)
Father: At least Some College			1.034***	-0.250**
			(0.165)	(0.102)
Self: High School Graduate				0.841^{***}
				(0.111)
Self: At least Some College				3.558***
				(0.499)
Observations	82810258	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.091	1.091	1.091

Notes. Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed effects, and controls for race, sex, migration status, and a quadratic in age. Columns (2) through (5) include indicators for father being between the 50^{th} and 75^{th} percentile of income, and between the 75^{th} and 90^{th} percentile of income as independent variables. The omitted categories are below median income and less than high school eduction.

Table: WHO BECOMES AN INVENTOR?

	(1)	(2)	(3)	(4)
Father Income $90^{th} - 95^{th}$ %ile	0.411^{***}	0.409***	0.297**	-0.070
	(0.119)	(0.120)	(0.124)	(0.127)
Father Income 95 th %ile and above	1.084^{***}	1.061***	0.770***	0.009
	(0.227)	(0.228)	(0.193)	(0.147)
Father Inventor		16.074**	15.859**	15.464**
		(7.545)	(7.544)	(7.552)
Father: High School Graduate			0.563***	-0.173
			(0.150)	(0.144)
Father: At least Some College			1.034***	-0.250**
			(0.165)	(0.102)
Self: High School Graduate				0.841^{***}
				(0.111)
Self: At least Some College				3.558***
				(0.499)
Observations	82810258	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.091	1.091	1.091

Notes. Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed effects, and controls for race, sex, migration status, and a quadratic in age. Columns (2) through (5) include indicators for father being between the 50^{th} and 75^{th} percentile of income, and between the 75^{th} and 90^{th} percentile of income as independent variables. The omitted categories are below median income and less than high school eduction.

Table: Who Becomes an Inventor?

	(1)	(2)	(3)	(4)
Father Income $90^{th} - 95^{th}$ %ile	0.411***	0.409***	0.297**	-0.070
	(0.119)	(0.120)	(0.124)	(0.127)
Father Income 95 th %ile and above	1.084^{***}	1.061***	0.770***	0.009
	(0.227)	(0.228)	(0.193)	(0.147)
Father Inventor		16.074**	15.859**	15.464**
		(7.545)	(7.544)	(7.552)
Father: High School Graduate			0.563***	-0.173
			(0.150)	(0.144)
Father: At least Some College			1.034***	-0.250**
			(0.165)	(0.102)
Self: High School Graduate				0.841^{***}
				(0.111)
Self: At least Some College				3.558***
				(0.499)
Observations	82810258	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.091	1.091	1.091

Notes. Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed effects, and controls for race, sex, migration status, and a quadratic in age. Columns (2) through (5) include indicators for father being between the 50^{th} and 75^{th} percentile of income, and between the 75^{th} and 90^{th} percentile of income as independent variables. The omitted categories are below median income and less than high school eduction.

Table: WHO BECOMES AN INVENTOR?

	(1)	(2)	(3)	(4)
Father Income $90^{th} - 95^{th}$ %ile	0.411***	0.409***	0.297**	-0.070
	(0.119)	(0.120)	(0.124)	(0.127)
Father Income 95 th %ile and above	1.084^{***}	1.061***	0.770***	0.009
	(0.227)	(0.228)	(0.193)	(0.147)
Father Inventor		16.074^{**}	15.859**	15.464**
		(7.545)	(7.544)	(7.552)
Father: High School Graduate			0.563***	-0.173
			(0.150)	(0.144)
Father: At least Some College			1.034***	-0.250**
			(0.165)	(0.102)
Self: High School Graduate				0.841^{***}
				(0.111)
Self: At least Some College				3.558***
				(0.499)
Observations	82810258	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.091	1.091	1.091

Notes. Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed effects, and controls for race, sex, migration status, and a quadratic in age. Columns (2) through (5) include indicators for father being between the 50^{th} and 75^{th} percentile of income, and between the 75^{th} and 90^{th} percentile of income as independent variables. The omitted categories are below median income and less than high school eduction.

Table: WHO BECOMES AN INVENTOR?

	(1)	(2)	(3)	(4)
Father Income $90^{th} - 95^{th}$ %ile	0.411^{***}	0.409***	0.297**	-0.070
	(0.119)	(0.120)	(0.124)	(0.127)
Father Income 95 th %ile and above	1.084^{***}	1.061***	0.770***	0.009
	(0.227)	(0.228)	(0.193)	(0.147)
Father Inventor		16.074**	15.859**	15.464**
		(7.545)	(7.544)	(7.552)
Father: High School Graduate			0.563***	-0.173
			(0.150)	(0.144)
Father: At least Some College			1.034***	-0.250**
			(0.165)	(0.102)
Self: High School Graduate				0.841***
				(0.111)
Self: At least Some College				3.558***
				(0.499)
Observations	82810258	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.091	1.091	1.091

Notes. Standard errors clustered at the state-level reported in parentheses. All regressions include state fixed effects, and controls for race, sex, migration status, and a quadratic in age. Columns (2) through (5) include indicators for father being between the 50^{th} and 75^{th} percentile of income, and between the 75^{th} and 90^{th} percentile of income as independent variables. The omitted categories are below median income and less than high school eduction.

To sum up:

- ► Parental income is strongly correlated with becoming an inventor.
- This could be due to:
 - 1. Parental types,
 - 2. Financial frictions.
- We find suggestive evidence for both margins.
 - 1. Parental types proxies are statistically significant.
 - 2. Controlling for child's education absorbs parental income completely.

Fact 9. *Father's income was correlated with becoming an inventor. This effect disappears once child's education is controlled for.*

Table: Who Becomes an Inventor, Father Income, and State Characteristics

	(1)	(2)	(3)	(4)	(5)
Father's Incomec	0.036*	0.047^{***}	0.052**	0.053**	0.042**
	(0.018)	(0.016)	(0.021)	(0.020)	(0.019)
Father's Income		-0.028***			
\times Deposits/Cap		(0.009)			
Father's Income			0.048***		
imes Gini Coefficient			(0.012)		
Father's Income				0.046***	
\times 90/10 Ratio				(0.009)	
Father's Income					0.030**
imes Top 10 Share					(0.012)
Observations	82810258	82650789	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.092	1.091	1.091	1.091
S.D. of Dep. Var.	104.430	104.479	104.430	104.430	104.430

Table: Who Becomes an Inventor, Father Income, and State Characteristics

	(1)	(2)	(3)	(4)	(5)
Father's Incomec	0.036*	0.047***	0.052**	0.053**	0.042**
	(0.018)	(0.016)	(0.021)	(0.020)	(0.019)
Father's Income		-0.028***			
\times Deposits/Cap		(0.009)			
Father's Income			0.048***		
imes Gini Coefficient			(0.012)		
Father's Income				0.046***	
\times 90/10 Ratio				(0.009)	
Father's Income					0.030**
imes Top 10 Share					(0.012)
Observations	82810258	82650789	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.092	1.091	1.091	1.091
S.D. of Dep. Var.	104.430	104.479	104.430	104.430	104.430

Table: Who Becomes an Inventor, Father Income, and State Characteristics

	(1)	(2)	(3)	(4)	(5)
Father's Incomec	0.036*	0.047***	0.052**	0.053**	0.042**
	(0.018)	(0.016)	(0.021)	(0.020)	(0.019)
Father's Income		-0.028***			
\times Deposits/Cap		(0.009)			
Father's Income			0.048***		
imes Gini Coefficient			(0.012)		
Father's Income				0.046***	
\times 90/10 Ratio				(0.009)	
Father's Income					0.030**
imes Top 10 Share					(0.012)
Observations	82810258	82650789	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.092	1.091	1.091	1.091
S.D. of Dep. Var.	104.430	104.479	104.430	104.430	104.430

Table: Who Becomes an Inventor, Father Income, and State Characteristics

	(1)	(2)	(3)	(4)	(5)
Father's Incomec	0.036*	0.047***	0.052**	0.053**	0.042**
	(0.018)	(0.016)	(0.021)	(0.020)	(0.019)
Father's Income		-0.028***			
imes Deposits/Cap		(0.009)			
Father's Income			0.048***		
× Gini Coefficient			(0.012)		
Father's Income				0.046***	
× 90/10 Ratio				(0.009)	
Father's Income					0.030**
\times Top 10 Share					(0.012)
Observations	82810258	82650789	82810258	82810258	82810258
Mean of Dep. Var.	1.091	1.092	1.091	1.091	1.091
S.D. of Dep. Var.	104.430	104.479	104.430	104.430	104.430

To sum up:

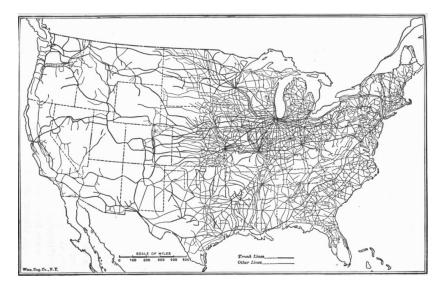
- Parental income is strongly correlated with becoming an inventor but less so
 - 1. in more financially-developed states.
 - 2. in more equal states.

Fact 10. Father's income was correlated with becoming an inventor but less so in more financially developed regions.

Evaluation of the Stylized Facts

- ✓ More inventive states and sectors **grew faster** on average.
- Densely-populated, financially-developed, geographically-connected states were more inventive.
- ✓ The patents of **new inventors received more citations** on average.
- ✓ Inventor's income was correlated with the **quality of invention**.
- ✓ Innovation was positively correlated with **social mobility**.
- > Broad measures of income inequality (90/10, Gini) were negatively correlated with innovation.
- X Inventors were more **educated**.
- **×** Father's income was correlated with becoming an inventor. This effect disappears once child's education is controlled for.
- In more financially-developed areas, father's income was less correlated with child being an inventor.

Ufuk Akcigit (University of Chicago)


Aghion, Philippe and Peter Howitt, "A Model of Growth through Creative Destruction," *Econometrica*, 1992, *60* (2).

Donaldson, Dave and Richard Hornbeck, "Railroads and American Economic Growth: A Market Access Approach," *Quarterly Journal of Economics*, 2016, *31* (2), 799–858.

Grossman, Gene M and Elhanan Helpman, "Quality Ladders in the Theory of Growth," *Review of Economic Studies*, 1991, *58* (1), 43–61.

Romer, Paul Michael, "Endogenous Technological Change," Journal of Political Economy, 1990, 98 (5), S71–102.

Railroads in 1920

INEQUALITY AND INNOVATION Lecture Slides 2: Taxation and Innovation in the 20th Century¹

Ufuk Akcigit University of Chicago

January 7, 2019

¹Based on Akcigit, Grigsby, Nicholas, Stantcheva (2018)

Thomas A. Edison Light bulb. Holds 1093 patents.

Melvin De Groote Chocolate ice cream. Holds 925 Patents.

<u>Nikola Tesla</u> Alternating Current. Holds 278 Patents.

Thomas A. Edison Light bulb. Holds 1093 patents.

<u>Melvin De Groote</u> Chocolate ice cream. Holds 925 Patents.

<u>Nikola Tesla</u> Alternating Current. Holds 278 Patents.

Mad geniuses? Scientific pioneers not considering net returns?

Thomas A. Edison Light bulb. Holds 1093 patents.

Melvin De Groote Chocolate ice cream. Holds 925 Patents.

<u>Nikola Tesla</u> Alternating Current. Holds 278 Patents.

Or were these inventors affected by taxes?

Thomas A. Edison Light bulb. Holds 1093 patents.

<u>Melvin De Groote</u> Chocolate ice cream. Holds 925 Patents.

<u>Nikola Tesla</u> Alternating Current. Holds 278 Patents.

Personal taxes? Corporate taxes?

Thomas A. Edison Light bulb. Holds 1093 patents.

Melvin De Groote Chocolate ice cream. Holds 925 Patents.

<u>Nikola Tesla</u> Alternating Current. Holds 278 Patents.

Response margins? Patents produced? Quality of patents produced? Location choice? What firms they work for? Where they open research labs?

Akcigit, Grigsby, Nicholas, Stantcheva'18 (AGNS)

How do taxes affect innovation?

Akcigit, Grigsby, Nicholas, Stantcheva'18 (AGNS)

- How do taxes affect innovation?
- Challenging question, to a large extent unanswered because of:
 i) Lack of long-run systematic data on innovation in the U.S.

Akcigit, Grigsby, Nicholas, Stantcheva'18 (AGNS)

- How do taxes affect innovation?
- Challenging question, to a large extent unanswered because of:
 - i) Lack of long-run systematic data on innovation in the U.S.
- AGNS leverage three newly constructed datasets for the U.S.:
 - i) Panel of the universe of U.S. inventors since 1920 and their patents.
 - ii) Panel of all R&D labs (employment, location, patents) since 1921.
 - iii) Historical state-level corporate tax database.

Akcigit, Grigsby, Nicholas, Stantcheva'18 (AGNS)

- How do taxes affect innovation?
- Challenging question, to a large extent unanswered because of:
 - i) Lack of long-run systematic data on innovation in the U.S.
- AGNS leverage three newly constructed datasets for the U.S.:
 - i) Panel of the universe of U.S. inventors since 1920 and their patents.
 - ii) Panel of all R&D labs (employment, location, patents) since 1921.
 - iii) Historical state-level corporate tax database.
- Study systematically the effects of personal and corporate income taxes since 1920 on:
 - i) Individual inventors (micro level).
 - ii) Firms that do R&D (micro level).
 - iii) Innovation in states (macro level).

Akcigit, Grigsby, Nicholas, Stantcheva'18 (AGNS)

- How do taxes affect innovation?
- Challenging question, to a large extent unanswered because of:
 - i) Lack of long-run systematic data on innovation in the U.S.
- AGNS leverage three newly constructed datasets for the U.S.:
 - i) Panel of the universe of U.S. inventors since 1920 and their patents.
 - ii) Panel of all R&D labs (employment, location, patents) since 1921.
 - iii) Historical state-level corporate tax database.
- Study systematically the effects of personal and corporate income taxes since 1920 on:
 - i) Individual inventors (micro level).
 - ii) Firms that do R&D (micro level).
 - iii) Innovation in states (macro level).
- Because long-run panel data basically non-existent, our study sheds light on taxation more generally (entrepreneurship, mobility, labor supply..)

Outline

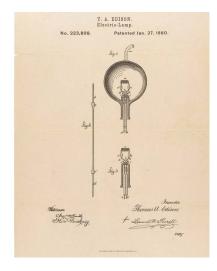
Inventors, Firms, and Innovation in the Long Run

Personal and Corporate Income Taxation in the Long Run

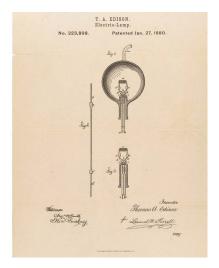
Macro Effects of Taxation

Event and Case Studies

Micro Effects of Taxation

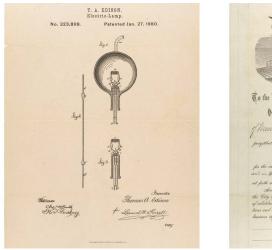

Data from Akcigit, Grigsby, Nicholas (2017)

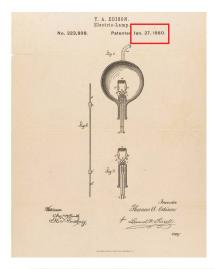
Major data collection effort. AGN generate novel **microdata** to study regional performance as well as the background of the Inventors of the Golden Age.


Data from Akcigit, Grigsby, Nicholas (2017)

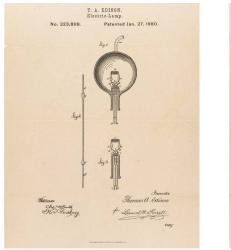
Major data collection effort. AGN generate novel **microdata** to study regional performance as well as the background of the Inventors of the Golden Age.

- Digitize the USPTO patents (OCR + hand entry).
- Newly-released decennial census data (1880-1940) and merge.



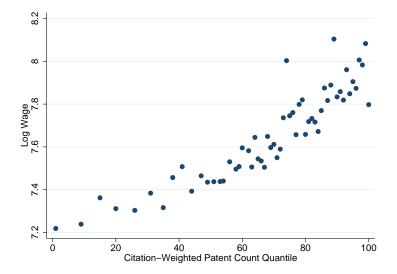

To the Honorable Commissioner of Patents : Dow Petitioner Thomas A. Odison of Mente Park in the State of Mendersey. praysthat LETTERS PATENT may be granted to him po the montan of an Information to Cletter Cample and in the method of manufactuting the some Call to the montant maintain set forth in the annoxed specification. And further prayethat you will recognize LEMUEL W. SERRELL of the City of New York, S. Y. as his Attorney, with full porcer of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to receive the Fatent, and to transact all business in the Fatent Office connected therewith.

fname	sname	year	age	marital_st~s	birthplace	city
THOMAS	EDISON	1880	32	Married	OHIO	MENLO PARK
THOMAS	EDISON	1900	52	Married	OHIO	MENLO PARK
WILLIAM	WINE	1920	38	Married	VIRGINIA	TOLEDO WARD 4
ADIEL	DODGE	1940	48	Married	MISSOURI	ROCKFORD


To the Honorable Commissioner of Patents : Dour Detitioner Thomas A. Odison of mento Park in the State of new Jersey. prayethat LETTERS PATENT may be granted to him for the montan of an Information of the device funder and in the mother of manufactuating the some Call to the mother of manufactures (Call 186) set forth on the annexed specification. And further prayethat you will recognize LEMUEL W. SERRELL of the City of New York, S. Y. as his Attorney, with full porcer of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to receive the Fatent, and to transact all business in the Fatent Office connected therewith.

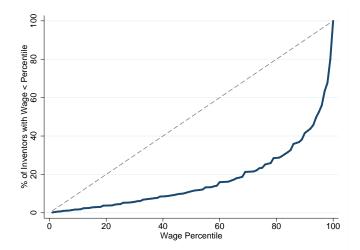
fname	sname	year	age	marital_st~s	birthplace	city
THOMAS	EDISON	1880	32	Married	OHIO	MENLO PARK
THOMAS	EDISON	1900	52	Married	OHIO	MENLO PARK
WILLIAM	WINE	1920	38	Married	VIRGINIA	TOLEDO WARD 4
ADIEL	DODGE	1940	48	Married	MISSOURI	ROCKFORD

To the Honorable Commissioner of Patents : Dour Petitioner Thomas A. Odison of Mente Park in the State of new Jersey praysthat LETTERS PATENT may be granted to him por the monten of an Information of the device funder and in the mother of manufactuting the some (1.14 the monte motionion set forth in the annoxed specification. And further prayethat you will recognize LEMUEL W. SERRELL of the City of New York, S. Y. as his Attorney, with full porcer of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to receive the Fatent, and to transact all business in the Fatent Office connected therewith.


fname	sname	year	age	marital_st~s	birthplace	city
THOMAS	EDISON	1880	32	Married	OHIO	MENLO PARK
THOMAS	EDISON	1900	52	Married	OHIO	MENLO PARK
WILLIAM	WINE	1920	38	Married	VIRGINIA	TOLEDO WARD 4
ADIEL	DODGE	1940	48	Married	MISSOURI	ROCKFORD

To the Honorable Commissioner of Patents : Don Petitioner Thermas A Edison Themlo Park in the State of new Jersey prayothal LETTERS PATENT may be granted to him po the montan of an Information to Cletter Cample and in the method of manufactuting the some Call to the montant maintain set forth on the annexed specification. And further prayethat you will recognize LEMUEL W. SERRELL of the City of New York, S. Y. as his Attorney, with full porcer of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to receive the Fatent, and to transact all business in the Fatent Office connected therewith.

fname	sname	year	age	marital_st~s	birthplace	city
THOMAS	EDISON	1880	32	Married	OHIO	MENLO PARK
THOMAS	EDISON	1900	52	Married	OHIO	MENLO PARK
WILLIAM	WINE	1920	38	Married	VIRGINIA	TOLEDO WARD 4
ADIEL	DODGE	1940	48	Married	MISSOURI	ROCKFORD


The Rewards to Innovation

Fact 5. *Inventor's income was correlated with the quality of invention.*

Income Distribution of Inventors

Figure: Share of Inventors with Incomes Below Each Income Percentile

Data I: Inventor Data Disambiguation

Apply new machine learning algorithm starting from Li et al. (2014):

- 1. Build training dataset using selection of Li et al. matches
- 2. Disambiguate within blocks by considering record pairs' similarity on
 - Name
 - Location
 - Assignee
 - Patent class
 - Common coauthors
- 3. Form posterior probability of match using training dataset
- 4. Consider records to be a match if posterior is high ($\geq 99\%$)

Data I: Inventor Data Disambiguation

Apply new machine learning algorithm starting from Li et al. (2014):

- 1. Build training dataset using selection of Li et al. matches
- 2. Disambiguate within blocks by considering record pairs' similarity on
 - Name
 - Location
 - Assignee
 - Patent class
 - Common coauthors
- 3. Form posterior probability of match using training dataset
- 4. Consider records to be a match if posterior is high ($\geq 99\%$)

Result: 4.9 mil. inventors, 6.4 mil. patents; U.S.: 2.73 mil. inventors, 4.2 mil. patents.

Compiled from National Research Council (NRC) Surveys of Industrial Research Laboratories of the United States (IRLUS)

The NRC sent firms questionnaires – the IRLUS volumes contain the firm-level summary data responses.

Data were hand entered from the 1921, 1927, 1931, 1933, 1938, 1940, 1946, 1950, 1956, 1960, 1965 and 1970 editions of IRLUS

Sample NRC Survey of IRLUS: Polaroid

3004. Polaroid Corp., 730 Main St., Cambridge 39, Mass. (Cp)

Research staff: Edwin H. Land, President and Director of Research; Robert M. Palmer, Manager, College Personnel Relations; 50 chemists, 5 engineers, 1 mathematician, 9 physicists, 90 technicians, 18 auxiliaries.

Research on: One-step, three-dimensional, and color photography; color vision; chemistry of photographic processes; polarized light; polymers; absorption of light; organic chemistry; physics and crystallography, especially as related to phenomena involving radiation; spectroscopy; electronics.

Data II: R&D Labs Data

Compiled from National Research Council (NRC) Surveys of Industrial Research Laboratories of the United States (IRLUS)

The NRC sent firms questionnaires – the IRLUS volumes contain the firm-level summary data responses.

Data were hand entered from the 1921, 1927, 1931, 1933, 1938, 1940, 1946, 1950, 1956, 1960, 1965 and 1970 editions of IRLUS

Contains inputs to R&D: Number of research workers, number and location of labs.

We match it to "output" of R&D, i.e., patents & citations using firm names.

Data II: R&D Labs Data

Compiled from National Research Council (NRC) Surveys of Industrial Research Laboratories of the United States (IRLUS)

The NRC sent firms questionnaires – the IRLUS volumes contain the firm-level summary data responses.

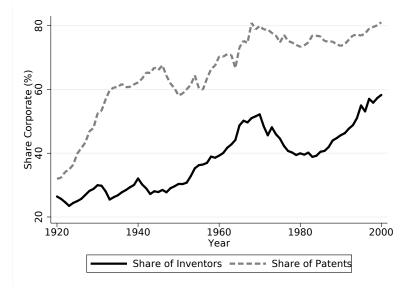
Data were hand entered from the 1921, 1927, 1931, 1933, 1938, 1940, 1946, 1950, 1956, 1960, 1965 and 1970 editions of IRLUS

Contains inputs to R&D: Number of research workers, number and location of labs.

We match it to "output" of R&D, i.e., patents & citations using firm names.

Result: Dataset ≈ NBER patent database matched to the Business Register of the Census Bureau for pre 1975!

Data III: Tax Data Sources


Historical personal income tax rates: Jon Bakija's state tax calculator.

Historical corporate income tax rates: Starting \approx 1920- 2016.

HeinOnline Session Laws, HeinOnline State Statutes, ProQuest Congressional, Commerce Clearing House (State Tax Handbooks, State Tax Review), State Tax reports, Willis Report, Council of State Governments Book of States, National Tax Association Proceedings.

We collect corporate income tax rates (brackets and rates, if applicable)

Share of Corporate Patents & Inventors Working in Firms

Empirical Strategies and Identification Innovation Outcome = $\beta_1 \times$ Income tax + $\beta_2 \times$ Corporate tax + Controls.

Macro level (state) and micro level (individual inventor and firm).

Fixed effects: 1) within-state tax changes: state + year FE + inventor FE + time-varying controls specification.

2) within-state-year tax differences: state \times year FE using different personal income tax brackets within state-year.

IV strategy: at macro and micro levels: exploit only federal level tax changes in personal and corporate income taxes.

Border Counties strategy: Neighboring counties in different states.

Event Studies and Case Studies: Episodes with sharp tax changes.

Main Results

Personal income and corporate income taxes– negatively influence:

- 1. Quantity of innovation,
- 2. Quality of innovation,
- 3. Location of innovation.

Micro inventor elasticities to personal taxes 0.6-0.9; location elasticities: 0.11 for inventors from state, 1.23 for non-state inventors.

At the macro level, cross-state spillovers and business-stealing are important, but not the full story.

Corporate inventors more elastic to personal, but especially to corporate taxes (to net returns in general?).

