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A: Data Sources

Country specific variables. The measure of productivity is obtained from the
Penn World Table V.8 (Feenstra, Inklaar and Timmer 2013), and it accounts
for variation in both the share of labor income and capital depreciation across
countries and over time (series denoted as rtfpna). The Penn World table is
available at https://pwt.sas.upenn.edu/cic_main.html.

Data for the construction of the price-dividend ratio for RoW countries are
from the “International research returns” section of Kenneth French’s data library
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.
html). The US price-to-dividend ratio is obtained from the website of Robert
Shiller (http://www.econ.yale.edu/~shiller/data/ie_data.xls). The price-
to-dividend ratios for the RoW countries are calculated using cum- and ex-
dividend country value-weighted dollar index returns (using “All 4 Data Items
Not Reqd” series). French’s data begin in 1977; for previous years we use price-
dividend ratios from Campbell (2003).

Data on consumption and investment are from the Penn World Table and are
expressed in constant national prices. To construct consumption from the Penn
Word Tables dataset, we multiply the consumption share (denoted as csh c) by
GDP expressed in constant national prices (series denoted as rgdpna). We repeat
the same procedure for investment using the investment share data series (denoted
as csh i).

The real risk-free rates are computed using data from the International Finan-
cial Statistics (IFS) dataset provided by the International Monetary Fund. The
IFS dataset is available at http://elibrary-data.imf.org/DataExplorer.aspx.
For each country, the real risk-free rate is computed as the difference between the
nominal interest rate on government bills and realized inflation measured by the
consumer price index for all items. For the United Kingdom, the retail index is
used to calculate inflation. Germany’s and Italy’s risk-free rate series calculated
by the IMF begin in 1975 and 1976, respectively. For earlier years we use data
from Campbell (2003).
Net exports data and subcomponents. This section discusses how total net exports
and net exports of capital goods are measured. For the bilateral Net Exports, we
use two data sources. Table 1 in the main text is based on data collected from
the IMF Direction of Trade Statistics (IMF-DOTS) for all pairwise combinations
of the US and the rest of the G7 countries. Imports correspond to the series de-
noted as “Goods, Value of Imports, Cost, Insurance, Freight (CIF), US Dollars.”
Exports correspond to the series denoted as “Goods, Value of Exports, Free on
board (FOB), US Dollars.” The results in table B2 of appendix B.3 are instead
based on the imports and exports series collected from Mitchell (2007a,b,c). These
series correspond to the values reported in the books’ sections called “External
Trade with Main Trading Partners.”

For the broader aggregate of net exports, whose results are reported in table 1
(column labeled “NX (US Total)”), we use annual data from the Bureau of Eco-
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nomic Analysis (BEA) table 4.2.5 “Exports and imports by type of products.”
For both exports and imports, data are aggregated in six main components: (C1)
Foods, feeds, and beverages; (C2) Industrial supplies and materials; (C3) Capital
goods, except automotive; (C4) Automotive vehicles, engines, and parts; (C5)
Consumer goods, except automotive; and (C6) Services.

In this paper, we study a model that abstracts away from both consumer
durable goods and government expenditure. For this reason, we exclude the
following subcomponents from both imports and exports in our empirical inves-
tigation: “ Transfers under U.S. military agency sales contracts” included under
(C6) services, and “Consumer Durable goods” included under (C5).

The BEA provides a detailed list of the items that are considered industrial
supplies. In the context of our model, the most relevant subcomponents of these
supplies (for example, finished and unfinished metals, finished and unfinished
building materials, and fabrics) are better interpreted as nonperishable investment
goods. For this reason, our net exports of capital goods, NXI, comprise both
industrial supplies (C2 above), and capital goods (C3 above). A somewhat more
accurate allocation of these supplies across investment and consumption goods
may be achieved using the BEA detailed goods trade data. Unfortunately, this
would come at the cost of basing our inference on a significantly shorter sample,
as data are available only from 1989. Data are available at https://www.bea.

gov/international/detailed\_trade\_data.htm.

B: Additional Empirical Results

In this section, we report additional results relative to the empirical analysis
discussed in section I of the main text.

1: Estimates of the Productivity Process

We document some properties of the system that we use to describe the joint
evolution of productivity and p/d ratios in equations (1)-(2) of the main text. We
begin by allowing all the parameters to differ across countries, thus estimating an
unconstrained GMM. Specifically, we estimate the parameters

{βUSa , βRoWa , ςUS , ςRoW , %US , %RoW , ςUSz , ςRoWz , %a, %z},

using the following orthogonality conditions:

1) 1
T

∑T
t=1

(
∆aUSt − βUSa · pdUSt−1

)
· pdUSt−1 = 0,

2) 1
T

∑T
t=1

(
∆aRoWt − βRoWa · pdRoWt−1

)
· pdRoWt−1 = 0,

3) 1
T

∑T
t=1

(
∆aUSt − βUSa · pdUSt−1

)2 − (ςUS)2 = 0,

4) 1
T

∑T
t=1

(
∆aRoWt − βRoWa · pdRoWt−1

)2 − (ςRoW )2 = 0,
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Table B1—Productivity Dynamics

βa ς R2 % ςz %a %z

Panel A: GDP Weighted
Estimate 0.009 1.145 0.060 0.938 0.101 0.442 0.789

(0.001) (0.074) (0.036) (0.011) (0.056) (0.062)

H0 : US = RoW [0.112] [0.013] [0.527] [0.077]

Panel B: Equally Weighted
Estimate 0.009 1.130 0.059 0.939 0.103 0.500 0.848

(0.001) (0.074) (0.035) (0.012) (0.055) (0.050)

H0 : US = RoW [0.174] [0.009] [0.470] [0.079]

Panel C: Market Cap Weighted
Estimate 0.009 1.136 0.061 0.939 0.103 0.495 0.818

(0.001) (0.081) (0.036) (0.009) (0.055) (0.057)

H0 : US = RoW [0.530] [0.011] [0.322] [0.271]

Note: In this table we report estimates of the parameters that govern the transition dynamics of
productivity featured in the system of equations (1) and (2) in the main text, for the case in which
zit−1 = βa · pdit−1. The numbers in parentheses correspond to standard errors. The numbers in square
brackets are the p-values associated with the null hypothesis that each coefficient is identical in the US
and the RoW. The RoW quantities are obtained by aggregating the remaining G7 countries using GDP
shares (panel A), equal weights (panel B), and market capitalization shares (panel C). Data sources are
detailed in appendix A. Our sample starts in 1973 and ends in 2006.

