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A2. Spanning Condition Examples

Consider first a scenario in which there are two observed student characteristics X ≡ [X1,X2], two
outcome-relevant unobserved student characteristics XU = [XU

1 ,XU
2 ], and two school/neighborhood

amenity factors, A = [A1,A2].

Case 1: rank(ΘΘΘU)≤ rank(Θ̃ΘΘ) = dim(A)

Suppose that the matrices Θ̃ΘΘ = ΘΘΘ+ΠΠΠXUXΘΘΘ
U and ΘΘΘ

U, are each full rank. For example:

Θ̃ΘΘ =

{
1 1
0 1

}
ΘΘΘ

U =

{
1 2
2 1

}

Then we can write ΘΘΘ
U = RΘ̃ΘΘ, where

R =

{
1 1
2 −1

}
Thus, the spanning condition is satisfied in this case. If ΘΘΘ

U were rank-deficient, then the spanning
condition would still be satisfied, but R would be rank-deficient.

Now suppose that there are instead three outcome-relevant unobserved characteristics: XU =
[XU

1 ,XU
2 ,XU

3 ], each of which affects WTP for the two amenities differentially. Suppose that X
and Θ̃ΘΘ are unchanged from Case 1:

Θ̃ΘΘ =

{
1 1
0 1

}
ΘΘΘ

U =

 1 2
2 1
1 1


Then we can write ΘΘΘ

U = RΘ̃ΘΘ, where

R =

 1 1
2 −1
1 0


Thus, the spanning condition is satisfied in this case. We see that dim(X) can be less than dim(XU)
without violating the spanning condition, as long as the row rank of Θ̃ΘΘ is at least as large as the
row rank of ΘΘΘ

U. Any scenario satisfying rank(ΘΘΘU)≤ rank(Θ̃ΘΘ) = dim(A) will satisfy the spanning
condition in Proposition 1.
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Case 2: rank(Θ̃ΘΘ)< rank(ΘΘΘU)≤ dim(A)

Suppose instead that neither X1 nor X2 predicts willingness to pay for A2. Further, suppose that
neither X1 nor X2 is correlated with any elements of XU that predict willingness to pay for A2. This
implies that the second column of Θ̃ΘΘ is a zero vector:

Θ̃ΘΘ =

{
1 0
2 0

}
ΘΘΘ

U =

{
1 2
2 1

}
Since Θ̃ΘΘ is now rank-deficient, there is no matrix R such that RΘ̃ΘΘ = ΘΘΘ

U. In particular, for any
matrix R, each entry in column 2 be zero, but the second column of ΘΘΘ

U contains non-zero en-
tries. Similarly, if both X1 and X2 affect WTP for A1 and A2 in the same proportion (and are each
uncorrelated with XU, so that ΠΠΠXUX = 0, a rank-deficiency will also occur:

Θ̃ΘΘ =

{
1 2
2 4

}
.

Here, an incremental unit of X1 or X2 will affect WTP for A2 by twice as much as it will affect
WTP for A1. As in the previous example, there is no matrix R such that RΘ̃ΘΘ = ΘΘΘ

U. For any choice
of R, in each row of RΘ̃ΘΘ the second column will always be twice as large as the first column, but
the second row of ΘΘΘ

U has a first column entry that is only half as large as its second column entry.
Both these examples violate the spanning condition. If the row rank of Θ̃ΘΘ is less than the row rank
of ΘΘΘ

U, then the row space of ΘΘΘ
U cannot possibly be a subspace of the row space of Θ̃ΘΘ.

Case 3: rank(ΘΘΘU)≤ rank(Θ̃ΘΘ)< dim(A)

Suppose now that both X and XU are scalars: X ≡ X1, XU ≡ XU
1 . Consider first the case where X1

only predicts WTP for A1, XU
1 only predicts WTP for A2, and X1 and XU

1 are uncorrelated:

Θ̃ΘΘ =
{

1 0
}

ΘΘΘ
U =

{
0 1

}
Regardless of the 1x1 scalar R, the product RΘ̃ΘΘ will have a zero in the second column, which does
not match ΘΘΘ

U. Despite the fact that rank(Θ̃ΘΘ) = rank(ΘΘΘU) = 1, the spanning condition fails because
the row space of ΘΘΘ

U is not a subspace of the row space of Θ̃ΘΘ.

Indeed, suppose that we alter Θ̃ΘΘ and ΘΘΘ
U so that both X1 and XU

1 affect WTP for both amenities (but
in different proportions):

Θ̃ΘΘ =
{

1 1
}

ΘΘΘ
U =

{
2 4

}
There is no scalar R such that RΘ̃ΘΘ = ΘΘΘ

U, since any value of R will preserve the one-to-one ratio
between the first and second entries in ΘΘΘ, while ΘΘΘ

U has a one-to-two ratio between its first and
second entries. The spanning condition also fails in this case because the row space of ΘΘΘ

U is not a
subspace of the row space of Θ̃ΘΘ. This example demonstrates that if the set of factors that individuals
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consider when choosing groups is large, one will generally need an equally large set of observable
characteristics in order to satisfy the spanning condition in Proposition 1.

Finally, suppose that both X1 and XU
1 only affect willingness to pay for A1 (Q may affect taste for

A2, so that A2 is still relevant for school choice):

Θ̃ΘΘ =
{

1 0
}

ΘΘΘ
U =

{
2 0

}
Then for R = 2, RΘ̃ΘΘ = ΘΘΘ

U, and the spanning condition is satisfied. Note that the row space of Θ̃ΘΘ is
a subspace of the row space of ΘΘΘ

U, despite the fact that both Θ̃ΘΘ and ΘΘΘ
U are rank deficient. This last

example illustrates that the observed characteristics need not predict WTP for all choice-relevant
amenities as long as the rows of Θ̃ΘΘ span the same amenity subspace (or a superspace of the amenity
subspace) spanned by the rows of ΘΘΘ

U.

A3. Testing Whether dim(AX) Is Less Than the Number of Elements of Xs

As discussed in Section II.B, Assumption 5.1 is one of the two key sufficient conditions for the
spanning assumption, Assumption 5, to hold. Assumption 5.1 requires that the vector of observ-
ables Xi captures enough independent factors determining families’ preferences over group ameni-
ties so that knowledge of Xs is sufficient to determine the value of the amenities (denoted AX

s ) for
which Xi affects tastes, either through direct effects on willingness to pay or indirectly through cor-
relation between Xi and elements of XU

i . For the particular linear specification of utility featured in
(2), this condition is tantamount to requiring that rank(Θ̃ΘΘ)≥ dim(AX

s ).

The restriction rank(Θ̃ΘΘ) ≥ dim(As
X) restricts rank(Var(Xs)), which forms the basis for our test.

To see this, note that taking expectations of both sides of (35) conditional on s implies that

Xs = WsVar(Wi)
−1

Θ̃ΘΘ
′Var(Xi),

where Ws ≡ E(Wi|si = s) is the average of the willingness to pay vector for those who choose
s. Thus Xs is a linear combination of Ws. Recall that the length of Ws is K, the number of
valued amenities. Consequently, if L > K, then the L elements of Xs are all linear combinations of
the smaller number of components of the average willingness to pay vector Ws. But this implies
that Var(Xs) will be rank deficient, with rank(Var(Xs)) = K. In fact, if WTP for some of the
K amenities is not influenced by Xi, then some of the columns of Θ̃ΘΘ will be 0. In this case,
rank(Var(Xs)) = dim(AX)< K further reducing the rank of Var(Xs). This is a testable condition.

More generally, suppose Assumption 5.1 is nearly satisfied, so that a small number of amenity
factors drive the vast majority of the variation in Xs, but elements of Xi slightly influence tastes
for several other amenities. Our simulations in section A6 suggest that such minor departures
from the Assumptions 5.1 and 5.2 have little impact on the ability of Xs to effectively control for
the unobservable between-school variation XU

s . But in such contexts, a small number of amenity
factors should account for a very large fraction of the variation in Xs, with only a very small amount
of unexplained residual variation.
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We test these predictions by performing principal components analysis (PCA) on Xs. Because the
sample school averages of observable characteristics X̂s are noisy measures of the expected values
Xs≡E[Xi|s(i) = s], we do not fit the PCA model to X̂s directly. Instead, we estimate the underlying
true covariance matrix Var(Xs),1 and then directly perform the principal components analysis on
the estimated covariance matrix.2

The results are in Online Appendix Table A5. Panel A reports, for each dataset we use, the num-
ber of principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the sum
∑

L
`=1Var(Xs`) of the variances of the standardized values of the L characteristics in Xs, respec-

tively. This is the standard output from a factor analysis. In Panel B, we also provide the number
of principal components necessary to explain 75%, 90%, 95%, 99%, and 100% of the variance
in XsĜ1, the regression index formed by using the estimated coefficients on school-level averages
from our empirical analysis.

