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A Appendix

A.1 Health Uncertainty: Mortality, Long-Term Care, and Acute

Medical Care Risks

This section reports the results of descriptive regressions about long-term care and

long-term care insurance and describes the key elements of the model of health risks. I test

the robustness of the results to a variety of changes in these risks in Section V.D.

A.1.1 Long-Term Care and Long-Term Care Insurance: Descriptive

Regressions

Table 1 reports results from descriptive regressions of long-term care usage and long-term

care insurance ownership on key demographic and economic variables. These regressions

are based on a sample of people 65 and older in the 1998 wave of the Health and

Retirement Study. The regressions of long-term care usage further restrict the sample to

people who report difficulties with at least two activities of daily living (ADLs). The table

shows the estimated marginal effects from probit regressions.

Use of formal care is much greater among people with more ADL limitations, is slightly

greater among single people and people without children, and is perhaps slightly greater

among people with greater income, though the income results are statistically insignificant

and the point estimates are non-monotonic in income quartile. Long-term care insurance

ownership is strongly increasing in wealth but is otherwise not well predicted by the other

demographic variables, including whether someone is single and whether he or she has

children.

A.1.2 Health Transitions

An individual’s future health depends probabilistically on the individual’s current age and

health status as well as on the individual’s sex (s) and (permanent) income (y),

Pr(ht+1 = h′|ht, t; s, y). I base the model of health transitions on a model developed by

Friedberg et al. (2014). This model makes a number of important improvements on the

widely-used Robinson model of long-term care requirements (Robinson, 2002), including

using updated data and more robust procedures.

I make three adjustments to the Friedberg et al. (2014) model in order to cater it to my
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application. First, I convert the monthly health transitions calculated by Friedberg et al.

(2014) into annual transitions. This choice is driven both by computation time

considerations and by data limitations, since the Health and Retirement Study and many

other datasets measure medical spending and other variables at lower frequencies (e.g.,

every year or every second year). Second, I use the estimated transition matrices for

women as the baseline transition matrices for both the single men and the single women in

my sample. The care usage patterns of women likely provide a closer approximation to the

usage patterns of single people, whether male or female, because women receive a much

smaller share of their long-term care from their spouses than men do. Women receive less

informal care from their spouses because their spouses (predominantly men) tend to get

sick and die at earlier ages than they do. As a result, a smaller share of women’s care

episodes occur when their husbands are alive and well enough to provide them with

informal care. Of course, the care use patterns of women in the general

population—including married women—suffers from this same problem and so tends to

understate the care needs of singles, but the bias is less severe than it is for men.

The third set of adjustments I make is to adjust the Friedberg et al. (2014) transition

probabilities to match De Nardi, French and Jones’s (2010) estimates of life expectancy

conditional on reaching age 70 for different sex and income groups. A t-year-old in

sex-income quintile group (s, q) faces the Friedberg et al. (2014) transition probabilities of

a (t+ ∆(s, q))-year-old female, where ∆(s, q) is chosen to minimize the difference between

predicted life expectancy at age 70 and De Nardi, French and Jones’s (2010) estimates of

life expectancy at age 70.

Table 2 shows the age adjustments, ∆(s, q), and the resulting life expectancies of each

group. The differences in life expectancies at age 70 across sex and income groups are

substantial: Women live more than five years longer than men in the same income quintile,

and men and women in the top income quintile live almost four years longer than their

counterparts in the bottom quintile. Each group’s adjusted life expectancy is within 0.3

years of De Nardi, French and Jones’s (2010) estimate. It is important that the model of

health risk be consistent with this substantial heterogeneity in life expectancy, since life

expectancy can have an important impact on saving and insurance decisions (De Nardi,

French and Jones, 2009).

Table 3 presents statistics related to the unconditional and conditional probabilities of

being in different health states in the original and adjusted Friedberg et al. (2014) models.

The adjusted model preserves the essential character of the original model in terms of the

key determinants of saving and insurance decisions: the expected share of remaining life

spent in different health states. The key difference is that males spend a greater share of
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their remaining lives in nursing homes under the adjusted model than under the original

model. This is due to the much greater supply of informal care to married than to single

men and is why I base the model of health transitions for single males on the Friedberg

et al. (2014) model for females. The other main differences have to do with time

aggregation. Using yearly rather than monthly transitions reduces the probability of ever

experiencing a nursing home stay and of leaving a nursing home alive, since yearly

transitions rule out the possibility of stays of less than one year in duration. Although it

would be desirable to base the model of health transitions on a model specifically estimated

to match the heterogeneous experiences of single men and women with different levels of

income, such a model is not available, and, as discussed in Section V.D, the conclusions are

robust to many alternative assumptions and are unlikely to be affected by plausible

changes in the model of health risk.

A.1.3 Long-term Care Prices

The cost of the individual’s long-term care is a deterministic function of the individual’s

health, age, sex, and income quintile, ltc(ht, t, s, q). Part of this heterogeneity could reflect

differences in the prices that people face for the same care, due, for example, to differences

in prices across different locations. Other sources of heterogeneity could include

unmeasured and un-modeled differences in the quantity or quality of the long-term care

services consumed by different groups, conditional on their health status. For example,

higher-income people might purchase higher-quality (and so costlier) long-term care.

To estimate ltc(ht, t, s, q), I combine two sources of data. The first is data from a MetLife

survey about long-term care prices (MetLife Mature Market Institute, 2002a,b). This

reports average prices for different long-term care services, including stays in nursing homes

and assisted living facilities and skilled and unskilled home care. According to this survey,

average prices in 2002 were $52,195 per year in a nursing home, $26,280 per year in an

assisted living facility, $18 per hour for unskilled home care, and $37 per hour for skilled

home care.