5) 1
T

∑T
t=1

(
βUSa · pdUSt − %US · βUSa · pdUSt−1

)
· βUSa · pdUSt−1 = 0,

6) 1
T

∑T
t=1

(
βRoWa · pdRoWt − %RoW · βRoWa · pdRoWt−1

)
· βRoWa · pdRoWt−1 = 0,

7) 1
T

∑T
t=1

(
βUSa · pdUSt − %US · βUSa · pdUSt−1

)2 − (ςUSz · ςUS
)2

= 0,

8) 1
T

∑T
t=1

(
βRoWa · pdRoWt − %RoW · βRoWa · pdRoWt−1

)2 − (ςRoWz · ςRoW
)2

= 0,

9) 1
T

∑T
t=1

(
∆aUSt − βUSa · pdUSt−1

) (
∆aRoWt − βRoWa · pdRoWt−1

)
−%aςUS ·ςRoW = 0,

10) 1
T

∑T
t=1

(
βUSa · pdUSt

)
·
(
βRoWa · pdRoWt

)
− %z · ςUSz · ςRoWz = 0,

where all the variables are de-meaned. Given that we typically cannot reject
the null hypothesis that all the parameters are identical across countries, in what
follows we focus on the pooled case in which βUSa = βRoWa = βa, ς

US
a = ςRoWa = ςa,

%US = %RoW = %, ςUSz = ςRoWz = ςz.

In table B1 we report the pooled estimated parameters, the associated standard
error, and the p-value for the null hypothesis that the estimated coefficients are
identical in the US and the RoW for the system in (1) and (2) in the main text.
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We document several results. First, all the parameters governing the transition
dynamics of productivity in the auxiliary system are tightly identified. Second,
the autocorrelation of the predictive component of productivity growth is ex-
tremely high and close to 1. This means that shock to the expected component
have a lasting impact on future growth. Third, we typically cannot reject the
null hypothesis that the US and the RoW feature the same parameters. The
only parameter for which we cannot consistently reject our null hypothesis is the
short-run volatility of productivity (σ). The point estimate for this parameter is
1.35 (with a standard error of 0.19) for the US and 0.93 (with a standard error
of 0.11) for the RoW. We explain the lower volatility of the RoW aggregates
as originating from the imperfect correlation of the growth rates of productivity
in the remaining G7 countries. Mechanically, the aggregation of the remaining
six countries smooths fluctuations. Last, but not least, the correlations of the
expected components of productivity are always larger than their unanticipated
counterparts, and very close to unity.

2: Estimates of Response to Shocks

In what follows, we shall denote

εUSa,t = ∆aUSt − βa · pdUSt−1

εRoWa,t = ∆aRoWt − βa · pdRoWt−1

εUSz,t = βa · pdUSt − % · βa · pdUSt−1

εRoWz,t = βa · pdRoWt − % · βa · pdRoWt−1 ,

where the parameters {βa, %} are jointly estimated with each set of moment con-
ditions reported below.
Net Exports regression. We estimate the parameters featured in equation (3) in
the manuscript along with βUSa = βRoWa = βa, and %US = %RoW = %, using mo-
ment conditions (1), (2), (5), and (6) in appendix B.1 together with the following
moment conditions:

11) 1
T

∑T
t=1

[
∆

(
NXUS

t
GDPt

)
− βNX,a

(
εUSa,t − εRoWa,t

)
− βNX,pd

(
εUSz,t − εRoWz,t

)](
εUSa,t − εRoWa,t

)
= 0

12) 1
T

∑T
t=1

[
∆

(
NXUS

t
GDPt

)
− βNX,a

(
εUSa,t − εRoWa,t

)
− βNX,pd

(
εUSz,t − εRoWz,t

)](
εUSz,t − εRoWz,t

)
= 0.

Investments regressions. We estimate the parameters featured in equation (4) in
the manuscript along with βUSa = βRoWa = βa, and %US = %RoW = %, using mo-
ment conditions (1), (2), (5), and (6) in appendix B.1 together with the following
moment conditions:

13) 1
T

∑T
t=1

[
∆IUSt −∆IRoWt − βI,a · (εUSa,t − εRoWa,t )− βI,pd · (εUSz,t − εRoWz,t )

]
· (εUSa,t − εRoWa,t ) = 0

14) 1
T

∑T
t=1

[
∆IUSt −∆IRoWt − βI,a · (εUSa,t − εRoWa,t )− βI,pd · (εUSz,t − εRoWz,t )

]
· (εUSz,t − εRoWz,t ) = 0.
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Table B2—Empirical Evidence

NX NXI
(Bilateral, Mitchell) (Total US NX of Investments)

Panel A: GDP Weighted
a −0.122 −0.275

(0.017) (0.034)

z 1.223 1.383
(0.529) (0.689)

Panel B: Equally Weighted
a −0.119 −0.274

(0.232) (0.046)

z 1.202 1.412
(0.452) (0.682)

Panel C: Market Cap Weighted
a −0.133 −0.275

(0.022) (0.046)

z 1.137 1.436
(0.480) (0.724)

Note: In this table we report estimates for the response of the bilateral net exports between the US and
the RoW, and total US net exports of investments to relative shocks to the unanticipated (a) and expected
(z) components of productivity. Bilateral net exports data are obtained from Mitchell (2007a,b,c). The
RoW quantities are aggregated by weighting the remaining G7 countries by their share of GDP (panel
A), equally (panel B), and market capitalization (panel C). Data sources are detailed in appendix A.
Our sample starts in 1973 and ends in 2006.

Consumption regressions. We estimate the parameters featured in equation (5)
in the manuscript along with βUSa = βRoWa = βa, and %US = %RoW = %, using mo-
ment conditions (1), (2), (5), and (6) in appendix B.1 together with the following
moment conditions:

15) 1
T

∑T
t=1

[
∆cUSt −∆cRoWt − βc,a · (εUSa,t − εRoWa,t )− βc,pd · (εUSz,t − εRoWz,t )

]
· (εUSa,t − εRoWa,t ) = 0

16) 1
T

∑T
t=1

[
∆cUSt −∆cRoWt − βc,a · (εUSa,t − εRoWa,t )− βc,pd · (εUSz,t − εRoWz,t )

]
· (εUSz,t − εRoWz,t ) = 0.

3: Additional Series of Net Exports

In table B2 we report the results of the regression specification in equation (3)
in the main text obtained by replacing the series on the left-hand side with the
bilateral NX between the US and the RoW obtained by aggregating the data
from Mitchell (2007a,b,c) (first column) and with total net exports of investments
(NXI ) of the US versus the remainder of the world (second column). The table
documents the same behavior of net exports that we have highlighted in the main
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text, namely that net exports increase in response to a positive relative long-run
shock and fall in response to a positive relative short-run shock. The results
are robust to all the aggregation methods for the RoW variables that we have
employed throughout the rest of the paper.

4: Decomposition of R2 for NX Regressions

In Table B3, we report additional results for the regressions of bilateral net
exports between the US and the RoW onto the spread of shocks to the expected
and unanticipated component of productivity,

∆

(
NXUS

t

GDPt

)
= βNX,a ·

(
εUSa,t − εRoWa,t

)
+ βNX,z ·

(
εUSz,t − εRoWz,t

)
+ ξt,

as in equation (3). The total R2s in these regressions are usually in the range of
20%. A large fraction of these R2s, ranging from about 60% to almost 75%, is
accounted by the shocks to the predictive components of productivity, as docu-
mented in the last column of table B3.