Both Panel A and Panel B provide strong evidence that rank(Θ̃ΘΘ) ≥ dim(AX
s ), implying that As-

sumption 5.1 for the spanning condition ΘΘΘ
U = RΘ̃ΘΘ is satisfied in the datasets we use. Specifically,

in each dataset, Var(Xs) is found to be rank deficient. For example, in the full specification using
ELS2002, only 33 latent factors are needed to explain all of the variance in Xs (Panel A, Row 6,
Column 6), compared to L = 51 elements of Xs. Similarly, in the NELS88 full specification, only
32 factors fully explain the variance in the 49 factors of Xs.

Furthermore, the PCA analysis also suggests that a much smaller number of factors can account
for the vast majority of the variation in either ∑

L
`=1Var(Xs`) or Var(XsĜ1). In the ELS2002 full

specification, only 19 and 15 factors are needed to explain 95% of the variation in ∑
L
`=1Var(Xs`)

and Var(XsĜ1), respectively (Panels A and B, Row 4, Column 6). For NELS88, only 20 and 13
factors are needed to explain 95% of the variation in the corresponding two measures (Panels A
and B, Row 4, Column 4). The number of latent factors required to explain a given percentage of
the sum of the variances of the elements of Xs is larger in the full specification, which contains
more variables. This would be expected in the presence of sampling error in V̂ar(Xs). However, it
might also indicate that there are in fact additional amenity factors that play a small role in driving
sorting (and thus have small eigenvalues) that can be picked up by the additional elements of Xs in
the full specification.

Note, though, that because we only observe small samples of students in each school in our panel
surveys and only have a sample of schools, the covariance matrix V̂ar(Xs) that is decomposed
by PCA is merely a consistent estimate of the population covariance matrix Var(Xs), and thus
contains sampling error. The assumption underlying the spanning condition pertains to the rank of
the population matrix Var(Xs). We address this issue in two ways. First, Panel A and B of Online

1Specifically, we estimate V̂ar(Xi) and V̂ar(Xi−Xs) by taking the sample (weighted) covariances of Xi and Xi− X̂s, performing
the requisite degrees-of-freedom adjustment, and then obtaining V̂ar(Xs) via V̂ar(Xs) = V̂ar(Xi)− V̂ar(Xi−Xs).

2When constructing our control function in our main estimating equations we augment the vector X̂s that comes from directly ag-
gregating student level variables Xi with school-level aggregates directly reported by the school administrators (e.g. percent minority),
since these are likely to measure the true school population average Xs with minimal error. However, when performing the principal
components analysis of Xs, we do not include these additional measurements that come directly from schools, since they are likely to
be nearly collinear with X̂s, and could cause us to find spurious evidence of rank deficiency in Var(Xs).
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Appendix Table A5 report 90% bootstrap confidence interval estimates of the number needed to
explain the specified percentages of ∑

L
l Var(Xsl) and Var(XsĜ1). They are fairly tight.

Second, we also implement the formal test of rank proposed by Kleibergen and Paap (2006). Build-
ing on Cragg and Donald (1997) and Robin and Smith (2000), this test exploits the fact that a rank
deficient matrix will have a subset of its singular values equal to 0, and tests whether the small-
est singular values are farther from zero than one would expect based on sampling error.3 The
test compares the null hypothesis that rank(Var(Xs)) = q, for some q < L, against the alternative
that rank(Var(Xs)) > q. Thus, Table A6 report the p-value from this test for each possible rank
1, . . . ,L−1 for each of our panel survey datasets for our baseline specification. Table A7 displays
the corresponding p-values across datasets for our full specification.

One advantage of this test is that it can accommodate both heteroskedasticity and autocorrelation
among the error components. However, while the tests that cluster at the school-level allow for the
most general correlation structure, they sometimes fail to converge in our samples (indicated by
“NaN” in Tables A6 and A7). Consequently, for each dataset we display p-values both from tests
that are robust to heteroskedasticity but assume zero autocorrelation as well as those that cluster at
the school-level and are robust to both heteroskedasticity and autocorrelation.

Across tests and datasets, the results are broadly quite consistent with the PCA results reported
above. In particular, not only do the tests consistently fail to reject rank values well below the
number of observables, but in fact the p-values generally converge to values indistinguishable from
1 as the numbers of factors being tested nears the number of principal components identified in
Table A5. In sum, the Kleibergen/Paap tests provide no evidence against the null hypothesis that
the number of factors that drive sorting on the observables Xi is substantially small than dimension
of Xi.

A4. The Relationship between XU
s and Xs when E(Xi|Wi) and E(XU

i |Wi) are Nonlinear

Decompose E[X̃U
i |Wi] and E[Xi|Wi] as

E[X̃U
i |Wi] = E∗[X̃U

i |Wi]+ eX̃U

i(39)

E[Xi|Wi] = E∗(Xi|Wi)+ eX
i(40)

where the vectors E∗[X̃U
i |Wi] and E∗[Xi|Wi] are the linear least squares projections of X̃U

i and Xi

on Wi and the error vectors eX̃U

i and eXU

i are uncorrelated with Wi.

Proposition 1A: Assume that Assumptions A1, A2, A3, and A5 hold.

3Specifically, Kleibergen and Paap (2006) show that if the vectorized form of the covariance matrix estimator has a normal limiting
distribution, then the limiting distribution of an orthogonal transformation of the smallest singular values of this matrix is also normal.
Their rank statistic thus consists of a quadratic form of this orthogonal transformation with respect to the inverse of its covariance
matrix, and hence follows a χ2 limiting distribution. Bai and Ng (2002) provide an alternative approach.
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Then the expectation XU
s is

XU
s = Xs[ΠΠΠXUX +Var(Xi)

−1R
′
Var(X̃U

i )]

−E[eX
i |s(i) = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s](41)

A. Proof of Proposition 1A:

The key steps of the proof are identical to first steps of the proof of Proposition 1 that lead to (30)
and (31). These say that

XU
s ≡ E[XU

i |s(i) = s] = E[[E(XU
i |Wi)]|s(i) = s]

Xs ≡ E[Xi |s(i) = s] = E[[E(Xi|Wi)]|s(i) = s].

Next we find expressions for E[XU
i |Wi] and E[Xi|Wi] involving E∗[X̃U

i |Wi] and E∗[Xi|Wi] and eX̃U

i
and eX

i By definition of a linear projection,

E∗[X̃U
i |Wi] = WiVar(Wi)

−1
ΘΘΘ

U′Var(X̃U
i )(42)

E∗[Xi|Wi] = WiVar(Wi)
−1

Θ̃ΘΘ
′
Var(Xi).(43)

Assumption A5 says that ΘΘΘ
U = RΘ̃ΘΘ. Substituting for ΘΘΘ

U′ in (42) and using (43) leads to

E∗[X̃U
i |Wi] = WiVar(Wi)

−1
Θ̃ΘΘ
′R′Var(X̃U

i ))

= WiVar(Wi)
−1

Θ̃ΘΘ
′Var(Xi)Var(Xi)

−1R′Var(X̃U
i )

= E∗[Xi|Wi]Var(Xi)
−1R′Var(X̃U

i ).(44)

Using

(45) E[XU
i |Wi] = E[Xi|Wi]ΠΠΠXUX +E[X̃U

i |Wi].

and (39), (40) and (44), we obtain:

(46) E[XU
i |Wi] = [E∗[Xi|Wi]+ eX

i ]ΠΠΠXU X +E∗[Xi|Wi]Var(Xi)
−1R′Var(X̃U

i )+ eX̃U

i .

The final step is to take expectations of both sides of the above equation conditional on s(i) = s and
use (30) and (31). Doing so leads to
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XU
s = E[E∗[Xi|Wi]+ eXi |si = s][ΠΠΠXU X +Var(Xi)

−1R′Var(X̃U
i )]

−E[eX
i |si = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s].

= Xs[ΠΠΠXUX +Var(Xi)
−1R′Var(X̃U

i )]

−E[eX
i |si = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s]

where the second and third terms combine to form an approximation error. This completes the
proof. As we discuss in Section IV.B, the approximation error would contribute to the school/neighborhood
error component vs of the outcome model (12). This would lead to upward bias in the less conser-
vative of our two estimators of the variance of school/neighborhood effects.

A5. Deriving an Analytical Formula for XU
s when the Spanning Assumption (A5) Is Not Satisfied

We begin by introducing new notation that will be necessary to generalize Proposition 1 to the case
when Assumption (A5) is not satisfied.

Partition XU
i into a subset XU

1i that is correlated with Xi and a subset XU
2i that is not correlated with

Xi. Let L denote the number of elements of Xi, LU1 denote the number of elements of XU
1i, and

let LU2 denote the number of elements of XU
2i. Recall that Assumption 5.2 will fail if XU

2i affects
preferences for an amenity that neither Xi nor XU

1i affect preferences for.