Agglomeration appears to matter: inventors are less sensitive to taxation where there is already more innovation in their own field $_{54}$

Outline

Inventors, Firms, and Innovation in the Long Run

Personal and Corporate Income Taxation in the Long Run

Macro Effects of Taxation

Event and Case Studies

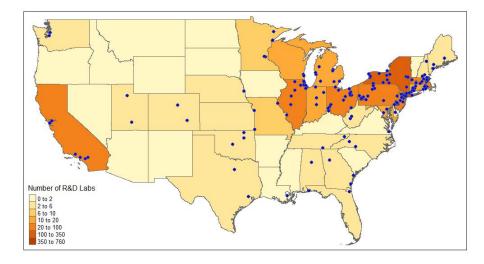
Micro Effects of Taxation

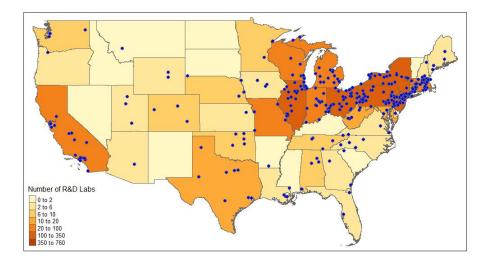
Geography of innovation. Inventors per 10,000: 1920

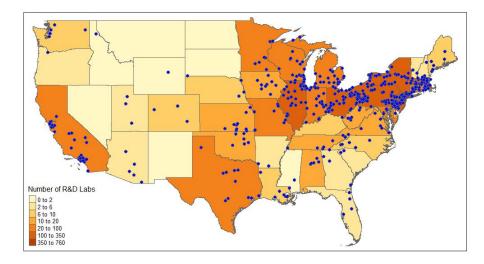
Geography of innovation. Inventors per 10,000: 1920-1930

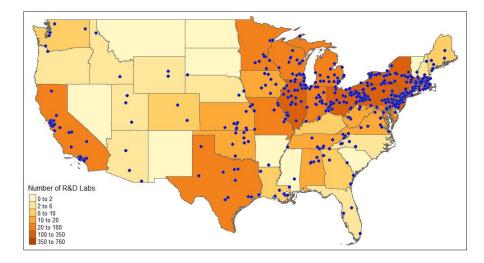
Geography of innovation. Inventors per 10,000: 1930-1940

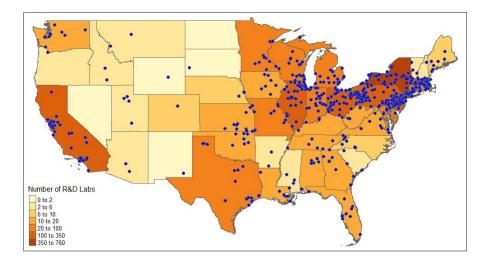
Geography of innovation. Inventors per 10,000: 1940-1950

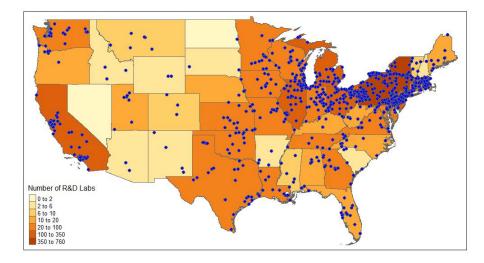

Geography of innovation. Inventors per 10,000: 1950-1960

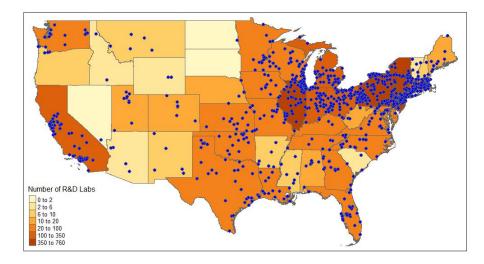

Geography of innovation. Inventors per 10,000: 1960-1970

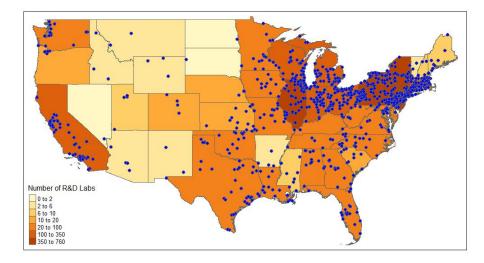

Geography of innovation. Inventors per 10,000: 1970-1980

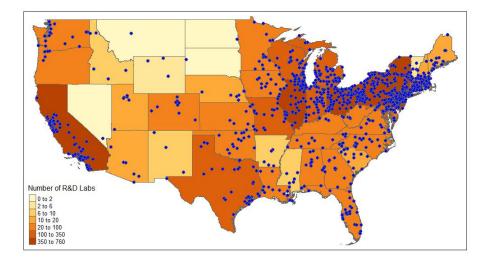

Geography of innovation. Inventors per 10,000: 1980-1990

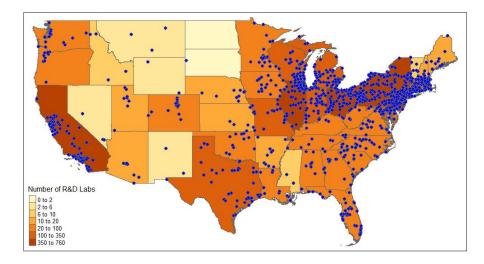

Geography of innovation. Inventors per 10,000: 1990-2000 • Pat

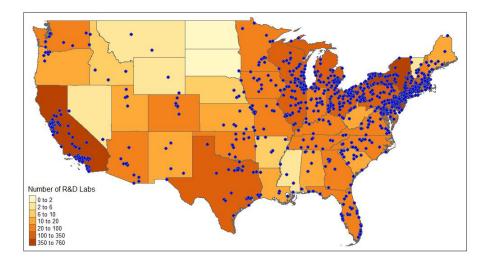


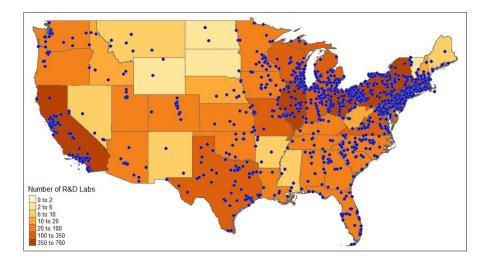












Outline

Inventors, Firms, and Innovation in the Long Run

Personal and Corporate Income Taxation in the Long Run

Macro Effects of Taxation

Event and Case Studies

Micro Effects of Taxation

Personal Income Taxes

Many states have progressive tax system (but much less progressive than Federal one).

Some states have flat taxes throughout (e.g.: CT, MA, and IL)

Some have very progressive systems (e.g.: CA, NY, NJ)

Use Jon Bakija's historical tax calculator (takes into account deductions) \approx historical state-level NBER TAXSIM.

Tax brackets change a lot at state-level: thus compute effect tax rates for single filers at \neq income levels:

90th percentile MTR; 90th percentile ATR

median MTR; median ATR

A lot of tax variation to exploit: any given year, 12-40% of states change their tax.

State Tax Rate Distributions over Time

State Tax Rate Distributions over Time

State Top Marginal Corporate Tax Rate: 1920 • More

State Top Marginal Corporate Tax Rate: 1920-1930

State Top Marginal Corporate Tax Rate: 1930-1940

State Top Marginal Corporate Tax Rate: 1940-1950

State Top Marginal Corporate Tax Rate: 1950-1960

State Top Marginal Corporate Tax Rate: 1960-1970

State Top Marginal Corporate Tax Rate: 1970-1980

State Top Marginal Corporate Tax Rate: 1980-1990

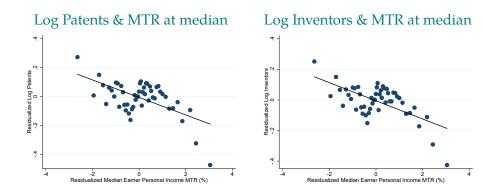
State Top Marginal Corporate Tax Rate: 1990-2000

State Top Marginal Corporate Tax Rate: 2000-2010

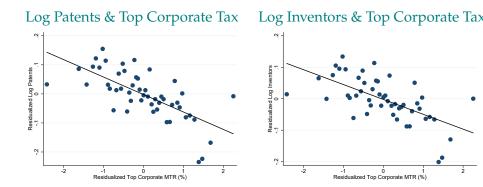
State Top Marginal Corporate Tax Rate: 2010-2016 • More

Outline

Inventors, Firms, and Innovation in the Long Run


Personal and Corporate Income Taxation in the Long Run

Macro Effects of Taxation


Event and Case Studies

Micro Effects of Taxation

Macro Effects of Personal Income Taxes 1940-2000

Macro Effects of Corporate Income Taxes 1940-2000

	PANEL A: OL	S		
Dependent Variable:	Log	Log	Log	Share
Dependent variable.	Patents	Citations	Inventors	Assigned
	(1)	(2)	(3)	(4)
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***
	(0.007)	(0.008)	(0.006)	(0.159)
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***
	(0.005)	(0.005)	(0.004)	(0.077)
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065
	(0.005)	(0.005)	(0.004)	(0.087)
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135
	(0.004)	(0.005)	(0.004)	(0.100)
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***
	(0.008)	(0.011)	(0.007)	(0.146)
Observations	2867	2867	2867	2867
Mean of Dep. Var.	7.18	9.87	7.31	71.74
S.D. of Dep. Var.	1.31	1.59	1.33	14.01

PANEL A: OLS					
Dependent Variable:	Log	Log	Log	Share	
Dependent Variable:	Patents	Citations	Inventors	Assigned	
	(1)	(2)	(3)	(4)	
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***	
	(0.007)	(0.008)	(0.006)	(0.159)	
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***	
	(0.005)	(0.005)	(0.004)	(0.077)	
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065	
	(0.005)	(0.005)	(0.004)	(0.087)	
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135	
	(0.004)	(0.005)	(0.004)	(0.100)	
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***	
	(0.008)	(0.011)	(0.007)	(0.146)	
Observations	2867	2867	2867	2867	
Mean of Dep. Var.	7.18	9.87	7.31	71.74	
S.D. of Dep. Var.	1.31	1.59	1.33	14.01	

Dependent Variable:Log PatentsLog CitationsLog InventorsShare Assigned (1)Top Corporate MTR (%, lag) -0.063^{***} (0.007) -0.059^{***} (0.008) -0.051^{***} (0.006) -1.090^{***} (0.159) 90^{th} Pctile Income MTR (%, lag) -0.041^{***} (0.005) -0.040^{***} (0.005) -0.040^{***} (0.004) -0.334^{***} (0.077)Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065^{***} (0.007) 90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.062^{***} (0.005) -0.062^{***} (0.004) -0.135^{***} (0.004) 90^{th} Pctile Income ATR (%, lag) -0.100^{***} (0.008) -0.061^{***} (0.0011) -0.672^{***} (0.007)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.091^{***} (0.011) -0.672^{***} (0.007)Observations 2867 Mean of Dep. Var. 2867 1.31 2867 1.59 2867 1.33 2867 1.33	PANEL A: OLS					
PatentsCitationsInventorsAssigned(1)(2)(3)(4)Top Corporate MTR (%, lag) -0.063^{***} -0.059^{***} -0.051^{***} -1.090^{***} (0.007)(0.008)(0.006)(0.159)90 th Pctile Income MTR (%, lag) -0.041^{***} -0.040^{***} -0.040^{***} -0.334^{***} (0.005)(0.005)(0.004)(0.077)Median Income MTR (%, lag) -0.045^{***} -0.046^{***} -0.046^{***} -0.065 (0.005)(0.005)(0.004)(0.087)90 th Pctile Income ATR (%, lag) -0.63^{***} -0.060^{***} -0.062^{***} -0.135 (0.004)(0.005)(0.004)(0.007)(0.146)Median Income ATR (%, lag) -0.100^{***} -0.108^{***} -0.091^{***} -0.672^{***} Observations28672867286728672867Mean of Dep. Var.7.189.877.3171.74	Dependent Variable:	Log	Log	Log	Share	
Top Corporate MTR (%, lag) -0.063^{***} (0.007) -0.059^{***} (0.008) -0.051^{***} (0.006) -1.090^{***} (0.159) 90^{th} Pctile Income MTR (%, lag) -0.041^{***} (0.005) -0.040^{***} (0.005) -0.040^{***} (0.004) -0.334^{***} (0.077)Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065^{***} (0.007)90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.060^{***} (0.005) -0.062^{***} (0.004) -0.135^{***} (0.004)90^{th} Pctile Income ATR (%, lag) -0.1063^{***} (0.004) -0.062^{***} (0.005) -0.672^{***} (0.004) -0.672^{***} (0.100)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.091^{***} (0.011) -0.672^{***} (0.007) -0.672^{***} (0.146)Observations2867 7.182867 9.872867 7.312867 71.74	Dependent variable.	Patents	Citations	Inventors	Assigned	
III <th< td=""><td></td><td>(1)</td><td>(2)</td><td>(3)</td><td>(4)</td></th<>		(1)	(2)	(3)	(4)	
90^{th} Pctile Income MTR (%, lag) -0.041^{***} (0.005) -0.040^{***} (0.005) -0.34^{***} (0.0077)Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065 (0.0077) 90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.060^{***} (0.005) -0.062^{***} (0.004) -0.135 (0.100)Median Income ATR (%, lag) -0.1063^{***} (0.008) -0.061^{***} (0.0011) -0.091^{***} (0.007) -0.672^{***} (0.146)Observations2867 7.182867 9.872867 7.312867 71.74	Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***	
(0.005)(0.005)(0.004)(0.077)Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065 (0.004) 90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.060^{***} (0.005) -0.062^{***} (0.004) -0.135 (0.004)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.091^{***} (0.011) -0.672^{***} (0.007) -0.672^{***} (0.146)Observations2867 7.182867 9.872867 7.312867 71.74		(0.007)	(0.008)	(0.006)	(0.159)	
(0.005)(0.005)(0.004)(0.077)Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065 (0.004) 90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.060^{***} (0.005) -0.062^{***} (0.004) -0.135 (0.004)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.091^{***} (0.011) -0.672^{***} (0.007) -0.672^{***} (0.146)Observations2867 7.182867 9.872867 7.312867 71.74	00^{th} Datile Income MTD (9/ 100)	0.041***	0.040***	0.040***	0.224***	
Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065 (0.004) 90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.060^{***} (0.005) -0.062^{***} (0.004) -0.135 (0.004)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.108^{***} (0.011) -0.091^{***} (0.007) -0.672^{***} (0.146)Observations2867 7.182867 9.872867 7.312867 71.74	90 th Petile Income MTR (%, lag)					
$\begin{array}{ccccccc} (0.005) & (0.005) & (0.004) & (0.087) \\ 90^{th} \mbox{ Pctile Income ATR (\%, lag)} & -0.063^{***} & -0.060^{***} & -0.062^{***} & -0.135 \\ (0.004) & (0.005) & (0.004) & (0.100) \\ \mbox{ Median Income ATR (\%, lag)} & -0.100^{***} & -0.108^{***} & -0.091^{***} & -0.672^{***} \\ (0.008) & (0.011) & (0.007) & (0.146) \\ \mbox{ Joservations} & 2867 & 2867 & 2867 \\ \mbox{ Mean of Dep. Var.} & 7.18 & 9.87 & 7.31 & 71.74 \\ \end{array}$		(0.005)	(0.005)	(0.004)	(0.077)	
$\begin{array}{ccccccc} (0.005) & (0.005) & (0.004) & (0.087) \\ 90^{th} \mbox{ Pctile Income ATR (\%, lag)} & -0.063^{***} & -0.060^{***} & -0.062^{***} & -0.135 \\ (0.004) & (0.005) & (0.004) & (0.100) \\ \mbox{ Median Income ATR (\%, lag)} & -0.100^{***} & -0.108^{***} & -0.091^{***} & -0.672^{***} \\ (0.008) & (0.011) & (0.007) & (0.146) \\ \mbox{ Joservations} & 2867 & 2867 & 2867 \\ \mbox{ Mean of Dep. Var.} & 7.18 & 9.87 & 7.31 & 71.74 \\ \end{array}$	Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065	
(0.004) (0.005) (0.004) (0.100) Median Income ATR (%, lag) -0.100*** -0.108*** -0.091*** -0.672*** (0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31			(0.005)	(0.004)	(0.087)	
Median Income ATR (%, lag) -0.100*** -0.108*** -0.091*** -0.672*** (0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31 71.74	90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135	
(0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31 71.74		(0.004)	(0.005)	(0.004)	(0.100)	
(0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31 71.74	Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***	
Mean of Dep. Var. 7.18 9.87 7.31 71.74						
Mean of Dep. Var. 7.18 9.87 7.31 71.74						
	Observations	2867	2867	2867	2867	
S.D. of Dep. Var. 1.31 1.59 1.33 14.01	Mean of Dep. Var.	7.18	9.87	7.31	71.74	
	S.D. of Dep. Var.	1.31	1.59	1.33	14.01	

PANEL A: OLS					
Dependent Variable:	Log	Log	Log	Share	
Dependent Variable:	Patents	Citations	Inventors	Assigned	
	(1)	(2)	(3)	(4)	
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***	
	(0.007)	(0.008)	(0.006)	(0.159)	
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***	
	(0.005)	(0.005)	(0.004)	(0.077)	
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065	
	(0.005)	(0.005)	(0.004)	(0.087)	
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135	
	(0.004)	(0.005)	(0.004)	(0.100)	
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***	
	(0.008)	(0.011)	(0.007)	(0.146)	
Observations	2867	2867	2867	2867	
Mean of Dep. Var.	7.18	9.87	7.31	71.74	
S.D. of Dep. Var.	1.31	1.59	1.33	14.01	

PANEL A: OLS					
Demondont Variable:	Log	Log	Log	Share	
Dependent Variable:	Patents	Citations	Inventors	Assigned	
	(1)	(2)	(3)	(4)	
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***	
	(0.007)	(0.008)	(0.006)	(0.159)	
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***	
_	(0.005)	(0.005)	(0.004)	(0.077)	
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065	
	(0.005)	(0.005)	(0.004)	(0.087)	
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135	
_	(0.004)	(0.005)	(0.004)	(0.100)	
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***	
	(0.008)	(0.011)	(0.007)	(0.146)	
		· · · ·		<u> </u>	
Observations	2867	2867	2867	2867	
Mean of Dep. Var.	7.18	9.87	7.31	71.74	
S.D. of Dep. Var.	1.31	1.59	1.33	14.01	
				20 / 5	

		S		
Dependent Variable	Log	Log	Log	Share
Dependent Variable:	Patents	Citations	Inventors	Assigned
	(1)	(2)	(3)	(4)
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***
	(0.007)	(0.008)	(0.006)	(0.159)
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***
	(0.005)	(0.005)	(0.004)	(0.077)
$\mathbf{M} = 1^{*}$	0.045***	0.046***	0.046***	0.065
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065
	(0.005)	(0.005)	(0.004)	(0.087)
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135
	(0.004)	(0.005)	(0.004)	(0.100)
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***
	(0.008)	(0.011)	(0.007)	(0.146)
Observations	2867	2867	2867	2867
Mean of Dep. Var.	7.18	9.87	7.31	71.74
S.D. of Dep. Var.	1.31	1.59	1.33	14.01

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PANEL A: OLS					
Image: PatentsPatentsCitationsInventorsAssigned(1)(2)(3)(4)Top Corporate MTR (%, lag) -0.063^{***} -0.059^{***} -0.051^{***} -1.090^{***} (0.007)(0.008)(0.006)(0.159)90 th Pctile Income MTR (%, lag) -0.041^{***} -0.040^{***} -0.334^{***} (0.005)(0.005)(0.005)(0.004)(0.077)Median Income MTR (%, lag) -0.045^{***} -0.046^{***} -0.046^{***} -0.065 (0.005)(0.005)(0.005)(0.004)(0.087)90 th Pctile Income ATR (%, lag) -0.63^{***} -0.060^{***} -0.062^{***} -0.135 (0.004)(0.004)(0.007)(0.100)Median Income ATR (%, lag) -0.100^{***} -0.091^{***} -0.672^{***} (0bservations286728672867286728672867Mean of Dep. Var.7.189.877.3171.74	Demondont Variable:	Log	Log	Log	Share	
Top Corporate MTR (%, lag) -0.063^{***} (0.007) -0.059^{***} (0.008) -0.051^{***} (0.006) -1.090^{***} (0.159) 90^{th} Pctile Income MTR (%, lag) -0.041^{***} (0.005) -0.040^{***} (0.005) -0.334^{***} (0.004) -0.334^{***} (0.077)Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065^{***} (0.007)90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.062^{***} (0.005) -0.062^{***} (0.004) -0.135^{***} (0.004)90^{th} Pctile Income ATR (%, lag) -0.106^{***} (0.004) -0.062^{***} (0.005) -0.672^{***} (0.007) -0.672^{***} (0.110)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.091^{***} (0.011) -0.672^{***} (0.007)Observations2867 7.182867 9.872867 7.312867 71.74	Dependent variable.	Patents	Citations	Inventors	Assigned	
Image: Normal definition (0.007) (0.008) (0.006) (0.159) 90th Pctile Income MTR (%, lag) -0.041^{***} (0.005) -0.040^{***} (0.005) -0.334^{***} (0.004) -0.334^{***} (0.077) Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065 (0.087) 90th Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.062^{***} (0.005) -0.062^{***} (0.004) -0.135 (0.100) Median Income ATR (%, lag) -0.100^{***} (0.008) -0.091^{***} (0.011) -0.672^{***} (0.007) -0.672^{***} (0.146) Observations Mean of Dep. Var. 2867 7.18 2867 9.87 2867 7.31 2867 71.74		(1)	(2)	(3)	(4)	
90^{th} Pctile Income MTR (%, lag) -0.041^{***} (0.005) -0.040^{***} (0.005) -0.334^{***} (0.0077)Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065 (0.0077) 90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.062^{***} (0.005) -0.062^{***} (0.004) -0.135 (0.100)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.091^{***} (0.011) -0.672^{***} (0.007) -0.672^{***} (0.146)Observations Mean of Dep. Var. 2867 7.18 2867 9.87 2867 7.31 2867 7.31	Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***	
(0.005) (0.005) (0.004) (0.077) Median Income MTR (%, lag) -0.045*** -0.046*** -0.046*** -0.065 (0.005) (0.005) (0.005) (0.004) (0.087) 90 th Pctile Income ATR (%, lag) -0.063*** -0.060*** -0.062*** -0.135 (0.004) (0.005) (0.005) (0.004) (0.100) Median Income ATR (%, lag) -0.100*** -0.108*** -0.091*** -0.672*** (0.008) (0.011) (0.007) (0.146) -0.146 Observations 2867 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31 71.74		(0.007)	(0.008)	(0.006)	(0.159)	
(0.005) (0.005) (0.004) (0.077) Median Income MTR (%, lag) -0.045*** -0.046*** -0.046*** -0.065 (0.005) (0.005) (0.005) (0.004) (0.087) 90 th Pctile Income ATR (%, lag) -0.063*** -0.060*** -0.062*** -0.135 (0.004) (0.005) (0.005) (0.004) (0.100) Median Income ATR (%, lag) -0.100*** -0.108*** -0.091*** -0.672*** (0.008) (0.011) (0.007) (0.146) -0.146 Observations 2867 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31 71.74						
Median Income MTR (%, lag) -0.045^{***} (0.005) -0.046^{***} (0.005) -0.046^{***} (0.004) -0.065 (0.004) 90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.060^{***} (0.005) -0.062^{***} (0.004) -0.135 (0.100)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.108^{***} (0.011) -0.672^{***} (0.007) -0.672^{***} (0.146)Observations2867 7.182867 9.872867 7.312867 71.74	90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***	
$\begin{array}{c} (0.005) & (0.005) & (0.004) & (0.087) \\ 90^{th} \ \text{Pctile Income ATR (\%, lag)} & -0.063^{***} & -0.060^{***} & -0.062^{***} & -0.135 \\ (0.004) & (0.005) & (0.004) & (0.100) \\ \end{array}$ $\begin{array}{c} \text{Median Income ATR (\%, lag)} & -0.100^{***} & -0.108^{***} & -0.091^{***} & -0.672^{***} \\ (0.008) & (0.011) & (0.007) & (0.146) \\ \end{array}$ $\begin{array}{c} \text{Observations} & 2867 & 2867 & 2867 \\ \text{Mean of Dep. Var.} & 7.18 & 9.87 & 7.31 & 71.74 \\ \end{array}$		(0.005)	(0.005)	(0.004)	(0.077)	
$\begin{array}{c} (0.005) & (0.005) & (0.004) & (0.087) \\ 90^{th} \ \text{Pctile Income ATR (\%, lag)} & -0.063^{***} & -0.060^{***} & -0.062^{***} & -0.135 \\ (0.004) & (0.005) & (0.004) & (0.100) \\ \end{array}$ $\begin{array}{c} \text{Median Income ATR (\%, lag)} & -0.100^{***} & -0.108^{***} & -0.091^{***} & -0.672^{***} \\ (0.008) & (0.011) & (0.007) & (0.146) \\ \end{array}$ $\begin{array}{c} \text{Observations} & 2867 & 2867 & 2867 \\ \text{Mean of Dep. Var.} & 7.18 & 9.87 & 7.31 & 71.74 \\ \end{array}$						
90^{th} Pctile Income ATR (%, lag) -0.063^{***} (0.004) -0.060^{***} (0.005) -0.062^{***} (0.004) -0.135 (0.100)Median Income ATR (%, lag) -0.100^{***} (0.008) -0.108^{***} (0.011) -0.091^{***} (0.007) -0.672^{***} (0.146)Observations2867 (7.18)2867 (9.87)2867 (7.31)2867 (7.174)	Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065	
(0.004) (0.005) (0.004) (0.100) Median Income ATR (%, lag) -0.100*** -0.108*** -0.091*** -0.672*** (0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 7.18 9.87 7.31 71.74		(0.005)	(0.005)	(0.004)	(0.087)	
(0.004) (0.005) (0.004) (0.100) Median Income ATR (%, lag) -0.100*** -0.108*** -0.091*** -0.672*** (0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 7.18 9.87 7.31 71.74						
Median Income ATR (%, lag) -0.100*** -0.108*** -0.091*** -0.672*** (0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31 71.74	90 th Pctile Income ATR (%, lag)					
(0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31		(0.004)	(0.005)	(0.004)	(0.100)	
(0.008) (0.011) (0.007) (0.146) Observations 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31						
Observations 2867 2867 2867 2867 Mean of Dep. Var. 7.18 9.87 7.31 71.74	Median Income ATR (%, lag)					
Mean of Dep. Var. 7.18 9.87 7.31 71.74		(0.008)	(0.011)	(0.007)	(0.146)	
Mean of Dep. Var. 7.18 9.87 7.31 71.74						
1			2867			
S.D. of Dep. Var. 1.31 1.59 1.33 14.01	Mean of Dep. Var.	7.18	9.87	7.31	71.74	
	S.D. of Dep. Var.	1.31	1.59	1.33	14.01	