Table B3—Relative R2

R2

a z Total LR share

Panel A: GDP Weighted
−0.096 1.072 0.218 0.596
(0.020) (0.446) (0.103) (0.237)

Panel B: Equally Weighted
−0.083 1.028 0.190 0.731
(0.025) (0.402) (0.103) (0.218)

Panel C: Market Cap Weighted
−0.100 0.917 0.183 0.642
(0.028) (0.395) (0.102) (0.235)

Note: In this table we report the estimates for the regressions of bilateral net exports between the US and
the RoW (columns 1 and 2) onto relative shocks to the unanticipated (a) and expected (z) components of
productivity. Bilateral net exports data are obtained from IMF DOTS. Columns 3 and 4 report the total
R2 of each regression and the share of the R2 that is represented by the two relative shocks. The RoW
quantities are obtained by aggregating the remaining G7 countries using GDP shares (panel A), equal
weights (panel B), and market capitalization shares (panel C). Data sources are detailed in appendix A.
Our sample starts in 1973 and ends in 2006.
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C: Additional Results for the Model

In this section, we derive the approximated solution of our two-period model.
We then report our derivations for the infinite horizon model, along with key
results for our aggregation with heterogeneous capital vintages.

1: Derivations for the Two-Period Model

Shock and information structure. In this section, we present a simplified two-
period version of the model in order to provide intuition on the capital reallocation
motives induced by recursive preferences. Specifically, at time t = 1 agents receive
news θ about the productivity that capital will have at time t = 2. Since θ does not
alter productivity at time t = 1, it represents a pure news shock. For simplicity,
no other shock materializes at t = 1, 2.

At time t = 0, that is, before the arrival of the news, agents have the same
wealth and consumption level, and exchange a complete set of θ-contingent secu-
rities to maximize their time-0 utility. As a result, the time-1 reallocation can be
interpreted as a deviation from the symmetric steady state.
Utility and technology. In what follows, we take advantage of lognormality wher-
ever possible. Up to a log linearization of the allocation shares, this modeling
strategy enables us to get a simple closed-form solution. In this spirit, we start
by assuming that agents have an IES equal to 1, that is, their preferences can be
expressed as follows:

ui0 =

{
(1− β) logCi0 + β

1−γ logE0[exp{ui1(1− γ)}] γ 6= 1

(1− β) logCi0 + βE0[ui1] γ = 1
(C1)

where

Ct = Xλ
t Y

(1−λ)
t , C∗t = X

∗(1−λ)
t Y ∗λt , for t = 1, 2(C2)

and
ui1 = (1− β) logCi1 + β(1− β) logCi2.

Notice that in our setting uncertainty is fully resolved at time 1, and hence time-2

quantities are known at time 1. We set Ch0 = Cf0 = C > 0 for symmetry and
without loss of generality, as these variables play no role in the future allocation.

The resource constraints are specified as follows:

(C3)

1 = X1 +X∗1 + Ix,1 + Iy,t, 1 = Y1 + Y ∗1 + I∗x,1 + I∗y,1 t = 1

eθG(Ix,1, I
∗
x,1) = X2 +X∗2 , e−θG∗(Iy,1, I

∗
y,1) = Y2 + Y ∗2 t = 2

G = Iλix,1I
∗1−λi
x,1 , G∗ = I1−λi

y,1 I∗λiy,1

θ ∼ iidN(0, σ)

,

and are consistent with the assumption of full capital depreciation in our bench-
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mark setting. This assumption helps with log linearity.

Total production at time t = 1 is predetermined, like in a production economy
in which labor does not adjust upon the arrival of news. Since the relative re-
allocation induced by θ does not depend on the time-1 size of the economy, we
normalize total production to be 1.

Finally, we assume that θ affects both domestic and foreign productivity to
preserve symmetry in our equations. In what follows, we show that the results
are driven only by the relative cross-country productivity, 2θ.

Pareto problem. Under complete markets, the allocation can be recovered by
solving the following Pareto problem:

max
{{Xt,X∗t ,Yt,Y ∗t }t=1,2,Ix,1,Iy,1,I

∗
x,1,I

∗
y,1}

µ0u0 + (1− µ0)u∗0,

subject to the constraints specified in (C3). For the sake of symmetry, we assume
S0 ≡ µ0

1−µ0 = 1.

After simplifying common coefficients, the optimality condition for the alloca-
tion of good X1 is

S1(θ)
∂ logC1

∂X1
=
∂ logC∗1
∂X1

(C4)

with

S1(θ) =


S0, γ = 1

S0

eu1(1−γ)

E0[e
u1(1−γ)]

e
u∗1(1−γ)

E0[e
u∗1(1−γ)]

= S0e
(u1(θ)−u∗1(θ))(1−γ) γ 6= 1,(C5)

where the second equality in the case of γ 6= 1 holds because of the symmetry of
our problem (at the equilibrium E0[eu1(1−γ)] = E0[eu

∗
1(1−γ)]).

Equation (C4) establishes that the optimal allocation can be found as in a
regular static problem, for a given value of S1. Equation (C5) pins down S1

and states two important results. First, in the time-additive case, the share of
resources is time invariant, that is, it is not affected by the actual realization of
θ. This is consistent with the special log case considered by Cole and Obstfeld
(1991).

Second, with recursive preferences, agents have a preference for the variance of
their future utility and hence their time-1 marginal utility depends on the time-1
level of their utility. If agents prefer early resolution of uncertainty (γ > 1), a
higher relative future utility implies a lower relative marginal utility and hence a
lower share of allocated resources (u1(θ) > u∗1(θ) → S1(θ) < S0). The opposite
is true when γ < 1. Because of the dependence of S1 on future utility levels,
u1(θ)− u∗1(θ), θ prompts a reallocation at time 1.

Similarly to the results derived for time 1, the optimality condition for the
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allocation of good X2 is

S2(θ)
∂ logC2

∂X2
=
∂ logC∗2
∂X2

(C6)

where
S2(θ) = S1(θ)

because uncertainty is fully resolved at time 1 and hence agents face no further

news going forward, that is, exp{u2(θ)(1−γ)}
E1[exp{u2(θ)(1−γ)}] =

exp{u∗2(θ)(1−γ)}
E1[exp{u∗2(θ)(1−γ)}] = 1 ∀θ. As a

result, no additional variation of the pseudo-Pareto weights takes place at time
2.

CRRA case. In this case, the allocation at time 1 can be computed exactly
as S1 = S0 = 1. As a result, from the home-country perspective we have the
following:

Ix,1 = λi
β

1 + β
, Iy,1 = (1− λi)

β

1 + β
,

X1 = λ
1

1 + β
, X∗1 = (1− λ)

1

1 + β
,

that is, a fraction 1/(1 + β) of time-1 output is devoted to consumption, whereas
β/(1 + β) is devoted to investment. The fraction of good X used for domestic
consumption equals the consumption home-bias parameter λ. The fraction of
good X used for investment in the home country equals the investment home-bias
parameter λi. By symmetry, similar results apply to the foreign country. It is
then possible to establish that

NXC
1 ≡ X∗1 − p1Y1 = 0 ∀θ

and
NXI

1 ≡ Iy,1 − p1I
∗
x,1 = 0 ∀θ,

that is, news promotes no current account adjustment.