Denote by AU2 the subvector of A that is not contained in AX. Similarly, let K1 be the number of
amenities in AX and let K2 capture the number of amenities in AU2. Write the taste matrix ΘΘΘ

U as:

ΘΘΘ
U =

{
ΘΘΘ

U
11 ΘΘΘ

U
12

ΘΘΘ
U
21 ΘΘΘ

U
22

}
=

{
ΘΘΘ

U
11 0

ΘΘΘ
U
21 ΘΘΘ

U
22

}
where ΘΘΘ

U
11 is LU1×K1, ΘΘΘ

U
21 is LU2×K1, ΘΘΘ

U
12 is LU1×K2, and ΘΘΘ

U
22 is LU2×K2. Note that since XU

1i
does not affect WTP for any amenities in AU2, ΘΘΘ

U
12 = 0. Similarly, write the taste matrix ΘΘΘ as

ΘΘΘ =
{

ΘΘΘ1 ΘΘΘ2
}
=
{

ΘΘΘ1 0
}

,

where ΘΘΘ1 is L×K1 and ΘΘΘ2 = 0 is L×K2.

We can then write Θ̃ΘΘ as:

Θ̃ΘΘ =
{

Θ̃ΘΘ1 Θ̃ΘΘ2
}
=
{

ΘΘΘ1 +ΠΠΠ
1
XU X ΘΘΘ

U
11 0

}
where ΠΠΠ

1
XU X represents the first LU1 columns of ΠΠΠXU X .

Consider replacing assumption (A5) with the following assumptions, (A5’) and (A5”):
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• (A5’): There exists an LU1×L matrix R1 such that ΘΘΘ
U
11 = R1Θ̃ΘΘ1.

• (A5”): There exists an LU2×L matrix R2 such that ΘΘΘ
U
21 = R2Θ̃ΘΘ1.

We can also define the LU ×L matrix R as:

R =

{
R1
R2

}

Given these definitions and additional assumptions, we are now ready to develop a more general
expression for E[X̃U

i |s(i) = s]. We begin by generalizing the expression for E[X̃U
i |Wi]. Note first

that since E[Xi|Wi] and E[XU
i |Wi] are linear in Wi (from Assumption (A4)), E[X̃U

i |Wi] is also
linear in Wi. Basic regression theory then implies that

E[X̃U
i |Wi] = WiVar(Wi)

−1Cov(Wi
′, X̃U

i )(47)

E[Xi|Wi] = WiVar(Wi)
−1Cov(Wi

′,Xi).(48)

Next, recall that we can write Wi as:

Wi = XiΘ̃ΘΘ+ X̃U
i ΘΘΘ

U +QiΘΘΘ
Q

where Xi, X̃U
i , and Qi are mutually uncorrelated by construction. This leads to the following

expression for Cov(Wi
′, X̃U

i ):

Cov(Wi
′, X̃U

i ) = Cov(ΘΘΘU′X̃U′
i , X̃U

i ) = Cov(
{

ΘΘΘ
U′
11 ΘΘΘ

U′
21

ΘΘΘ
U′
12 ΘΘΘ

U′
22

}{
X̃U′

1i
X̃U′

2i

}
,
{

X̃U
1i X̃U

2i
}
)

=

{
Cov(ΘΘΘU′

11X̃U′
1i , X̃

U
1i)+Cov(ΘΘΘU′

21X̃U′
2i , X̃

U
1i) Cov(ΘΘΘU′

11X̃U′
1i , X̃

U
2i)+Cov(ΘΘΘU′

21X̃U′
2i , X̃

U
2i)

Cov(ΘΘΘU′
12X̃U′

1i , X̃
U
1i)+Cov(ΘΘΘU′

22X̃U′
2i , X̃

U
1i) Cov(ΘΘΘU′

12X̃U′
1i , X̃

U
2i)+Cov(ΘΘΘU′

22X̃U′
2i , X̃

U
2i)

}
=

{
ΘΘΘ

U′
11Var(X̃U

1i)+ΘΘΘ
U′
21Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
11Cov(X̃U′

1i , X̃
U
2i)+ΘΘΘ

U′
21Var(X̃U

2i)

ΘΘΘ
U′
22Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
22Var(X̃U

2i)

}
=

{
Θ̃ΘΘ
′
1R1

′Var(X̃U
1i)+ Θ̃ΘΘ

′
1R2

′Cov(X̃U′
2i , X̃

U
1i) Θ̃ΘΘ

′
1R1

′Cov(X̃U′
1i , X̃

U
2i)+ Θ̃ΘΘ

′
1R2

′Var(X̃U
2i)

ΘΘΘ
U′
22Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
22Var(X̃U

2i)

}
Where the last two lines impose (A5’), (A5”) and ΘΘΘ

U
12 = 0.

Similarly, we have:

Cov(Wi
′,Xi) = Cov(Θ̃ΘΘ′X′i,Xi) = Θ̃ΘΘ

′Var(Xi) =(49) {
Θ̃ΘΘ
′
1

Θ̃ΘΘ
′
2

}
Var(Xi) =

{
ΘΘΘ
′
1 +ΘΘΘ

U′
11ΠΠΠ

1′
XU X

0

}
Var(Xi)(50)
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Plugging in the formulas for Cov(Wi
′, X̃U

i ) and Cov(Wi
′,Xi) into 47 and 48 , we obtain:

E[X̃U
i |Wi] = WiVar(Wi)

−1
{

Θ̃ΘΘ
′
1R1

′Var(X̃U
1i)+ Θ̃ΘΘ

′
1R2

′Cov(X̃U′
2i , X̃

U
1i) Θ̃ΘΘ

′
1R1

′Cov(X̃U′
1i , X̃

U
2i)+ Θ̃ΘΘ

′
1R2

′Var(X̃U
2i)

ΘΘΘ
U′
22Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
22Var(X̃U

2i)

}(51)

E[Xi|Wi] = WiVar(Wi)
−1
{

Θ̃ΘΘ
′
1

0

}
Var(Xi).(52)

Using (52), we can rewrite (51) as:

E[X̃U
i |Wi] = E[Xi|Wi]Var(Xi)

−1{ R1
′ R2

′ }{ Var(X̃U
1i) Cov(X̃U′

1i , X̃
U
2i)

Cov(X̃U′
2i , X̃

U
1i) Var(X̃U

2i)

}
(53)

+WiVar(Wi)
−1
{

0 0
ΘΘΘ

U′
22Cov(X̃U′

2i , X̃
U
1i) ΘΘΘ

U′
22Var(X̃U

2i)

}
= E[Xi|Wi]Var(Xi)

−1R′Var(X̃U
i )+WiVar(Wi)

−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )(54)

Plugging back into the original iterated expectations formula and taking expectations at the school
level, we recover:

(55) X̃U
s = XsVar(Xi)

−1R′Var(X̃U
i )+WsVar(Wi)

−1
{

0 0
0 ΘΘΘ

U
22

}
Var(X̃U

i )

Note that in equilibrium E[Wi|s(i) = s] will depend on the full joint distribution of amenities and
the joint distribution of Wi. With a finite number of students and schools and with idiosyncratic
student-school match components in preferences (εis), there exists no closed-form solution for the
equilibrium mapping between the amenity vector As and school averages of the WTP for amenities
Ws.

However, we can gain additional insight by re-considering the continuous version of the model
analyzed in Altonji and Mansfield (2014). In that context we assumed a continuum of schools
and therefore a continuous joint distribution of amenity vectors. In Appendix A3 of Altonji and
Mansfield (2014), we solve for an explicit unique equilibrium mapping between As and Ws under
the assumptions that a) [Xi,XU

i ,Qi] and As(i) are each jointly normally distributed (with variance
matrices for Wi and As(i) of ΣΣΣW and ΣΣΣA respectively), b) the εis are 0, and c) the equilibrium
allocation takes a linear form: As(i) = ΨΨΨWi

′. The unique linear equilibrium mapping is

(56) ΨΨΨ = ΣΣΣ
−1/2
W′ (ΣΣΣ

1/2
W′ ΣΣΣAΣΣΣ

1/2
W′ )ΣΣΣ

−1/2
W′ .

Note that the spanning condition (A5) is not necessary to derive the equilibrium relationship (56).

Since every positive definite matrix is invertible, we can also express the vector Wi for any indi-
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vidual as a linear function of the amenity vector of their chosen school:

(57) Wi = (ΨΨΨ−1As(i))
′.

In the continuous version of the model with εis = 0, every individual at the same school has the
same value of Wi. Thus, we also obtain:

(58) E(Wi|s = s(i))≡Ws = (ΨΨΨ−1As(i))
′.

Substituting (58) into ( 61) leads to

(59) X̃U
s = XsVar(Xi)

−1R′Var(X̃U
i )+As(i)

′
ΨΨΨ
−1Var(Wi)

−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i ) .

This shows more clearly that the variances and covariances involving Xi, X̃U
i and Qi play a role, and

that Var(As) plays a role in determining the variation in X̃U
s not accounted for by XsVar(Xi)

−1R′Var(X̃U
i ).

However, note that the variance of As(i)
′
ΨΨΨ
−1Var(Wi)

−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i ) is not the residual

variance of XU
s conditional on Xs. This is because Xs and As co-vary, which leads the two terms in

(59) for X̃U
s to co-vary.