The second source of data is the National Long-Term Care Survey (NLTCS). This is a

longitudinal survey of Americans age 65 and older with detailed information about health

and health-related expenditures, including information about the prices of any long-term

care services that surveyed individuals consume. I use the NLTCS data to estimate the

following regression:

pi
p̄

= α + βfemalei + γagei +
5∑
q=2

δqincome quintile qi + εi,
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where pi is the price per month of care in i’s nursing facility, p̄ is the average price per

month of care in facilities, and femalei and income quintile qi are indicators for whether i is

a female and in income quintile q, respectively. I use the predicted values from this

regression to scale the average prices of each long-term care service (nursing homes,

assisted living facilities, skilled home care, and unskilled home care).1

A summary of the results is presented in Table 4. Females pay slightly higher prices than

males (about 6 percent) and higher-income people pay slightly higher prices than

lower-income people (the top income quintile pays about 12 percent more than the

bottom). Conditional on the type of care being used, age has little effect on long-term care

prices (the coefficient estimate is a precise zero). The biggest source of heterogeneity is

between people in the bottom income quintile and everyone else; the prices that people in

the bottom income quintile pay are between 1.6 and 11.5 percent lower than the prices

paid by people in higher income quintiles. But a striking feature of the results is how little

heterogeneity there appears to be on average across different sex, age, and income groups.

None of the individual coefficients is significant at conventional confidence levels, and the

covariates taken as a whole are not significant either.

A.1.4 Acute Medical Care Spending

The cost of an individual’s acute medical care is log-normally distributed with the mean

and variance depending on the individual’s health, age, sex, and income quintile,

mt ∼ logN(µm(ht, t, s, q), σ
2
m(ht, t, s, q)). That the mean and variance are allowed to

depend on health, age, sex, and income quintile allows for rich heterogeneity in the

spending risk facing different people.

I estimate the mean and variance of different groups’ spending on acute medical care in

two steps, using data from the HRS. First, I decompose total out-of-pocket spending (the

variable in the RAND release of the HRS) into separate acute and long-term care

components. To do this, I use disaggregated data on out-of-pocket spending by service

type in 2006. For each health status (healthy, home care, and nursing home), I estimate

the share of total out-of-pocket spending that is due to acute medical care (as opposed to

long-term care). The sample is everyone age 65 and older whose combined previous-wave

non-housing wealth and annual income is at least $100,000. I convert observed total

out-of-pocket spending to acute out-of-pocket spending by multiplying observed total

1Data considerations lead me to estimate a single scaling factor to apply to all types of long-term care
rather than estimating different scaling factors for different types of care. These considerations are the
difficulty of distinguishing between nursing homes and assisted living facilities and the difficulty of estimating
hourly prices of skilled and unskilled home care in the data.
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out-of-pocket spending by the estimated shares of spending on acute care for each health

status. The estimates imply that among healthy people, about 97 percent of total

out-of-pocket spending is due to spending on acute medical care. Among people who

require home care, this share is 72 percent. Among people who require nursing home care,

this share is just 11 percent.

I restrict the sample to person-waves in which the individual’s combined previous-wave

non-housing wealth and annual income is at least $100,000 in order to reduce the bias from

censoring by Medicaid, charities, and uncompensated care. These factors tend to limit an

individual’s out-of-pocket medical spending to his or her net wealth or liquid assets, which

means that including low-net-worth individuals in the sample would bias downward the

estimate of the risk people face.2

Second, I estimate the means and variances of the acute medical spending distributions by

running two versions of the following regression:

mit = α + βfemalei + γageit +
∑

h∈{hc,nh}

φhhealth hit +
5∑
q=2

δqincome quintile qi + εit,

where health is either healthy (omitted), home care, or nursing home and the remaining

variables are as defined in Section A.1.3. In one version of this regression, the dependent

variable is the log of out-of-pocket acute medical spending. In the other, the dependent

variable is the square of the log of out-of-pocket acute medical spending. In both cases,

person-waves with zero spending, which comprise less than five percent of the sample, are

dropped in order to take logs. Together, these regressions and the identity

V ar(X) = E(X2)− (E(X))2 identify the mean and variance of the distribution of acute

medical spending facing these groups. The sample is the subset of my main sample of

single retirees 65 and older whose combined previous-wave non-housing wealth and annual

income is at least $100,000, in order to avoid the censoring issue discussed above.

Table 5 presents the results. The results are mostly as expected. On average people in

worse health spend more than people in better health, women spend more than men, and

older people spend more than younger people. Higher-income people are estimated to

spend somewhat less than lower-income people, though none of the coefficients on the

income quintile indicators are statistically significant.

2The proper input to the life cycle model is total medical spending net of care paid for by Medicare, not
just out-of-pocket spending by the individual. The key difference between these two objects is care paid for
by Medicaid, charities, and uncompensated care. The extent to which care that is not covered by Medicare
is paid for by the individual rather than by Medicaid and other means-tested programs is an endogenous
outcome of the model that depends in an important way on people’s preferences.
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The results of the main estimation are robust to large changes in the model of acute

medical spending risk, including scaling mean spending up or down by 50 percent. This is

because acute medical spending is the type of risk for which saving or buying long-term

care insurance are not very effective. The vast majority of people spend little out-of-pocket

on acute medical care, given Medicare’s relatively comprehensive coverage and holdings of

supplementary Medigap policies on top of that. Although people might wish to send extra

resources to those rare states of the world in which out-of-pocket acute medical spending is

very high, saving and buying long-term care insurance do not target these states well, so

the exact model of acute medical spending risk has relatively little effect on predicted

behavior.

A.2 Numerical Solution Procedure: Details and Accuracy

I solve the model numerically using value function iteration. The method proceeds by

backward induction, beginning from the maximum possible age T . Because the individual

dies by age T + 1 with probability one and leaves any remaining wealth as a bequest, the

age-T value function can be found easily. To solve for the value function at younger ages, I

discretize wealth into a fine grid and use piecewise cubic hermite interpolation to evaluate

the value function between grid points. For each sex-income-long-term care insurance

group and at each age-health-wealth node, I solve for optimal consumption.