EZ case. In this case, the allocations at t = 1, 2 are a nonlinear function of S1(θ).
We log linearize them with respect to s1 ≡ logS1 around s1 = s0 = 0 and verify
that at the equilibrium the following holds:

u1 = const+ λsus1 + λθuθ, u∗1 = const− λsus1 − λθuθ,(C7)

s1 = λθsθ,(C8)

where λji denotes the elasticity of the variable i with respect to variable j. The
derivations reported in what follows prove that

λθs = 2
(2λ− 1)(1− γ)

1− 2λsu(1− γ)
,(C9)
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where λsu ≥ 0 if λ ≥ 1/2, as detailed in equation (C18).

Time 2. In the final period, the allocation of {X2, X
∗
2 , Y2, Y

∗
2 } satisfies what

follows:

S2(θ)
∂ logC2

∂X2
=

∂ logC∗2
∂X2

S2(θ)
∂ logC2

∂Y2
=

∂ logC∗2
∂Y ∗2

eθG(θ) = X2 +X∗2
e−θG∗(θ) = Y2 + Y ∗2 .

We report the solution only for the home country allocation using the condition
S2(θ) = S1(θ):

X2(θ) = SHX(θ)eθG(θ) =
κS1(θ)

1 + κS1(θ)
eθG(θ)

Y2(θ) = SHY (θ)e−θG∗(θ) =
1/κS1(θ)

1 + 1/κS1(θ)
e−θG∗(θ),

where κ = λ/(1 − λ), and SHz is the share of good z = X,Y allocated to the
home (H) country. Using the resource constraints, X∗2 = (1− SHX)eθG(θ), and
Y ∗2 = (1 − SHY )e−θG(θ). After log linearizing the share processes with respect
to s1(θ) around s = 0,

logSHX(θ) ≈ log(λ) + (1− λ)s1(θ)

logSHY (θ) ≈ log(1− λ) + λs1(θ),

we get

logC2(θ) ≈
constant︷ ︸︸ ︷

λ log(λ) + (1− λ) log(1− λ) +

λθC2︷ ︸︸ ︷
(2λ− 1) θ +

λsC2︷ ︸︸ ︷
2λ(1− λ) s1(θ)(C10)

+ λ logG(θ) + (1− λ) logG∗(θ)

logC∗2 (θ) ≈ constant− λθC2
θ − λsC2

s1(θ) + (1− λ) logG(θ)(C11)

+ λ logG∗(θ).

Time 1. At time 1, the planner needs to allocate both consumption goods
{X1, X

∗
1 , Y1, Y

∗
1 } and capital {Ix, I∗x, Iy, I∗y} to solve the following problem:

max(1− δ)[S1 · (logC1 + δ logC2) + (logC∗1 + δ logC∗2 )],
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subject to

1 = X1 +X∗1 + Ix,1 + Iy,t

1 = Y1 + Y ∗1 + I∗x,1 + I∗y,1.

The rescaling factor (1− δ) is reported just for consistency with the specification
of our preferences, and it does not play any relevant role. This optimization is
implemented taking θ and hence s1(θ) as given. After solving this allocation
problem, we can characterize u1 − u∗1 in equation (16) and solve a fixed point for
the joint dynamics of u1 − u∗1 and s1(θ), i.e., our main computational goal.

The FOCs with respect to X1, X
∗
1 , Ix, and Iy are

X∗1 = 1/(κS1)X1(C12)

X1 =
1

λiβ[1 + 1/(κS1])
Ix(C13)

Iy =
1− λi
λi

λ+ (1− λ)S1

1− λ+ λS1
Ix(C14)

Equations (C12)–(C14) together with the resource constraint imply the following:

Ix = λiδ
1

1 + δλi + δ(1− λi)λ+(1−λ)S1

1−λ+λS1

.(C15)

A log-linearization of equations (C12)–(C15) with respect to s1(θ) around s = 0
produces

log Ix ≈ log

(
λiδ

1 + δ

)
+

δ

1 + δ
(1− λi)(2λ− 1)︸ ︷︷ ︸

λsi

s1(C16)

log Iy ≈ log

(
(1− λi)δ

1 + δ

)
+

1

1 + δ
(1 + λiδ)(1− 2λ)︸ ︷︷ ︸

λsiy

s1

logX1 ≈ log

(
λ

1 + δ

)
+

[
δ

1 + δ
(1− λi)(2λ− 1) + 1− λ

]
︸ ︷︷ ︸

λsx

s1

logX∗1 ≈ log

(
1− λ
1 + δ

)
+

[
δ

1 + δ
(1− λi)(2λ− 1)− λ

]
︸ ︷︷ ︸

λs
x∗

s1.
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By symmetry:

log I∗x ≈ log

(
(1− λi)δ

1 + δ

)
− λsiys1, log I∗y ≈ log

(
λiδ

1 + δ

)
− λsis1,

log Y ∗1 ≈ log

(
λ

1 + δ

)
− λsxs1, log Y1 ≈ log

(
1− λ
1 + δ

)
− λsx∗s1.

We are now ready to characterize the utility functions at time 1:

u1 = (1− δ)(logC1 + δ logC2) ≈ const+ λθuθ + λsus1 = const+

λu︷ ︸︸ ︷
(λθu + λsu · λθs) θ

u∗1 = (1− δ)(logC∗1 + δ logC∗2 ) ≈ const− λθuθ − λsus1 = const− λuθ,

where

λθu = λθC2
(1− δ)δ = (2λ− 1)(1− δ)δ(C17)

λsu = (1− δ)[λ · λsx + (1− λ)(−λsx∗)](C18)

+ δ(1− δ)(2λ− 1)(λi · λsi + (1− λi)(−λsiy))

λθs : s1(θ) = λθsθ.(C19)

Given the equilibrium condition (16),

λθs = −2(γ − 1)λu → λθs − 2λsu(γ − 1)λu = λu,

and hence

(C20) λθs =
2(1− γ)(1− δ)δ(2λ− 1)

1 + 2λsu(γ − 1)
.

LEMMA 1: If λ > 1/2, λi ∈ (0, 1), and γ > 1, then λθs < 0.

PROOF:

If λ > 1/2 and γ > 1, the numerator of equation (C20) is negative. Since
λi ∈ (0, 1), in the system of equations (C16) home bias implies that (i) λsi > 0
and −λsiy > 0, and (ii) λsx > 0 and −λsx∗ > 0. As a result, according to equation

(C18) we have λsu > 0. Given these conditions, the denominator of (C20) is
positive.

Time-1 net exports. According to the definition of net exports of consumption
goods, from the home-country perspective we have

NXC
1

X1
=
X∗1
X1
−
(

1− λ
λ

X1

Y1

)
︸ ︷︷ ︸

p1

Y1

X1
= −1− λ

λ

(
1− 1

S1

)
,
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where p1 is the terms of trade. Similarly, for the net exports of investment we
obtain

NXI
1

Ix
=
Iy
Ix
−
(

1− λi
λi

Ix
I∗x

)
︸ ︷︷ ︸

p1

I∗x
Ix

= −1− λi
λi

(
1− S1 + κ

κS1 + 1

)
.