Next, recall the composition of Wi:

(60) Wi = XiΘ̃ΘΘ+ X̃U
i ΘΘΘ

U +QiΘΘΘ
Q

Taking expectations of both sides of the above equation conditional on s = s(i) one may substitute
for Ws in (55). This leads to.
(61)

X̃U
s =Xs{Var(Xi)

−1R′Var(X̃U
i )+[XsΘΘΘ+X̃U

1sΘΘΘ
U
1 +X̃U

2 ΘΘΘ
U
2 +QsΘΘΘ

Q]Var(Wi)
−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )

Now suppose that in addition to Assumption (A4), we assume that E[Qi|Wi] is also linear in Wi,
so that:

(62) E[Qi|Wi] = WiVar(Wi)
−1Cov(Wi

′,Qi).

If we take iterated expectations of equations (47), (48), and (62) conditional on school s(i) and
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replace Ws with (ΨΨΨ−1As(i))
′, we obtain:

X̃U
s = As(i)

′
ΨΨΨ
−1Var(Wi)

−1
ΘΘΘ

U′Var(X̃U
i )(63)

Xs = As(i)
′
ΨΨΨ
−1Var(Wi)

−1
Θ̃ΘΘ
′
Var(Xi)(64)

Qs = As(i)
′
ΨΨΨ
−1Var(Wi)

−1
ΘΘΘ

Q′Var(Qi)(65)

Collecting terms involving Xs and substituting equations (63) and (65) into (61) yields:

X̃U
s = Xs{Var(Xi)

−1R′Var(X̃U
i )+ Θ̃ΘΘ

′Var(Wi)
−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )}(66)

+As(i)
′
ΨΨΨ
−1Var(Wi)

−1
ΘΘΘ

U′Var(X̃U
i )ΘΘΘ

UVar(Wi)
−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )(67)

+As(i)
′
ΨΨΨ
−1Var(Wi)

−1
ΘΘΘ

Q′Var(Qi)ΘΘΘ
QVar(Wi)

−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )(68)

Even this does not let us decompose Var(X̃U
s ) into a term involving Xs and an uncorrelated residual

piece. the reason is that As(i) will be correlated with Xs.

But consider projecting the amenity column subvectors As
X and As

U2 onto Xs:

As
X′ = XsΠΠΠAXXs + ÃX′

s = XsΠΠΠAXXs(69)

As
U2′ = XsΠΠΠAU2Xs + ÃU2′

s(70)

where ΠΠΠAXXs is an L×K1 projection matrix, ΠΠΠAXXs is an L×K2 projection matrix, and ÃX′
s(i) and

ÃU2′
s are the residuals from these projections. Note that ÃX′

s = 0 in the continuous version of the
model as long as Θ̃ΘΘ1 is full rank (essentially Assumption A5.1 adapted to the linear utility case).

This implies:

X̃U
s = Xs[Var(Xi)

−1R′Var(X̃U
i )+ Θ̃ΘΘ

′Var(Wi)
−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )+M]

+{0, ÃU2′
s }ΨΨΨ−1Var(Wi)

−1[ΘΘΘU′Var(X̃U
i )ΘΘΘ

U +ΘΘΘ
Q′Var(Qi)ΘΘΘ

Q]Var(Wi)
−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )

(71)

where the matrix M is
(72)

M= {ΠΠΠAXXs ,ΠΠΠAU2Xs}ΨΨΨ
−1Var(Wi)

−1[ΘΘΘU′Var(X̃U
i )ΘΘΘ

U+ΘΘΘ
Q′Var(Qi)ΘΘΘ

Q]Var(Wi)
−1
{

0 0
0 ΘΘΘ

U′
22

}
Var(X̃U

i )
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While cumbersome, the second term in (71) provides an expression for the component of X̃U
s

that cannot be predicted by Xs (and thus may be a source of bias in our lower bound estimates of
the variance in school/neighborhood treatment effects). The variance in this component depends
on the following five factors: a) the full joint distribution of amenities (through ΨΨΨ); b) the joint
distribution of the WTP vector Wi (entering via the covariance matrix Var(Wi)); c) the WTP co-
efficient matrix ΘΘΘ

U capturing the effect of XU on willingness to pay for particular amenities; d)
the joint distribution of the residual component of unobserved outcome-relevant student character-
istics (entering via the covariance matrix Var(X̃U

i ); and e) the joint distribution of the unobserved
outcome-irrelevant (but school choice-relevant) student characteristics weighted by effects on WTP
(entering via ΘΘΘ

Q′Var(Qi)ΘΘΘ
Q).

Given the complicated manner in which each of these five factors enters the second term in (71),
we do not see a straightforward way to bound the variance of this error component.

A6. Monte Carlo Evidence on the Properties of the Control Function Estimator

This section describes a set of monte carlo simulations designed to explore the performance of
our control function estimator across a number of key dimensions. We do not attempt to fully
characterize the performance of our estimator.4 Instead, our simulations center around a stylized
test case that is calibrated to represent a plausible description of the school/neighborhood choice
context. We focus on sensitivity to deviations among a set of key parameters designed to reveal
the strengths and weaknesses of our approach. In the first set of simulations, we restrict attention to
cases in which the conditions of Proposition 1 are satisfied in an infinite population, and consider
the sensitivity of the performance of the control function approach in removing bias from sorting
on unobservables to various parameters capturing the structure of tastes, amenities, school sizes,
and survey sampling design. Then, in a second set of simulations, we fix the parameters considered
in the first set of simulations at a set of baseline values, and examine the sensitivity of our approach
to violations of the key spanning condition in Proposition 1 that vary in nature and degree. Section
A6.A lays out the simulation methodology, while section A6.B presents and interprets the results.

A. Methodology

The stylized test case we consider is one in which:

1) The elements of [Xi,XU
i ,Qi] are jointly normally distributed; the elements of Qi are inde-

pendent of each other and [Xi,XU
i ], and each pair of characteristics in [Xi,XU

i ] features a .25
correlation.5

4A full characterization is a daunting task given the large number of parameters that determine the full spatial equilibrium sorting of
students to schools. The parameters include those characterizing the joint distribution of the individual characteristics affecting choice
[Xi,XU

i ,Qi], the joint distribution of the amenities As, and the distribution of the idiosyncratic tastes εsi. The parameters also include
the ΘΘΘ, ΘΘΘ

U, and ΘΘΘ
Q matrices that capture how observed and unobserved characteristics affect WTP.

5This is the average correlation between observed continuous student-level characteristics in ELS2002.



VOL. VOLUME NO. ISSUE ALTONJI AND MANSFIELD: ESTIMATING GROUP EFFECTS 15

2) The latent amenity vectors As are normally distributed with a .25 correlation between any
pair of amenities across schools.

3) The matrices of taste parameters ΘΘΘ and ΘΘΘ
U represent draws from a multivariate normal distri-

bution in which (a) corr(Θk`,Θ jm)≡ ρΘ if j = k or `=m, and 0 otherwise, (b) corr(ΘU
k`,Θ

U
jm)=

ρΘ if j = k or `= m, and 0 otherwise, and (c) corr(Θk`,Θ
U
jm) = ρΘ if `= m, and 0 otherwise.

4) The number of elements of Qi is equal to the number of elements of As. ΘΘΘ
Q is the identity

matrix.

5) The variances of the elements of As, [Xi,XU
i ,Qi], and εi,s (i.i.d. draws from a normal dis-

tribution) are chosen to create interclass correlations for Xi and XU
i of between .1 and .25

across specifications. These values are in line with the range observed across the datasets
used in the empirical analysis.

6) There are no school/neighborhood effects, so that Y = Xiβββ +xU
i , where xU

i ≡XU
i βββ

U . Conse-
quently, our estimating equation also omits the school level controls Z2s that are not averages
of student characteristics. These simplifications allow us to focus attention exclusively on
the extent to which a vector of group averages of observable individual characteristics can
absorb between-school variation in the outcome contributions of unobservable individual
characteristics.

7) All the observable and unobservable characteristics in Xi and XU
i are equally important in

determining the outcome, so that each characteristic features the same (unit) variance, β` =
1 ∀ `, and βU

` = 1 ∀ `.

Our test case implies considerable sorting into schools along many dimensions of school ameni-
ties and along many observable and unobservable dimensions of student quality. It represents
a conservative case because one might expect that in reality a few key observable (and unob-
servable) individual level factors (e.g. parental income, education, and wealth) and a few key
school/neighborhood amenities (e.g. ethnic composition, crime, principal quality) drive most of
the systematic sorting of students to schools. Given restrictions 1-7, we complete the model by
choosing particular sets of seven remaining parameters. The first parameter is the number of stu-
dents per school. For simplicity, we impose that each school has capacity equal to a common
student/school ratio.6 The student/school ratio is denoted “# Stu” in Online Appendix Table A8.
The second parameter is the total number of school/neighborhood combinations available (denoted
“# Sch”).

The parameter #Con is the number of schools in the consideration set for each household. This
captures the possibility that most parents only realistically consider a limited number of possible
locations. We implement this by distributing schools uniformly throughout the unit square, and
drawing a random latitude/longitude combination for each household. The households then con-

6We believe that this is essentially without loss of generality. Without a finite elasticity of supply of land/school vacancies though,
it is hard to avoid having tiny school sizes in locations with low values of amenities that tend to be highly desired. Fixed costs would
prevent this.
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sider the preset number of schools that are closest to their location. Thus, consideration sets of
different households are overlapping.