The solution produced by such a method is necessarily an approximation, and its accuracy

depends on a number of factors, including the wealth grid. The existence of means-tested

programs poses a special challenge, since they cause the value function to be non-concave,

which in turn means that the individual’s first-order condition for optimal consumption is

necessary but not sufficient for an optimum. The effects of means-tested programs on the

value function are especially pronounced in the regions of the function in which wealth is

relatively small. For this reason, I ensure that the wealth grid is especially fine at small

values of wealth by combining (i) a grid that is equally-spaced in logs from the maximum

of $1,000 and the Medicaid wealth threshold (which in the baseline specification is $0) to

$6 million with (ii) a grid that is equally-spaced in levels from -$1,000 to the maximum of

$1,000 and the Medicaid wealth threshold. The resulting grid has 196 distinct values.

I turn now to tests of the accuracy of the numerical solution. The tests are based on the

Euler equation, the fundamental condition for intertemporal optimization. The first-order
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condition for optimal consumption spending is

u′(ct) = β

{
Pr(ht+1 = d|ht, t; s, y)Et[(1 + rt)v

′(bt+1)]

+ Pr(ht+1 6= d|ht, t; s, y)Et

[
(1 + rt)

∂Vt+1(x̂t+1, ht+1; s, y, ltci)

∂x̂t+1

]}
.

This equation is a necessary but not sufficient condition for optimal consumption spending

away from corners, c ∈ (cm(h, Pub), cm(h, Pub) + x). The condition about consumption not

being at a corner involves one more element than the usual case because of the

consumption value of long-term care, cm(ht, Pubt). The usual corner solution is when

borrowing constraints bind, i.e., when the marginal utility of consumption today when

borrowing as much as possible exceeds the expected discounted marginal utility of

resources tomorrow. The consumption value of facility-based care creates another type of

corner solution. In certain circumstances, people in facilities might wish they could save

some of the consumption that is bundled together with their long-term care, which is not

possible. In states of the world in which this is true, the Euler equation does not hold,

since the marginal utility of consumption today (when consuming only the goods and

services bundled together with long-term care) is strictly less than the expected discounted

marginal utility of resources next period. States of the world in which consumption is at a

corner are excluded from Euler equation-based tests of numerical solution accuracy.

The marginal increase in future utility from a marginal increase in x̂t+1 is

∂Vt+1(x̂t+1, ht+1; s, y, ltci)

∂x̂t+1

=


0, if x̂t+1 < x̄(ht+1, ltcii);

u′(ct+1), if x̂t+1 ≥ x̄(ht+1, ltcii) and ĉt+1 > 0;

∆ ≷ u′(ct+1), otherwise.

The marginal increase in future utility is zero if x̂t+1 < x̄(ht+1, ltcii), since any savings

simply reduce transfers from means-tested programs one-for-one. The marginal increase in

future utility is u′(ct+1) if x̂t+1 ≥ x̄(ht+1, ltcii) and ĉt+1 > 0, by the Envelope theorem. The

marginal increase in future utility is

∆ ≡ β

{
Pr(ht+2 = d|ht+1, t; s, y)Et+1[(1 + rt+1)v′(bt+2)]

+ Pr(ht+2 6= d|ht+1, t; s, y)Et+1

[
(1 + rt+1)

∂Vt+2(x̂t+2, ht+2; s, y, ltci)

∂x̂t+2

]}
≷ u′(ct+1)

if x̂t+1 ≥ x̄(ht+1, ltcii) and ĉt+1 = 0. ∆ could be less than u′(ct+1) due to borrowing

constraints; the individual might wish she could borrow in period t+ 1. Or ∆ could exceed

u′(ct+1) due to the consumption value of facility-based care; the individual might wish she
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could sell some of the consumption that comes bundled with her care. If next-period

consumption spending is strictly positive, ĉt+1 > 0, the right-hand side of the first-order

condition can be calculated using the optimal consumption function to calculate u′(ct+1).

This is the idea behind the Euler equation test.

The Euler equation test measures the closeness of the approximate (numerical) solution to

the exact solution that satisfies the Euler equation. I follow Judd (1992) and Fella (2014)

in calculating Euler equation errors in units of current consumption:

EE(s) =

∣∣∣∣1− c∗(s)

c̄(s)

∣∣∣∣,
where s is the state vector, c∗(s) is the analytical solution of the Euler equation (the exact

consumption level at which the marginal utility of consumption equals the expected

discounted marginal utility of resources in the next period), and c̄(s) is the (approximate)

optimal consumption rule delivered by the numerical solution algorithm. I calculate Euler

equation errors for each member of the simulation sample in each year of the sample period

in which he or she is alive and not at a corner.

The results suggest that the numerical solution method is performing well. The average

and maximum error among everyone in the sample are 0.001 (-6.7 in natural log units) and

0.039 (-3.3 log units), respectively. The average and maximum error among people within

five years of the maximum age, at which point errors have accumulated, are 0.002 (-6.5 log

units) and 0.004 (-5.5 log units), respectively. These compare favorably with the results

reported by Fella (2014) in tests of his endogenous grid method against value function

iteration.

A.3 Asymptotic Distribution of the MSM Estimator and

Over-identification Tests of the Model’s Fit

Pakes and Pollard (1989) and Duffie and Singleton (1993) show that the MSM estimator,

θ̂, is consistent and asymptotically normally distributed under regularity conditions

satisfied here. The variance-covariance matrix of θ̂ is

Ωθ = (G′θWGθ)
−1G′θW

[
Ωg +

Nd

Ns

Ωg +GχΩχG
′
χ

]
WGθ(G

′
θWGθ)

−1,

where Gθ and Gχ are the gradient matrices of the moment conditions with respect to θ and

χ, Ωg is the variance-covariance matrix of the second-stage moment conditions, Ωχ is the

variance-covariance matrix of the first-stage parameter estimates, and Nd and Ns are the
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empirical sample size and the simulation sample size, respectively. I approximate the

derivatives in the gradient matrices numerically. The square roots of the diagonal entries of

Ωθ are the standard errors of the second-stage parameter estimates, θ̂.