2: Pareto Problem, Infinite Horizon

For the sake of brevity, in this appendix we suppress notation to denoting state
and histories and retain only subscripts for time. We represent the Epstein and
Zin (1989) utility preference in the following compact way:

Ut = W (C̃t, Ut+1),

so that the dependence of current utility on j-step-ahead consumption can easily
be denoted as follows:

(C21)
∂Ut

∂C̃t+j
= W2,t+1 ·W2,t+2 · · · ·W2,t+jW1,t+j ,

where W2,t+j ≡ ∂Ut+j−1

∂Ut+j
and W1,t+j ≡ ∂Ut+j

∂C̃t+j
. Given this notation, the intertem-

poral marginal rate of substitution between C̃t and C̃t+1 is

(C22) IMRS
C̃,t+1

=
W2,t+1W1,t+1

W1,t
= Mt+1πt+1,

where πt+1 is the probability of a specific state, andMt+1 is the stochastic discount

factor in C̃ units with the following form:

(C23) Mt+1 = β

(
C̃t+1

C̃t

)− 1
ψ

 Ut+1

Et

[
U1−γ
t+1

] 1
1−γ


1
ψ
−γ

.

The consumption bundle, C̃, depends on both the consumption aggregate, C,
and labor, N :

C̃t = C̃(Ct, Nt).

The consumption aggregate combines two goods, x and y:

Ct = C(Xt, Yt).

13



The planner faces the following constraints:

F (At,Kt, Nt) ≥ Xt +X∗t + Ix,t + Iy,t(C24)

F (A∗t ,K
∗
t , N

∗
t ) ≥ Yt + Y ∗t + I∗x,t + I∗y,t(C25)

Kt ≤ (1− δ)Kt−1 + eωtG(Ix,t−1, I
∗
x,t−1)(C26)

K∗t ≤ (1− δ)K∗t−1 + eω
∗
tG∗(Iy,t−1, I

∗
y,t−1),(C27)

where At and A∗t are the exogenous stochastic productivity processes in equation
(19). The processes wt = −1−α

α (∆at − µ) and w∗t = −1−α
α (∆a∗t − µ) result from

the vintage capital structure assumed in Ai, Croce and Li (2013).

The social planner chooses
{
Xt, X

∗
t , Yt, Y

∗
t , Nt, N

∗
t ,Kt,K

∗
t , Ix,t, Iy,t, I

∗
x,t, I

∗
y,t

}
t

to maximize

µ0W0 + (1− µ0)W ∗0 ,

subject to sequences of constraints (C24)–(C27). Specifically, let λi,t be the La-
grangian multiplier for the time t constraint (Bi); then the Lagrangian is

Ω =µ0W0 + (1− µ0)W ∗0
+ ...

+ λ1,t(F (At,Kt, Nt)−Xt −X∗t − Ix,t − Iy,t)
+ λ2,t(F (A∗t ,K

∗
t , N

∗
t )− Yt − Y ∗t − I∗x,t − I∗y,t)

+ λ3,t((1− δ)Kt−1 + eωtG(Ix,t−1, I
∗
x,t−1)−Kt)

+ λ4,t((1− δ)K∗t−1 + eω
∗
tG∗(Iy,t−1, I

∗
y,t−1)−K∗t )

+ ...

The optimality condition for the allocation of good Xt for t = 1, 2, ... in each
possible state is

(C28) µ0 ·

 t∏
j=1

W2,j

 ·W1,tC̃C,tCx,t = λ1,t = C∗x∗,tC̃
∗
C∗,tW

∗
1,t ·

 t∏
j=1

W ∗2,j

 · µ∗0,
where µ∗0 = (1− µ0), C̃C,t = ∂C̃t/∂Ct, Cx,t = ∂Ct/∂xt, and the analogous partial
derivatives for the foreign country are denoted by an asterisk.

Define µt as the date t Pareto weight for the home country. Using equation
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(C22), we obtain

µt = µ0 ·

 t∏
j=1

W2,j

 ·W1,tCt

= µt−1 ·W i
2,t ·

W1,t

W1,t−1
· Ct
Ct−1

= µt−1 ·Mt ·
Ct
Ct−1

.

It follows that equation (C28) can be rewritten as

(C29) µt · C̃C,tCx,t
1

Ct
=

1

C∗t
C∗x∗,tC̃

∗
C∗,t · µ∗t .

Let St ≡ µt/µ∗t , and note that with GHH preferences, C̃C,t = 1; that is, equation
(C23) holds also for the discount factor in C units. Then the optimality condi-
tion in equation (C29) can be represented by the following system of recursive
equations:

St · Cx,t ·
1

Ct
= C∗x∗,t ·

1

C∗t

St = St−1
Mte

∆ct

M∗t e
∆c∗t

.(C30)

In a similar fashion, the optimal allocation of good Y is determined by

St · Cy,t ·
1

Ct
= C∗y∗,t ·

1

C∗t
.

Given our GHH preferences, the optimal allocation of labor implies the following
standard intratemporal conditions:

C̃N,t = −FN,tCX,t
C̃∗N∗,t = −F ∗N∗,tC∗Y ∗,t,

where CX,t = ∂Ct/∂Xt, C
∗
Y ∗,t = ∂C∗t /∂Y

∗
t , C̃N,t = ∂C̃t/∂Nt, and FN,t = ∂Ft/∂Nt.

Let st+1 index the possible states at time t+ 1. The first-order condition with
respect to Ix,t is

−λ1t +
∑
st+1

(λ3,t+1e
ωt+1GIx,t) = 0

⇔
∑
st+1

(
λ1,t+1

λ1,t

λ3,t+1

λ1,t+1
ωht+1

)
=

1

GIx,t
.
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By definition, IMRSxt+1|t =
λ1,t+1

λ1,t
= ∂U0/∂xt+1

∂U0/∂xt
= Mx

t+1πt+1|t for i ∈ {h, f},
where Mx

t+1 is the stochastic discount factor in X-units. Substituting the stochas-
tic discount factor into the above equation, we have

(C31)
1

GIx,t
= Et[M

x
t+1Pk,t+1e

ωt+1 ],

where GIx,t ≡
∂G(Ix,t,I∗x,t)

∂Ix,t
, and Pk,t+1 ≡ λ3,t+1

λ1,t+1
is the cum-dividend price of capital

in X-units. The optimal accumulation of Kt has to satisfy

−λ3,t + λ1,tFk,t +
∑
st+1

((1− δ)λ3,t+1) = 0

⇔ Et[M
x
t+1(1− δ)Pk,t+1] + Fk,t = Pk,t,

where Fk,t ≡ ∂F
∂kt

. Define Qk,t ≡ Et[M
x
t+1Pk,t+1] as the ex-dividend price of

capital. Then we have

Pk,t = Fk,t + (1− δ)Qk,t
Qk,t = Et[M

x
t+1Pk,t+1]

and

Rk,t+1 =
Pk,t+1

Qk,t
.