The fourth and fifth parameters (denoted “# Ob.” and “# Un.”) specify the number of observed and
unobserved student characteristics that affect outcomes. The sixth parameter is the dimension of
the amenity vector over which households have preferences (#Am). In most of the specifications
we assume that it is less then or equal to the number of observed characteristics and that the rows
of ΘΘΘ

U form a linear subspace of the rows of Θ̃ΘΘ, as required by Proposition 1.

The seventh parameter is ρΘ, introduced in the definition of our stylized test case, which governs
the correlation between pairs of random variables from which each (Θk`,Θ jm) or (ΘU

k`,Θ
U
jm) is a

draw. If ρΘ is high, then student characteristics that have a strong positive effect on willingness
to pay for one amenity factor will also tend to have a relatively strong positive effect on WTP
for other amenities. In addition, when ρΘ is high the amenities that are strongly weighted by one
characteristic are likely to be strongly weighted by other characteristics. That is, WTP for some
amenity factors may generally be particularly sensitive to student characteristics.

In addition, in a second set of simulations we hold fixed these seven parameters at their baseline
values, and consider additional specifications that illustrate the degree to which our control function
approach is robust to various failures of the spanning condition from Proposition 1 (i.e. cases
in which ΘΘΘ

U 6= RΘ̃ΘΘ for any R). These simulations consider robustness of the control function
approach to changes in the structure of the three matrices that determine whether a one-to-one
mapping from a vector of group-average unobservables to a vector of group-average observables
exists at the population level: (1) the projection matrix ΠΠΠXUX, which captures the degree to which
individual-level unobservables project onto the space of individual-level observables, (2) the taste
matrix ΘΘΘ, which captures the degree to which each of the student-level observables affects tastes for
each of the school/neighborhood amenities, and (3) the corresponding taste matrix for unobservable
student characteristics, ΘΘΘ

U.

We have two related metrics for evaluating the effectiveness of our control function approach.
The first is the fraction of the between-group variance in the outcome contribution of unobservable
individual-level characteristics (Var(xU

s )≡Var(XU
s βββ

U) that can be predicted using group-averages
of observable characteristics (after adjusting for the degrees of freedom absorbed by the vector of
observables). This is the adjusted R2 from a regression of the potential bias from unobservable
sorting, xU

s , on the vector Xs. In cases where the conditions of Proposition 1 are satisfied, R2
ad j

should converge to 1 as the number of students per school gets large. However, the rate at which it
does so is important for the efficacy of the control function approach.

The second metric is [(1−R2
ad j)Var(xU

s )]/Var(Ysi), which is the fraction of the total variance in the
outcome Ysi attributable to the variance of the residual component of xU

s not accounted for by Xs. In
Appendix tables A8 and A9, we denote our measures “Adj-R-sq” and “Resid” (short for “residual
sorting variance fraction”).

We present values of adjusted R-squared and the residual sorting variance fraction from specifica-
tions where the full population of students is used to calculate the school averages of observables
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X̂s that compose the control function (denoted “Adj-R-sq (All)” and “Resid (All)”, respectively),
as well as values from specifications in which random samples of 10, 20, or 40 students from
each school are used to calculate X̂s (these values are denoted “Adj-R-sq (10/20/40)” and “Resid
(10/20/40)”, respectively, in our tables).

We draw Xi, XU
i , Qi, and {εis} from the distributions described above to calculate the WTP of each

household for each school.7 Since our method does not require observation of the equilibrium price
function P(A), rather than iterating on an excess demand function to find the equilibrium matching,
we instead exploit the fact that a perfectly competitive market will always lead to a pareto efficient
allocation. The problem of allocating students to schools to maximize total consumer surplus can
be written as a linear programming problem and solved quickly at relatively large scale using the
simplex method combined with sparse matrix techniques.8

B. Simulation Results

The simulation results are presented in online Appendix Table A8. Row (1) presents the base pa-
rameter set to which other parameter sets will be compared. It features 1000 students per school
and 50 schools in the area, all of which are considered by each family when the school choice
is made. It also features 5 amenities, 10 observable student characteristics, and 10 unobservable
student characteristics. The variances of these characteristics are all identical, so that sorting on un-
observables is as strong as sorting on observables. This is probably a conservative choice. Finally,
the within-row and within-column correlation ρΘ among the elements of the random matrices from
which the taste weight matrices ΘΘΘ and ΘΘΘ

U are drawn is assumed to be .25.

The first takeaway from Row (1) is that the control function approach is extremely effective even
with reasonably-sized schools of 1000 students each (most of the schools in the North Carolina
sample enroll between 250 and 2000 students) and a moderate number of available schools: 99.8
percent of the variance in the school-level contribution of unobserved student characteristics can
be predicted by a linear combination of school-average observable characteristics (Column 9).
Furthermore, the control function only leaves three hundredths of a percent of the variance in the
outcome Ysi that can be attributed to residual between-school sorting (Column 10).

The second insight from Row (1) is that the performance of the control function may suffer some-
what when estimation is based on small subsamples of students at each school. We see that the
adjusted R-squared falls from .998 to .869 when school averages are merely approximated based
on samples of 10 students (top entry in Column (11)). Increasing the sample size to 20 students per
school (middle entry in Column (11)) raises the adjusted R-squared to .926, while increasing it fur-
ther to 40 students per school (bottom entry in Column (11)) raises the adjusted R-squared to .959.
Column (12) shows that the fraction of the outcome variance consisting of residual between-school

7To minimize the statistical “chatter” introduced by the particular ΘΘΘ and ΘΘΘ
U matrices that we happened to draw, we drew ten

different sets of ΘΘΘ and ΘΘΘ
U matrices from the prescribed distributions, ran the simulations for each parameter set for each of these sets

of matrices, and then averaged the results across the ten iterations within each parameter set.
8The problem can actually be classified as a binary assignment problem (a subset of linear programming problems), but we were

unable to implement the standard binary assignment algorithms at scale.
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sorting unabsorbed by the control function is .016/.009/.005 when 10/20/40 student samples, re-
spectively, are used to construct the vector of school averages, Xs.

Rows (2) and (3) illustrate the impact of adapting the specification in Row (1) by decreasing or in-
creasing the number of individuals per group. Decreasing school sizes from 1000 to 500 decreases
the R-squared from .998 to .996, while increasing from 1000 to 2000 increases the R-squared to
.999 (Column (9)). Perhaps not surprisingly, more individuals per school has almost no impact on
the effectiveness of the control function if the larger number of individuals are not used to con-
struct the group averages of individual characteristics, Xs. In Columns (11) and (12), the adjusted
R-squared values and residual sorting variance fraction when samples of 10, 20 and 40 students are
used to construct Xs are nearly identical across Rows (1) - (3).

Comparing Row (4) to Row (1), we see that increasing the number of schools from 50 to 100 has
almost no impact on the performance of the control function when the full population of students is
used to construct school averages. Interestingly, reducing the number of schools does not exacer-
bate problems posed by using small samples of students from each school to construct Xs (Column
(11)). Similarly, Row (5) shows that restricting the number of schools in each household’s con-
sideration set from 50 to 10 reduces the control function’s ability to absorb unobservable sorting,
but only negligibly. The adjusted R-squared is effectively unchanged when the full population of
students is used to construct Xs, but drops slightly from Row (1) to Row (5) when samples of 10,
20, or 40 students are used instead. Nonetheless, the high adjusted R-squared and low variance of
the residual sorting component in Row (5) reveals that our approach works well even if households
only consider a relatively small number of schools.

Row (6) illustrates the impact of doubling both the number of observable and unobservable out-
come relevant characteristics. By increasing the numbers of both observable and unobservable
characteristics symmetrically, we can show the impact of utilizing a richer control set while hold-
ing fixed the strength of sorting on observables relative to unobservables.9 Doubling the number
of elements of Xi and XU

i increases the adjusted R-squared from .9979 in Row (1) to .9993, and
decreases the fraction of outcome variance attributable to the residual sorting component to two
hundredths of a percentage point. This very small increase understates the importance of the rich-
ness of the control set, since the control function was already nearly perfectly effective for the
baseline parameter set. Column 11 shows that when only 10 students are used to construct sam-
ple school averages, doubling the control set from 10 to 20 characteristics increases the adjusted
R-squared from .869 to .897. This highlights the importance of collecting data on a wide variety of
student/parent inputs that capture different dimensions of taste (as the panel surveys we use do).