The number of second-stage moment conditions exceeds the number of second-stage

parameters, so over-identification tests of the model are possible. If the model is correct,

the (scalar) statistic

ϕ̂(θ̂, χ0)′ R−1 ϕ̂(θ̂, χ0)

converges in distribution to a chi-squared random variable with degrees of freedom equal to

the number of second-stage moments less the number of second-stage parameters. In this

formula, ϕ̂(θ̂;χ0) is the vector of moment conditions and

R = P

(
Ωg

Nd

+
Ωg

Ns

+GχΩχG
′
χ

)
P,

where P = I −Gθ(G
′
θWGθ)

−1G′θW , except if W = Ω−1
g , in which case

R =
(

Ωg

Nd
+ Ωg

Ns
+GχΩχG

′
χ

)
. I use this matrix for all of the results in the paper.

I estimate Ωg and W from the data. Because I adopt many of the first-stage parameter

values from other sources rather than estimating them, I treat χ as if it were known with

certainty, Gχ = 0. Excluding the correction for the uncertainty in the first-stage parameters

tends to make the second-stage parameter estimates appear more precise than they actually

are and the fit of the model (as measured by the chi-squared test statistic) appear worse

than it actually is. To estimate Gθ, I follow the procedure for analyzing moment conditions

of non-smooth functions (Pakes and Pollard, 1989; Newey and McFadden, 1994; Powell,

1994), since the functions inside the moment conditions ϕ(θ;χ) are non-differentiable at

certain points. This involves estimating the derivatives of the simulated moments with

respect to the parameters θ. The procedure approximates the change in the share of people

with wealth no larger than a threshold level by assuming that the density of the wealth

distribution is constant within a small neighborhood of that threshold.

A.4 Anticipated and Realized Rates of Return on Wealth

Table 6 lists the historical returns data that I use to estimate the anticipated and realized

rates of returns on retirees’ portfolios. I follow Baker, Doctor and French (2007) and

French and Benson (2011) in terms of data sources and assumptions.3 Using data from the

3The main exception is that I use a different rate-of-return series for bonds because Baker, Doctor and
French’s (2007) series does not extend to 2008, the end of my sample period. I am grateful to Eric French
for providing me with the historical returns data.
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HRS, I classify retirees’ assets into the six categories shown in the table as well as a

residual “Other” category (which includes vehicles, for example) that I assume earns 0

percent real, after-tax returns. Following Baker, Doctor and French (2007), I assume that

Individual Retirement Account (IRA) assets are allocated 60 percent to stocks and 40

percent to bonds and that the rate of return on business assets is a weighted average of the

returns on housing and stocks, with an 85 percent weight on housing.

Anticipated returns on wealth in the model.— Individual i in income quintile q believes that

she draws an (annual) rate of return on any saving she might have from the following

distribution: ri ∼ N(µr(q), σr(q)
2), where µr(q) and σr(q) are estimated based on (i) the

average portfolio shares of individuals in income quintile q in the data and (ii) historical

data on the realized rates of return on different types of assets. For each income quintile, I

estimate the average shares of their portfolios held in the asset classes listed in Table 6.

Then, using annual rate-of-return data for each asset class from 1960–2010, I estimate the

mean and variance of the distribution of annual rates of return for each income quintile

based on their portfolio shares. The resulting means and variances are similar if I instead

estimate them based on returns during the time period immediately preceding the sample

period (1960–1997), rather than including data through the sample period.

Realized returns on wealth in the simulation, ri,t =
∑

j αi,j,trj,t.— Retiree i’s realized rate of

return in year t is the weighted average of the realized rates of returns on different assets j

in year t (rj,t), weighted by i’s portfolio shares in that year (αi,j,t). The portfolio shares of

retirees with zero or negative net wealth are set equal to the median shares among people

with between $5,000 and $15,000 of net worth. I assume that individuals’ portfolio shares

are the same in years between interviews as they were in the previous year.

Allowing for differences between anticipated and realized returns and estimating

person-wave-specific rates of return protect against two potential sources of bias. One

potential source of bias is that the sample period, 1998–2008, was characterized by

unusually high rates of return on many assets. The average real return earned by a

portfolio that matches the asset allocations of retirees around the middle of the wealth

distribution was about 6 percent per year over the period, compared to about 4 percent in

the three-and-a-half decades leading up to the sample period. Failing to account for the

unusually, and probably unexpectedly, high rates of return could bias the results; the naive

estimation would attribute wealth outcomes as arising solely from purposeful saving

behavior whereas unusual capital gains or losses may have been important as well (Baker,

Doctor and French, 2007). The other source of bias that this procedure protects against is

that retirees’ portfolios vary systematically across the wealth distribution. Retirees in the

middle of the wealth distribution, for example, hold more of their wealth in housing than
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richer and poorer retirees, and the average return on housing wealth was especially high

(7.9 percent per year) over the sample period. Ignoring the differences in retirees’ portfolios

could bias the results by leading the estimation to wrongly attribute differences in wealth

as arising solely from differences in saving behavior whereas differences in realized returns

may have been important as well.

A.5 Simulation Procedure

Simulated wealth moments.— The simulated wealth moments are analogous to their

empirical counterparts. Given a vector of parameter values, θ, I solve the model to find

optimal consumption spending, ĉt(ŵt, ht, t; s, y, ltci; θ). I use these decision rules together

with each individual’s fixed characteristics, initial state, subsequent health path, and

year-specific rates of return on wealth to simulate each individual’s wealth as long as they

live between 1999–2008. Given the simulated wealth profiles of each individual in the

simulation sample, I use the same procedure to calculate the simulated wealth moments

from the simulated data as I use to calculate the empirical wealth moments from the actual

data.