	PANEL A: OLS					
Dependent Variable:	Log	Log	Log	Share		
Dependent Variable:	Patents	Citations	Inventors	Assigned		
	(1)	(2)	(3)	(4)		
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***		
	(0.007)	(0.008)	(0.006)	(0.159)		
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***		
	(0.005)	(0.005)	(0.004)	(0.077)		
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065		
	(0.005)	(0.005)	(0.004)	(0.087)		
00^{th} Datile is some ATD (9/10 m)	0.0(2***	0.000***	0.0(2***	0.125		
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135		
	(0.004)	(0.005)	(0.004)	(0.100)		
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***		
	(0.008)	(0.011)	(0.007)	(0.146)		
Observations	2867	2867	2867	2867		
Mean of Dep. Var.	7.18	9.87	7.31	71.74		
S.D. of Dep. Var.	1.31	1.59	1.33	14.01		
				22 / 5		

PANEL A: OLS					
Demondont Variable:	Log	Log	Log	Share	
Dependent Variable:	Patents	Citations	Inventors	Assigned	
	(1)	(2)	(3)	(4)	
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***	
	(0.007)	(0.008)	(0.006)	(0.159)	
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***	
	(0.005)	(0.005)	(0.004)	(0.077)	
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065	
	(0.005)	(0.005)	(0.004)	(0.087)	
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135	
	(0.004)	(0.005)	(0.004)	(0.100)	
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***	
	(0.008)	(0.011)	(0.007)	(0.146)	
Observations	2867	2867	2867	2867	
Mean of Dep. Var.	7.18	9.87	7.31	71.74	
S.D. of Dep. Var.	1.31	1.59	1.33	14.01	

Panel A: OLS					
Domondont Variable:	Log	Log	Log	Share	
Dependent Variable:	Patents	Citations	Inventors	Assigned	
	(1)	(2)	(3)	(4)	
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***	
	(0.007)	(0.008)	(0.006)	(0.159)	
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***	
	(0.005)	(0.005)	(0.004)	(0.077)	
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065	
	(0.005)	(0.005)	(0.004)	(0.087)	
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135	
	(0.004)	(0.005)	(0.004)	(0.100)	
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***	
	(0.008)	(0.011)	(0.007)	(0.146)	
Observations	2867	2867	2867	2867	
Mean of Dep. Var.	7.18	9.87	7.31	71.74	
S.D. of Dep. Var.	1.31	1.59	1.33	14.01	

Macro Effects of Taxes 1940-2000: OLS

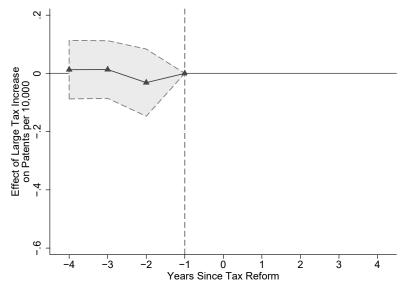
Panel A: OLS						
Dependent Veriable:	Log	Log	Log	Share		
Dependent Variable:	Patents	Citations	Inventors	Assigned		
	(1)	(2)	(3)	(4)		
Top Corporate MTR (%, lag)	-0.063***	-0.059***	-0.051***	-1.090***		
	(0.007)	(0.008)	(0.006)	(0.159)		
90 th Pctile Income MTR (%, lag)	-0.041***	-0.040***	-0.040***	-0.334***		
	(0.005)	(0.005)	(0.004)	(0.077)		
Median Income MTR (%, lag)	-0.045***	-0.046***	-0.046***	-0.065		
	(0.005)	(0.005)	(0.004)	(0.087)		
90 th Pctile Income ATR (%, lag)	-0.063***	-0.060***	-0.062***	-0.135		
	(0.004)	(0.005)	(0.004)	(0.100)		
Median Income ATR (%, lag)	-0.100***	-0.108***	-0.091***	-0.672***		
	(0.008)	(0.011)	(0.007)	(0.146)		
				<u> </u>		
Observations	2867	2867	2867	2867		
Mean of Dep. Var.	7.18	9.87	7.31	71.74		
S.D. of Dep. Var.	1.31	1.59	1.33	14.01		

Macro Effects of Taxes 1940-2000: IV and Border Counties

IV results and border counties results are very similar to, but even stronger than OLS.

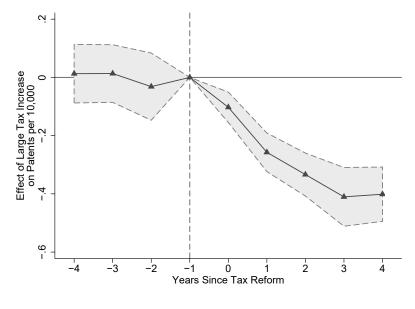
Outline

Inventors, Firms, and Innovation in the Long Run

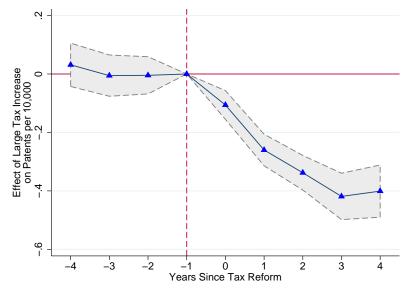

Personal and Corporate Income Taxation in the Long Run

Macro Effects of Taxation

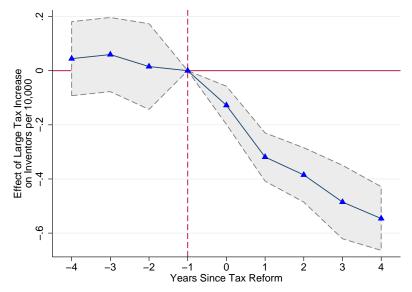
Event and Case Studies


Micro Effects of Taxation

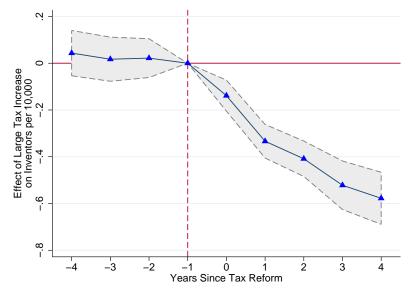
Event Study: Large Personal Tax Change on Patent


 $\Delta T^{y} = 6.85$ pp increases, 3.6 pp decreases.

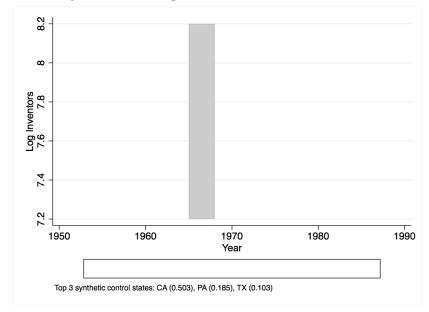
Event Study: Large Personal Tax Change on Patent

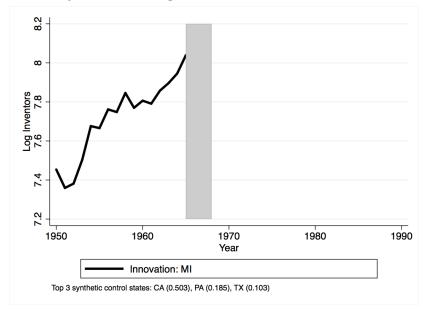

 $\Delta T^{y} = 6.85$ pp increases, 3.6 pp decreases.

Event Study: Large Corporate Tax Change on Patent

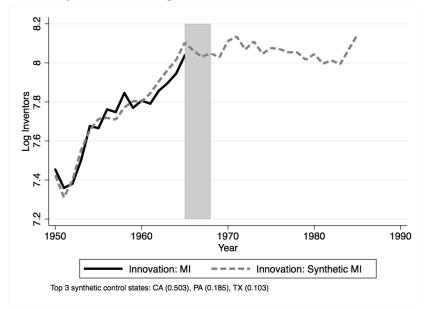

 ΔT^c = 14.8 pp increases, 9.3 pp decreases.

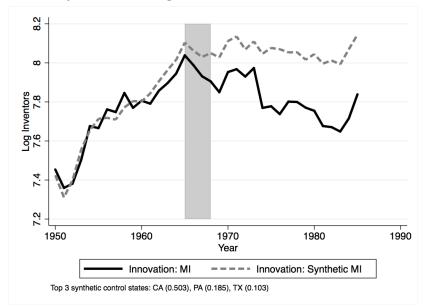
Event Study: Large Personal Tax Change on Inventor

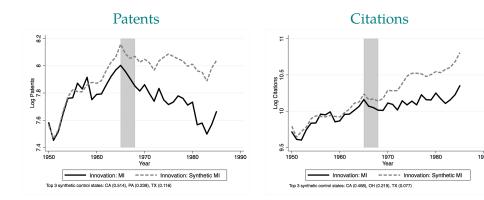


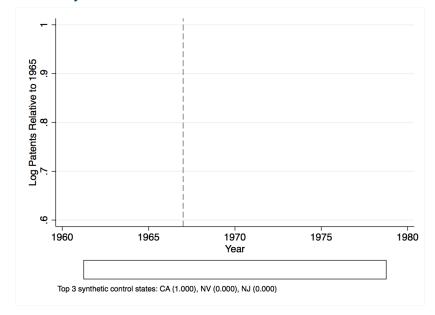

 $\Delta T^{y} = 6.85$ pp increases, 3.6 pp decreases.

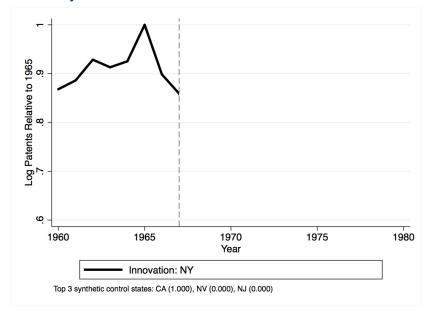

Event Study 4: Large **Corporate** Tax Change on **Inventor**



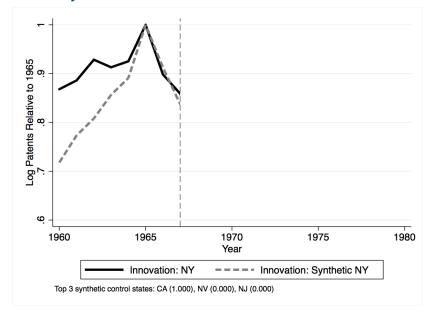

39/54

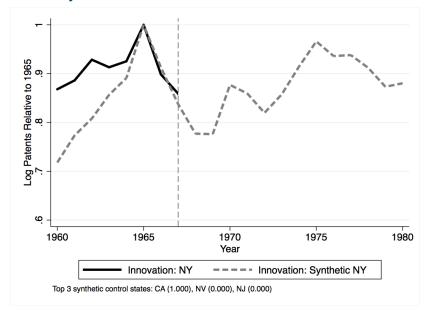




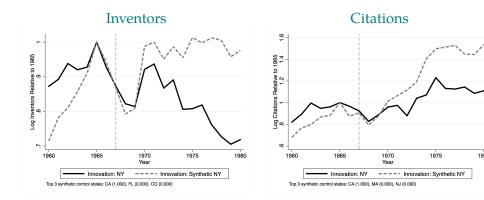


Case Study 1B. Michigan 1967-1968: Patents and Citations




1968: pers. tax 10% † 14%; corp tax 5.5% † 7%.


1968: pers. tax 10% † 14%; corp tax 5.5% † 7%.


1968: pers. tax 10% † 14%; corp tax 5.5% † 7%.

1968: pers. tax 10% † 14%; corp tax 5.5% † 7%.

Case Study 2B. New York 1968: Inventors and Citations

Outline

Inventors, Firms, and Innovation in the Long Run

Personal and Corporate Income Taxation in the Long Run

Macro Effects of Taxation

Event and Case Studies

Micro Effects of Taxation

MICRO EFFECTS 1: INVENTOR-LEVEL

Assigning tax rates to individual inventors.

Established: Inventor productivity strongly related to income: • Quality

Productivity can be number of patents (benchmark) or citations-weighted patents (robustness).

Bell et al. (2017) • INS, Akcigit, Grigsby and Nicholas (2017) • Historical

Akcigit, Baslandze, Stantcheva (AER, 2016) • EU Surveys • Sweden

Rank inventors by productivity nation-wide in each year *t*.

Benchmark: Tax rate assigned to inventor in year *t* is:

90th pctile tax if if in top 10% at t - 1; 50th pctile tax otherwise.

Robustness:

Rank state-wide.

Use cutoffs 5% and 20% instead.

At the Inventor Level: Identification in OLS and IV

 Y_{ist} innovation outcome of inventor *i* in state *s*, year *t*, assigned to tax group *j* (patents, citations, etc..)

 $Y_{ist} = \alpha + \beta_y T_{st-1}^{yj} + \beta_c T_{st-1}^c + \gamma \mathbb{X}_{ist}$

 X_{ist} : state + year + inventor FE, pop. density, real GDP per cap., R&D tax credits, inventor quality dummy, inventor tenure (+ square).

"Agglomeration:" number of patents (or inventors) in same tech class in state that year, excluding inventor.

Within state-year tax differences: Include state \times year FE \rightarrow exploit within state-year variation in taxes across agents with different incomes (productivities).

IV strategy: Total tax rate $T_{st}^{yj} \approx \tau_{ft}^{yj} (1 - \tau_{st}^{yj}) + \tau_{st}^{yj} - D_{st}^{y} \cdot \tau_{st}^{yj} \tau_{ft}^{yj}$ can be instrumented with \hat{T}_{st}^{yj} ; same for corporate tax rate.

Dependent Variable:	Has Patent (3-year)	Has 10+ Cites (3-year)	Log Patents (3-year)	Log Citations (3-year)	Has Corporate Patent (3-yr)
	(1)	(3-year) (2)	(3)	(3-year) (4)	(5)
Effective MTR	-0.629***	-0.602***	-0.012***	-0.016***	-0.667***
	(0.101)	(0.109)	(0.003)	(0.003)	(0.082)
Top Corporate MTR	-0.201*	-0.100	-0.002	-0.001	-0.091
	(0.104)	(0.102)	(0.002)	(0.003)	(0.093)
CLUE FE	V	V	N	V	N
State FE	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Effective MTR	-0.626***	-0.569***	-0.011***	-0.013***	-0.642***
	(0.103)	(0.109)	(0.003)	(0.003)	(0.084)
State \times Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Observations	5956315	5956315	4545384	4392312	5956315
Mean of Dep. Var.	76.312	45.079	0.442	2.758	61.421
S.D. of Dep. Var.	42.517	49.757	0.664	1.453	48.678

Dependent Variable:	Has Patent	Has 10+ Cites	Log Patents	Log Citations	Has Corporate
Dependent variable.	(3-year)	(3-year)	(3-year)	(3-year)	Patent (3-yr)
	(1)	(2)	(3)	(4)	(5)
Effective MTR	-0.629***	-0.602***	-0.012***	-0.016***	-0.667***
	(0.101)	(0.109)	(0.003)	(0.003)	(0.082)
Top Corporate MTR	-0.201*	-0.100	-0.002	-0.001	-0.091
	(0.104)	(0.102)	(0.002)	(0.003)	(0.093)
State FE	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Effective MTR	-0.626***	-0.569***	-0.011***	-0.013***	-0.642***
	(0.103)	(0.109)	(0.003)	(0.003)	(0.084)
State \times Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Observations	5956315	5956315	4545384	4392312	5956315
Mean of Dep. Var.	76.312	45.079	0.442	2.758	61.421
S.D. of Dep. Var.	42.517	49.757	0.664	1.453	48.678

Dependent Variable:	Has Patent	Has 10+ Cites	Log Patents	Log Citations	Has Corporate
Dependent variable.	(3-year)	(3-year)	(3-year)	(3-year)	Patent (3-yr)
	(1)	(2)	(3)	(4)	(5)
Effective MTR	-0.629***	-0.602***	-0.012***	-0.016***	-0.667***
	(0.101)	(0.109)	(0.003)	(0.003)	(0.082)
Top Corporate MTR	-0.201*	-0.100	-0.002	-0.001	-0.091
	(0.104)	(0.102)	(0.002)	(0.003)	(0.093)
State FE	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Effective MTR	-0.626***	-0.569***	-0.011***	-0.013***	-0.642***
	(0.103)	(0.109)	(0.003)	(0.003)	(0.084)
State \times Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Observations	5956315	5956315	4545384	4392312	5956315
Mean of Dep. Var.	76.312	45.079	0.442	2.758	61.421
S.D. of Dep. Var.	42.517	49.757	0.664	1.453	48.678

Dependent Variable:	Has Patent	Has 10+ Cites	Log Patents	Log Citations	Has Corporate
Dependent variable.	(3-year)	(3-year)	(3-year)	(3-year)	Patent (3-yr)
	(1)	(2)	(3)	(4)	(5)
Effective MTR	-0.629***	-0.602***	-0.012***	-0.016***	-0.667***
	(0.101)	(0.109)	(0.003)	(0.003)	(0.082)
Top Corporate MTR	-0.201*	-0.100	-0.002	-0.001	-0.091
	(0.104)	(0.102)	(0.002)	(0.003)	(0.093)
State FE	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Effective MTR	-0.626***	-0.569***	-0.011***	-0.013***	-0.642***
	(0.103)	(0.109)	(0.003)	(0.003)	(0.084)
State \times Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Observations	5956315	5956315	4545384	4392312	5956315
Mean of Dep. Var.	76.312	45.079	0.442	2.758	61.421
S.D. of Dep. Var.	42.517	49.757	0.664	1.453	48.678

Dependent Variable:	Has Patent	Has 10+ Cites	Log Patents	Log Citations	Has Corporate
Dependent variable.	(3-year)	(3-year)	(3-year)	(3-year)	Patent (3-yr)
	(1)	(2)	(3)	(4)	(5)
Effective MTR	-0.629***	-0.602***	-0.012***	-0.016***	-0.667***
	(0.101)	(0.109)	(0.003)	(0.003)	(0.082)
Top Corporate MTR	-0.201*	-0.100	-0.002	-0.001	-0.091
	(0.104)	(0.102)	(0.002)	(0.003)	(0.093)
State FE	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Effective MTR	-0.626***	-0.569***	-0.011***	-0.013***	-0.642***
	(0.103)	(0.109)	(0.003)	(0.003)	(0.084)
State \times Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Observations	5956315	5956315	4545384	4392312	5956315
Mean of Dep. Var.	76.312	45.079	0.442	2.758	61.421
S.D. of Dep. Var.	42.517	49.757	0.664	1.453	48.678

Dependent Variable:	Has Patent (3-year)	Has 10+ Cites (3-year)	Log Patents (3-year)	Log Citations (3-year)	Has Corporate Patent (3-yr)
	(1)	(2)	(3)	(4)	(5)
Effective MTR	-0.629***	-0.602***	-0.012***	-0.016***	-0.667***
	(0.101)	(0.109)	(0.003)	(0.003)	(0.082)
Top Corporate MTR	-0.201*	-0.100	-0.002	-0.001	-0.091
	(0.104)	(0.102)	(0.002)	(0.003)	(0.093)
State FE	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Effective MTR	-0.626***	-0.569***	-0.011***	-0.013***	-0.642***
	(0.103)	(0.109)	(0.003)	(0.003)	(0.084)
State \times Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Observations	5956315	5956315	4545384	4392312	5956315
Mean of Dep. Var.	76.312	45.079	0.442	2.758	61.421
S.D. of Dep. Var.	42.517	49.757	0.664	1.453	48.678

Corporate Inventors are More Elastic To Taxes

	Has Patent	Has 10+ Cites	Log Patents	Log Citations
Dependent Variable:	(3-year)	(3-year)	(3-year)	(3-year)
	(1)	(2)	(3)	(4)
Effective MTR	-0.075	-0.535***	-0.014***	-0.026***
	(0.203)	(0.165)	(0.003)	(0.005)
MTR \times Corp. Inv.	-0.605***	-0.094	0.002	0.009***
	(0.175)	(0.114)	(0.002)	(0.003)
Top Corporate MTR	0.044	0.238	0.005^{*}	0.013**
	(0.177)	(0.143)	(0.003)	(0.005)
Corp. MTR \times Corp. Inv.	-0.201	-0.348***	-0.007***	-0.015***
	(0.173)	(0.105)	(0.002)	(0.004)
State FE	Y	Y	Y	Y
Year FE	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y
Den en den t Venieleler	Has Patent	Has 10+ Cites	Log Patents	Log Citations
Dependent Variable:	(3-year)	(3-year)	(3-year)	(3-year)
	(1)	(2)	(3)	(4)
Effective MTR	0.053	-0.298**	-0.009***	-0.015***
	(0.156)	(0.135)	(0.003)	(0.003)
MTR \times Corp. Inv.	-0.708***	-0.285***	-0.002**	0.002
<u>^</u>	(0.106)	(0.046)	(0.001)	(0.001)
State \times Year FE	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y 49/5

Corporate Inventors are More Elastic To Taxes

Inventor FE

Dependent Variable:	Has Patent	Has 10+ Cites	Log Patents	Log Citations
Dependent variable.	(3-year)	(3-year)	(3-year)	(3-year)
	(1)	(2)	(3)	(4)
Effective MTR	-0.075	-0.535***	-0.014***	-0.026***
	(0.203)	(0.165)	(0.003)	(0.005)
MTR \times Corp. Inv.	-0.605***	-0.094	0.002	0.009***
	(0.175)	(0.114)	(0.002)	(0.003)
Top Corporate MTR	0.044	0.238	0.005^{*}	0.013**
	(0.177)	(0.143)	(0.003)	(0.005)
Corp. MTR \times Corp. Inv.	-0.201	-0.348***	-0.007***	-0.015***
	(0.173)	(0.105)	(0.002)	(0.004)
State FE	Y	Y	Y	Y
Year FE	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y
	Has Patent	Has 10+ Cites	Log Patents	Log Citations
Dependent Variable:	(3-year)	(3-year)	(3-year)	(3-year)
	(1)	(2)	(3)	(4)
Effective MTR	0.053	-0.298**	-0.009***	-0.015***
	(0.156)	(0.135)	(0.003)	(0.003)
MTR \times Corp. Inv.	-0.708***	-0.285***	-0.002**	0.002
*	(0.106)	(0.046)	(0.001)	(0.001)
State × Year FE	Y	Y	Y	Y

49/54

Iggiomeration Enects Dampen the Enects of Taxes						
	Has Patent	Has 10+ Cites	Log Patents	Log Citations	Has Corporate	
Dependent Variable:	(3-year)	(3-year)	(3-year)	(3-year)	Patent (3-yr)	
	(1)	(2)	(3)	(4)	(5)	
Effective MTR	-0.635***	-0.620***	-0.012***	-0.017***	-0.669***	
	(0.102)	(0.109)	(0.003)	(0.003)	(0.083)	
Effective MTR \times Agglom.	0.082	0.277***	0.004^{*}	0.006*	0.022	
	(0.061)	(0.080)	(0.002)	(0.003)	(0.057)	
Top Corporate MTR	-0.200*	-0.098	-0.002	-0.001	-0.091	
• •	(0.104)	(0.102)	(0.002)	(0.003)	(0.093)	
State FE	Y	Y	Y	Y	Y	
Year FE	Y	Y	Y	Y	Y	
Inventor FE	Y	Y	Y	Y	Y	
Effective MTR	-0.634***	-0.591***	-0.011***	-0.014***	-0.646***	
	(0.104)	(0.109)	(0.003)	(0.003)	(0.084)	
Effective MTR \times Agglom.	0.114^{*}	0.325***	0.004^{*}	0.008**	0.058	
	(0.064)	(0.085)	(0.002)	(0.003)	(0.057)	
State \times Year FE	Y	Y	Y	Y	Y	
Inventor FE	Y	Y	Y	Y	Y	
Observations	5960366	5960366	4548116	4394959	5960366	
Mean of Dep. Var.	76.306	45.078	0.442	2.758	61.408	
1	42.521	49.757	0.442	1.454	40 (01	
S.D. of Dep. Var.	42.321	47./3/	0.004	1.404	48.681 50 /	

Agglomeration Effects Dampen the Effects of Taxes

iggiomeration lineets Dampen the Lineets of Taxes						
Dependent Variable:	Has Patent	Has 10+ Cites	Log Patents	Log Citations	Has Corporate	
Dependent variable:	(3-year)	(3-year)	(3-year)	(3-year)	Patent (3-yr)	
	(1)	(2)	(3)	(4)	(5)	
Effective MTR	-0.635***	-0.620***	-0.012***	-0.017***	-0.669***	
	(0.102)	(0.109)	(0.003)	(0.003)	(0.083)	
Effective MTR \times Agglom.	0.082	0.277***	0.004^{*}	0.006^{*}	0.022	
	(0.061)	(0.080)	(0.002)	(0.003)	(0.057)	
Top Corporate MTR	-0.200*	-0.098	-0.002	-0.001	-0.091	
* *	(0.104)	(0.102)	(0.002)	(0.003)	(0.093)	
State FE	Y	Y	Y	Y	Y	
Year FE	Y	Y	Y	Y	Y	
Inventor FE	Y	Y	Y	Y	Y	
Effective MTR	-0.634***	-0.591***	-0.011***	-0.014***	-0.646***	
	(0.104)	(0.109)	(0.003)	(0.003)	(0.084)	
Effective MTR \times Agglom.	0.114*	0.325***	0.004*	0.008**	0.058	
	(0.064)	(0.085)	(0.002)	(0.003)	(0.057)	
State × Year FE	Y	Y	Y	Y	Y	
Inventor FE	Y	Y	Y	Y	Y	
Observations	E0(02((E0(02((4540116	4204050	E0(02((
Observations	5960366	5960366	4548116	4394959	5960366	
Mean of Dep. Var.	76.306	45.078	0.442	2.758	61.408	
S.D. of Dep. Var.	42.521	49.757	0.664	1.454	48.681 _{50 / 1}	

Agglomeration Effects Dampen the Effects of Taxes

Location Choice Model

Value to inventor *i* of inventing in state *s* in year *t* is

$$U_{ist} = \alpha \log \left(\text{Eff. Tax}_{st}^{i} \right) + \beta_{s} \mathbf{x}_{ist} + \nu_{ist}$$

Location Choice Model

Value to inventor *i* of inventing in state *s* in year *t* is

$$U_{ist} = \alpha \log \left(\text{Eff. Tax}_{st}^{i} \right) + \beta_{s} \mathbf{x}_{ist} + \nu_{ist}$$

If ν_{ist} i.i.d. distributed Type 1 Extreme Value, can estimate

$$Pr\{i \text{ chooses } s \text{ in } t\} = \frac{\exp\left(\alpha \log\left(\text{Eff. Tax}_{st}^{i}\right) + \beta_{s} \mathbf{x}_{ist}\right)}{\sum\limits_{s'} \exp\left(\alpha \log\left(\text{Eff. Tax}_{s't}^{i}\right) + \beta'_{s} \mathbf{x}_{is't}\right)}$$

Location Choice Model

Value to inventor *i* of inventing in state *s* in year *t* is

$$U_{ist} = \alpha \log \left(\text{Eff. Tax}_{st}^{i} \right) + \beta_{s} \mathbf{x}_{ist} + \nu_{ist}$$

If v_{ist} i.i.d. distributed Type 1 Extreme Value, can estimate

$$Pr\{i \text{ chooses } s \text{ in } t\} = \frac{\exp\left(\alpha \log\left(\text{Eff. Tax}_{st}^{i}\right) + \beta_{s}\mathbf{x}_{ist}\right)}{\sum\limits_{s'} \exp\left(\alpha \log\left(\text{Eff. Tax}_{s't}^{i}\right) + \beta'_{s}\mathbf{x}_{is't}\right)}$$

- Location choice estimated on 15 most inventive states, as measured by total patents (1940-2000), including only progressive spells.
 - ⇒ California, Massachusetts, Maryland, Minnesota, New York, New Jersey, Ohio, Wisconsin.
- Controls: home state, agglomeration forces, high productivity dummy, agglomeration × high productivity, quadratic in experience × state FE, corporate inventor, assigne has patent dummy, state × year FE.