Row (7) shows that doubling the number of amenity factors from 5 to 10 very slightly reduces
the effectiveness of the control function, dropping the adjusted R-squared from .9979 in Row (1)

9In all of these simulations, we assumed that the strength of sorting on unobservables mirrored the strength of sorting on unob-
servables. In results not shown, we also experimented with weakening the degree of sorting on unobservables by making ΘΘΘ

U smaller
in magnitude and increasing the variance of Qi to compensate. While the control function absorbs a slightly smaller fraction of the
between-school variance of the regression index of unobservable outcome-relevant characteristics when sorting on these characteristics
is weak, this is precisely the case when the magnitude of the between-school variance in outcome-relevant unobservables is small.
Thus, there is very little potential bias to be absorbed.
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to .9933. The impact of doubling the number of amenities is also small when small samples of
students are used to construct school averages. Comparing Row (8) to Row (6) reveals that the
performance of the control function really depends on the dimension of the amenity space relative
to the dimension of Xs, rather than the absolute number of amenities: when Xs has 20 elements,
the fraction of absorbed sorting bias barely changes as the number of amenities rises from 5 to 10.

Finally, Row (9) displays the results of a specification in which all of the Θk` and ΘU
k` elements

are drawn independently (ρΘ = 0). Compared to Row (1), the adjusted R-squared for the full
population falls slightly (.9979 to .9941), but the adjusted R-squared when samples of (10/20/40)
are used to construct Xs falls more substantially, from (.87/.93/.97) to (.65/.78/.87). However,
removing correlation among the elements of ΘΘΘ also reduces the amount of sorting on unobservables
to be explained. When the school averages of the various unobservables become more weakly
correlated with one another, their contributions to student outcomes are more likely to cancel each
other out. Consequently, the fraction of between-school outcome variation that can be attributed to
residual school-level differences in unobservable student characteristics that is unpredictable based
on the vector of school-average observables Xs remains quite small (Row 9, Col. 11).

Overall, the results in Online Appendix Table A8 indicate that the control function approach could
potentially work extremely well even in settings where 1) individuals have idiosyncratic tastes for
particular groups, 2) there are only a moderate number of total groups to join, and 3) only a subset
of these are considered by any given individual.10 The simulations suggest that the control func-
tion works well even when only a small sample of individuals is observed in each group. In Online
Appendix A11, we use the North Carolina administrative data to directly assess the effect of using
smaller samples of students to construct Xs for some of the outcomes and characteristics we actu-
ally consider. We find that our main results are relatively insensitive to restricting school sample
sizes to match the distribution of sample sizes observed in the NLS72, NELS88, and ELS2002
datasets.

PERFORMANCE OF THE CONTROL FUNCTION WHEN THE SPANNING CONDITION FAILS

All the specifications in Online Appendix Table A8 consider cases in which the assumptions of
Proposition 1 are satisfied, so we should expect the control function to perfectly absorb sorting
on observables as the number of students per school gets sufficiently large. However, there also
may be many contexts in which the set of observables is not sufficiently rich to make the spanning
condition plausible. Thus, we are also interested in the extent to which the addition of group-
averages of individual characteristics can substantially reduce bias from sorting on unobservables,
even if it cannot completely eliminate the bias. Online Appendix Table A9 considers a number of
such scenarios.

Recall from the discussion in Section II.A that Θ̃ΘΘ can be represented as the sum of ΘΘΘ and ΠΠΠXU X ΘΘΘ
U.

10In other simulations available upon request, we have also examined the impact of altering the variance of εis. We find that
increasing Var(εis) reduces the between-school variance in both Xi and XU

i symmetrically, but does not erode the effectiveness of Xs
as a control for XU

s . Intuitively, as Var(εis)→ ∞, idiosyncratic tastes fully drive choice, and the between school variation in Xi and XU
i

disappears, so that there is no more sorting problem to address.
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The dependence on ΘΘΘ indicates that the mapping from XU
s to Xs is generated partly because ob-

served characteristics Xi and unobserved characteristics XU
i directly affect WTP for overlapping

sets of amenities (which creates a degree of overlap in the row spaces of ΘΘΘ and ΘΘΘ
U). The term

ΠΠΠXUXΘΘΘ
U captures the part of the mapping that arises because Xi indirectly predicts WTP for the

amenities for which XU
i predicts WTP through the correlation between Xi and XU

i (thereby creat-
ing further overlap in the row spaces of ΘΘΘ and ΘΘΘ

U). The spanning condition (ΘΘΘU = RΘ̃ΘΘ for some
LU × L matrix R) is satisfied whenever these two pathways, working in combination, produce a
preference matrix Θ̃ΘΘ whose row space is a linear superspace of the row space of ΘΘΘ

U.

Thus, before investigating the impact of violations of the spanning condition, we illustrate the im-
portance of both pathways by considering specifications in which one or the other pathway is shut
down. Row (1) is identical to Row (1) of Online Appendix Table A8, and represents the baseline
case against which the other specifications are compared. Row (2) considers the case in which the
entire vector of unobservable characteristics XU

i is independent of the vector of observables Xi, so
that ΠΠΠXUX converges to the zero matrix as school sizes become large. However, Xi and XU

i predict
tastes for a common set of amenities (A1−A5), so that ΘΘΘ has (full) rank K and the row space of ΘΘΘ

U

is a linear subspace of the row space of ΘΘΘ. The results in Row (2) suggest that the control function
approach still works quite well when large populations of students at each school are available
(adjusted R-squared of .965), but suffers somewhat when school averages are constructed using
subsamples of 10, 20 or 40 students: adjusted R-squared values fall to .49/.61/.72 (Column 10),
with substantial residual bias from sorting on unobservables left uncaptured by the control function
X̂s (Column 11).

Row (3) considers the opposite case in which the spanning condition is satisfied only through the
indirect pathway that operates via the correlation between Xi and XU

i . Specifically, in row (3) the
observables and unobservables affect tastes for disjoint sets of amenities ({A1, . . . ,A4} and {A5}
respectively). This means that the row space of ΘΘΘ

U is orthogonal to the row space of ΘΘΘ. However,
each element of Xi is correlated .25 with each element of XU

i , so that ΠΠΠXUX is full rank and the
row space of ΘΘΘ

U is a linear subspace of the row space of ΠΠΠXUXΘΘΘ
U. The results in Row (3) are

quite similar to those in Row (2): strong when large samples are used to construct school averages,
weaker otherwise. Rows (2) and (3) combined illustrate that the two pathways by which a mapping
between Xs and XU

s may be generated are each sufficient in isolation to produce desirable finite
sample properties with large samples of students per school. But they also show that it is the blend
of both pathways to spanning that produced the surprisingly strong finite sample results in Online
Appendix Table A8.

The remaining rows of Online Appendix Table A9 consider cases in which the spanning condition
fails (the row space of ΘΘΘ

U is not a linear subspace of the row space of Θ̃ΘΘ = ΘΘΘ+ΠΠΠXUXΘΘΘ
U). Row (4)

presents results from the worst-case scenario: (a) the entire vector of unobservable characteristics
is independent of the entire vector of observable characteristics (ΠΠΠXU X converges to 0 as school
sizes become large), and (b) the unobservable characteristics only predict WTP for an amenity (A5)
that the observable characteristics do not affect taste for (they exclusively weight A1−A4). Thus,
ΘΘΘ and ΘΘΘ

U have orthogonal row spaces as well. Since the group averages of the observables and
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unobservables are functions of disjoint sets of amenities, it comes as no surprise that only 15% of
the variance in XU

s is predictable given Xs, even when the universe of students at each school is
observed (Column 8).11

Row (5) alters the scenario from Row (4) by allowing the unobservable characteristics XU
i to predict

WTP for amenities A1 to A4 in addition to A5. The control function performs somewhat better: 52%
of the variance in XU

s is absorbed by the coefficients on Xs.

These two scenarios are quite pessimistic, however. If WTP for an amenity is unaffected by the
entire vector Xi, then it seems likely that a subset of the unobservables may not predict WTP for
this amenity either. Thus, we consider two additional scenarios in which WTP for the last amenity
(A5) is only affected by one of the ten components of the unobserved vector XU

i . In Row (6), XU
i,10

affects WTP for A5 only. In Row (7), XU
i,10 predicts willingness to pay for all amenities A1 to A5.

Rows (6) and (7) reveal that our control function performs quite well in these scenarios: it absorbs
around 95% of the variation in XU

s in each case.

Finally, Rows (8) and (9) replicate the scenarios in Rows (6) and (7) but allow each of the unob-
servable characteristics except the one affecting taste for A5 (XU

i,10) to exhibit a .25 correlation with
each of the observed characteristics. In this case both ΠΠΠXUXΘΘΘ

U and ΘΘΘ would be linear superspaces
of ΘΘΘ

U in the absence of the last unobservable, XU
i,10. The performance of the control function for

these specifications is every bit as strong as in the baseline specification in Row (1). This suggests
that a violation of the spanning condition in Proposition 1 need not produce appreciable bias if it is
driven by only a small number of characteristics that weakly affect school/neighborhood choices.

We conclude that our control function approach may be quite robust to the violations of the span-
ning condition that are arguably the most plausible: namely, cases in which just a few components
of the subvector of XU

i that is orthogonal to Xi affect WTP for just a few additional amenities for
which Xi does not affect WTP.