The first-order condition with respect to Iy,t states the following:

−λ1,t +
∑
st+1

(
λ4,t+1e

ω∗t+1G∗Iy ,t

)
= 0

⇔
∑
st+1

(
λ1,t+1

λ1,t

λ4,t+1

λ2,t+1

λ2,t+1

λ1,t+1
eω
∗
t+1

)
=

1

G∗Iy ,t
,

where G∗Iy ,t ≡
∂G∗t
∂Iy,t

. Similarly to what done for the home country, define

P ∗k,t+1 ≡
λ4,t+1

λ2,t+1
as the cum-dividend price of capital in Y -units and note that

Pt+1 =
λ2,t+1

λ1,t+1
measures the terms of trade. It is then possible to obtain that

1

G∗Iy ,t
= Et[M

x
t+1P

∗
k,t+1Pt+1e

ω∗t+1 ].(C32)

Define My
t+1 ≡

λ2,t+1

λ2,t
as the SDF in Y -units. The remaining first-order condi-
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tions imply

1

G∗I∗y ,t
=Et[M

y
t+1P

∗
k,t+1e

ω∗t+1 ](C33)

P ∗k,t =F ∗k,t + (1− δ)Q∗k,t

R∗k,t+1 =
P ∗k,t+1

Q∗k,t

Q∗k,t =Et[M
y
t+1P

∗
k,t+1]

1

GI∗x ,t
=Et

[
My
t+1Pk,t+1

1

Pt
eωt+1

]
.

We use perturbation methods to solve our system of equations. We compute
our policy functions using the dynare++4.2.1 package. All variables included in
our dynare++ code are expressed in log units.

3: Aggregation with Vintage Capital

In what follows, we confirm the aggregation results proved in Ai, Croce and Li
(2013).

LEMMA 2: Suppose there are m types of firms. For i = 1, 2, 3, · · ·m, the pro-
ductivity of the type i firm is denoted by A (i), and the total measure of the type i
firm is denoted by F (i). The production technology of the type i firm is given by

y (i) = [A (i)n (i)]1−α ,

where n (i) denotes the labor hired at firm i. The total labor supply in the economy
is N . Then total output is given by

Y =

[
m∑
i=1

F (i)

[
A (i)

A (1)

] 1−α
α

]α
[A (1)N ]1−α .

PROOF:

Without loss of generality, we assume that firms of the same type employ the
same amount of labor. In this case, the total output in the economy is given by

Y = max

m∑
i=1

F (i)A (i)1−α n (i)1−α(C34)

subject to
m∑
i=1

F (i)n (i) = N.
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The first-order condition of the above optimization problem implies that for all i,

n (i)

n (1)
=

(
A (i)

A (1)

) 1−α
α

.

Using the resource constraint,

m∑
i=1

F (i)

(
A (i)

A (1)

) 1−α
α

n (1) = N,

we determine the labor employed in firm 1:

(C35) n (1) =

[
m∑
i=1

F (i)

[
A (i)

A (1)

] 1−α
α

]−1

N.

Using equations (C34)–(C35), we have:

Y =
m∑
i=1

F (i)A (i)1−α

[(
A (i)

A (1)

) 1−α
α

n (1)

]1−α

= [A (1)n (1)]1−α
[
m∑
i=1

F (i)

(
A (i)

A(1)

) 1−α
α

]

= [A (1)N ]1−α
[
m∑
i=1

F (i)A (i)
1−α
α

]α
,

as needed.

At time t, there are t + 1 types of operating production units in the economy,
namely, production units of generation −1, 0, 1, · · · , t − 1. The measures of
these production units are (1− δK)tK0, (1− δK)t−1G0, (1− δ)t−2G1, · · · , Gt−1.
Using the above lemma, at date t, the total production in the economy is given
by

Yt = At

[
(1− δK)tK0 +

t−1∑
τ=0

(1− δK)t−τ−1Gτ

(
Aτt
At

)α−1
α

]α
N1−α
t .

Clearly, if we define the {Kt}∞t=0 process recursively according to equation (23),
the aggregate production function is Cobb-Douglas, as in section III.

4: Sensitivity Analysis

In this section we assess the sensitivity of our results with respect to the key
elements of our study, i.e., (i) the preference parameters related to the recursive
risk-sharing motive, and (ii) the degree of home bias. Starting from the EZ-BKK
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Table C1—Model Sensitivity Analysis

Panel A: the role of the IES (ψ)

Moments Data EZ-BKK IES=1 IES=1.5
E[rf ] (%) 1.32 (0.64) 2.31 2.96 1.03

corr(∆c,∆c∗) 0.37 (0.11) 0.25 0.24 0.47

βNXLR 1.07 (0.45) 1.24 1.29 1.21

Panel B: the role of the RRA (γ)
Moments Data EZ-BKK RRA=5 RRA=15

StD(∆i)/Std(∆xT ) 2.36 (0.26) 2.24 2.24 2.41

E[rf ] (%) 1.32 (0.64) 2.31 3.60 1.24
StD(∆e) 5.93 (0.77) 4.65 3.88 5.14

corr(∆c,∆c∗) 0.37 (0.11) 0.25 0.16 0.32

βNXLR 1.07 (0.45) 1.24 1.10 1.33

Panel C: the role of home bias (λ = λI)

Moments Data EZ-BKK λ = .85 λ = .95 λ = .95

(RRA=3)

corr(∆NX
XT ,∆x

T ) -0.36 (0.13) -0.16 -0.53 0.27 -0.32

corr(∆i,∆i∗) 0.33 (0.17) 0.39 0.07 0.61 0.34
corr(∆c,∆c∗) 0.37 (0.11) 0.25 0.19 0.27 0.11

Quant. Anomaly 0.15 (0.09) -0.14 -0.06 -0.17 -0.05
StD(∆e) 5.93 (0.77) 4.65 2.52 7.41 4.44

βNXSR -0.10 (0.02) -0.01 -0.08 0.02 -0.01

βNXLR 1.07 (0.45) 1.24 1.45 1.14 0.76
Note: Empirical moments are computed using annual data from 1973 to 2006. All data sources are
discussed in section I. Numbers in parentheses are Newey-West adjusted standard errors. All the
parameters are calibrated as in table 2, unless otherwise specified. The entries for the models are
obtained by repetitions of small-sample simulations.

model calibrated as in table 2, we vary one parameter of interest at a time and
report the moments that change significantly in table C1. Our results refer to the
case in which φ0 = 1. We have conducted the same sensitivity analysis for our
EZ-BKK model with vintage capital and found virtually identical results.

The role of the IES. As we increase the IES from 1 to 1.5, the average risk-free rate
declines, as is common in any economy with EZ preferences. Most importantly,
the contemporaneous correlation of the growth rates of consumption increases
toward the upperbound of our confidence interval, whereas the sensitivity coef-
ficients of NX to long-run shocks declines. These results implicitly impose a
relevant upper bound on what the IES should be in order to match international
trade data.

The role of the RRA. Similarly to the IES case, an increase in the risk aversion co-
efficient decreases the average risk-free rate (precautionary motive) and increases
the international correlation of consumption growth. Since the reallocation effect
depends on γ−1/ψ, higher risk aversion tends to increase the exposure of the net
exports to long-run shocks. Additionally, it enhances the incentives to trade in-
vestment goods, and hence it amplifies the volatility of both national investment
growth and the exchange rate.

The role of home bias. As discussed in section II.A, consumption home bias is an
important driver of the reallocation motives with respect to news shocks. In the
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original BKK calibration, the home bias is set to 0.85 to match total US trade.
Focusing on the extent of trade of the US with the remaining G7 countries, a
higher value of 0.95 is more appropriate. We consider both of these values in the
last panel of table C1.