	(1)	(2)	(3)	(4)	(5)
Effective ATR	-0.093***	-0.025**	-0.026**	-0.026**	-0.121***
	(0.009)	(0.012)	(0.012)	(0.012)	(0.013)
Agglomeration Forces	1.217***	1.216***	1.216***	0.994***	1.112***
	(0.029)	(0.030)	(0.030)	(0.072)	(0.030)
Home State Flag	3.866***	3.868***	3.869***	3.868***	3.690***
-	(0.016)	(0.016)	(0.016)	(0.016)	(0.016)
Interaction coefficients:					
Non-Corporate Inventor			0.071***		
			(0.017)		
Agglomeration				0.016***	
00				(0.004)	
Assignee Has Patent					0.130***
-					(0.001)
Fixed Effects	State	State	State	State	State
	+ Year	\times Year	\times Year	\times Year	\times Year
Observations	1951513	1951513	1951513	1951513	1951513

	(1)	(2)	(3)	(4)	(5)
Effective ATR	-0.093***	-0.025**	-0.026**	-0.026**	-0.121***
	(0.009)	(0.012)	(0.012)	(0.012)	(0.013)
Agglomeration Forces	1.217***	1.216***	1.216***	0.994***	1.112***
	(0.029)	(0.030)	(0.030)	(0.072)	(0.030)
Home State Flag	3.866***	3.868***	3.869***	3.868***	3.690***
-	(0.016)	(0.016)	(0.016)	(0.016)	(0.016)
Interaction coefficients:					
Non-Corporate Inventor			0.071***		
1			(0.017)		
Agglomeration				0.016***	
00				(0.004)	
Assignee Has Patent					0.130***
0					(0.001)
Fixed Effects	State	State	State	State	State
	+ Year	\times Year	\times Year	\times Year	\times Year
Observations	1951513	1951513	1951513	1951513	1951513

	(1)	(2)	(3)	(4)	(5)
Effective ATR	-0.093***	-0.025**	-0.026**	-0.026**	-0.121***
	(0.009)	(0.012)	(0.012)	(0.012)	(0.013)
Agglomeration Forces	1.217***	1.216***	1.216***	0.994***	1.112***
	(0.029)	(0.030)	(0.030)	(0.072)	(0.030)
Home State Flag	3.866***	3.868***	3.869***	3.868***	3.690***
-	(0.016)	(0.016)	(0.016)	(0.016)	(0.016)
Interaction coefficients:					
Non-Corporate Inventor			0.071***		
			(0.017)		
Agglomeration				0.016***	
				(0.004)	
Assignee Has Patent					0.130***
0					(0.001)
Fixed Effects	State	State	State	State	State
	+ Year	\times Year	\times Year	\times Year	\times Year
Observations	1951513	1951513	1951513	1951513	1951513

	(1)	(2)	(3)	(4)	(5)
Effective ATR	-0.093***	-0.025**	-0.026**	-0.026**	-0.121***
	(0.009)	(0.012)	(0.012)	(0.012)	(0.013)
Agglomeration Forces	1.217***	1.216***	1.216***	0.994***	1.112***
	(0.029)	(0.030)	(0.030)	(0.072)	(0.030)
Home State Flag	3.866***	3.868***	3.869***	3.868***	3.690***
-	(0.016)	(0.016)	(0.016)	(0.016)	(0.016)
Interaction coefficients:					
Non-Corporate Inventor			0.071***		
-			(0.017)		
Agglomeration				0.016***	
				(0.004)	
Assignee Has Patent					0.130***
					(0.001)
Fixed Effects	State	State	State	State	State
	+ Year	\times Year	\times Year	\times Year	\times Year
Observations	1951513	1951513	1951513	1951513	1951513

	(1)	(2)	(3)	(4)	(5)
Effective ATR	-0.093***	-0.025**	-0.026**	-0.026**	-0.121***
	(0.009)	(0.012)	(0.012)	(0.012)	(0.013)
Agglomeration Forces	1.217***	1.216***	1.216***	0.994***	1.112***
	(0.029)	(0.030)	(0.030)	(0.072)	(0.030)
Home State Flag	3.866***	3.868***	3.869***	3.868***	3.690***
	(0.016)	(0.016)	(0.016)	(0.016)	(0.016)
Interaction coefficients:					
Non-Corporate Inventor			0.071***		
1			(0.017)		
Agglomeration				0.016***	
00				(0.004)	
Assignee Has Patent					0.130***
Ŭ.					(0.001)
	State	State	State	State	State
Fixed Effects	+ Year	× Year	× Year	× Year	× Year
Observations	1951513	1951513	1951513	1951513	1951513

Conclusion

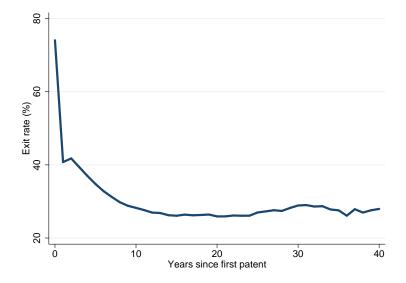
Taxes matter for innovation.

At the macro and micro levels (individual firm and inventor level).

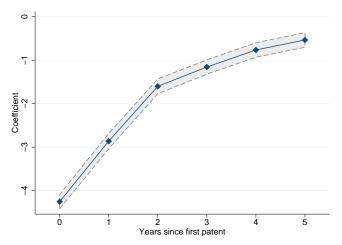
Quantity, quality, and location choices are affected.

Identification based on exploiting different taxes within state-year cells (individual tax brackets for the personal income tax), IV using federal tax changes, sharp episodes, and border county strategy.

Corporate inventors more sensitive to all taxes.

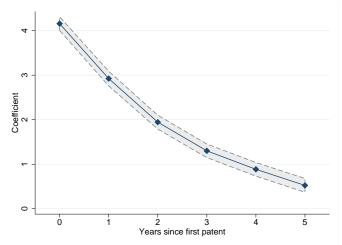

Spillovers across states important, but not the full story.

Agglomeration also matters.


What are long-run implications of this when thinking about tax policy?

APPENDIX

Probability of Exit over the Career Cycle



Probability of Low Quality Patent Throughout Career

Plots regression coefficients from a patent level regression of 1{Patent in 1^{st} quartile of citations} on inventor fixed effects, technology class × year fixed effects, and year of career effects.: 6+ years into career.

Probability of High Quality Patent Throughout Career

Plots regression coefficients from a patent level regression of 1{Patent in 4^{th} quartile of citations} on inventor fixed effects, technology class × year fixed effects, and year of career effects.: 6+ years into career.

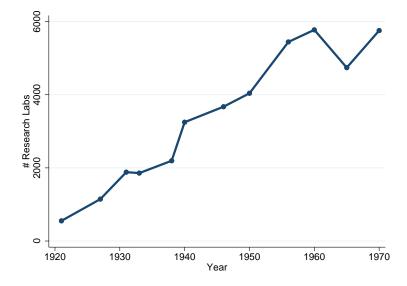
Geography of innovation. Patents per 10,000: 1920 • Back

Geography of innovation. Patents per 10,000: 1920-1930

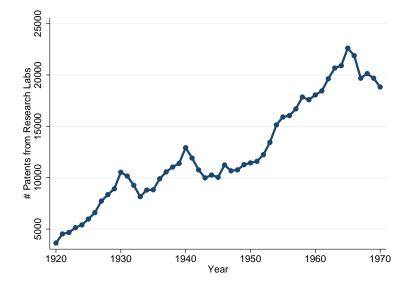
Geography of innovation. Patents per 10,000: 1930-1940

Geography of innovation. Patents per 10,000: 1940-1950

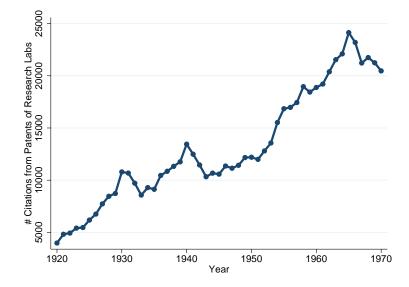
Geography of innovation. Patents per 10,000: 1950-1960

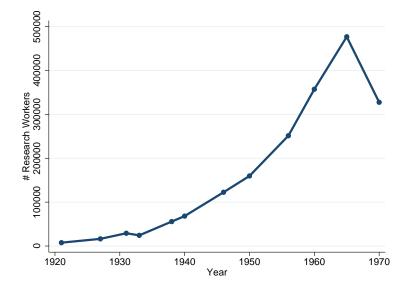

Geography of innovation. Patents per 10,000: 1960-1970

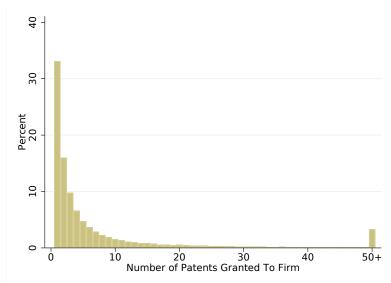
Geography of innovation. Patents per 10,000: 1970-1980


Geography of innovation. Patents per 10,000: 1980-1990

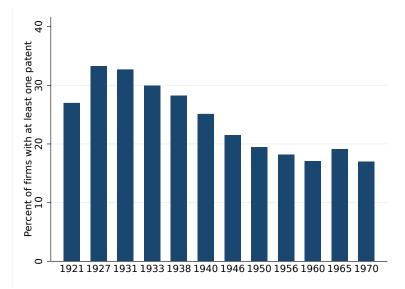
Geography of innovation. Patents per 10,000: 1990-2000 • Back


Number of R&D Labs


R&D Labs: Total Patents

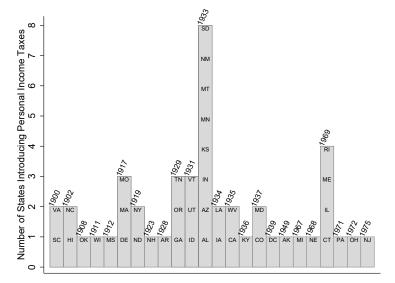

R&D Labs: Total Citations

R&D Labs: Total Research Workers


Distribution of Patents per Firm-Year (Conditional on > 0

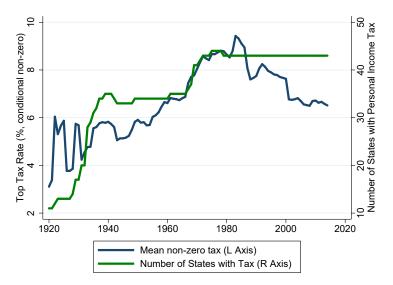
Distribution of Firm Patents over Time

Share of Firms with Patent over Time

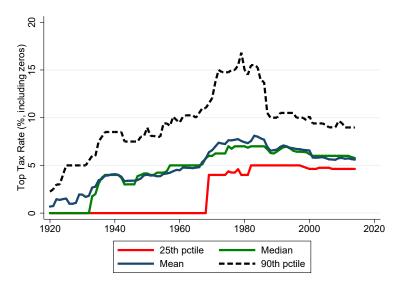


State Tax Rate Distributions: Effective incl. Federal

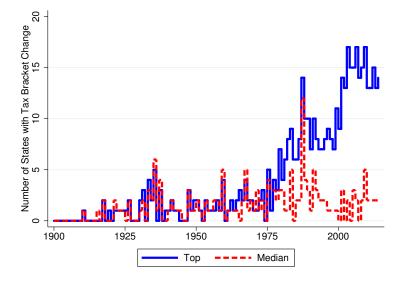
State Tax Rate Distributions: Effective incl. Federal


Historic Distribution

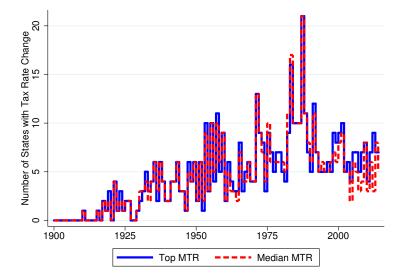
Introduction of State Personal Income Taxes



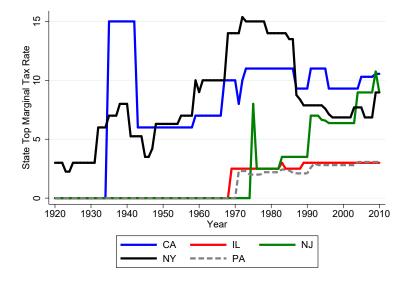
Before the 1940s, often affects mostly very high earners. • Back t


Intensive vs Extensive Margin of Personal Income Taxation

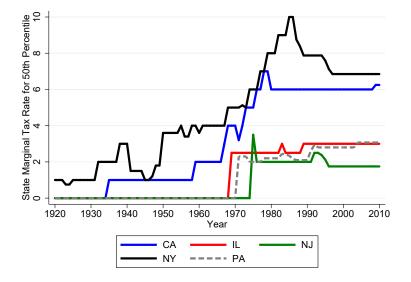
Distribution of Top Personal Income Tax Rates (incl. 0s)

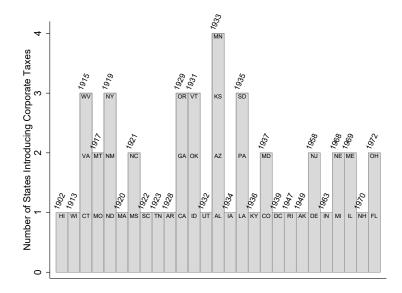


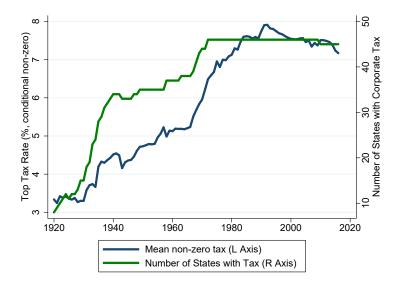
Number of State Tax Bracket Changes

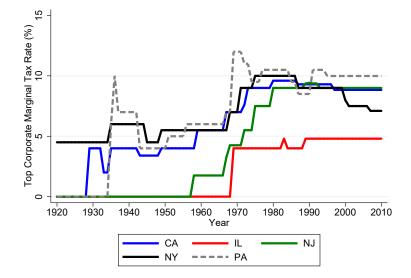


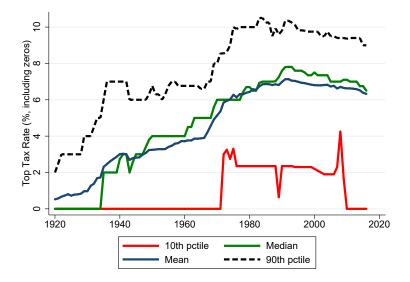
Contrary to Federal level, changes in brackets and tax rates very correlated – justifies use of tax rate measures at given income levels. ^{16/35}


Number of State Tax Rate Changes


Top MTR in Selected States over Time


MTR at Median Income in Selected States over Time


Introduction of State Corporate Taxes


States with a Corporate Tax and Mean Level Over time

Time Series of Key States Top Corporate Tax

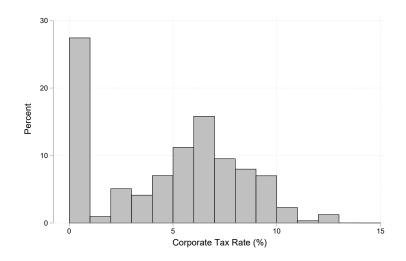
Distribution of Top Corporate Tax Rates (including 0s)

Types of corporate taxes

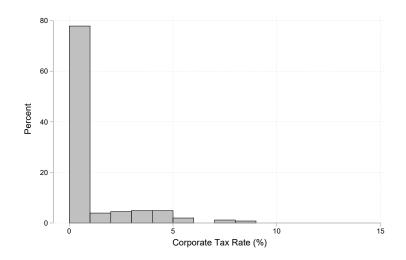
Franchise tax: imposed on corporations for the privilege of doing business in a state (considered indirect tax).

Corporate income tax: on profits (direct tax),

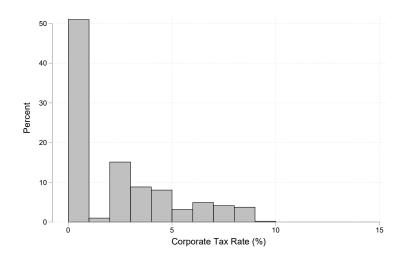
Some states have statutes that make direct taxes unconstitutional. Franchise taxes get around this.

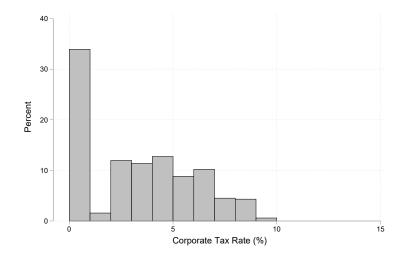

Some states have one or the other, or both (companies pay one or the other, not both, typically the max).

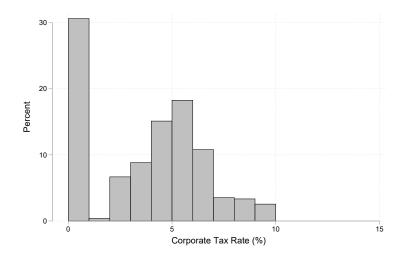
Type of franchise taxes:

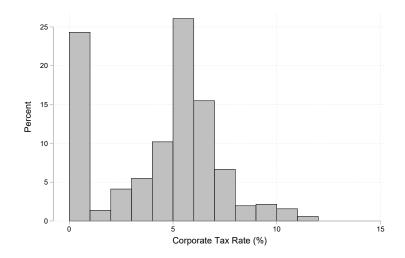

Net income

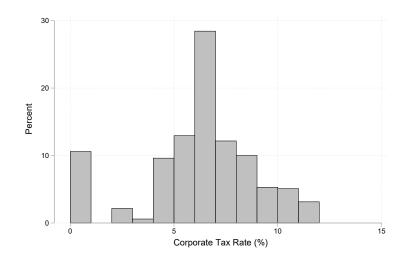
Business Enterprise tax (NH, tax on income).


State Corporate Tax Distribution: 1920-2016

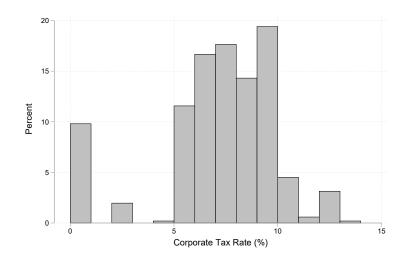

State Corporate Tax Distribution: 1920s

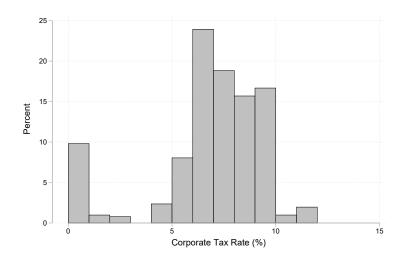

State Corporate Tax Distribution: 1930s

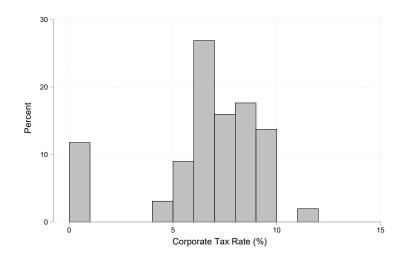

State Corporate Tax Distribution: 1940s


State Corporate Tax Distribution: 1950s

State Corporate Tax Distribution: 1960s


State Corporate Tax Distribution: 1970s


State Corporate Tax Distribution: 1980s


State Corporate Tax Distribution: 1990s

State Corporate Tax Distribution: 2000s

State Corporate Tax Distribution: 2010s

Macro Effects of Taxes 1940-2000: IV 🚥

PANEL B: INSTRUMENTAL VARIABLES

Dependent Variable:	Log	Log	Log	Share
	Patents	Citations	Inventors	Assigned
	(1)	(2)	(3)	(4)
Top Corporate MTR (%, lag)	-0.068***	-0.059***	-0.056***	-1.008***
top corporate with (70, tag)	(0.008)	(0.010)	(0.007)	(0.188)
	(0.008)	(0.010)	(0.007)	(0.100)
00^{th} Datila La same $MTD(9/1ax)$	0.049***	-0.046***	-0.046***	0.240***
90 th Pctile Income MTR (%, lag)	-0.048***			-0.349***
	(0.006)	(0.007)	(0.005)	(0.086)
			0.00	0.050
Median Income MTR (%, lag)	-0.032***	-0.029***	-0.034***	0.252***
	(0.003)	(0.005)	(0.003)	(0.088)
90 th Pctile Income ATR	-0.060***	-0.057***	-0.060***	0.038
	(0.006)	(0.008)	(0.005)	(0.120)
Median Income ATR (%, lag)	-0.101***	-0.108***	-0.091***	-0.370**
	(0.012)	(0.016)	(0.010)	(0.180)
Observations	2867	2867	2867	2867
Mean of Dep. Var.	7.18	9.87	7.31	71.74
S.D. of Dep. Var.	1.31	1.59	1.33	14.01

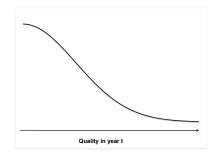
Macro Effects of Taxes 1940-2000: Border Counties 🚥

PANEL A: BORDER COUNTIES TOTAL EFFECTS					
Dependent Variable:	Log	Log	Log	Log Corp.	
	Patents	Citations	Inventors	Patents	
	(1)	(2)	(3)	(4)	
Top Corporate MTR (%, lag)	-0.028***	-0.054***	-0.022**	-0.023**	
	(0.009)	(0.012)	(0.010)	(0.010)	
90 th Pctile Income MTR (%, lag)	-0.019***	-0.021***	-0.021***	-0.021***	
	(0.004)	(0.006)	(0.004)	(0.005)	
Median Income MTR (%, lag)	-0.068***	-0.074***	-0.054***	-0.059***	
	(0.006)	(0.009)	(0.006)	(0.007)	
90 th Pctile Income ATR (%, lag)	-0.078***	-0.086***	-0.067***	-0.072***	
	(0.007)	(0.010)	(0.007)	(0.008)	
Median Income ATR (%, lag)	-0.104***	-0.122***	-0.102***	-0.098***	
	(0.014)	(0.016)	(0.015)	(0.016)	
Observations	8289	8289	8289	8217	
Mean of Dep. Var.	0.04	0.05	0.05	0.05	
S.D. of Dep. Var.	1.45	1.64	1.49	1.57	

Different possible measures of inventor quality:

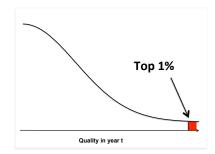
Quality measures

(dynamic and lagged)

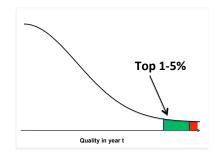

- 1. Citations-weighted patents
- 2. Patent count
- 3. Average citations per patent
- 4. Max citations per patent

Quality measures (dynamic and lagged)

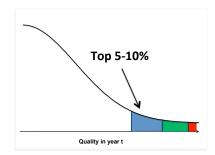
- 1. Citations-weighted patents
- 2. Patent count
- 3. Average citations per patent
- 4. Max citations per patent


Quality measures (dynamic and lagged)

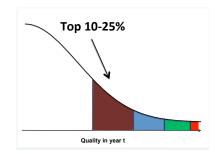
- 1. Citations-weighted patents
- 2. Patent count
- 3. Average citations per patent
- 4. Max citations per patent


Quality measures (dynamic and lagged)

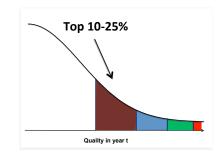
- 1. Citations-weighted patents
- 2. Patent count
- 3. Average citations per patent
- 4. Max citations per patent