Simulated long-term care insurance moments.— The simulated long-term care insurance

moments are the long-term care insurance ownership rates by wealth quartile among the

subset of the simulation sample who were 65–69 years old in 1998. Only people in good

health in 1998 are allowed to buy long-term care insurance in the simulation. This is meant

to capture the fact that people in bad health are prevented from buying long-term care

insurance—their applications are rejected by insurers (Murtaugh et al., 1997; Hendren,

2013). Given a vector of parameter values, θ, I solve the model to find the value functions,

Vt(x̂t, ht; s, y, ltci; θ). Simulated long-term care insurance ownership by individual i is one if

both (i) i is healthy in 1998 and (ii) i would be better off buying long-term care insurance

given his or her state variables; it is zero otherwise:

ltcisi = 1(hi,ti = he)× 1 [Vti(x̂i,ti , hi,ti ; s, y, ltci = 1; θ) > Vti(x̂i,ti , hi,ti ; s, y, ltci = 0; θ)] .

The simulated aggregate long-term care insurance ownership rates are the averages of the

individual ownership indicators among individuals in each wealth quartile. Simulated

long-term care insurance ownership depends on θ through the value functions’ dependence

on θ.

Because long-term care insurance premiums depend on the age at which long-term care

insurance is purchased, and because the model must be solved separately for each
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long-term care insurance premium schedule, I simulate the demand for long-term care

insurance only among healthy 65–69-year-olds and treat them for this purpose as if they

were all 67 years old, the average age at which people buy long-term care insurance (Brown

and Finkelstein, 2007). Everyone who can buy long-term care insurance therefore faces the

same load (proportional markup over actuarial cost); there is no adverse selection in the

model once insurance rejections are accounted for.4 The assumption that people face a

one-time decision about whether to buy long-term care insurance—which I make to

economize on computation time—is a rough approximation to the fact that people most

often purchase long-term care insurance in their 60s (America’s Health Insurance Plans,

2007), with an average purchasing age of 67 (Brown and Finkelstein, 2007).

A.6 Roles of Different Features of the Data in Determining the

Parameter Estimates

This section discusses the extent to which different features of the data are informative

about the key parameters of the model and the sensitivity of the parameter estimates to

changes in the first-stage parameter values and second-stage moments.

A.6.1 Bequest Motives, (φ, cb)

Retirees’ saving and long-term care insurance choices, when interpreted in standard life

cycle models, are highly informative about bequest motives. As reported in Tables 3 and 5,

across a wide range of first-stage parameter values and second-stage estimating moments,

the estimates imply that bequests are a luxury good, that bequest motives significantly

increase saving and decrease holdings of long-term care insurance and annuities, and that

versions of the model without bequest motives are highly inconsistent with retirees’

choices. The estimated bequest motive is pinned down relatively sharply and is not very

sensitive to changes in the first-stage parameter values and second-stage moments. Across

the wide range of specifications in Tables 3 and 5, ĉb is always between $12,500 and $30,000

and usually between $15,000 and $20,000, φ̂ is always between 0.93 and 0.99 and usually

between 0.95 and 0.96, and the restriction implicit in nested versions of the model without

bequest motives is always strongly rejected (in all cases p� 0.01).

4In practice, insurance companies limit adverse selection by denying coverage to people with certain
health conditions (Murtaugh et al., 1997; Hendren, 2013) and by front-loading premiums to minimize policy
lapsation by people who remain healthy (Hendel and Lizzeri, 2003). In long-term care, Finkelstein and
McGarry (2006) find that average long-term care usage is roughly equal for the insured and uninsured
population, though Finkelstein, McGarry and Sufi (2005) find that people who become healthier than average
are more likely than others to drop their coverage.
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Figure 1 plots four versions of the classical minimum distance objective as a function of the

bequest motive parameters, φ and cb, holding fixed the other parameters at their baseline

estimates. Each of the four objective functions is based on a different set of moment

conditions: the baseline set of wealth and long-term care insurance moments, only the

wealth moments, only the long-term care insurance and median wealth moments, and only

the median wealth moments. With the exception of the objective function based on the

median wealth moments alone, the objective functions are well behaved and imply that the

underlying data are highly informative about bequest motives. The objective functions all

feature a single, small “valley” in the same location, centered on the estimate, the “hills”

around which increase steeply as φ and cb move away from their estimated values in any

direction. These imply that the wealth moments alone, the long-term care insurance and

median wealth moments together, and, especially, the full set of long-term care insurance

and wealth moments are all much more consistent with models in which bequests are

valuable luxury goods than with other configurations, including those with no bequest

motive.

The median wealth moments alone, by contrast, are relatively uninformative about the

bequest motive parameters: Many combinations of φ and cb are similarly consistent with

these moments. This illustrates the lack of power in the saving choices of retirees at a

particular point in the wealth distribution to discriminate between different underlying

preferences. But as the other figures show, taking into account a broader set of

patterns—the saving of retirees with different levels of wealth or retirees’ saving and

long-term care insurance choices together—is a powerful way to discriminate between

different underlying preferences. Both broader sets of patterns are highly inconsistent with

versions of the model without bequest motives but are matched well by the model with

bequest motives.

A.6.2 Non-Bequest Motive Parameters, (cpub, x̄comm, β, σ)

Retirees’ saving and long-term care insurance choices are less informative about the other,

non-bequest motive parameters. As reported in Tables 3 and 5, many changes in the

first-stage parameter values and second-stage moments have non-negligible effects on the

estimates of the discount factor, the coefficient of relative risk aversion, and the

consumption values of means-tested programs. Across the specifications reported in Tables

3 and 5, for example, β̂ varies from 0.80 to 0.95, σ̂ from 2.0 to 6.1, ĉpub from $4,000 to

$19,100, and ˆ̄xcomm from $1,100 to $5,200.