Reducing the extent of home bias makes domestic and foreign resources more
substitutable. As a result, the productivity channel is more pronounced with
respect to short-run shocks and the net exports become more countercyclical.
Unfortunately, this channel makes the international trade of investment goods
excessive and investment becomes less correlated across countries.

If we increase the consumption home bias, the risk-sharing channel becomes
stronger and it dominates even with respect to short-run shocks. The net exports
become positively correlated with output and their exposure to short-run shocks
becomes positive as well, in contrast to the data. We note that this problem can
be easily solved by simultaneously lowering the risk aversion parameter to a value
as low as three. After considering this refinement, a more pronounced value of
the consumption home bias enhances most of our quantitative results, including
the quantity anomaly.
Heterogeneous home bias. Recent studies have documented that home bias is more
pronounced for investment goods than consumption goods (see, among others,
Boileau (1999), Erceg, Guerrieri and Gust (2008) and Engel and Wang (2011)).
In order to capture this feature, we also consider the case λI < λ. As discussed in
appendix C.3, our main results are robust to, and often enhanced by, this further
extension.
Additional sensitivity analysis. In table C2, we report a comprehensive list of
moments produced by our EZ-BKK model; our model augmented with vintage
capital friction (EZ-BKK (II)); and our model augmented with both vintage cap-
ital and heterogeneous home bias (EZ-BKK (III)). We set the extent of home bias
for investment goods, λI , to 0.85, a value consistent with both US data and prior
literature. For comparability with the EZ-BKK setting, we retain a total imports
share of 8% by setting λ = 0.95. Our main results continue to hold and are often
enhanced.

D: Indirect inference details

In this section, we describe the details of our indirect inference estimation pro-
cedure, along with a robustness exercise.

1: Econometric Methodology

Moment conditions of the Auxiliary Model. Let mT (YT , φ) be a vector consisting
of moment conditions (1)-(16) defined in appendix B.1, where βUSa = βRoWa = βa,
and %US = %RoW = %.
Estimation. We adopt the following procedure to estimate the vector of model’s
parameters θ.
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Table C2—Additional Sensitivity Analysis

Panel A: Domestic Moments
Vol. Relative to GDP Asset Prices Correlation(∆·,∆·) ACF(1)
∆n ∆c ∆i E[rf ](%) E[rex](%) (c, i) (c, n) (NX

XT , x
T ) (NXI

XT , x
T ) NX

XT

Data: 0.74 0.65 2.36 1.32 4.58 0.69 0.82 -0.36 -0.52 0.88
(0.08) (0.06) (0.26) (0.64) (2.15) (0.07) (0.03) (0.13) (0.13) (0.08)

EZ-BKK 0.49 0.66 2.24 2.31 0.11 0.93 0.89 -0.16 -0.56 0.85
EZ-BKK (II) 0.49 0.61 2.53 1.99 3.26 0.83 0.84 -0.24 -0.58 0.83
EZ-BKK (III) 0.49 0.63 2.57 1.98 3.30 0.83 0.85 -0.35 -0.52 0.78

Panel B: International Moments
ρh = corr(∆h,∆h∗) StD(·)(%) Sensitivity to News

ρc ρxT − ρc ρi ρn ∆e NX/X βNXSR βNXLR R2
SR/R

2 R2
LR/R

2

Data: 0.37 0.15 0.33 0.53 5.93 0.56
(0.11) (0.09) (0.17) (0.11) (0.77) (0.07)

EZ-BKK 0.25 -0.14 0.39 0.25 4.65 0.52 -0.01 1.24 0.06 0.94
EZ-BKK (II) 0.29 -0.20 0.27 0.21 3.99 0.50 -0.01 1.27 0.12 0.88
EZ-BKK (III) 0.19 -0.12 0.30 0.16 5.51 0.68 -0.03 1.80 0.28 0.72

Note: Empirical moments are computed using annual data from 1973 to 2006. All data sources are
discussed in section I and appendix A. Numbers in parentheses are Newey-West adjusted standard
errors. Excess returns are levered as in GarcFeijJorgensen (2010). For the EZ-BKK model, all the
parameters are calibrated as in table 2 and capital vintages are homogeneous (φ0 = 1). In BKK-EZ(II),
we introduce vintage capital (φ0 = 0). BKK-EZ(III) features both vintage capital and heterogeneous
home bias, meaning that it is solved imposing λ = 0.95 and λI = 0.85, so that the total imports
share remains 92%. The entries for the models are obtained by repetitions of small-sample simulations.
Lowercase letters denote log units.

1) Estimation using the actual data. Using the observations in the sample YT
of actual data, we obtain an estimate of the vector φ as

φ̂T = arg min
φ
QT (YT , φ),

where QT (YT , φ) =
[
mT (YT , φ)′mT (YT , φ)

]
.

2) Simulations from the model. For a given value of the model’s parameters
θ, consider H simulated paths Y h(θ), h = {1, ...,H} based on independent
drawings of εt.

3) Estimation using simulated data. For each simulated path, obtain an esti-
mate of the vector of auxiliary parameters, as

φ̃h(θ) = arg min
φ
Q(Y h(θ), φ).

4) Estimation of the model’s parameters. Obtain an indirect estimator of θ as
the solution of a minimum distance problem:

min
θ

[
φ̂T −

1

H

H∑
h=1

φ̃h(θ)

]′
W

[
φ̂T −

1

H

H∑
h=1

φ̃h(θ)

]
,

where W is a positive definite weighting matrix, which we set equal to the
identity matrix, W = I, in all of our estimations. We denote the estimated
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vector as θ̂HT (W ) .

Distribution of the estimated structural parameters. The estimator of the vector
of structural parameters converges in distribution to

√
T
(
θ̂HT (Ω∗)− θ0

)
d−→ N [0,Ω (H,W )] ,

where the covariance matrix is:

Ω(H,W ) =

(
1 +

1

H

)(
K′J−1WJ−1K

)−1 (
K′J−1WJ−1

)
M
(
J−1WJ−1K

) (
K′J−1WJ−1K

)−1
,

where

K =
∂2Q

∂φ ∂θ′
, J = − ∂2Q

∂φ ∂φ′
, M = lim

T→∞
V ar

[√
T
∂Q

∂φ
− E

(√
T
∂Q

∂φ

)]
.

Gourieroux, Monfort and Renault (1993) propose to estimate the matrix K as

∂2Q

∂φ ∂θ′

(
ys
(
θ̂
)
, φ̂
)
.

This amounts to taking the numerical derivative of

∂Q

∂φ

(
ys
(
θ̂
)
, φ̂
)

with respect to the vector of structural parameters θ evaluated at θ̂, where ys
(
θ̂
)

is a simulated path of y based on the parameter θ (see page S113 of Gourier-
oux, Monfort and Renault (1993)). We average the matrices associated to each
simulated path s to obtain our estimator of K.

The matrix J can be obtained by taking the negative of the second derivative
of the auxiliary model objective function and evaluate it at the observed sample
and the associated estimated coefficient, i.e.,

∂2Q

∂φ ∂φ′

(
YT , φ̂

)
.