Quality measures (dynamic and lagged)

- 1. Citations-weighted patents
- 2. Patent count
- 3. Average citations per patent
- 4. Max citations per patent

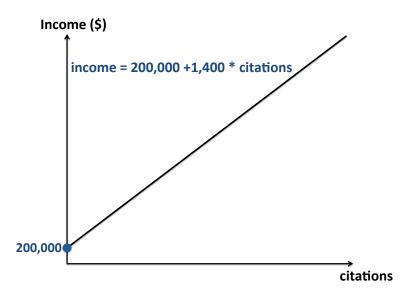

Quality measures (dynamic and lagged)

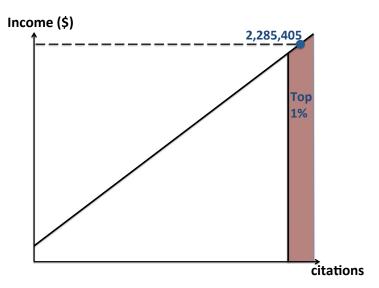
- 1. Citations-weighted patents
- 2. Patent count
- 3. Average citations per patent
- 4. Max citations per patent

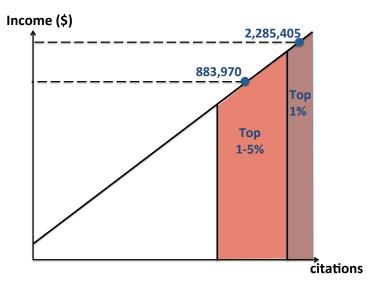

Quality measures (dynamic and lagged)

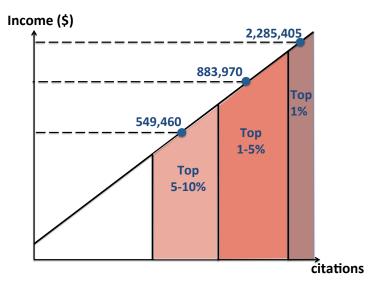
- 1. Citations-weighted patents
- 2. Patent count
- 3. Average citations per patent
- 4. Max citations per patent

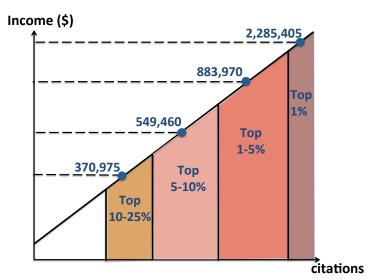
Quality measures (dynamic and lagged)

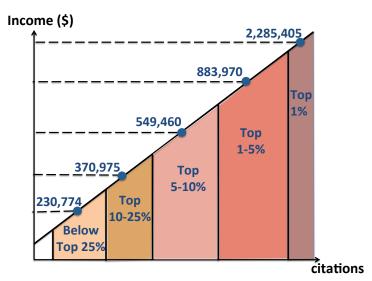

- 1. Citations-weighted patents
- 2. Patent count
- 3. Average citations per patent
- 4. Max citations per patent
- \rightarrow Dynamic, Persistent, Life-time ranking

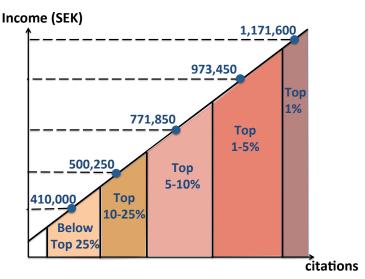


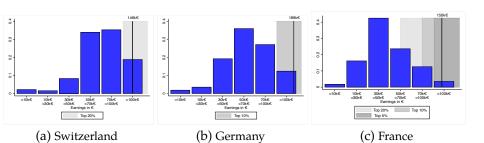

► M

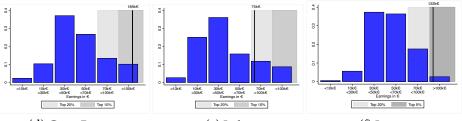

Income (\$)


citations



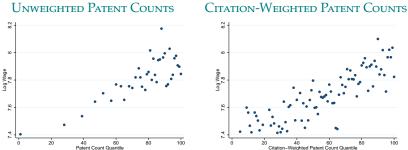





Link between Inventor Quality and Income in Swedish and Finnish Admin data 🚥

Source: Olof Ejermo and Otto Toivaannen.

Survey Income Distributions + Link Quality-Income



(d) Great Britain

(e) Italy

(f) Japan

Historical link between Income and Patents

ŀ	At the	Inventor	Level:	IV	Strategy DLS	1

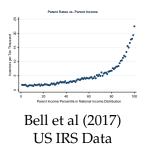
			-0/		
Dependent Variable:	Has Patent	Has 10+ Cites	Log Patents	Log Citations	Share
Dependent variable.	(3-year)	(3-year)	(3-year)	(3-year)	Assigned
	(1)	(2)	(3)	(4)	(5)
Effective MTR	-0.865***	-0.817***	-0.015***	-0.022***	-0.195***
	(0.029)	(0.029)	(0.001)	(0.001)	(0.019)
Top Corporate MTR	0.001	-0.021	-0.001*	-0.001	-0.015
* *	(0.044)	(0.042)	(0.001)	(0.001)	(0.030)
State FE	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Effective MTR	-0.781***	-0.773***	-0.015***	-0.021***	-0.177***
	(0.027)	(0.027)	(0.001)	(0.001)	(0.018)
Top Corporate MTR	0.041	0.023	-0.000	-0.001	0.034
I I I	(0.046)	(0.045)	(0.001)	(0.002)	(0.031)
State FE	Y	Y	Y	Y	Y
State Trends	Y	Y	Y	Y	Y
Year FE	Y	Y	Y	Y	Y
Inventor FE	Y	Y	Y	Y	Y
Observations	5956315	5956315	4545384	4392312	4545384
Mean of Dep. Var.	76.312	45.079	0.442	2.758	79.377
S.D. of Dep. Var.	42.517	49.757	0.664	1.453	39.747 _{33 /}

Macro Effects of Taxes, Excluding Movers (IV) 🚥						
	Log	Log	Log	Citations/	Share	
	Patents	Citations	Inventor	Patent	Assigned	
	(1)	(2)	(3)	(4)	(5)	
90th Pctile Income MTR	-0.048***	-0.048***	-0.046***	-0.081	-0.427***	
	(0.005)	(0.007)	(0.005)	(0.057)	(0.083)	
Top Corporate MTR	-0.068***	-0.068***	-0.055***	-0.052	-1.055***	
	(0.008)	(0.009)	(0.007)	(0.069)	(0.182)	
	0.000***	0.025***	0.02.4***	0.000***	0.1.0.*	
Median Income MTR	-0.033***	-0.025***	-0.034***	0.332***	0.169*	
	(0.003)	(0.005)	(0.003)	(0.109)	(0.087)	
Top Corporate MTR	-0.073***	-0.076***	-0.059***	-0.230**	-1.304***	
	(0.009)	(0.010)	(0.007)	(0.093)	(0.186)	
90th Pctile Income ATR	-0.062***	-0.055***	-0.060***	0.185**	-0.088	
	(0.006)	(0.008)	(0.005)	(0.088)	(0.118)	
Top Corporate MTR	-0.063***	-0.065***	-0.050***	-0.159**	-1.195***	
1 1	(0.008)	(0.009)	(0.007)	(0.077)	(0.188)	
Median Income ATR	-0.096***	-0.102***	-0.088***	-0.474***	-0.525***	
Median mediae mit	(0.011)	(0.014)	(0.010)	(0.141)	(0.176)	
Top Corporate MTR	-0.067***	-0.066***	-0.055***	0.015	-1.119***	
	(0.008)	(0.010)	(0.007)	(0.064)	(0.176)	
Observations	2867	2867	2867	2867	2867	
Mean of Dep. Var.	6.90	9.56	7.11	16.85	68.40	
S.D. of Dep. Var.	1.30	1.57	1.32	11.31	14.66 34/3	

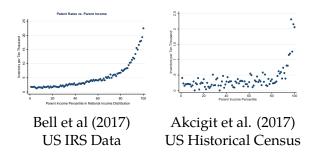
order County Effects	or run		ciuum	<u>8 mov</u>	
Dependent Variable:	Log	Log	Log	Citations/	Log Corp.
Dependent variable.	Patents	Citations	Inventors	Patent	Patents
	(1)	(2)	(3)	(4)	(5)
90 th Pctile Personal Income MTR (%, lag)	-0.017***	-0.013*	-0.016***	0.076	-0.015***
	(0.004)	(0.007)	(0.005)	(0.107)	(0.005)
Top Corporate MTR (%, lag)	-0.009	-0.030**	-0.007	-0.605**	-0.001
	(0.009)	(0.014)	(0.010)	(0.250)	(0.010)
	0.041000	0.045444	0.054	0.400	0.050444
Median Personal Income MTR (%, lag)	-0.064***	-0.065***	-0.051***	-0.198	-0.059***
	(0.007)	(0.011)	(0.007)	(0.186)	(0.008)
Top Corporate MTR (%, lag)	-0.008	-0.029**	-0.007	-0.568**	-0.000
	(0.010)	(0.014)	(0.011)	(0.233)	(0.012)
90 th Pctile Personal Income ATR (%, lag)	-0.073***	-0.070***	-0.061***	-0.176	-0.069***
	(0.007)	(0.010)	(0.007)	(0.172)	(0.008)
Top Corporate MTR (%, lag)	-0.004	-0.025*	-0.003	-0.561**	0.004
	(0.010)	(0.013)	(0.010)	(0.232)	(0.011)
	0.405***	0.400***	0.407***	0.404**	
Median Personal Income ATR (%, lag)	-0.107***	-0.123***	-0.106***	-0.421**	-0.111***
	(0.015)	(0.020)	(0.015)	(0.197)	(0.017)
Top Corporate MTR (%, lag)	-0.015	-0.036**	-0.013	-0.591**	-0.007
	(0.011)	(0.015)	(0.012)	(0.243)	(0.013)
Observations	8302	8295	8307	8302	8131
Mean of Dep. Var.	0.050	0.052	0.060	-0.235	0.078
S.D. of Dep. Var.	1.527	1.774	1.558	15.055	1.666 35

Border County Effects of Taxes, Excluding Movers 🚥

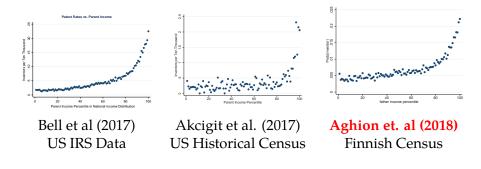
INEQUALITY AND INNOVATION Lecture Slides 3: Social Origins of Inventors¹

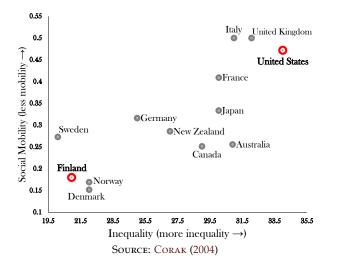

> **Ufuk Akcigit** University of Chicago

> > January 7, 2019


¹Based on Aghion, Akcigit, Hyytinen, Toivanen (2018)

- Who becomes an inventor? Does innovation attract the most talented individuals or is there misallocation of talents into innovation?
- The data shows some striking patterns:


- Who becomes an inventor? Does innovation attract the most talented individuals or is there misallocation of talents into innovation?
- The data shows some striking patterns:


- Who becomes an inventor? Does innovation attract the most talented individuals or is there misallocation of talents into innovation?
- The data shows some striking patterns:

- Who becomes an inventor? Does innovation attract the most talented individuals or is there misallocation of talents into innovation?
- The data shows some striking patterns:

FIGURE 2: THE GREAT GATSBY CURVE

Research Questions & Outline

- 1. Does becoming an inventor depend on **socio-economic background**, **education**, or **innate ability**?
- 2. Who benefits from innovation?

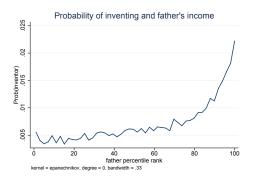
Ufuk Akcigit (University of Chicago)

Data

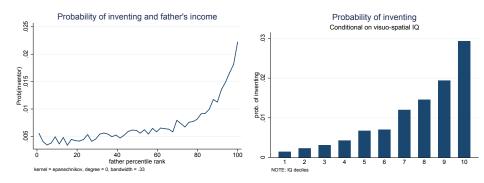
- ► We merge four Finnish datasets, 1988-2012:
 - 1. **Individual data** on income, education and other characteristics, from Statistics Finland (SF)
 - 2. **Firm-level data** (inventors' co-workers, senior/junior managers, entrepreneurs), from Statistics Finland (SF)
 - 3. Patent data from European Patent Office (EPO)
 - 4. IQ data from the Finnish Defence Force (FDF)

Ufuk Akcigit (University of Chicago)

Summary Statistics


- ► Our initial sample covers 1988-2012 and consists of
 - ► 700,000 individuals,
 - ▶ 12 575 inventors,
 - 6 395 inventors in the IQ sample.

Section 1:


Who Becomes an Inventor?

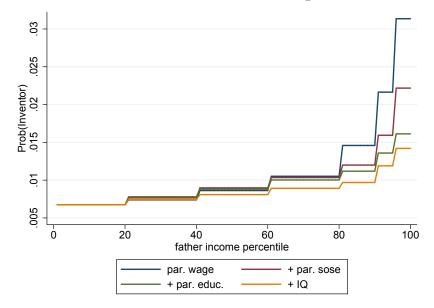
Ufuk Akcigit (University of Chicago)

Who Becomes an Inventor? Father's Income vs Education

Who Becomes an Inventor? Father's Income vs Education

TABLE 1: WHO BECOMES INVENTOR REGRESSIONS

VARIABLES fa income 91-95 fa income 96-100 mo income 91-95 mo income 96-100 fa bluecollar mo bluecollar fa MSc fa PhD mo MSc mo PhD IO 91-95 IO 96-100 Nobs


VARIABLES	(1)
fa income 91-95	0.0149***
fa income 96-100	0.0246***
mo income 91-95	0.0126***
mo income 96-100	0.00260**
fa bluecollar	
mo bluecollar	
fa MSc	
fa PhD	
mo MSc	
mo PhD	
IQ 91-95	
IQ 96-100	
Nobs	352,668

VARIABLES	(1)	(2)
fa income 91-95	0.0149***	0.00919***
fa income 96-100	0.0246***	0.0154***
mo income 91-95	0.0126***	0.00627**
mo income 96-100	0.00260**	0.00216*
fa bluecollar		-0.00121**
mo bluecollar		-0.00101*
fa MSc		
fa PhD		
mo MSc		
mo PhD		
IQ 91-95		
IQ 96-100		
Nobs	352,668	352,668

VARIABLES	(1)	(2)	(3)
fa income 91-95	0.0149***	0.00919***	0.00684***
fa income 96-100	0.0246***	0.0154***	0.00938***
mo income 91-95	0.0126***	0.00627**	-0.000846
mo income 96-100	0.00260**	0.00216*	0.000139
fa bluecollar		-0.00121**	-0.000999*
mo bluecollar		-0.00101*	-0.000263
fa MSc			0.0119***
fa PhD			0.0310***
mo MSc			0.0152***
mo PhD			0.0123
IQ 91-95			
IQ 96-100			
Nobs	352,668	352,668	352,668

VARIABLES	(1)	(2)	(3)	(4)
fa income 91-95	0.0149***	0.00919***	0.00684***	0.00515***
fa income 96-100	0.0246***	0.0154***	0.00938***	0.00745***
mo income 91-95	0.0126***	0.00627**	-0.000846	-0.00186
mo income 96-100	0.00260**	0.00216*	0.000139	-0.000410
fa bluecollar		-0.00121**	-0.000999*	-0.000759
mo bluecollar		-0.00101*	-0.000263	4.32e-05
fa MSc			0.0119***	0.00876***
fa PhD			0.0310***	0.0275***
mo MSc			0.0152***	0.0119***
mo PhD			0.0123	0.00826
IQ 91-95				0.0236***
IQ 96-100				0.0351***
Nobs	352,668	352,668	352,668	352,668

Who Becomes an Inventor? Visual Representation

Decomposing the "Who Becomes" Regression

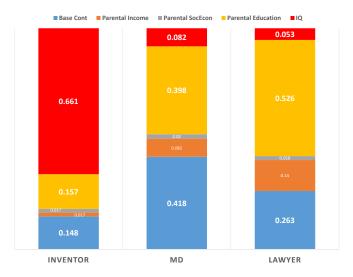
TABLE 2: DECOMPOSING THE EXPLAINED IMPACT ON BECOMING AN INVENTOR

– B. Fraction of Partial R-squared –					
Explanatory variables	Inventor				
Base controls	0.148				
Parental income	0.017				
Parental socecon	0.017				
Parental education	0.157				
IQ	0.661				

Base controls: A 4th order polynomial in log(age), 21 region dummies, dummies for suburban and urban regions, dummies for mother tongue, and dummies for parental decade of birth.

Ufuk Akcigit (University of Chicago)

Decomposing the "Who Becomes" Regression


TABLE 2: DECOMPOSING THE EXPLAINED IMPACT ON BECOMING AN INVENTOR

-	– B. Fraction of Partial R-s	squared –	
Explanatory variables	Inventor	MD	Lawyer
Base controls	0.148	0.418	0.263
Parental income	0.017	0.082	0.140
Parental socecon	0.017	0.020	0.018
Parental education	0.157	0.398	0.526
IQ	0.661	0.082	0.053

Base controls: A 4th order polynomial in log(age), 21 region dummies, dummies for suburban and urban regions, dummies for mother tongue, and dummies for parental decade of birth.

Ufuk Akcigit (University of Chicago)

Decomposing the "Who Becomes" Regression

Endogeneity of IQ: Close Brother Comparison

Ufuk Akcigit (University of Chicago)

Endogeneity of IQ: Close Brother Comparison

	(1)	(2)
first born	-0.00209**	-0.000933
fa income 91-95	0.00277	-0.0101
fa income 96-100	0.0113***	-0.0272
mo income 91-95	0.00375	-0.00512
mo income 96-100	0.00393	0.00693
fa bluecollar	0.000190	
mo bluecollar	-0.00127	
IQ 91-95	0.0216***	0.0202***
IQ 96-100	0.0353***	0.0320***
Family Fixed Effect	NO	YES
Observations	82,054	82,054
Number of families		41,605

TABLE 1: COMPARING CLOSE BROTHERS

Family Structure

Ufuk Akcigit (University of Chicago)

Family Structure

TABLE 2: ROLE OF FAMILY STRUCTURE AND RESOURCES

	(1)	(2)	(3)	(4)
biol fa away	-0.00399***	-0.00309***	-0.00311***	-0.00295***
biol mo away	-0.00343**	-0.00410**	-0.00398**	-0.00417**
biol fa income 91-95	0.00500***	0.00528***	0.00577***	0.00574***
biol fa income 96-100	0.00730***	0.00772***	0.00845***	0.00836***
biol fa income 91-95 x away		-0.00625*	-0.00669*	-0.00613*
biol fa income 96-100 x away		-0.0118**	-0.0125***	-0.00993**
step fa income 91-95			-0.00327	-0.00329
step fa income 96-100			-0.00501*	-0.00504*
step mo income 91-95			-0.00381	-0.00344
step mo income 96-100			-0.0191**	-0.0190**
biol fa MSc	0.00874***	0.00874***	0.00880***	0.00884***
biol fa PhD	0.0275***	0.0275***	0.0275***	0.0278***
biol mo MSc	0.0117***	0.0117***	0.0121***	0.0125***
biol mo PhD	0.00794	0.00808	0.00908	0.0110
biol fa MSc x away				-0.000712
biol fa PhD x away				-0.0128
biol mo MSc x away				-0.00776
biol mo PhD x away				-0.0346***
Observations	352,668	352,668	352,668	352,668

Who Becomes an Inventor? Family Structure

- We see a negative and significant effect of not living with one or the other the biological.
- The positive direct impact of a high income father only materializes if the individual grows with the biological father.
- Step parents obtain negative coefficients throughout, suggesting that step parent income at best plays no role in leveling the road towards innovation.

Overall, these results suggest that the association of father income on the probability of becoming an inventor is conditional on the father living with the individual, whereas this is not the case for the effects of parental education.

Ufuk Akcigit (University of Chicago)

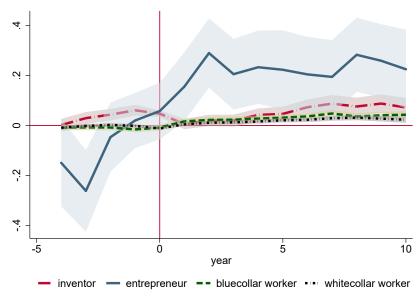
Potential Misallocation

(2)(3) (1)(4)(5) (6) 0.00527*** 0.00515*** 0.00527*** fa income 91-95 -0.00979 -0.0102-0.00984fa income 96-100 0.00617*** 0.00745*** 0.00615*** -0.0280 -0.0273-0.0281 -0.00185 -0.00368 -0.00522 -0.00403 mo income 91-95 -0.00192-0.00192mo income 96-100 -0.000202-0.000400-0.0002310.00561 0.00693 0.00562 IO 91-95 0.0237*** 0.0236*** 0.0237*** 0.0204*** 0.0203*** 0.0204*** 0.0331*** IO 96-100 0.0331*** 0.0350*** 0.0268*** 0.0319*** 0.0269*** fa inc 96-100 x IO 96-100 0.0144*** 0.0147*** 0.0256* 0.0270* mo inc 96-100 x IO 96-100 -0.002750.0339 0.0336 -0.00358Sample IO IO IO Brothers Brothers Brothers Estimator OLS OLS OLS FE FE FE Observations 352.668 352.668 352.668 82.054 82.054 82.054 Number of families 41.605 41.605 41.605

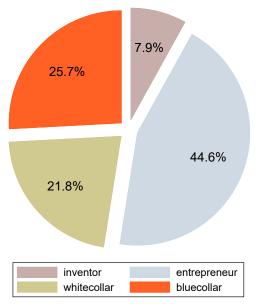
TABLE 3: POTENTIAL MISALLOCATION

Role of Own Education

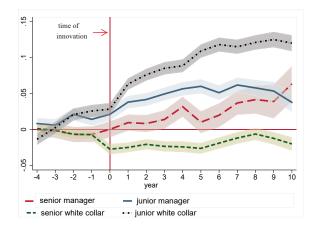
fa income 91-95	0.00224**	fa MSc	0.000430	
fa income 96-100	0.00404***	fa PhD	0.00974**	
mo income 91-95	-0.00189	mo MSc	0.00129	
mo income 96-100	-0.000279	mo PhD	-0.00546	
fa bluecollar	-0.000736	fa STEM	0.00460***	
fa jr whitec.	-1.99e-05	mo STEM	-0.000634	
fa sr whitec.	0.000491	IQ 91-95	0.0103***	
mo bluecollar	0.000166	IQ 96-100	0.0157***	
mo jr whitec.	0.000315	STEM MSc	0.104***	
mo sr whitec.	0.000723	STEM PhD	0.225***	
Observations: 352,668				

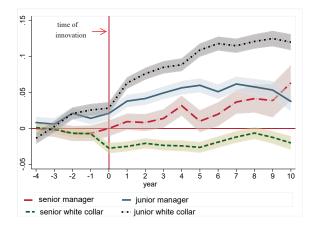

TABLE 4: ROLE OF OWN EDUCATION

Role of Own Education

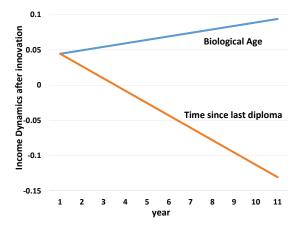

TABLE 8: DECOMPOSITION WITH EDUCATION

– B. Fraction of Partial R-squared –			
Base controls	0.0064		
Parental income	0.0000		
Parental socecon	0.0000		
Parental education	0.0048		
IQ	0.0209		
Education	0.9678		

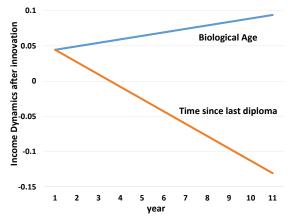

Returns to Innovation


Returns to Innovation

Within-firm Income Dynamics Upon Innovation I/II



Within-firm Income Dynamics Upon Innovation I/II



Senior white collars are hurt by innovation!

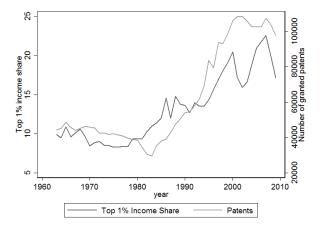
Within-firm Income Dynamics Upon Innovation II/II

Within-firm Income Dynamics Upon Innovation II/II

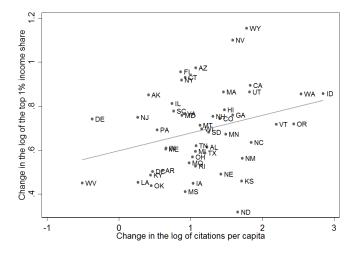
Negative impact comes from distance to frontier! Retraining programs could be helpful to make growth more "inclusive"!

Taking Stock

- Overall, the above findings suggest a prominent role for own education and for IQ when explaining an individual's probability of becoming an inventor.
- Innovation has heterogeneous impacts on different types of workers.
- ► Re-training/education could be key for more inclusive growth!


INEQUALITY AND INNOVATION Lecture Slides 3B: Innovation and Top Income Inequality¹

Ufuk Akcigit University of Chicago


January 7, 2019

¹Based on Aghion, Akcigit, Bergeaud, Blundell, Hemous (2019)

- Past decades have witnessed a sharp increase in top income inequality worldwide and particularly in developed countries.
- However no consensus has been reached as to the main underlying factors behind this surge in top income inequality.
- ► In their work AABBH argue that innovation is certainly one such factor and that it also affects social mobility.