A7. Proof of Proposition 2

Let ∆ denote the operator that takes deviations from school/neighborhood means, so that, for exam-
ple, ∆XU

i ≡ (XU
i −XU

s ). Define ΠΠΠ∆XU∆X as the coefficient matrix from the following within-school
regression:

(73) ∆XU
i = ∆XiΠΠΠ∆XU∆X + ∆̃XU

i

Recall the projection equation (5): XU
i = XiΠΠΠXUX + X̃U

i . We now state and prove an expanded
version of Proposition 2 that includes an expression for BBB and GGG1.

Proposition 2: Assume that assumptions A1-A5 from Proposition 1 hold.

11The limited explanatory power we do obtain derives from correlation between A5 and A1−A4.
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Then equations (13)-(17) simplify to:

B = βββ +ΠΠΠ∆XU∆Xβββ
U +ΠΠΠ

ηU
si Xi

(74)

G1 = [−ΠΠΠ∆XU∆X +ΠΠΠXUX +Var(Xi)
−1R

′
Var(X̃U

i )]βββ
U +ΓΓΓ1 +ΠΠΠzU

s Xs(75)
G2 = ΓΓΓ2 +ΠΠΠzU

s Z2s(76)

vs = z̃U
s +ξs(77)

vsi− vs = x̃U
si + η̃si +ξi(78)

Proof: Recall the projection equation (9):

xU
i = XiΠΠΠxU

i Xi
+XsΠΠΠxU

i Xs
+Z2sΠΠΠxU

i Z2s
+ x̃U

i

Note that this projection is the sum of a within-school and between-school projection:

∆xU
si = XiΠΠΠ1 +XsΠΠΠ2 +Z2sΠΠΠ3 +∆x̃U

si = ∆XiΠΠΠ1 +Xs[ΠΠΠ2 +ΠΠΠ1]+Z2sΠΠΠ3 +∆x̃U
si(79)

xU
s = ∆XiΠΠΠ4 +XsΠΠΠ5 +Z2sΠΠΠ6 + x̃U

s = ∆XiΠΠΠ4 +Xs[ΠΠΠ5 +ΠΠΠ4]+Z2sΠΠΠ6 + x̃U
s(80)

Consider (79) first. Note that the deviation from group mean ∆Xi and ∆x̃U
si are orthogonal to both

Xs and Z2s, so the projection of ∆xU
si on ∆Xi, Xs, and Z2s boils down to the projection of ∆xU

si on
∆Xi. Consequently,

ΠΠΠ1 = ΠΠΠ∆XU∆Xβββ
U

ΠΠΠ2 +ΠΠΠ1 = 000 or ΠΠΠ2 =−ΠΠΠ1

ΠΠΠ3 = 000

where in the first equality ΠΠΠ∆XU∆X is the coefficient matrix from (73) and we have used the defini-
tion xU

i ≡ XU
i βββ

U .

Now, consider the between-school regression (80). By Proposition 1, XU
s =Xs[ΠΠΠXUX+Var(Xi)

−1R′Var(X̃U
i )].

Post-multiplying both sides by βββ
U, we obtain:

(81) XU
s βββ

U ≡ xU
s = Xs[ΠΠΠXUX +Var(Xi)

−1R
′
Var(X̃U

i )]βββ
U

But since xU
s can be perfectly predicted by Xs, we have:

ΠΠΠ4 = 0(82)

ΠΠΠ5 = [ΠΠΠXUX +Var(Xi)
−1R

′
Var(X̃U

i )]βββ
U(83)

ΠΠΠ6 = 0(84)

x̃U
s = 0(85)
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Adding together ΠΠΠ1 and ΠΠΠ4, ΠΠΠ2 and ΠΠΠ5, and ΠΠΠ3 and ΠΠΠ6 yields:

ΠΠΠxU
i Xi

= ΠΠΠ
∆XU∆Xβββ

U(86)

ΠΠΠxU
i Xs

= [−ΠΠΠ
∆XU∆X +ΠΠΠXUX +Var(Xi)

−1R
′
Var(X̃U

i )]βββ
U(87)

ΠΠΠxU
i Z2s

= 0(88)

Plugging equations (85)-(88) back into equations (13)- (17) yields:

B = βββ +ΠΠΠ∆XU∆Xβββ
U +ΠΠΠ

ηU
si Xi

(89)

G1 = [−ΠΠΠ∆XU∆X +ΠΠΠXUX +Var(Xi)
−1R

′
Var(X̃U

i )]βββ
U +ΓΓΓ1 +ΠΠΠzU

s Xs(90)
G2 = ΓΓΓ2 +ΠΠΠzU

s Z2s(91)

vs = z̃U
s +ξs(92)

vsi− vs = x̃U
si + η̃si +ξi(93)

This concludes the proof.

It is interesting to briefly discuss what happens if the linear conditional expectations assumption
A4 fails. Then Proposition 1A in Online Appendix A4 establishes that

XU
s βββ

U ≡ xU
s = Xs[ΠΠΠXUX +Var(Xi)

−1R′Var(X̃U
i )]βββ

U + ṽvv∗s βββ
U

where ṽvv∗s =−E[eX
i |si = s][Var(Xi)

−1R′Var(X̃U
i )]+E[eX̃U

i |si = s]. It is straightforward to show that
a correlation between Z2s and ṽvv∗s βββ

U would alter the coefficient vector G2. Part of ṽvv∗s βββ
U would also

appear in vs.

A. Proof that under Assumptions A1-A5, G1 = ΓΓΓ1 +ΠΠΠzU
s Xs in the Absence of Sorting on XU

i

Under A1-A5, Proposition 1 holds. The case in which XU
i does not influence the choice of s

corresponds to the case in which ΘΘΘ
U = 000. A5 says that ΘΘΘ

U = RΘ̃ΘΘ. As we noted in Section II.B,
RRR= 000 when ΘΘΘ

U = 000. Thus, equation (7) from Proposition 1 implies immediately that XU
s =XsΠΠΠXUX

when ΘΘΘ
U = 000, where ΠΠΠXUX is the coefficient matrix of the projection of XU

i on Xi introduced in (5).
This result, the fact that Proj(XU

i |Xi,Xs) = Proj(XU
i |Xi−Xs,Xs) and the fact that Xs is orthogonal

to [Xi−Xs] together imply that Proj(XU
i |Xi,Xs) can be written as

Proj(XU
i |Xi,Xs) = [Xi−Xs]ΠΠΠ∆∆∆XU∆∆∆X +XsΠΠΠXUX,
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where ΠΠΠ∆∆∆XU∆∆∆X is the coefficient matrix of the regression of XU
i −XU

s on Xi−Xs. By the law of
iterated projections ,

XiΠΠΠXUX ≡ Proj(XU
i |Xi) = Proj(Proj(XU

i |Xi,Xs)|Xi) = XiΠΠΠ∆∆∆XU∆∆∆X +XiΠΠΠXsXi [ΠΠΠXUX−ΠΠΠ∆∆∆XU∆∆∆X].

After rearranging terms, the above equation implies that for all XXX i,

XiΠΠΠXsXi [ΠΠΠXUX−ΠΠΠ∆∆∆XU∆∆∆X] = Xi[ΠΠΠXUX−ΠΠΠ∆∆∆XU∆∆∆X]

Provided that Xi varies within groups, XiΠΠΠXsXi is not equal to Xi, in which case ΠΠΠXUX must equal
ΠΠΠ∆∆∆XU∆∆∆X for the equation to hold. Using ΠΠΠXUX = ΠΠΠ∆∆∆XU∆∆∆X and the fact that Var(Xi)

−1R′Var(X̃U
i )

= 000 when R = 000 to evaluate (75) establishes that G1 = ΓΓΓ1 +ΠΠΠzU
s Xs , as claimed.

A8. Proof of Proposition 3 and Analysis of Assumptions A6.1 and A6.2

A. Proof of Proposition 3:

We begin by reproducing assumptions A6.1 and A6.2 and restating the proposition.

A6.1:

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])+2Cov(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s ])+Var(z̃U

s )≥ 0

A6.2:

(94) Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])+2Cov(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s ])−Var(ξs)≥ 0

Proposition 3: If assumptions A1-A5 from Proposition 1 and A6.1 hold, then Var(Z2sG2) ≤
Var(ZsΓΓΓ+ zU

s ). If assumptions A1-A5 and A6.2 hold, then Var(Z2sG2 + vs)≤Var(ZsΓΓΓ+ zU
s ).

Proof: By definition, Var(Z2sG2)+Var(vs) will understate or equal the true school contribution if

Var(ZsΓΓΓ+ zU
s )≥Var(Z2sG2)+Var(vs).

Recall the definition ZsΓΓΓ ≡ XsΓΓΓ1 +Z2sΓΓΓ2. Also, under the assumptions in Proposition 1, Propo-
sition 2 establishes that G2 = ΓΓΓ2 +ΠΠΠzU

s Z2s
and vs = z̃U

s + ξs. Using these three equations, we can
rewrite the previous inequality as

(95) Var(XsΓΓΓ1 +Z2sΓΓΓ2 + zU
s )≥Var(Z2s(((ΓΓΓ2 +++ΠΠΠzU

s Z2s
))))+Var(z̃U

s +ξs).