Finally, using the methodology outlined by Gourieroux, Monfort and Renault
(1993) (page S112) we consistently estimate the matrix M as

T

H

H∑
h=1

(
Sh − S̄

) (
Sh − S̄

)
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Table D1—Indirect Inference Estimates using Tobin’s Q

Panel A: GDP weights

Structural ρ σz ρsrr ρlrr τ
Estimates 0.98 0.08 0.27 0.97 0.02
(S.E.) (0.00) (0.02) (0.25) (0.01) (0.02)

Auxiliary βNX,a βNX,z βI,a βI,z βc,a βc,z β % ςz %a %z
Model −0.04 0.87 2.04 −21.95 0.44 −0.31 0.35 0.97 0.07 0.22 0.72
Data −0.08 0.74 5.16 −22.05 0.91 −0.66 0.01 0.91 0.12 0.12 0.77

Panel B: Market cap weights

Structural ρ σz ρsrr ρlrr τ
Estimates 0.98 0.08 0.28 0.97 0.02
(S.E.) (0.00) (0.02) (0.17) (0.01) (0.02)

Auxiliary βNX,a βNX,z βI,a βI,z βc,a βc,z β % ςz %a %z
Model −0.04 0.90 2.05 −21.35 0.43 −0.29 0.33 0.97 0.06 0.23 0.65
Data −0.08 0.74 5.13 −21.31 0.81 −0.22 0.01 0.93 0.12 0.62 0.79

Panel C: Equal weights

Structural ρ σz ρsrr ρlrr τ
Estimates 0.98 0.08 0.28 0.97 0.02
(S.E.) (0.01) (0.05) (0.32) (0.06) (0.07)

Auxiliary βNX,a βNX,z βI,a βI,z βc,a βc,z β % ςz %a %z
Model −0.04 0.93 2.06 −22.16 0.43 −0.26 0.32 0.97 0.06 0.23 0.06
Data −0.08 0.77 4.68 −22.17 0.81 −0.43 0.01 0.89 0.12 0.56 0.82

Note: Each panel refers to one of the three alternative weighting schemes that we have adopted for the
Rest of the World aggregate. In each panel, the top sub-panel (Structural) reports the estimates for each
element of the vector of structural parameters (θ) with the associated standard errors in parenthesis. The
bottom sub-panel (Auxiliary) reports the coefficients of the auxiliary model. The row labeled “Model”
shows the estimates of the auxiliary model associated to the point estimates of the structural parameters
reported in the top panel. The row labeled “Data” reports the estimates of the auxiliary model obtained
from actual data.

with

Sh =
∂Q

∂θ
(yh (φid)) , S̄ =

1

H

∑
h

Sh,

where yh (φid) is a simulation from the model based on the estimate φid obtained
from using W = I.

2: Additional results

Alternative weighting schemes. In table D1, we report the estimates for our
baseline specification in which Tobin’s Q is used to forecast the growth rate of
productivity, using alternative weighting schemes for the Rest of the World aggre-
gate. Furthermore, we also present the complete set of parameters of the auxiliary
model. The results, presented in table D1, document the strong robustness of our
main findings.

Using price-dividend ratios. In this section we perform our indirect inference
estimation by replacing Tobin’s Q with price-dividend ratio in the predictive
regression for productivity in the auxiliary model. Specifically, we define the
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process for a redundant dividend in the spirit of Bansal and Yaron (2004) as

∆dt+1 = µ+ λ · zt + τ (at − a∗t ) + σd · εd,t+1,

∆d∗t+1 = µ+ λ · z∗t + τ (at − a∗t ) + σd · ε∗d,t+1,

where εd and ε∗d are i.i.d. shocks uncorrelated with the other shocks in the econ-
omy. We set λ to 13 and σd to 0.4, respectively. At the estimated values of the
structural parameters reported in Panel A of table D2, this choice of parameters
yields the following unconditional moments for the distribution our cash-flows:
(i) an unconditional volatility relative to productivity of 14.61, (ii) an autocor-
relation of 0.44, (iii) a within country correlation with consumption of 0.43, and
(iv) a cross-country correlation of 0.46. These numbers are within the range of
what we typically find in the data (see for example Bansal and Lundblad (2002)).
We then obtain the price-dividend ratios associated to these cash flows, by us-
ing the equilibrium stochastic discount factor to solve the corresponding Euler
equations:

PDt = Et[M
X
t+1(1 + PDt+1)e∆dt+1 ], PD∗t = Et[M

Y
t+1(1 + PD∗t+1)e∆d∗t+1 ].

When estimating the auxiliary model on simulated data, we replace Tobin’s Q
with these price-to-dividend ratios. We then apply the same empirical strat-
egy described in both main text ad this section of the appendix. The results
are reported in table D2 and they are consistent with those obtained under our
benchmark estimation exercise.
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Table D2—Indirect Inference Estimates using p/d ratios

Panel A: GDP weights

Structural ρ σz ρsrr ρlrr τ
Estimates 0.99 0.26 0.24 0.99 0.03
(S.E.) (0.00) (0.05) (0.31) (0.00) (0.15)

Auxiliary βNX,a βNX,z βI,a βI,z βc,a βc,z β % ςz %a %z
Model −0.18 1.18 5.06 −22.06 0.20 −1.05 0.00 0.98 0.28 0.25 0.99
Data −0.08 0.74 5.16 −22.05 0.91 −0.66 0.01 0.91 0.12 0.12 0.77

Panel B: Market cap weights

Structural ρ σz ρsrr ρlrr τ
Estimates 0.99 0.26 0.30 0.99 0.03
(S.E.) (0.01) (0.11) (0.25) (0.04) (0.02)

Auxiliary βNX,a βNX,z βI,a βI,z βc,a βc,z β % ςz %a %z
Model −0.18 1.14 5.08 −21.35 0.21 −1.04 0.00 0.98 0.28 0.31 0.99
Data −0.08 0.74 5.13 −21.31 0.81 −0.22 0.01 0.93 0.12 0.62 0.79

Panel C: Equal weights

Structural ρ σz ρsrr ρlrr τ
Estimates 0.99 0.26 0.34 0.99 0.03
(S.E.) (0.01) (0.11) (0.69) (0.02) (0.14)

Auxiliary βNX,a βNX,z βI,a βI,z βc,a βc,z β % ςz %a %z
Model −0.16 1.19 4.81 −22.32 0.22 −1.16 0.00 0.98 0.28 0.34 0.99
Data −0.08 0.77 4.68 −22.17 0.81 −0.43 0.01 0.89 0.12 0.56 0.82

Note: Each panel refers to one of the three alternative weighting schemes that we have adopted for the
Rest of the World aggregate. In each panel, the top sub-panel (Structural) reports the estimates for each
element of the vector of structural parameters (θ) with the associated standard errors in parenthesis. The
bottom sub-panel (Auxiliary) reports the coefficients of the auxiliary model. The row labeled “Model”
shows the estimates of the auxiliary model associated to the point estimates of the structural parameters
reported in the top panel. The row labeled “Data” reports the estimates of the auxiliary model obtained
from actual data.
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