Top Income Share and Patenting

• Simple Schumpeterian growth model where:

- Growth results from quality-improving innovations by incumbents and potential entrants.
- Innovations allow firms to increase their mark-ups, while reducing their labor demand

 \longrightarrow **Prediction 1**: Innovation increases the entrepreneurial share of income at the expense of workers' share

Incumbents can block entrant innovations through lobbying

 — Prediction 2: Entrant innovation increases top income inequality, but less so in high-lobbying states

• Simple Schumpeterian growth model where:

- Growth results from quality-improving innovations by incumbents and potential entrants.
- Innovations allow firms to increase their mark-ups, while reducing their labor demand

 \longrightarrow **Prediction 1**: Innovation increases the entrepreneurial share of income at the expense of workers' share

Incumbents can block entrant innovations through lobbying

 — Prediction 2: Entrant innovation increases top income inequality, but less so in high-lobbying states

• A successful entrant replace the incumbent who inherited a firm from her parent

 \longrightarrow then the incumbent becomes a worker and the entrant becomes an entrepreneur

 \longrightarrow **Prediction 3**: Entrant innovation enhances social mobility but less so in high-lobbying states

- Our core empirical analysis is carried out at the US state level
- Our dataset covers the period 1975-2010, a time range imposed upon us by the availability of patent data
- Regressing top income inequality on innovativeness:

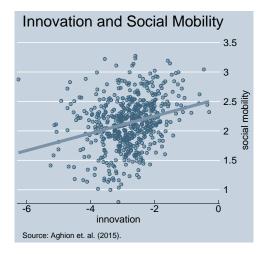
$$\log(y_{it}) = A + B_i + B_t + \beta_1 \log(innov_{i(t-1)}) + \beta_2 X_{it} + \varepsilon_{it}$$

Innovation data

- The US patent office (USPTO) provides complete statistics for patents granted between the years 1975 and 2010.
 - Information on the state of residence of the patent inventor, the date of application of the patent and a link to every citing patents granted before 2010.
 - We correct for truncation bias in patent count and patent citations following Jaffe, Hall and Trajtenberg (2001).
- We use several measure of innovativeness
 - number of patents
 - 2, 4 and 5 year windows citations counter
 - is the patent among the 5% most cited in the year by 2010?
 - total corrected citation counter
 - bas the patent been renewed?

Results

Measure of	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Inequality	Top 1%	Top 1%	Top 1 $\%$	Top 1%	Top 1%	Top 1%	Top 1%
Innovation	patent_pc	3YWindow	4YWindow	5YWindow	Citations	Share5	Renew
Innovation	0.027*	0.029^{***}	0.042^{***}	0.041^{***}	0.048***	0.024^{***}	0.032***
	(1.89)	(3.47)	(4.58)	(4.24)	(5.78)	(4.84)	(3.15)
Gdppc	-0.060	-0.062	-0.068	-0.055	-0.091*	-0.067	-0.144^{**}
	(-0.52)	(-1.13)	(-1.21)	(-0.94)	(-1.66)	(-1.25)	(-2.06)
Popgrowth	0.280	0.450	0.024	-0.174	0.068	0.007	1.018
	(0.37)	(0.71)	(0.04)	(-0.24)	(0.10)	(0.01)	(1.36)
Share finance	0.013	0.020	0.024^{*}	0.026*	0.024^{*}	0.022^{*}	0.018
	(0.57)	(1.48)	(1.74)	(1.76)	(1.87)	(1.72)	(1.28)
Output gap	-1.954	-2.648**	-2.302	-2.143	-2.115	-2.149	-3.308**
	(-1.37)	(-2.01)	(-1.64)	(-1.46)	(-1.53)	(-1.53)	(-1.98)
Gvtsize	-0.070	-0.091**	-0.109**	-0.139***	-0.090**	-0.098**	-0.058
	(-0.76)	(-2.13)	(-2.51)	(-3.09)	(-2.16)	(-2.32)	(-1.14)
0							
\mathbb{R}^2	0.920	0.922	0.916	0.908	0.921	0.921	0.885
N	1785	1632	1581	1530	1632	1632	1435


- Following Aghion et al (2004), we consider the time-varying State composition of the appropriation committees of the Senate and the House of Representatives.
- A Committee member often push towards subsidizing research education in her State, in order to increase her chances of reelection in that State.

 \longrightarrow a state with one of its congressmen seating on the committee is likely to receive more funding for research education, which should increase its innovativeness in following years

Second instrument based on knowledge spillovers
 The idea is to instrument innovation in a state by the sum of
 innovation intensities in other states weighted by the relative
 innovation spillovers from these other states

• When measured by the number of patent per capita, innovativeness accounts on average for about 17% of the total increase in the top 1% income share between 1975 and 2010 according to either IV regression

Innovation and Social Mobility

Innovation and Social Mobility

Measure of	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Mobility	AM25	P1-5	P2-5	AM25	P1-5	P2-5	AM25
Innovation	patent_pc	patent_pc	patent_pc	patent_pc	patent_pc	patent_pc	patent_pc
Innovation from Entrants	0.016**	0.058^{**}	0.038^{**}				0.018**
Innovation from Entrants	(2.61)	(2.39)	(2.11)				(2.61)
Innovation from Incumbent				0.007	0.032	0.020	-0.006
Innovation from Incumbent				(0.87)	(0.97)	(0.75)	(-0.64)
Gdppc	-0.136***	-0.381*	-0.330**	-0.136^{***}	-0.405^{*}	-0.340^{**}	-0.128^{***}
Guppe	(-3.08)	(-1.78)	(-2.11)	(-2.96)	(-1.87)	(-2.14)	(-2.83)
Popgrowth	0.287	0.757	0.827	0.272	0.708	0.792	0.290
1 opgrowin	(1.00)	(0.66)	(0.98)	(0.92)	(0.61)	(0.93)	(1.02)
Gutsize	0.000	-0.000	-0.001	0.000	-0.000	-0.001	0.000
Guiaze	(0.04)	(-0.22)	(-0.80)	(0.08)	(-0.21)	(-0.76)	(0.07)
Participation Rate	0.785^{***}	2.291^{***}	1.815^{***}	0.758^{***}	2.180^{***}	1.743^{***}	0.799^{***}
1 annespanon 1 ann	(4.61)	(3.44)	(3.25)	(4.48)	(3.30)	(3.14)	(4.71)
School Expenditure	0.109^{**}	0.467^{**}	0.322^{**}	0.102^{*}	0.442^{**}	0.306^{*}	0.111^{**}
2	(2.09)	(2.38)	(2.04)	(1.95)	(2.24)	(1.95)	(2.10)
College per capita	0.081*	0.068	0.090	0.075	0.036	0.071	0.084*
e e e e e e e e e e e e e e e e e e e	(1.70)	(0.36)	(0.57)	(1.57)	(0.19)	(0.44)	(1.81)
	0.040***		1 010***	0.000***		4 0 1 4 4 4 4	
Employment Manuf	-0.312***	-1.508***	-1.212***	-0.366***	-1.705***	-1.341***	-0.307***
	(-3.16)	(-4.12)	(-3.95)	(-3.70)	(-4.54)	(-4.34)	(-3.04)
	0.000	0.000	0.004	0.010	0.048	0.000	0.001
R ²	0.260	0.233	0.221	0.243	0.217	0.209	0.261
N	541	541	541	541	541	541	541

Ufuk Akcigit (University of Chicago)

INEQUALITY AND INNOVATION Lecture Slides 4: What Happened to the U.S. Business Dynamism?¹

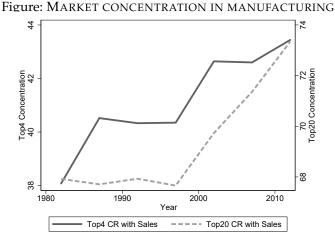
Ufuk Akcigit University of Chicago

January 7, 2019

¹Based on Akcigit, Ates (2018, 2019)

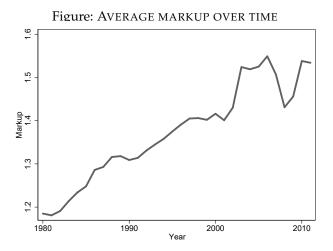
Introduction

- ► Firm and industry dynamics have shown striking trends over the past several decades.
- Business dynamism and entrepreneurship in the U.S. and in many parts of Europe have declined.
- Labor share has decreased and market concentration has increased.
- What do these facts tell us about competition policy?
- Need a unifying theoretical framework to discuss positive and normative implications.

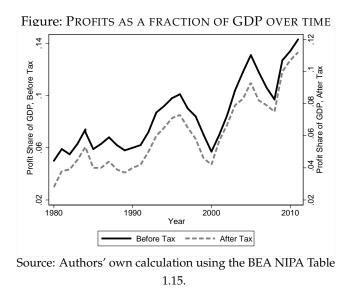

- 1. Summarize various empirical trends on firm dynamics.
- 2. Use growth theory to discuss the underlying mechanism.
- 3. Conclude with some new supporting facts.

Empirical Trends

(Mostly based on the US data)


Ufuk Akcigit (University of Chicago)

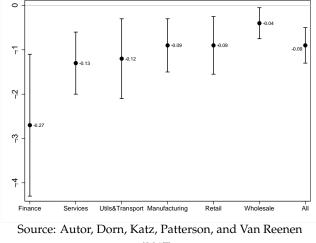
Fact 1: Market concentration has risen.


Source: Autor, Dorn, Katz, Patterson, and Van Reenen (2017).

Fact 2: Average markups have increased.

Source: De Loecker and Eeckhout (2017).

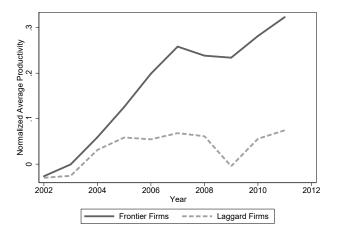
Fact 3: Profit share of GDP has increased.


Fact 4: The labor share of output has gone down.

Source: Karabarbounis and Neiman (2013).

Fact 5: Positive correlation of concentration and labor <u>share.</u>

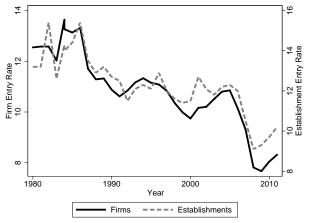
Figure: SECTOR-LEVEL CHANGES IN CONCENTRATION AND LABOR SHARE



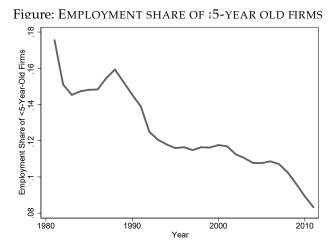
Ufuk Akcigit (University of Chicago)

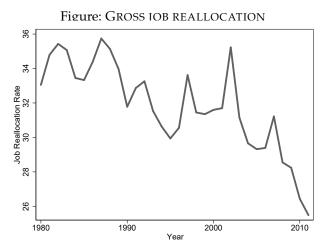
```
(2017).
```

Fact 6: Larger gap btw. frontier and laggards.


Figure: LABOR PRODUCTIVITY OF FRONTIER AND LAGGARD FIRMS

Source: Andrews, Criscuolo, and Gal (2016).


Fact 7: Firm entry rate has declined.


Source: Authors' calculations from BDS database [see also Decker, Haltiwanger, Jarmin, and Miranda (2016a)].

Fact 8: Employment share of young firms has fallen.


Source: Decker, Haltiwanger, Jarmin, and Miranda (2016a).

Fact 9: Job reallocation has slowed down.

Source: Decker, Haltiwanger, Jarmin, and Miranda (2016a).

Fact 10: Dispersion of firm growth has decreased.

Source: Decker, Haltiwanger, Jarmin, and Miranda (2016a).

Model

Ufuk Akcigit (University of Chicago)

Ingredients

Schumpeterian step-by-step innovation model

Ingredients

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

Explicit competition margin:

 \implies incumbents innovate to increase their markups.

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

Explicit competition margin:

 \implies incumbents innovate to increase their markups.

 \implies followers innovate to catch-up and leapfrog the leader if they have **"hope"**.

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

- \implies incumbents innovate to increase their markups.
- \implies followers innovate to catch-up and leapfrog the leader if they have **"hope"**.
- Similarly, entrants enter if and only if they have the hope of taking down the incumbents.

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

- \implies incumbents innovate to increase their markups.
- \implies followers innovate to catch-up and leapfrog the leader if they have **"hope"**.
- Similarly, entrants enter if and only if they have the hope of taking down the incumbents.
 - Entrants are "forward looking".

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

Explicit competition margin:

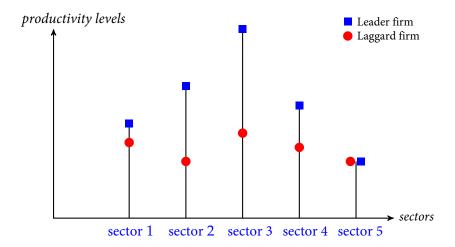
- \implies incumbents innovate to increase their markups.
- \implies followers innovate to catch-up and leapfrog the leader if they have **"hope"**.
- Similarly, entrants enter if and only if they have the hope of taking down the incumbents.
 - Entrants are **"forward looking"**.
- We consider the role of policy:

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

- \implies incumbents innovate to increase their markups.
- \implies followers innovate to catch-up and leapfrog the leader if they have **"hope"**.
- Similarly, entrants enter if and only if they have the hope of taking down the incumbents.
 - Entrants are **"forward looking"**.
- We consider the role of policy:
 - increasing entry cost,

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

- \implies incumbents innovate to increase their markups.
- \implies followers innovate to catch-up and leapfrog the leader if they have **"hope"**.
- Similarly, entrants enter if and only if they have the hope of taking down the incumbents.
 - Entrants are **"forward looking"**.
- We consider the role of policy:
 - increasing entry cost,
 - incumbent tax cut,


- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

- \implies incumbents innovate to increase their markups.
- \implies followers innovate to catch-up and leapfrog the leader if they have **"hope"**.
- Similarly, entrants enter if and only if they have the hope of taking down the incumbents.
 - Entrants are **"forward looking"**.
- We consider the role of policy:
 - increasing entry cost,
 - incumbent tax cut,
 - R&D benefits, and

- Schumpeterian step-by-step innovation model
 - Aghion, Bloom, Blundell, Griffith, and Howitt (2005), Acemoglu and Akcigit (2012), Akcigit, Ates, and Impullitti (2018).

- \implies incumbents innovate to increase their markups.
- \implies followers innovate to catch-up and leapfrog the leader if they have **"hope"**.
- Similarly, entrants enter if and only if they have the hope of taking down the incumbents.
 - Entrants are **"forward looking"**.
- We consider the role of policy:
 - increasing entry cost,
 - incumbent tax cut,
 - R&D benefits, and
 - intellectual property rights protection.

Model Economy

Household preferences:

$$U_{t} = \int_{t}^{\infty} \exp\left(-\rho\left(s-t\right)\right) \ln C_{s} ds$$

Final-good production: using intermediate varieties

$$\ln Y_t = \int_0^1 \ln[\sum_{i=1}^2 y_{ijt}] dj$$

Intermediate-goods production: using labor

$$y_{ijt} = q_{ijt}l_{ijt}$$

R&D technology: using labor

incumbents:
$$x_{jt} = \left(\gamma \frac{h_{jt}}{\alpha}\right)^{\frac{1}{\gamma}}$$

entrants: $\tilde{x}_{jt} = \left(\tilde{\gamma} \frac{\tilde{h}_{jt}}{\tilde{\alpha}}\right)^{\frac{1}{\tilde{\gamma}}}$

Value function:

$$r_{t}V_{nt} - \dot{V}_{nt} = \max_{x_{nt}} \left\{ (1 - \tau) \left(1 - \frac{1}{\lambda^{n}} \right) Y_{t} - (1 - s) \alpha \frac{x_{nt}^{\gamma}}{\gamma} w_{t} \right. \\ \left. + x_{nt} \left[V_{n+1t} - V_{nt} \right] \right. \\ \left. + \left(\phi_{f} x_{-nt} + \phi_{e} \tilde{x}_{-nt} + \delta \right) \left[V_{0t} - V_{nt} \right] \right. \\ \left. + \left(\left(1 - \phi_{f} \right) x_{-nt} + (1 - \phi_{e}) \tilde{x}_{-nt} \right) \left[V_{n-1t} - V_{nt} \right] \right\}$$

Entrant problem:

$$\max_{\tilde{x}_{-nt}} \left\{ -(1+c)\tilde{\alpha} \frac{\tilde{x}_{-nt}^{\gamma}}{\gamma} w_t + \tilde{x}_{nt} \left[(1-\phi_e) V_{-n+1t} + \phi_e V_{0t} - 0 \right] \right\}$$

Value function:

$$r_{t}V_{nt} - \dot{V}_{nt} = \max_{x_{nt}} \left\{ (1 - \tau) \left(1 - \frac{1}{\lambda^{n}} \right) Y_{t} - (1 - s) \alpha \frac{x_{nt}^{\gamma}}{\gamma} w_{t} \right. \\ \left. + x_{nt} \left[V_{n+1t} - V_{nt} \right] \right. \\ \left. + \left(\phi_{f} x_{-nt} + \phi_{e} \tilde{x}_{-nt} + \delta \right) \left[V_{0t} - V_{nt} \right] \right. \\ \left. + \left((1 - \phi_{f}) x_{-nt} + (1 - \phi_{e}) \tilde{x}_{-nt} \right) \left[V_{n-1t} - V_{nt} \right] \right\}$$

Entrant problem:

$$\max_{\tilde{x}_{-nt}} \left\{ -(1+c)\tilde{\alpha} \frac{\tilde{x}_{-nt}^{\gamma}}{\gamma} w_t + \tilde{x}_{nt} \left[(1-\phi_e) V_{-n+1t} + \phi_e V_{0t} - 0 \right] \right\}$$

Policies:

- 1- τ : Incumbent tax
- 2- s: R&D subsidy
- 3- δ : IP protection
- 4- c: Entry cost

Optimal innovation:

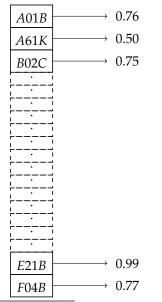
incumbents:
$$x_{nt} = \left[\frac{1}{\alpha (1 - \tau \mathbb{I}_{n>0}) \omega_t} \{v_{n+1t} - v_{nt}\}\right]^{\frac{1}{\gamma-1}}$$

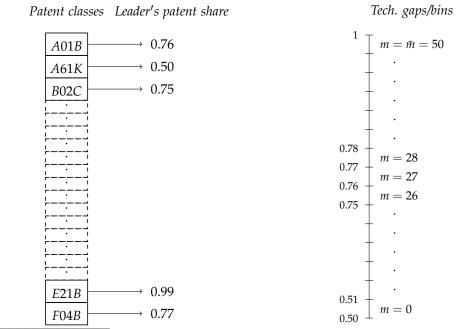
entrants: $\tilde{x}_{nt} = \left[(\tilde{\alpha}\omega_t)^{-1} v_{-n+1t}\right]^{\frac{1}{\gamma-1}}$

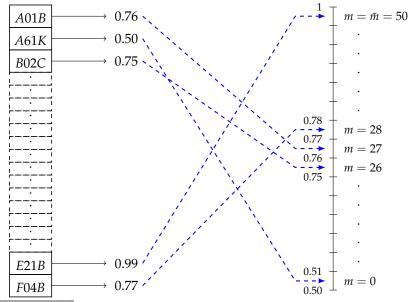
Evolution of gaps:

$$\frac{\mu_{nt+\Delta t} - \mu_{nt}}{\Delta t} = x_{n-1t}\mu_{n-1t} + ((1 - \phi_f) x_{-n-1t} + \tilde{x}_{-n-1t}) \mu_{n+1t} - (x_{nt} + x_{-nt} + \tilde{x}_{-nt} + \delta) \mu_{nt}$$

Growth:


$$\ln Q_{t+\Delta t} - \ln Q_t = \ln \lambda \left[\mu_{0t} \left(2x_{0t} + \tilde{x}_{0t} \right) + \sum_{1}^{\bar{n}} \mu_{nt} x_{nt} \right] \Delta t + o\left(\Delta t \right)$$


- ► Calibrate the model to steady-state U.S. economy in 1980.
- Shock the economy with
 - rising entry costs
 - incumbent favoring policies:
 - ► tax cut,
 - increased R&D benefits, and
 - improved intellectual property protection.


Patent classes

Patent classes Leader's patent share

Calibration

Parameters to be calibrated: α , $\tilde{\alpha}$, λ , δ

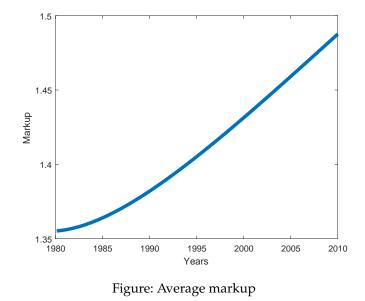
Table: Parameters set externally				
Parameter	Value	Source		
Inverse R&D curvature $(\gamma^{-1}, \tilde{\gamma}^{-1})$	0.35	Acemoglu&Akcigit (2012)		
Effective corporate income tax (τ)	30%	CRS (2006)		
R&D subsidy (s)	5%	Akcigit, Ates, Impullitti (2018)		

Table: Model fit					
Moment	Estimate	Target	Source		
1. Entry	11.4%	12.5%	BDS 1980-81		
2. Long-run TFP growth	1.4%	1.6%	FRBSF 1950-81		
3. R&D to GDP	3.3%	2.4%	OECD 1981-82		
4. Concentration distribution	n/a	n/a	See next slide		

- Exercise 1) Increase entry costs: $c = 0\% \rightarrow 400\%$
- Exercise 2) Reduce taxes: $\tau = 30\% \rightarrow 0$
- Exercise 3) Increase subsidy: $s = 5\% \rightarrow 50\%$
- Exercise 4) Increase IP protection: $\delta = 2.5\% \rightarrow 1\%$

	Data
Growth	\downarrow
Entry	\downarrow
Labor share	\downarrow
Markups	\uparrow
Profit share	\uparrow
Job reallocation	\downarrow
Growth dispersion	\downarrow

	Data	Higher entry cost
Growth	\downarrow	\downarrow
Entry	\downarrow	\downarrow
Labor share	\downarrow	\longleftrightarrow
Markups	\uparrow	\longleftrightarrow
Profit share	\uparrow	\longleftrightarrow
Job reallocation	\downarrow	\longleftrightarrow
Growth dispersion	\downarrow	\uparrow


	Data	Lower corporate
		tax
Growth	\downarrow	\uparrow
Entry	\downarrow	\longleftrightarrow
Labor share	\downarrow	\longleftrightarrow
Markups	\uparrow	\uparrow
Profit share	\uparrow	\uparrow
Job reallocation	\downarrow	\downarrow
Growth dispersion	\downarrow	\downarrow

	Data	Higher R&D subsidies
Growth	\downarrow	\uparrow
Entry	\downarrow	\longleftrightarrow
Labor share	\downarrow	\longleftrightarrow
Markups	\uparrow	\uparrow
Profit share	\uparrow	\uparrow
Job reallocation	\downarrow	\downarrow
Growth dispersion	\downarrow	\downarrow

	Data	Higher IPR protection
Growth	\downarrow	\downarrow
Entry	\downarrow	\downarrow
Labor share	\downarrow	\downarrow
Markups	\uparrow	\uparrow
Profit share	\uparrow	\uparrow
Job reallocation	\downarrow	\downarrow
Growth dispersion	\downarrow	\downarrow

	Data	Higher entry cost	Lower corporate tax	Higher R&D subsidies	Higher IPR protection
Growth	\downarrow	\downarrow	\uparrow	\uparrow	\downarrow
Entry	\downarrow	\downarrow	\longleftrightarrow	\longleftrightarrow	\downarrow
Labor share	\downarrow	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	\downarrow
Markups	\uparrow	\longleftrightarrow	\uparrow	\uparrow	\uparrow
Profit share	\uparrow	\longleftrightarrow	\uparrow	\uparrow	\uparrow
Job reallocation	\downarrow	\longleftrightarrow	\downarrow	\downarrow	\downarrow
Growth dispersion	\downarrow	\uparrow	\downarrow	\downarrow	\downarrow

Markups

Profits

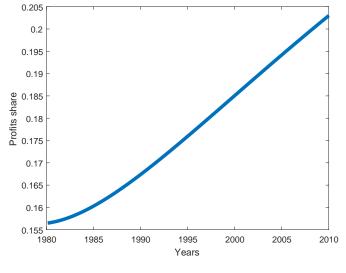
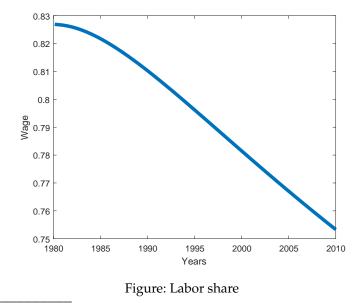
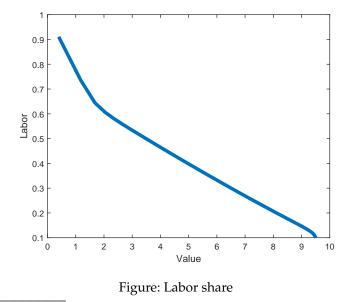




Figure: Average profitability

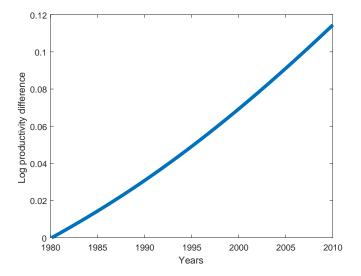
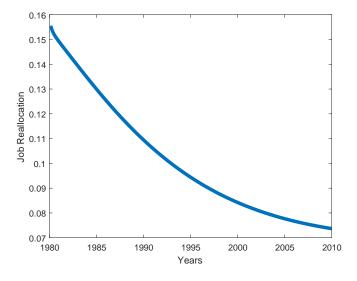



Figure: Log Productivity Difference between the Leader and the Follower

Figure: Gross job reallocation

Firm growth dispersion

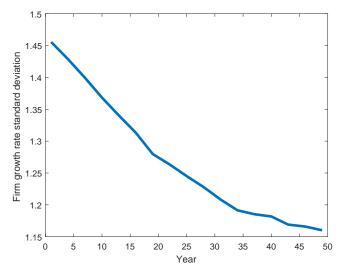
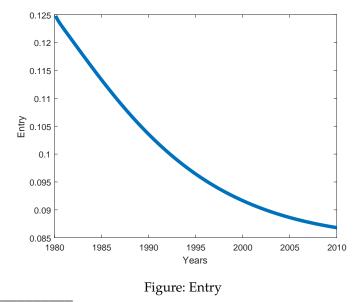



Figure: Firm growth dispersion

Economic Activity by Young Firms

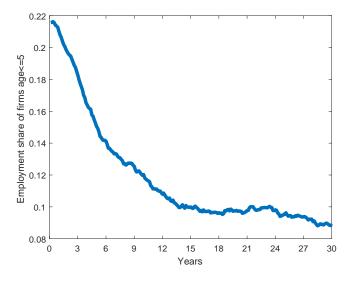
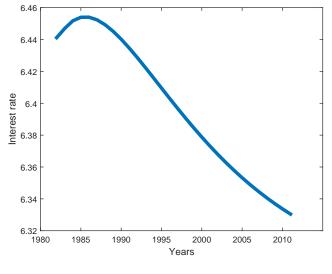



Figure: Employment Share of Young Firms

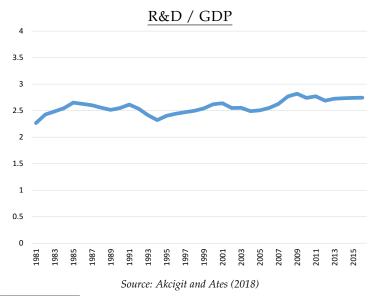
Ufuk Akcigit (University of Chicago)

Figure: Interest rate path

- ► the increasingly data-dependent nature of production;
- regulations that favor established firms;
- increased off-shoring of production abroad;
- ► anti-competitive (ab)use of intellectual property.