Figure 2 plots the baseline objective function as a function of different combinations of
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parameters, holding fixed the other parameters at their baseline estimates. The objective

function is well behaved, but in many cases it is not very informative about the

non-bequest motive parameters. Panel (a) shows that a wide range of β and x̄comm values

are similarly consistent with retirees’ saving and long-term care insurance choices. Panel

(b) compares the extent to which β and cb are pinned down by the estimation. β is

extremely poorly pinned down, as values of β from 0.75 to 0.95 are similarly consistent

with the data. cb is much more tightly pinned down, between about $13,000 and $23,000,

despite its range being increased by interaction effects with β given β’s large range. Panel

(c) shows that β is also much less well pinned down than σ. Panel (d) shows that cpub is

poorly pinned down as well, as values between about $10,000 and $20,000 are similarly

consistent with retirees’ saving and long-term care insurance choices as a whole.

A.6.3 Why Bequest Motives are Pinned Down More Sharply than the Other

Parameters

Retirees’ saving and long-term care insurance choices are highly informative about bequest

motives and less informative about the other parameters because bequest motives affect

saving and long-term care insurance choices in a way unlike those of any of the other

second-stage parameters (or, indeed, any of a large set of plausible changes one might make

to the model, including, for example, if people over- or underestimate health spending risk

or life expectancy), whereas the other parameters tend to affect saving and long-term care

insurance choices in ways that are similar to one another.

All of the non-bequest motive parameters affect saving and long-term care insurance in the

same direction. Saving and long-term care insurance are monotonically increasing in β and

σ and monotonically decreasing in cpub and x̄comm. As a result, a change in one or more of

these parameters can be roughly offset by changes in others, so many different

combinations of values of these parameters have similar implications for retirees’ saving

and long-term care insurance choices. The result is that the estimates of these parameters

are not pinned down very sharply; they are sensitive to changes in the first-stage parameter

values and the relative weights of different second-stage moments in the estimation. In

other words, retirees’ saving and long-term care insurance choices are relatively

uninformative about the non-bequest motive parameters because these parameters all have

similar effects on saving and long-term care insurance.5 This is an example of the common

5Most of the difficulty lies in pinning down the values of these parameters jointly, not individually given
values of the others. The standard errors on the estimates of these parameters, with the partial exception of
cpub, tend to be small. Across specifications, σ tends to be negatively related to β and positively related to
cpub and x̄comm, presumably because the effects of a given increase in σ can be roughly offset by a decrease
in β or an increase in cpub or x̄comm.

15



finding that risk aversion and time preferences are often not sharply pinned down in

estimated life cycle models, since changes in risk aversion and time preferences have similar

effects on many behaviors. As a result, one should not draw strong conclusions about the

value of the non-bequest motive parameters from this evidence.

Bequest motives in which bequests are a luxury good, by contrast, tend to increase saving

but reduce long-term care insurance by reducing the opportunity cost of precautionary

saving. That is why retirees’ saving and long-term care insurance choices are highly

informative about bequest motives; bequest motives play a key role in allowing the model

to match observed behavior in which many retirees hold much of their wealth well into

retirement yet do not buy annuities or long-term care insurance. This is also why the

bequest motives are pinned down well even though the other parameters are not.

A.6.4 Why β̂ Tends to be Low

While most of the parameter estimates take standard or plausible-seeming values, the

estimates of the discount factor, β, tend to be unusually low. Across a wide range of

specifications, β̂ ranges from values around 0.95, a typical value in the literature, down to

values as low as 0.80, which implies strong impatience. The large range indicates that β is

not well pinned down by this evidence, so it would be wrong to conclude that retirees’

saving and long-term care insurance choices are strongly indicative of a low discount factor.

But the estimates of β tend to be lower than is often the case in this literature, with a

central tendency around 0.9, so it is useful to discuss why this might be.6

With many estimating moments and parameters, determining the relative roles of different

features of the data in driving a particular parameter estimate is not straightforward; all of

the parameter estimates are determined jointly by all of the moments. But a variety of

tests suggest that the low values of β arise from the difficulty of matching the wealth

holdings of the poor, especially in combination with the low rates of long-term care

insurance ownership throughout the wealth distribution.

The model has trouble matching the wealth holdings of poor people. In the data, many

people report holding small-but-positive amounts of wealth and fewer report holding zero

wealth. Among my sample of single retirees, for example, of the roughly 27 percent of

person-waves in which wealth is no greater than $10,000, about 56 percent have strictly

positive wealth. In the model, with plausible-seeming parameter values fewer people hold

6The strength of the baseline estimation’s “preference” for a low value of β is moderate, much less than
its preference for bequest motives but not a matter of indifference either. The p-value of the restriction that
β = 0.95 is 0.015, that β = 0.925 is 0.06, and that β = 0.90 is 0.48.

16



small-but-positive amounts of wealth and more hold zero wealth. When

θ = (cpub = $20, 000, φ = 0.95, cb = $20, 000, σ = 3, β = 0.97, x̄comm = $7, 000), for

example, the model matches well the long-term care insurance moments, the median and

75th percentile wealth moments, and even the (low and not targeted) 25th percentiles of

wealth, but it over-predicts the “probability of zero wealth” moments by an average of

almost 16 percentage points, 29.4 percent vs. 13.8 percent.

By increasing the strength of precautionary motives to save (i.e., increasing σ and

decreasing cpub and x̄comm), the model can better match the probability of zero wealth.

But, absent other adjustments, this comes at the expense of dramatically over-predicting

saving higher in the wealth distribution and long-term care insurance holdings. When θ is

the baseline estimate except with β = 0.97, for example, the model matches pretty well the

“probability wealth equals zero” moments (overstating them by 3.0 percentage points on

average) but over-predicts the long-term care insurance moments by 8.5 percentage points

on average, the median wealth moments by about $16,100 on average, and the 75th

percentile wealth moments by about $46,400 on average.

Reducing β helps the model reduce the extent to which it over-predicts saving higher in the

wealth distribution and long-term care insurance ownership, while only slightly worsening

its over-prediction of the probabilities of zero wealth. When θ is the baseline estimate, the

model matches each set of moments pretty well. It under-predicts the long-term care

insurance moments by 1.4 percentage points and the median wealth moments by $2,700 on

average, and it over-predicts the 75th percentile wealth moments by $7,300 and the

zero-wealth moments by 4.3 percentage points on average.

To summarize, the estimations tend to favor a relatively low β because that tends to be the

least-costly way (in terms of the objective-function penalty) to reduce the over-predictions

of saving higher up in the wealth distribution and long-term care insurance ownership that

result from their efforts to match the prevalence of small-but-positive wealth levels among

the poor.

All of the key conclusions are highly robust to calibrating β to more standard values.

A.6.5 Why it is “Hard” for the Model to Match the Very Bottom of the

Wealth Distribution

The proximate reason the model has trouble matching the prevalence of small-but-positive

wealth holdings with reasonable parameter values is that holding small amounts of wealth

means forgoing consumption today in exchange for small expected future benefits. The
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expected future benefits are low mainly because of health spending shocks, which, given

the presence of means-tested programs, effectively function as stochastic wealth taxes. The

ultimate reason the model has trouble matching the prevalence of small-but-positive wealth

holdings with reasonable parameter values is that there is a mismatch between the concept

of wealth in the model and available measures in the data.7

The model does not include many of the real-world motives to hold at least small amounts

of wealth, many of which arise from the desire to economize on transactions costs. For

example, in reality most people who regularly consume “car services” own their own car

rather than renting car services on a flow basis. There is no analogous motive for holding

wealth in the model. Moreover, there is a mismatch in the timing of when wealth is

measured. In the model, wealth is measured “between periods,” immediately after the

income and spending from one period are realized and immediately before the income and

spending from the next period occur. In the data, by contrast, wealth is measured

whenever the individual happens to be surveyed, which is unlikely to coincide perfectly

with the analog—to the extent there even is one—of the beginning- or end-of-period timing

in the model. Someone who lives “hand-to-mouth,” exhausting her resources by the time

the next income payment arrives, will typically have a small but positive amount of wealth

when she is surveyed by the HRS, despite not saving anything from the perspective of the

model.

These mismatches cause the estimations to “stretch”—i.e., adjust the values of some of the

parameters away from the more standard values that they would otherwise prefer—to try

to reduce the predicted share of people with zero wealth to come into closer alignment with

the low share in the data. Reducing β enables it to do so without missing the other target

moments too badly, especially long-term care insurance holdings.

All of the key conclusions are highly robust to a wide range of changes in the assumptions

and target moments that at least partially address this mismatch, including using different

measures of wealth (e.g., excluding the value of cash and vehicles or housing) and dropping

the zero-wealth moments.

7This mismatch is present for other models in this literature as well, but it becomes important mainly
when low wealth levels are targeted, which is rarely done.
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Appendix Figures and Tables
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Figure 1: Contour plots of different versions of the objective function in (cb, φ)-space with the other
parameters held fixed at their baseline estimated values. Higher contours indicate greater mismatch
between the simulated and empirical moments. The asterisks mark the baseline estimates. All plots
use the same scale.
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Figure 2: Contour plots of the baseline objective function as a function of different pairs of θ
parameters with other parameters held fixed at their baseline estimated values. Higher contours
indicate greater mismatch between the simulated and empirical moments. The asterisks mark the
baseline estimates. All plots use the same scale.
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Figure 3: Empirical wealth moments (solid lines) and simulated wealth moments (dashed lines) for
odd- and even-numbered cohorts under the baseline model with bequest motives. Panels (a) and
(c) show the 25th, 50th, and 75th percentiles of the wealth distributions among surviving members
of each cohort. The 25th percentiles are not included in the estimation. Panels (b) and (d) show
the share with zero wealth among surviving members of each cohort. The x-axis shows the average
age of surviving members of the cohort.

23



0 200 400 600 800 1000
Realized bequests in $1,000s

0

0.2

0.4

0.6

0.8

1
F(x)

Empirical
Simulated

Figure 4: Cumulative distribution function of wealth in the last wave in which an individual is
alive among individuals who die during the sample period. Wealth in the last period in which an
individual is alive is a proxy for realized bequests that is better-measured than actual bequests
(see, for example, De Nardi, French and Jones, 2010). The simulated distribution is generated by
the baseline model and parameter estimates.
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(1) (2) (3)
Used formal Stayed in Owns

home care since nursing home long-term care
last interview since last interview insurance

Female=1 0.0494 -0.0548 0.0123
(0.0333) (0.0262) (0.00512)

Single=1 0.0263 0.124 -0.0207
(0.0402) (0.0299) (0.00564)

No kids=1 0.0310 0.0905 0.00535
(0.0448) (0.0336) (0.00973)

Age 0.0219 0.0721 -0.00438
(0.0309) (0.0247) (0.00711)

Age2 -0.0000788 -0.000360 0.00000950
(0.000194) (0.000151) (0.0000468)

Number of ADLs (0-5)=3 0.0759 0.0429
(0.0367) (0.0282)

Number of ADLs (0-5)=4 0.187 0.107
(0.0425) (0.0327)

Number of ADLs (0-5)=5 0.292 0.276
(0.0431) (0.0321)

Income quartile=2 0.0371 0.0262
(0.0379) (0.0281)

Income quartile=3 0.0618 0.0127
(0.0475) (0.0375)

Income quartile=4 0.0391 0.0719
(0.0551) (0.0451)

Wealth quartile=2 0.0124
(0.00464)

Wealth quartile=3 0.0482
(0.00577)

Wealth quartile=4 0.137
(0.00776)

Observations 1083 1360 10599
ymean 0.422 0.283 0.0738
Sample restrictions Age 65+ Age 65+ Age 65+