- ► the increasingly data-dependent nature of production;
- regulations that favor established firms;
- increased off-shoring of production abroad;
- ► anti-competitive (ab)use of intellectual property.

Empirical Trends on IP and Innovation


Ufuk Akcigit (University of Chicago)

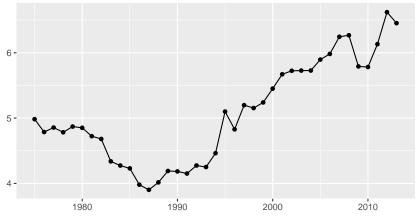
Empirical Fact (1)

 \rightarrow *R&D* share of *GDP* has not declined.

Empirical Fact (1)

 \rightarrow *R&D* share of *GDP* has not declined.

Ufuk Akcigit (University of Chicago)

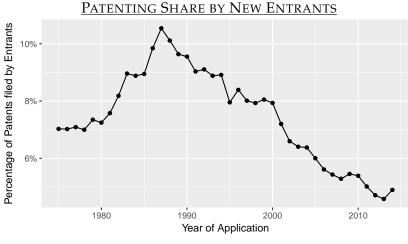

Empirical Fact (2)

 \rightarrow Patent per incumbent firms has increased.

Empirical Fact (2)

 \rightarrow Patent per incumbent firms has increased.

PATENT PER FIRM

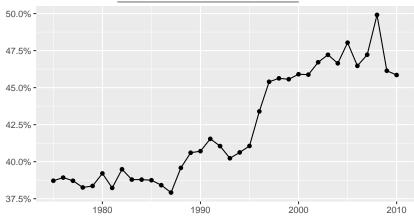

Source: Akcigit and Ates (2018)

Empirical Fact (3)

 \rightarrow Patenting by new entrants has declined.

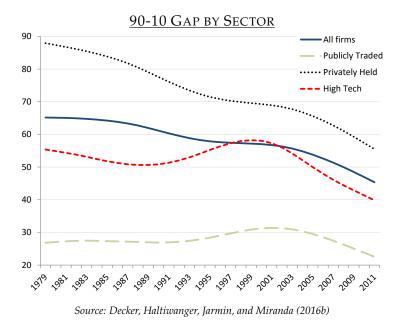
Empirical Fact (3)

 \rightarrow *Patenting by new entrants has declined.*


Source: Akcigit and Ates (2018)

Empirical Fact (4)

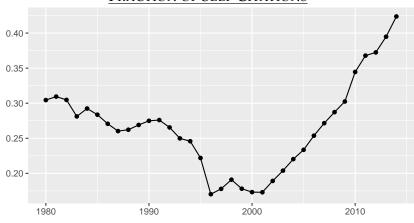
 \rightarrow Patenting concentration has increased.


Empirical Fact (4)

 \rightarrow Patenting concentration has increased.

TOP-1% PATENTING SHARE

Source: Akcigit and Ates (2018)



Empirical Fact (5)

 \rightarrow *Patents have become less exploratory.*

Empirical Fact (5)

 \rightarrow *Patents have become less exploratory.*

FRACTION OF SELF CITATIONS

Source: Akcigit and Ates (2018)

Conclusions

We find that:

- Trends cannot be explained by rising entry costs.
- They are more consistent with incumbent favoring IP policies.
- Intuition: Entrants lose hope of competing with incumbents, hence they give up.
- Empirically, innovation has been more concentrated and become less radical.
- Policy implications: Reduced entry barriers might not be effective since firms are forward looking and incumbents are hard to compete with.
- Policies should influence the competition dynamics "after" entry and this can have a positive trickle-down effect on incentives.

Thank You...

www.ufukakcigit.com uakcigit@uchicago.edu

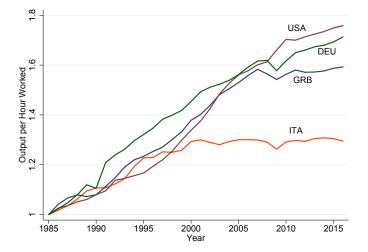
Ufuk Akcigit (University of Chicago)

References:

- ACEMOGLU, D., AND U. AKCIGIT (2012): "Intellectual Property Rights Policy, Competition and Innovation," *Journal of the European Economic Association*, 10(1), 1–42.
- AGHION, P., N. BLOOM, R. BLUNDELL, R. GRIFFITH, AND P. HOWITT (2005): "Competition and Innovation: An Inverted-U Relationship," *Quarterly Journal of Economics*, 120(2), 701–728.
- AKCIGIT, U., AND S. T. ATES (2018): "Declining Business Dynamism: Some Lessons from Modern Growth Theory and Patent Data," University of Chicago mimeo.
- AKCIGIT, U., S. T. ATES, AND G. IMPULLITTI (2018): "Innovation and Trade Policy in a Globalized World," National Bureau of Economic Research Working Paper 24543.
- AKCIGIT, U., S. BASLANDZE, AND F. LOTTI (2017): "Connecting to Power: Political Connections, Innovation, and Firm Dynamics," University of Cchicago Working Paper.
- ANDREWS, D., C. CRISCUOLO, AND P. N. GAL (2016): "The Best versus the Rest: The Global Productivity Slowdown, Divergence across Firms and the Role of Public Policy," OECD Productivity Working Paper 5/2016.
- AUTOR, D., D. DORN, L. F. KATZ, C. PATTERSON, AND J. VAN REENEN (2017): "The Fall of the Labor Share and the Rise of Superstar Firms," National Bureau of Economic Research Working Paper 23396.

Ufuk Akcigit (University of Chicago)

- DE LOECKER, J., AND J. EECKHOUT (2017): "The Rise of Market Power and The Macroeconomic Implications," National Bureau of Economic Research Working Paper 23687.
- DECKER, R. A., J. HALTIWANGER, R. S. JARMIN, AND J. MIRANDA (2016a):
 "Declining Business Dynamism: What We Know and the Way Forward," *American Economic Review: Papers & Proceedings*, 106(5), 203–07.
 - (2016b): "Where Has All The Skewness Gone? The Decline in High-growth (Young) Firms in The US," *European Economic Review*, 86, 4–23.
- KARABARBOUNIS, L., AND B. NEIMAN (2013): "The Global Decline of the Labor Share," *Quarterly Journal of Economics*, 129(1), 61–103.


INEQUALITY AND INNOVATION Lecture Slides 5: Political Connections and Innovation¹

Ufuk Akcigit University of Chicago

January 7, 2019

¹Based on Akcigit, Baslandze, Lotti (2018)

Performance of the Italian Economy

Political Connections I

Silvio Berlusconi (Entrepreneur) vs Bettino Craxi (PM)

Political Connections II

"The mayor is a close friend. I have to say that he contacted me a long way before his election, telling me that he would definitely be elected and offered me to buy his agricultural land in Cassano, known as La Taranta, for which I would have had to pay as if it was a building area already. Moreover, he said he had to get rid of the land before becoming mayor. He also told me that he would take care of granting permission to build on that area."

La Repubblica (May 26, 2011, p. 7)

"There are public officials who, instead of serving the interests of the community, put themselves at the service of private individuals. It's a devastating situation: those firms that have political and administrative support, thanks to the "good" friend, manage to obtain illicit benefits, while honest companies look astonished at what happens."

> Carmelo Zuccaro, Chief Prosecutor of Catania¹ La Sicilia, May 3rd, 2018

Motivation

 A growing empirical literature emphasizes the importance of factor reallocation from less productive to more productive firms

 \rightarrow Bartelsman and Doms, 2000; Foster, Haltiwanger, and Krizan, 2001, 2006; Hsieh and Klenow, 2014.

 ► Theoretically, the basic premise of creative destruction models is that it is sufficient for an entrant to come up with a better technology or quality product to replace an incumbent → Aghion and Howitt, 1992; Grossman and Helpman, 1991.

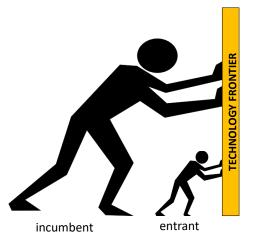
Motivation

 A growing empirical literature emphasizes the importance of factor reallocation from less productive to more productive firms

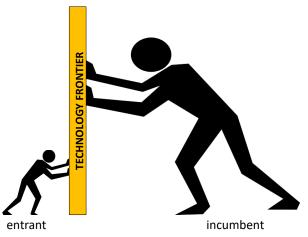
 \rightarrow Bartelsman and Doms, 2000; Foster, Haltiwanger, and Krizan, 2001, 2006; Hsieh and Klenow, 2014.

 ► Theoretically, the basic premise of creative destruction models is that it is sufficient for an entrant to come up with a better technology or quality product to replace an incumbent → Aghion and Howitt, 1992; Grossman and Helpman, 1991.

IS THIS REALLY THE CASE?


Pushing the Frontier via Creative Destruction

Alternative Models


Pushing the Frontier via Creative Destruction

Pro-Competitive Model

Pushing the Frontier via Creative Destruction

ANTI-COMPETITIVE MODEL

Research Question

Research Question

Research Question: How do political connections affect firm dynamics, innovation and creative destruction?

Which Politicians?

Local Politicians – distinct feature of our analysis.

- More pervasive, harder to detect.
- Substantial power:
 - Issue permits and licenses,
 - construction planning,
 - provide local public goods and services
 - \rightarrow public utilities, health care, transport, waste management
 - taxes (in some cases).
- Further increase of power since the 90's.

Ufuk Akcigit (University of Chicago)

Akcigit, Baslandze, Lotti'18 (ABL)

Empirical Analysis

- A brand-new data from Italy linking:
 - 1. Social security data on individuals;
 - 2. Firm-level data;
 - 3. Registry of 500K local politicians between 1985-2014;
 - 4. Election data;
 - 5. Patent data.

Main analysis:

- Macro level: industry performance;
- Micro level: firm performance.
- Causal identification:
 - Exploit marginal election outcomes.

Theoretical Analysis

- A new theory of innovation and firm dynamics:
 - Entrants replace incumbents through creative destruction;
 - Firms decide on innovation and political connections;

• <u>Helps</u> with the interpretation and identification the mechanism.

9

Literature

Reallocation, firm dynamics:

► Foster, Haltiwanger, Krizan (2000, 2006), Bartelsman and Doms (2000), Restuccia and Rogerson (2008), Acemoglu et al. (2013) ; Aghion and Howitt (1992), Grossman and Helpman (1991), Klette and Kortum (2004).

Private returns from political connections:

Fisman (2001), Johnson and Mitton (2003), Khwaja and Mian (2005), Dinc (2005), Faccio and Parsley (2006), Goldman et al. (2013), Schoenherr (2015), Acemoglu et al. (2017).

Social costs from political connections:

- Greasing wheels hypothesis: Shleifer and Vishny (1994), Kauffman and Wei (1999)
 Grabbing hands hypothesis: Shleifer and Vishny (1998).
- Public good provision Cingano and Pinotti (2013); misallocation – Garcia-Santana et al. (2016) and Arayavechkit et al. (2017).

Empirical Analysis

Ufuk Akcigit (University of Chicago)

Social Security Data

Source: INPS

Individual level:	Firm-level:
Demographics, Employment history, Labor income, Job characteristics.	Entry/exit Size Worker characteristics, Industry, Location.

Social Security Data

Source: INPS

- 5 mln unique firms
- 42 mln firm-year obs

Firm Level

Firm-level Data

Source: Cerved.

- Universe of limited companies, 1993-2014.
- Balance sheet, income statement, measure of firm's credit worthiness.

• 1 mln unique firms

• 7 mln firm-year obs

Social Security Data

Source: INPS

Individual level:	Firm-level:
Demographics, Employment history, Labor income, Job characteristics.	Entry/exit Size Worker characteristics, Industry, Location.

Firm Level

Social Security Data

Source: INPS

Universe of private sector (except agriculture), 1985-2014.

Individual level:	Firm-level:
Demographics, Employment history, Labor income, Job characteristics.	Entry/exit Size Worker characteristics, Industry, Location.

- 66K patent families
- 14K innovating firms

Patent Data

Source: PATSTAT.

- All EPO patents filed by Italian firms in 1990-2014.
- Patent characteristics: patent families, grant status, technology classification, citations received, claims.

Social Security Data

Source: INPS

Individual level:	Firm-level:
Demographics, Employment history, Labor income, Job characteristics.	Entry/exit Size Worker characteristics, Industry, Location.

Individual Level

Registry of Local Politicians (RLP)

Source: Ministry of the Interior.

- Universe of local politicians (regional, province, municipality level) 1985-2014.
- Demographics, education, position attributes, party affiliation.
- 515K unique politicians
- 2.8 mln observations
- 11% (vice)mayor/(vice)president
 20% executive positions
 69% council members
- 31% work in private firms
- 145K firms ever get connected

Social Security Data

Source: INPS

Individual level:	Firm-level:
Demographics, Employment history, Labor income, Job characteristics.	Entry/exit Size Worker characteristics, Industry, Location.

Individual Level

Registry of Local Politicians (RLP)

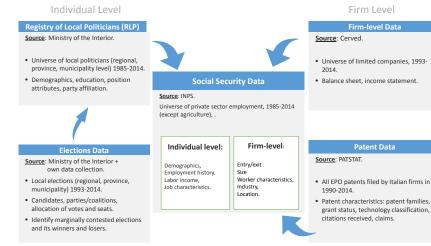
Source: Ministry of the Interior.

- Universe of local politicians (regional, province, municipality level) 1985-2014.
- Demographics, education, position attributes, party affiliation.

Social Security Data

Source: INPS

Universe of private sector (except agriculture), 1985-2014.


Elections Data

Source: Ministry of the Interior + own data collection.

- Local elections (regional, province, municipality) 1993-2014.
- Candidates, parties/coalitions, allocation of votes and seats.
- Identify marginally contested elections and its winners and losers.

Individual level:	Firm-level:
Demographics, Employment history, Labor income, lob characteristics.	Entry/exit Size Worker characteristics, Industry, Location.

- 36K elections
- 5K with 5% margin of victory

Firm-level Data

- Universe of limited companies, 1993-
- Balance sheet, income statement.

Firms' Connections with Local Politicians

- *Connection*: dummy equal to one at *t* if a firm employs any local politician at time *t*.
- ► *High-rank Connection*: dummy equal to one at *t* if a firm employs at least one mayor/president/vice-mayor/vice-president at *t*.
- ► Italy has:
 - 8000 municipalities
 - 110 provinces
 - 20 regions

Empirical Analysis: Outline

- I. Summary Statistics.
- II. Firm Moments:
 - 1. Connection vs innovation;
 - 2. Survival;
 - 3. Firm Size Growth;
 - 4. Productivity growth.
- III. Politicians' Facts.

Ufuk Akcigit (University of Chicago)

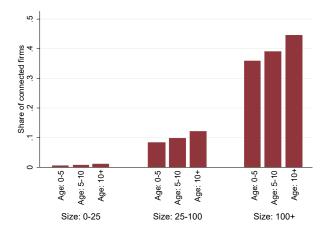
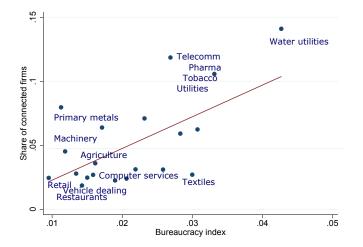

Summary Statistics

Table 2: Statistics on Local Politicians

Category	Position	Share
Regional Rank:	Region	0.8%
0	Province	2.6%
	Municipality	96.6%
Hierarchical Rank:	Mayor, President, Vice-mayor, Vice-president	11.3%
	Executive councilor	19.6%
	Council member	69.1%
Majority Affiliation:	Majority	73%

Share of Connected Firms

Connection By Firm Age and Size

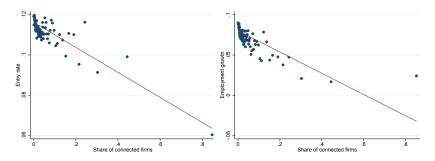

► Connected firms account for 32% of employment.

Which Industries Are Connected?

- Look at newspaper articles from four large news providers: Bloomberg, Dow Jones Adviser, Financial Times, The Wall Street Journal
- Keywords: regulation*, regulated, regulator, bureaucracy, bureaucratic, deregulation, deregulated, paperwork*, red tape, license and licenses
- ► ABL calculate the "Bureaucracy Index" of sector *i* as follows:

 $Bureaucracy_Index(i) = \frac{[All articles related to i] \cap [All articles that contain keywords]}{All articles related to i}$

Which Industries Are Connected?



Summary Statistics, ctd

Connections and Industry Dynamics

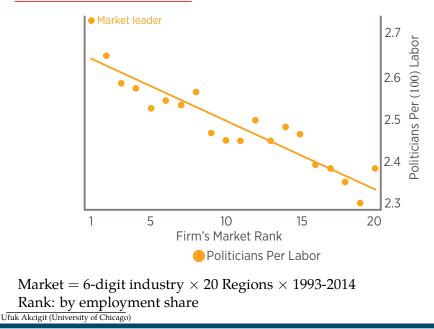
Entry Rate and Connections

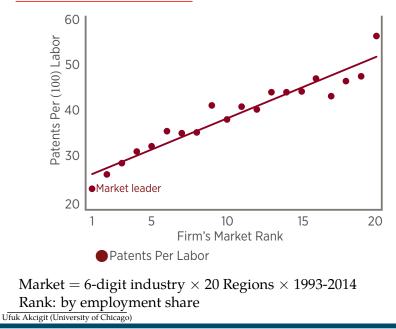
Growth and Connections

Notes: Binscatter plots from industry \times region \times year level regressions. Variables on Y axis are adjusted for industry, year, and region fixed effects. Variables on X axis: share of firms connected. \blacktriangleright Details \blacktriangleright More

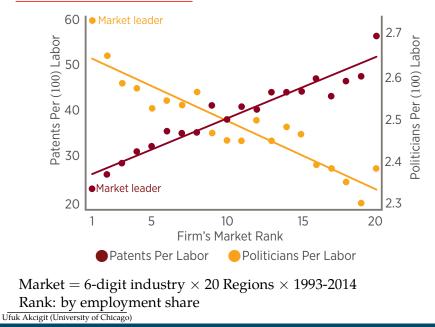
II. Firm Moments

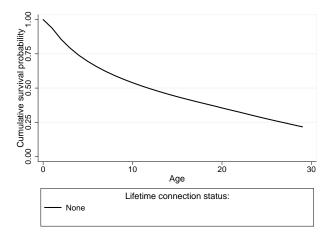
Ufuk Akcigit (University of Chicago)


Leadership Paradox: Connection vs Innovation

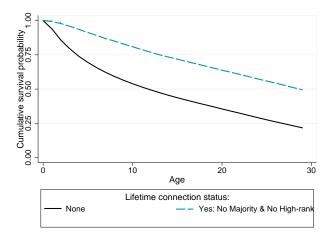

Market = 6-digit industry \times 20 Regions \times 1993-2014 Rank: by employment share

Ufuk Akcigit (University of Chicago)

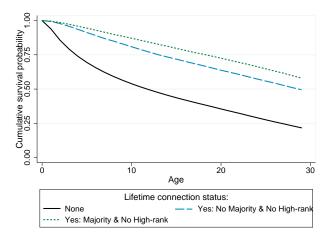

Leadership Paradox: Leadership and Connection



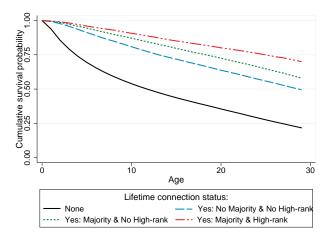
Leadership Paradox: Leadership and Innovation



Leadership Paradox: Innovation and Connection



• Average (any) connection \rightarrow 9% \downarrow exit hazard rate.



• Average (any) connection \rightarrow 9% \downarrow exit hazard rate.

• Average (any) connection \rightarrow 9% \downarrow exit hazard rate.

Ufuk Akcigit (University of Chicago)

• Average (any) connection \rightarrow 9% \downarrow exit hazard rate.

Ufuk Akcigit (University of Chicago)

Firm Growth and Political Connection

	Empl growth (OLS)	Empl growth (FE)	VA growth (OLS)	VA growth (FE)
Connection	0.032***	0.040***	0.039***	0.014***
	(0.001)	(0.002)	(0.002)	(0.002)
Connection major	0.003*	0.007***	0.010***	0.002
	(0.001)	(0.002)	(0.002)	(0.002)
Log Assets	0.065***	0.203***	0.036***	-0.091***
	(0.000)	(0.001)	(0.000)	(0.001)
Log Size	-0.077***	-0.384***	-0.080***	-0.235***
	(0.000)	(0.001)	(0.000)	(0.001)
Age	-0.002***	-0.011***	-0.004***	-0.005***
0	(0.000)	(0.000)	(0.000)	(0.000)
Year FE	YES	YES	YES	YES
Region FE	YES	NO	YES	NO
Industry FE	YES	NO	YES	NO
Firm FÉ	NO	YES	NO	YES
Observations	6545131	6585740	5684519	5710338

Notes: Firm-level regressions. Connections/Connection major are dummy variables equal to one if firm is connected with Ufuk Akejeit (University of chicaeo)

Firm Growth and Political Connection

	Empl growth (OLS)	Empl growth (FE)	VA growth (OLS)	VA growth (FE)
Connection	0.032***	0.040***	0.039***	0.014***
	(0.001)	(0.002)	(0.002)	(0.002)
Connection major	0.003*	0.007***	0.010***	0.002
	(0.001)	(0.002)	(0.002)	(0.002)
Log Assets	0.065***	0.203***	0.036***	-0.091***
	(0.000)	(0.001)	(0.000)	(0.001)
Log Size	-0.077***	-0.384***	-0.080***	-0.235***
	(0.000)	(0.001)	(0.000)	(0.001)
Age	-0.002***	-0.011***	-0.004***	-0.005***
0	(0.000)	(0.000)	(0.000)	(0.000)
Year FE	YES	YES	YES	YES
Region FE	YES	NO	YES	NO
Industry FE	YES	NO	YES	NO
Firm FÉ	NO	YES	NO	YES
Observations	6545131	6585740	5684519	5710338

Notes: Firm-level regressions. Connections/Connection major are dummy variables equal to one if firm is connected with Ufuk Akejeit (University of chicaeo)

Firm Growth and Political Connection

	Empl growth (OLS)	Empl growth (FE)	VA growth (OLS)	VA growth (FE)
Connection	0.032***	0.040***	0.039***	0.014***
	(0.001)	(0.002)	(0.002)	(0.002)
Connection major	0.003*	0.007***	0.010***	0.002
	(0.001)	(0.002)	(0.002)	(0.002)
Log Assets	0.065***	0.203***	0.036***	-0.091***
	(0.000)	(0.001)	(0.000)	(0.001)
Log Size	-0.077***	-0.384***	-0.080***	-0.235***
	(0.000)	(0.001)	(0.000)	(0.001)
	0.00 0 4444	0.044444		
Age	-0.002***	-0.011***	-0.004***	-0.005***
	(0.000)	(0.000)	(0.000)	(0.000)
Year FE	YES	YES	YES	YES
Region FE	YES	NO	YES	NO
Industry FE	YES	NO	YES	NO
Firm FÉ	NO	YES	NO	YES
Observations	6545131	6585740	5684519	5710338

Notes: Firm-level regressions. Connections/Connection major are dummy variables equal to one if firm is connected with Ufuk Akejeit (University of chicaeo)

Productivity Growth and Political Connection

	TD d	TD 1		TTTD1
	LP growth	LP growth	TFP growth	TFP growth
	(OLS)	(FE)	(OLS)	(FE)
Connection	-0.014***	-0.028***	-0.008***	-0.019***
	(0.002)	(0.002)	(0.001)	(0.002)
Connection major	-0.001	-0.004	0.000	-0.003
,	(0.002)	(0.003)	(0.002)	(0.002)
Log Assets	-0.028***	-0.274***	-0.001***	-0.106***
0	(0.000)	(0.001)	(0.000)	(0.001)
Log Size	0.021***	0.274***	-0.006***	0.125***
0	(0.000)	(0.001)	(0.000)	(0.001)
Age	-0.001***	-0.002***	-0.001***	-0.003***
0	(0.000)	(0.000)	(0.000)	(0.000)
Year FE	YES	YES	YES	YES
Region FE	YES	NO	YES	NO
Industry FE	YES	NO	YES	NO
Firm FÉ	NO	YES	NO	YES
Observations	5598367	5623077	5271002	5291979

Productivity Growth and Political Connection

	LP growth (OLS)	LP growth (FE)	TFP growth (OLS)	TFP growth (FE)
Connection	-0.014***	-0.028***	-0.008***	-0.019***
	(0.002)	(0.002)	(0.001)	(0.002)
Connection major	-0.001	-0.004	0.000	-0.003
	(0.002)	(0.003)	(0.002)	(0.002)
Log Assets	-0.028***	-0.274***	-0.001***	-0.106***
	(0.000)	(0.001)	(0.000)	(0.001)
Log Size	0.021***	0.274***	-0.006***	0.125***
-	(0.000)	(0.001)	(0.000)	(0.001)
Age	-0.001***	-0.002***	-0.001***	-0.003***
	(0.000)	(0.000)	(0.000)	(0.000)
Year FE	YES	YES	YES	YES
Region FE	YES	NO	YES	NO
Industry FE	YES	NO	YES	NO
Firm FE	NO	YES	NO	YES
Observations	5598367	5623077	5271002	5291979

Notes: Firm-level regressions. Connections/Connection major are dummy variables equal to one if firm is connected with Ufuk Akrigit (University of chicago) time t. Results using connection definition using high-rank politicians is here

Productivity Growth and Political Connection

	LP growth (OLS)	LP growth (FE)	TFP growth (OLS)	TFP growth (FE)
Connection	-0.014***	-0.028***	-0.008***	-0.019***
	(0.002)	(0.002)	(0.001)	(0.002)
-				
Connection major	-0.001	-0.004	0.000	-0.003
	(0.002)	(0.003)	(0.002)	(0.002)
Log Assets	-0.028***	-0.274***	-0.001***	-0.106***
	(0.000)	(0.001)	(0.000)	(0.001)
Log Size	0.021***	0.274^{***}	-0.006***	0.125***
Ū.	(0.000)	(0.001)	(0.000)	(0.001)
Age	-0.001***	-0.002***	-0.001***	-0.003***
	(0.000)	(0.000)	(0.000)	(0.000)
Year FE	YES	YES	YES	YES
Region FE	YES	NO	YES	NO
Industry FE	YES	NO	YES	NO
Firm FE	NO	YES	NO	YES
Observations	5598367	5623077	5271002	5291979

Notes: Firm-level regressions. Connections/Connection major are dummy variables equal to one if firm is connected with Ufuk Akrigit (University of chicago) time t. Results using connection definition using high-rank politicians is is there

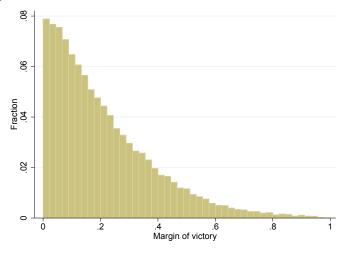
Firm Performance: Causal Inference

Causality: RD Design

- Causal identification of the effect of connections on growth.
- ► Regression discontinuity (RD) design:
 - Discontinuities in local elections decided on a thin margin.
 - Close races determined by a "chance" (Lee, 2008):
 → random assignment of treatment.
 - Compare firms connected with politicians from marginally winning vs marginally losing parties right before the election.
- ► 37,005 elections at municipality, province, and regional level.
- ► 2.3K (5.7K) with 2% (5%) margin of victory.