2+ ADLs 2+ ADLs

Marginal effects; Standard errors in parentheses

Table 1: Marginal effects from probit regressions, i.e., the increase in the average predicted probability
of the dependent variable being one if everyone in the sample had their value of the indicator variable in
question increased from zero to one or their value of the continuous variable in question (age) increased by
one unit. Columns 1, 2, and 3 report results from probit regressions of indicator variables for whether the
individual used any (formal) home care since the last interview, whether the individual stayed in a nursing
home since the last interview, and whether the individual owns long-term care insurance, respectively. All of
the columns restrict the sample to people age 65 and older. Columns 1 and 2 further restrict the sample to
people who report having problems with at least two activities of daily living. The difference in the number
of observations between columns 1 and 2 reflect a difference in the number of missing values of the dependent
variables. Age is measured in years. Wealth quartiles are calculated based on wealth values that are adjusted
for whether the individual is part of a one- or two-person household according to the widely-used square
root equivalence scale (e.g., OECD, 2011) (so an individual in a couple is assigned a wealth value equal to
his or her household wealth divided by

√
(2) before calculating quartiles). The qualitative results are not

sensitive to plausible alternatives. 25



Healthy males Healthy females

Life expectancy at 70 Life expectancy at 70

Income Age adjustment De Nardi Adjusted Age adjustment De Nardi Adjusted
quintile to FHSWL, ∆ et al. (2010) FHSWL to FHSWL, ∆ et al. (2010) FHSWL

1 17 7.6 7.7 6 12.8 13.0
2 15 8.4 8.4 5 13.8 13.6
3 13 9.3 9.3 3 14.7 14.8
4 11 10.5 10.3 2 15.7 15.4
5 9 11.3 11.3 0 16.7 16.8

Table 2: Adjustments to the Friedberg et al. (2014) (FHSWL) model of health transitions for
females to match the life expectancy differences across sex and income groups documented by De
Nardi, French and Jones (2010).
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Relative price of nursing home care

Female 0.0604
(0.0669)

Age -0.0000976
(0.00369)

2nd income quintile 0.0783
(0.0799)

3rd income quintile 0.0164
(0.0782)

4th income quintile 0.0958
(0.0849)

Top income quintile 0.115
(0.0812)

N 536

Table 4: Regression of the relative price of nursing home care using data from the NLTCS. Standard
errors in parentheses.
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(1) (2)
Log acute medical spending Square of log acute medical spending

Age 0.00707 0.0884
(0.00499) (0.0712)

Female 0.202 3.158
(0.0729) (1.004)

Home care 0.331 4.905
(0.0711) (1.024)

Nursing home 0.476 6.970
(0.105) (1.513)

2nd income quintile -0.0112 -0.115
(0.159) (2.334)

3rd income quintile -0.149 -2.237
(0.148) (2.146)

4th income quintile -0.141 -1.920
(0.142) (2.070)

Top income quintile -0.169 -2.186
(0.140) (2.052)

N 3969 3969

Table 5: Acute medical spending regressions. The omitted dummy variables are “healthy” and
“bottom income quintile.” The sample is the subset of my main sample (single retirees 65 and
older) whose combined previous-wave non-housing wealth and annual income was at least $100,000
and who have strictly positive spending (in order to take logs). Home care indicates whether the
individual used home care since the last interview. Nursing home indicates whether the individual
is living in a nursing home at the time of the interview. Standard errors in parentheses.
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Asset Data source Taxation Return, 1998–2008 Portfolio share

Mean Std. dev. (percent)

Occupied OFHEO, 0 percent on capital gains, 7.9 3.2 54.8
housing Baker et al. (2007) 1 percent/yr property tax

Stocks CRSP 0 percent on capital gains, 2.6 16.9 9.3
20 percent on div yield
(2 percent yield)

Bonds AAA long bonds 20 percent 3.2 1.0 2.2
yield to maturity

Liquid (CDs) Treasury 20 percent 1.2 1.4 6.9

Unoccupied OFHEO 0 percent 4.3 3.2 1.5
housing

Debt Baker et al. (2007) 20 percent 2.4 - -16.9

Table 6: Data sources and assumptions underlying the calculations of the expected and realized
rates of return on wealth. The mean returns are the geometric averages of annual real, after-tax
returns, in percent. The portfolio shares are the average shares of net wealth held in each asset in
1998 by the sample of single retirees, weighted by HRS respondent-level weights. The assumption
of zero taxation of capital gains comes from the assumption that a large share of retirees’ capital
gains are not realized (by asset sales) during the sample period. Additional details about the data
sources can be found in Baker, Doctor and French (2007).

Average deviations, (simulated-empirical)

LTCI (p.p.) Medians ($1,000s) 75th ptiles ($1,000s) Pr(w=0) (p.p.)

Baseline −1.4 −2.7 7.3 4.3
No BM 9.1 −11.1 −55.1 6.3
No BM, medians 33.5 2.5 −50.1 2.0
No BM, 0s and p75s 44.0 29.6 −9.9 3.3

Average absolute deviations, |simulated-empirical|

LTCI (p.p.) Medians ($1,000s) 75th ptiles ($1,000s) Pr(w=0) (p.p.)

Baseline 2.7 10.9 27.5 5.9
No BM 9.9 15.4 62.7 6.8
No BM, medians 33.5 10.7 60.8 5.3
No BM, 0s and p75s 44.0 32.5 47.8 4.4

Table 7: Economic fit of different estimated models to each set of moment conditions. The estima-
tions are the baseline estimation (“Baseline”), the main estimation without bequest motives (“No
BM”), the estimation without bequest motives based on the median wealth moments (“No BM,
medians”), and the estimation without bequest motives based on the “share with zero wealth” and
75th percentile wealth moments (“No BM, 0s and p75s”). The first set of rows shows the average
excess of the simulated moments over the empirical moments of each type. The last set of rows
shows the average absolute deviations of the simulated moments from the empirical moments of
each type. Deviations from the long-term care insurance and probability-of-zero-wealth moments
are in percentage points.
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