Ufuk Akcigit (University of Chicago)

Marginal Election Counts by Provinces



 37,005 elections at municipality, province and regional level;

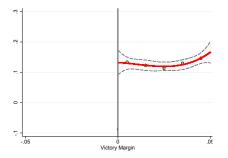
 2.3K (5.7K) with 2% (5%) margin of victory.

Election Margin Distribtuion

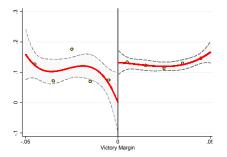
Figure 8: DISTRIBUTION OF ELECTIONS BY MARGINS OF VICTORY

Margin of victory = $p_{winner} - p_{loser}$

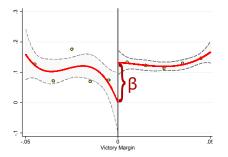
Probability of Re-election



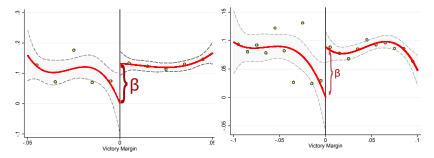
RD Estimation


$$y_{iT(m)} = \alpha + \beta Win_{iT(m)-1} + f(margin_m) + (\delta_1 X_{iT(m)} + \delta_2 X_m + \delta_3 X_T) + \nu_{iT(m)}$$

- T(m) time of a marginal election m.
- $y_{iT(m)}$ outcome for firm *i* at T(m).
- ► $Win_{iT(m)-1}$ dummy equal to one if at T(m) 1 *i* is connected with a member of a marginally winning party in the election *m* at T(m).
- *Margin_m* victory margin: difference in vote shares btw a winner and the runner-up.
- ► f(margin_m) is a third-order smooth polynomial estimated on both sides of the threshold.
- $X_{iT(m)}, X_m, X_T$: firm controls, time, location F.E.

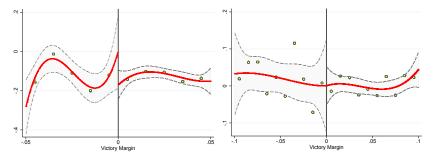

Empl Growth After Election ($T \rightarrow T + 1, 5\%$) Empl Growth After Election ($T \rightarrow T + 1, 10\%$)

Empl Growth After Election ($T \rightarrow T + 1, 5\%$) Empl Growth After Election ($T \rightarrow T + 1, 10\%$)



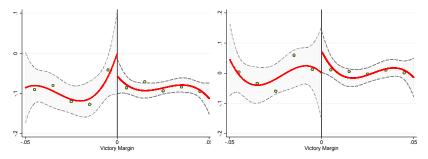
Empl Growth After Election ($T \rightarrow T + 1, 5\%$) Empl Growth After Election ($T \rightarrow T + 1, 10\%$)

Empl Growth After Election $(T \rightarrow T + 1, 5\%)$ H


Empl Growth After Election ($T \rightarrow T + 1, 10\%$)

Productivity Growth (within 5%, 10% Margins)

LP Growth After Election ($T \rightarrow T + 1, 5\%$)


LP Growth After Election ($T \rightarrow T + 1, 10\%$)

RD Validation: Pre-Trends in Firm Growth

LP Growth Before Election $(T - 1 \rightarrow T)$

RD Validation: Balancing Test

Dependent variable:	Log Size	Log Value Added	Log Assets	Log Intangibles	Log Labor Productivity
Win Dummy	0.0665	0.0718	-0.000265	0.0404	-0.0636
	(0.0676)	(0.112)	(0.120)	(0.183)	(0.0581)
Controls	none	none	none	none	none
Observations	2,444	1,354	1,398	1,319	1,336
Dependent variable:	Log Profits	Age	Center	North	
Win Dummy	-0.100	-1.242	-0.0268	-0.0120	
	(0.163)	(0.654)	(0.0194)	(0.0245)	
Controls	none	none	none	none	
Observations	999	2,521	2,523	2,523	

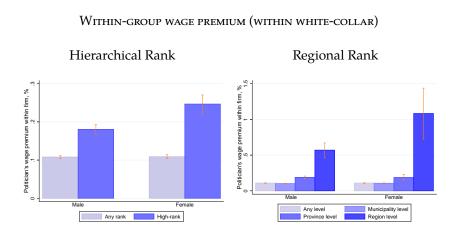
- Panel A. Sample of 2% Victory Margin -

- Panel B. Full Specification with the Sample of 20% Victory Margin -

Dependent variable:	Log Size	Log Value Added	Log Assets	Log Intangibles	Log Labor Productivity
Win Dummy	0.0678	-0.0443	-0.0993	-0.143	-0.0575
	(0.0849)	(0.136)	(0.149)	(0.227)	(0.0703)
Controls	yes	yes	yes	yes	yes
Observations	23,790	13,127	13,505	12,700	12,986
Dependent variable:	Log Profits	Age	Center	North	
Win Dummy	-0.142	-0.903	-0.00687	-0.0252	
	(0.203)	(0.839)	(0.0245)	(0.0310)	
Controls	yes	yes	yes	yes	
Observations	9,741	24,414	24,453	24,453	

Robustness and RD Validation

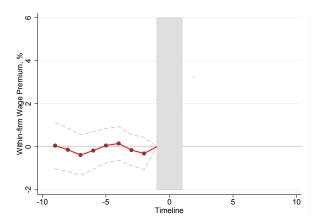
- Robustness with various margins of victory bands;
- Pre-trends in outcomes;
- Balancing tests;
- ▶ 1^{*st*}- or 2^{*nd*}-order polynomial;
- Regressions with or without controls.
- ► Firm survival using RD.


Ufuk Akcigit (University of Chicago)

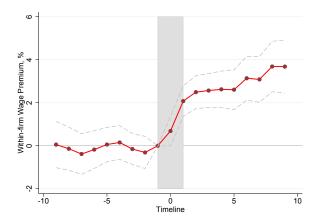
III. Politicians' Facts

Within group
 Within individual

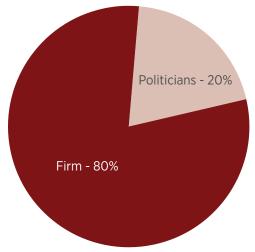
Ufuk Akcigit (University of Chicago)


Politician's Compensation: Within Group

Notes: Wage premium – politician's wage relative to same job collar and gender co-workers' average wage minus one. Figure reports premium for the white-collar workers.


Politician's Compensation: Within Individual

<u>Event Study</u>: Within-Worker Wage Premium Before and After Becoming a Politician


Politician's Compensation: Within Individual

<u>Event Study</u>: Within-Worker Wage Premium Before and After Becoming a Politician

Surplus Division

- Back of the envelope calculation for the rent division:
 - <u>Politician</u>: Estimated yearly wage premium in a firm.
 - <u>Firm</u>: Estimated profit gain from connection.

Stylized Facts, Summary

- 1. Market leadership is associated with:
 - higher politicians intensity;
 - lower innovation intensity.
- 2. Connected firms are older.
- 3. Connected firms are less likely to exit.
- 4. Connected firms experience
 - higher employment and sales growth;
 lower productivity growth.

Causality using RD design

- 5. **Industries** with more politically connected firms have
 - lower entry and higher share of connected entrants;
 - lower share of young firms, firm growth and productivity.
- 6. **Politicians** have significant wage premia over co-workers.

Motivating Model

Ufuk Akcigit (University of Chicago)

Model

- ► Starting point: Benchmark Schumpeterian Model
- Frictions: at each time, firms face wedges in the input market.
 - ► Hsieh and Klenow (2009) reduced form representation;
 - Example of various employment regulations:
 - \rightarrow form a "work council",
 - \rightarrow union representation,
 - ightarrow health & safety committee,
 - \rightarrow benefits, hiring & firing costs,
 - \rightarrow regulation/bureaucracy costs
 - ► Relevant for Italy: Firms' spending on bureaucracy is estimated 1.6% of GDP (private R&D/GDP = 0.6%).
- Political connections reduce these frictions but come at a cost.
- ► Start from a model where connections are "well-intended".
- Model highlight **static** gains vs **dynamic** losses.

• Unique sectoral output (Y) is produced as:

$$Y = \frac{1}{1-\beta} \left[\sum_{m=1}^{M} q_m^{\frac{\beta}{1-\beta}} y_m \right]^{1-\beta}$$

- y_m : quantity of vintage $m \in \{1, .., M\}$.
- Different vintages are perfect substitutes after adjusting for their quality.
- ► Incumbents or entrants can introduce M + 1st vintage → yet it might not get implemented.

Final good producer solves:

$$\max_{y_m} \left\{ \frac{1}{1-\beta} \left[\sum_{m=1}^M q_m^{\frac{\beta}{1-\beta}} y_m \right]^{1-\beta} - \sum_{m=1}^M p_m y_m \right\}$$
(1)

Monopolist *j* produces with the following technology

$$y_j = l_j. (2)$$

- ▶ Regulations create "wedges" à la Hsieh and Klenow (2009).
 ⇒ For each unit of input, wedge implies extra τ cost.
 ⇒ Political connection removes the wedge but introduces cost of the politician w^p.
- Non-connected firm:

$$\pi^n = \max_l \{ py - (1 + \tau)wl \}$$
 subject to (1) and (2).

Politically connected firm:

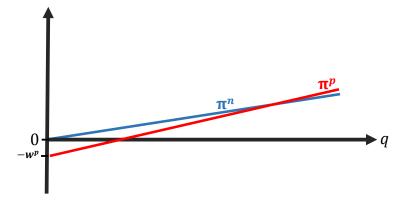
$$\pi^p = \max_{l} \{ py - wl - w^p \} \text{ subject to (1) and (2).}$$

 w^p : exogenous politician compensation (*later endogenized*).

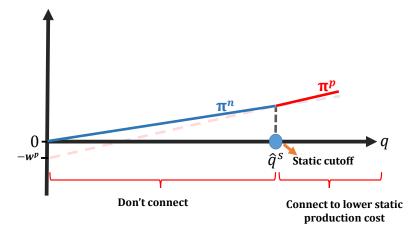
	If not connected		If connected	Change
Labor	$\left[\frac{(1-\beta)}{(1+\tau)w}\right]^{\frac{1}{\beta}}q$	VS	$\left[\frac{(1-\beta)}{w}\right]^{\frac{1}{\beta}}q$	1
Revenue	$\left[rac{(1-eta)}{(1+ au)w} ight]^{rac{1-eta}{eta}}q$	vs	$\left[rac{(1-eta)}{w} ight]^{rac{1-eta}{eta}}q$	↑
LP	$rac{(1+ au)w}{(1-eta)}$	vs	$rac{w}{(1-eta)}$	\downarrow

PREDICTION 1: Connections lead to higher employment, revenue and profits BUT lower labor productivity.

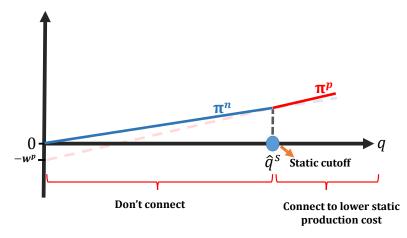
Ufuk Akcigit (University of Chicago)


• Define:
$$\Pi \equiv \beta \left[\frac{1-\beta}{w}\right]^{\frac{1-\beta}{\beta}}$$
 and set $\beta = 1/2$:
 $\pi^n = \frac{\Pi q}{1+\tau}$ and $\pi^p = \Pi q - w^p$

• Connect iff
$$\pi^p > \pi^n$$
, i.e.,


$$q_i > \hat{q}^s \equiv \frac{w^p}{\Pi} \frac{(1+\tau)}{\tau}.$$

Ufuk Akcigit (University of Chicago)


Static Connection Decision

Static Connection Decision

Static Connection Decision

PREDICTION 2: Large firms are more likely to get connected. **PREDICTION 3:** For any given size, firms are more likely to get connected if the industry is more regulated $(\tau \uparrow)$. Ufuk Akcigit (University of Chicago)

► Introduce entry and innovation.

- ► Introduce entry and innovation.
- Empirical fact: Connected firms are **larger** and **older**.

- ► Introduce entry and innovation.
- Empirical fact: Connected firms are **larger** and **older**.
- Ability to develop political connections takes time (getting exposed to a network).

- ► Introduce entry and innovation.
- Empirical fact: Connected firms are **larger** and **older**.
- Ability to develop political connections takes time (getting exposed to a network).
- Two types of firms:
 - **type=0**: unable to get connected,
 - **type=1**: able to connect *if* they want to.

- ► Introduce entry and innovation.
- Empirical fact: Connected firms are **larger** and **older**.
- Ability to develop political connections takes time (getting exposed to a network).
- Two types of firms:
 - type=0: unable to get connected,
 - **type=1**: able to connect *if* they want to.

Entry. Connections:

• Share of firms α enters as type=1.

- ► Introduce entry and innovation.
- Empirical fact: Connected firms are **larger** and **older**.
- Ability to develop political connections takes time (getting exposed to a network).
- Two types of firms:
 - **type=0**: unable to get connected,
 - **type=1**: able to connect *if* they want to.

Entry. Connections:

- Share of firms α enters as type=1.
- ► Switch from type=0 to type=1 at a Poisson arrival rate of ζ.

Endogenous Entry:

- ► Innovation arrival rate is *p*.
- Draw an innovation size $\lambda \sim F(0, \infty)$:

$$q_{M+1} = (1+\lambda)q_M.$$

Entrants have better technology but are usually disadvantaged in removing regulatory burden:

• Case 1: incumbent type=0, entrant type=0: $\lambda > 0$

Entrants have better technology but are usually disadvantaged in removing regulatory burden:

- Case 1: incumbent type=0, entrant type=0: $\lambda > 0$
- ► Case 2: incumbent type=1, entrant type=1: $\lambda > 0$

Entrants have better technology but are usually disadvantaged in removing regulatory burden:

- Case 1: incumbent type=0, entrant type=0: $\lambda > 0$
- Case 2: incumbent type=1, entrant type=1: $\lambda > 0$
- Case 3: incumbent type=0, entrant type=1: $\lambda > 0$

Entrants have better technology but are usually disadvantaged in removing regulatory burden:

- Case 1: incumbent type=0, entrant type=0: $\lambda > 0$
- Case 2: incumbent type=1, entrant type=1: $\lambda > 0$
- Case 3: incumbent type=0, entrant type=1: $\lambda > 0$
- ► Case 4: incumbent type=1, entrant type=0:
 - Subcase 1 ($q < \hat{q}^d$): incumbent \rightarrow do not connect: $\lambda > 0$
 - Subcase 2 ($q \ge \hat{q}^d$): incumbent \rightarrow connect: $\lambda > \lambda^* \equiv \tau$

Hence, when $q \ge \hat{q}^d$, probability of replacement is:

$$\tilde{p} = p[\alpha + (1 - \alpha) \Pr(\lambda > \lambda^*)]$$

Ufuk Akcigit (University of Chicago)

We need to solve for \hat{q}^d

- V_{-1} : Firm value for $q < \hat{q}^d$
- V_1 : Firm value for $q \ge \hat{q}^d$ when type=1
- V_0 : Firm value for $q \ge \hat{q}^d$ when type=0

$$rV_{-1} = \Pi \left(1 + \tau\right)^{-1} q - pV_{-1}$$

$$rV_1 = \Pi q - w^p - \tilde{p}V_1$$

$$rV_0 = \Pi (1+\tau)^{-1} q - pV_0 + \zeta [V_1 - V_0]$$

Dynamics 4

We need to solve for \hat{q}^d

- V_{-1} : Firm value for $q < \hat{q}^d$
- V_1 : Firm value for $q \ge \hat{q}^d$ when type=1
- V_0 : Firm value for $q \ge \hat{q}^d$ when type=0

$$rV_{-1} = \Pi \left(1 + \tau\right)^{-1} q - pV_{-1}$$

 $rV_1 = \Pi q - w^p - \tilde{p}V_1$

$$rV_0 = \Pi (1+\tau)^{-1} q - pV_0 + \zeta [V_1 - V_0]$$

Dynamics 4

We need to solve for \hat{q}^d

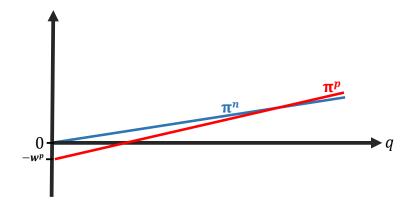
- V_{-1} : Firm value for $q < \hat{q}^d$
- V_1 : Firm value for $q \ge \hat{q}^d$ when type=1
- V_0 : Firm value for $q \ge \hat{q}^d$ when type=0

$$rV_{-1} = \Pi \left(1 + \tau \right)^{-1} q - pV_{-1}$$

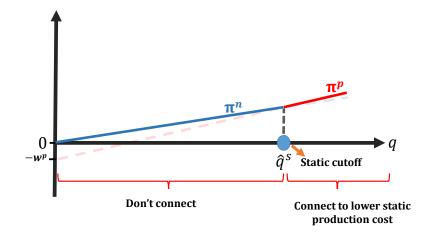
$$rV_1 = \Pi q - w^p - \tilde{p}V_1$$

$$rV_0 = \Pi (1+\tau)^{-1} q - pV_0 + \zeta [V_1 - V_0]$$

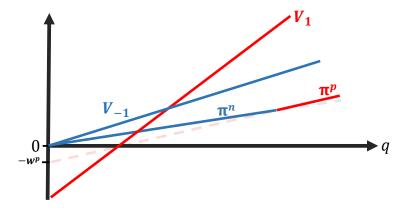
Dynamics 4

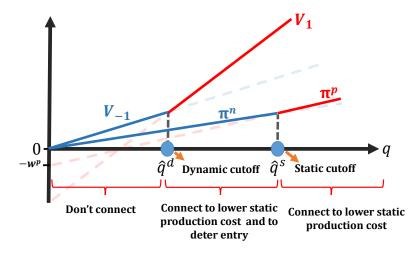

We need to solve for \hat{q}^d

- V_{-1} : Firm value for $q < \hat{q}^d$
- V_1 : Firm value for $q \ge \hat{q}^d$ when type=1
- V_0 : Firm value for $q \ge \hat{q}^d$ when type=0

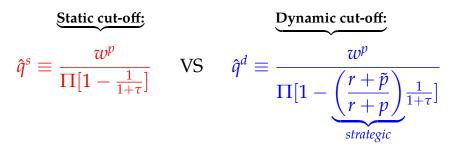

$$rV_{-1} = \Pi \left(1 + \tau\right)^{-1} q - pV_{-1}$$

$$rV_1 = \Pi q - w^p - \tilde{p}V_1$$


$$rV_{0} = \Pi (1+\tau)^{-1} q - pV_{0} + \zeta [V_{1} - V_{0}]$$


Ufuk Akcigit (University of Chicago)

Ufuk Akcigit (University of Chicago)



Ufuk Akcigit (University of Chicago)

Ufuk Akcigit (University of Chicago)

Model. Discussion

Recall:

$$\tilde{p} = p[\alpha + (1 - \alpha) \operatorname{Pr}(\lambda > \tau)]$$

PREDICTION 4: Connected incumbents are less likely to exit.

PREDICTION 5: Connected incumbents are more likely to be replaced by connected entrants.

PREDICTION 6: Connected industries have lower reallocation.

Model. Discussion

Static

 Gains by removing frictions in the economy. "Well-intended" connections.

Dynamic

Two reasons for lower entry and reallocation:

- 1. Response to the unequal distribution (α < 1) of power;
- 2. Strategic anticipation by incumbents.

Model Predictions

Rent-seeking incentives:

- 1. Large firms are more likely to get connected , BUT are least innovative.
- 2. For any given size, firms are more likely to get connected if the industry faces bigger bureaucratic/regulatory burden.

Private returns:

- 3. Connections lead to higher employment, revenue and profits BUT *lower labor productivity.*
- 4. Connected incumbents are *less* likely to exit.

Aggregate implications:

- 5. In industries with more connected incumbents, entrants are also more connected.
- 6. In more connected industries: lower entry and reallocation, larger and older firms with lower productivity, lower average growth.

Model Extension:

Endogenous Politician Compensation

Ufuk Akcigit (University of Chicago)

Endogenous Politician Compensation I/II

▶ Politicians have different political power, $\phi \in (0, 1)$:

$$\frac{\pi q}{1 + (1 - \phi)\,\tau}$$

Nash bargaining (γ, politician's bargaining power):

$$\begin{split} \bar{w}^{p}\left(\phi\right) &\equiv \arg \max_{\bar{w}^{p}\left(\phi\right)} \left[V_{1}^{\phi}(q) - V_{-1}(q) - \bar{w}^{p}(\phi)\right]^{1-\gamma} \left[\bar{w}^{p}\left(\phi\right) - \eta\left(\phi\right)\right]^{\gamma} \\ &= \gamma \pi q \left(\frac{1}{\left[1 + (1-\phi)\,\tau\right]\left[r + \tilde{p}\left(\phi\right)\right]} - \frac{1}{\left[1+\tau\right]\left[r+p\right]}\right) + (1-\gamma)\,\eta\left(\phi\right) \end{split}$$

Endogenous Politician Compensation II/II

The rate of creative destruction:

$$\tilde{p}(\phi) = p[\alpha + (1 - \alpha) \operatorname{Pr}(\lambda > \phi \tau)],$$

which implies $\tilde{p}'(\phi) < 0$.

PREDICTION 7: A firm that is connected to a more powerful politician is more likely to survive.

PREDICTION 8: Politician's compensation $\bar{w}^p(\phi)$ increases in his/her political power ϕ .

Ufuk Akcigit (University of Chicago)

Final Remarks

- New empirical findings on the relation between political connections and number of micro and macro moments in Italy.
- A new model of firm dynamics, innovation, and political connections.
- Future work: quantify importance for aggregate productivity and welfare.

The Economist

Bought and paid for

Cosy relationships between firms and politicians are undermining competition

Ufuk Akcigit (University of Chicago)

The Economist

Bought and paid for

Cosy relationships between firms and politicians are undermining competition

IMPLICATIONS FOR THE U.S.:

Return on lobbying investment in the U.S. = 22,000%.

Financial institutions that spent more on lobbying benefited disproportionately from bank bail-outs.

Thank You...

www.ufukakcigit.com uakcigit@uchicago.edu

Ufuk Akcigit (University of Chicago)