Next, substituting for zU
s using the projection equation zU

s = XsΠΠΠzU
s Xs

+Z2sΠΠΠzU
s Z2s

+ z̃U
s we obtain
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(96) Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]]+Z2s[[[ΓΓΓ2 +ΠΠΠzU
s Z2s

]]]+ z̃U
s )≥Var(Z2s[ΓΓΓ2 +++ΠΠΠzU

s Z2s
])+Var(z̃U

s +ξs).

Using the formula for the variance of a sum and the lack of correlation (by definition) between all
components of Zs and ξs,

Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]])+2Cov(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]],Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])

+Var(Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])+Var(z̃U
s )≥Var(Z2s[ΓΓΓ2 +++ΠΠΠzU

s Z2s
])+Var(z̃U

s )+Var(ξs)(97)

Cancelling common terms from both sides yields A6.2:

(98) Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]])+2Cov(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]],Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])−Var(ξs)≥ 0

In the case of our more conservative estimator, Var(Z2sG2), the proof follows the exact same logic,
except that the terms Var(z̃U

s ) and Var(ξs) do not appear on the right side in (95), and thus Var(z̃U
s )

does not cancel and Var(ξs) need not be subtracted in (98). This leaves the inequality A6.1:

(99) Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]])+2Cov(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]],Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])+Var(z̃U
s )≥ 0

This concludes the proof.

B. Analysis of Assumption 6

In this subsection we present theoretical and statistical considerations as well as the empirical
evidence specific to our application that all indicate that

(100) Var(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]])+2Cov(Xs[[[ΓΓΓ1 +++ΠΠΠzU
s Xs

]]],Z2s[[[ΓΓΓ2 +++ΠΠΠzU
s Z2s

]]])≥ 0.

This condition is stronger than A6.1 (since it omits Var(z̃U
s )), and is equivalent to A6.2 in contexts

where common shocks either do not exist (such as high school graduation) or are considered part
of the group treatment effect component z̃U

s (since individuals who choose different schools will
receive different common shocks). Because 1) we discuss common shocks elsewhere, 2) we intro-
duced the conservative estimator V̂ar(Z2sG2) to eliminate their influence, and 3) our sorting model
provides no guidance about their size, we focus attention here on the case where common shocks
do not exist (ξs = 0 ∀ s).

From a theoretical standpoint, note that standard sorting patterns would suggest a positive rather
than a negative covariance between the observable peer effect term XsΓΓΓ1 and the observed school
input term Z2sΓΓΓ2. Without loss of generality, suppose that each element Xi has been defined so
that higher values increase Yi (i.e. each element of βββ is positive). Most evidence suggests that
concentrations of better prepared students and parents (high values of Xs) are likely to provide
stronger peer effects relative to concentrations of less prepared students and parents, suggesting
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that XsΓΓΓ1 would be positive when Xs values are high. And wealthier, more educated parents with
more able children (presumed to be positive Xi inputs) tend to be willing to pay more for neigh-
borhoods featuring schools with better inputs. Thus, standard assumptions about sorting would
predict that XsΓΓΓ1 would display a positive covariance with the direct school inputs captured by
Z2s(ΓΓΓ2+ΠΠΠzU

s Z2s). And because zU
s is likely to partially represent peer effects associated with unob-

served school characteristics XU
s ΓΓΓ

U
1 , and XU

s projects fully onto Xs under Proposition 1, XsΠΠΠzU
s Xs

is likely to also capture peer effects associated with concentrations of parents/students with high
values of unobserved characteristics. So we would also expect Cov(XsΠΠΠzU

s Xs ,Z2s(ΓΓΓ2 +ΠΠΠzU
s Z2s)) to

be positive as well.

The most plausible scenario that could produce a negative covariance is one in which parents mostly
value the composition of students at schools, and states seek to compensate for high peer effects at
some schools by, for example, allocating less funding to these schools or providing incentives for
high quality teachers to move to schools in disadvantaged neighborhoods. If such compensation
were sufficiently strong, this could in principle create a negative correlation between peer inputs
and direct school inputs. However, in order to produce a violation of Assumption 6, the correlation
would need to be quite negative and Var(Xs[Γ1 +ΠzU

s Xs ]) would need to be fairly small.

To see this, first note that since vs = z̃U
s is uncorrelated by definition with Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ],

Cov(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s ]) =Cov(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s ]+ z̃U
s ).

Next use this result and the definition of correlation to rewrite (100) as

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs

])+

2Corr(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs

],Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s

]+ z̃U
s )
√

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs

])
√

Var(Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s

]+ z̃U
s )≥ 0.(101)

Define the following scalar parameters:

ρ ≡Corr(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s ]+ z̃U
s )

µ ≡
Var(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ])

Var(Z2s[ΓΓΓ2 +ΠΠΠzU
s Z2s ]+ z̃U

s )
≡

Var(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ])

Var(Z2sG2 + vs)
.

ρ captures the correlation between the school inputs that project onto Xs and the school inputs that
either project onto Z2s or form the residual. The parameter µ captures the ratio of variances of
these objects. Then we can rewrite the difference between our “lower bound” estimator and the
true variance in school effects Var(ZsΓΓΓ+ zU

s ) as a fraction of our estimator (i.e. the size of the
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potential overstatement of the true variance in percentage terms) in terms of only ρ and µ:

Var(ZsΓΓΓ+ zU
s )−Var(Z2sG2 + vs)

Var(Z2sG2 + vs)

=
Var(Xs[ΓΓΓ1 +ΠΠΠzU

s Xs ])+2Cov(Xs[ΓΓΓ1 +ΠΠΠzU
s Xs ],Z2s[ΓΓΓ2 +ΠΠΠzU

s Z2s ]+ z̃U
s )

Var(Z2sG2 + vs)

=
µVar(Z2sG2 + vs)+2ρ

√
µVar(Z2sG2 + vs)

Var(Z2sG2 + vs)

= µ +2ρ
√

µ

Generally speaking, this expression is only negative (implying that our estimator overstates the
true treatment effect variance) for combinations of highly negative values of ρ and low values of
µ . Table A23 summarizes the relationship between ρ , µ , and µ +2ρ

√
µ .

Specifically, the rows in Column 1 display the values of ρ from−0.1 to−1. Column 2 displays the
maximum overstatement of treatment effect variance as a fraction of our estimate for each value
of ρ (i.e. maxµ µ + 2ρ

√
µ), while Column 3 displays the size of µ that generates this maximum

(argmaxµ µ +2ρ
√

µ). Column 4 provides the threshold value of µ (denoted µ0(ρ)) beyond which
Assumption 6 is satisfied (i.e. the value of µ such that our lower bound estimator actually equals
the true school treatment effect variance: µ0(ρ)+2ρ

√
µ0(ρ) = 0).

Table A23 shows that when moderate compensation exists (e.g. ρ = −0.2), the maximum bias is
very small: even our larger lower bound estimator only overstates the true school/neighborhood ef-
fect variance by 4 percent. And even this scenario requires that peer effects and other school inputs
projecting onto Xs be quite trivial in magnitude. The bias is maximized when Var(Xs[ΓΓΓ1+ΠΠΠzU

s Xs ])
is only 4 percent as large as Var(Z2sG2 + vs). Note that Var(Z2sG2 + vs) is typically estimated
to be around 2 percent of the variance in the latent index determining our binary outcomes. Fur-
thermore, the overstatement is eliminated when µ is 16 percent of Var(Z2sG2 + vs); higher levels
of µ lead our estimator to understate the true school effect variance. Indeed, large overstatement
of the treatment effect variance can only occur with arguably unrealistically strong compensation
by states and schools. Specifically, the scenarios that produce large overstatement of true school
effects generally require peer effects to be quite weak compared to Z2s(ΓΓΓ2+ΠΠΠzU

s Z2s) (low µ). But if
compensation using these school inputs was so strong and these inputs were so important relative
to peer effects (so that schools are dramatically overcompensating for peer effects), it is hard to
believe that the parents/students with high individual contributions Xi would continue to cluster in
the schools providing such low value added.

Finally, other aspects of our variance decompositions also suggest that a violation of Assumption 6
is unlikely. Specifically, we report 2Cov(XsG1,Z2sG2)+Var(XsG1) = 2Cov(XsG1,Z2sG2+vs)+
Var(XsG1) for each of our outcomes and specifications in Appendix Tables (A20)-(A22). From
(75), we know that G1 6= ΓΓΓ1 due to the presence of ΠΠΠx̃U

i Xs
(our control function absorbs sorting

on unobservables!). However, the magnitude of 2Cov(XsG1,Z2sG2)+Var(XsG1) is generally at
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least the half the size of (and often exceeding) that of Var(Z2sG2), suggesting that the sorting on
unobservables component XsΠΠΠx̃U

i Xs
would need to be quite substantial for µ to be low enough to

be consistent with a violation of Assumption 6.

Indeed, as we pointed out in Section 8 of the paper, under the stronger but common selection-
on-observables-only assumption, XsB would fully capture student sorting, ΠΠΠx̃U

i Xs
= 0 and G1 =

ΓΓΓ1+ΠΠΠzU
s Xs . Thus, under selection-on-observables, 2Cov(XsG1,Z2sG2)+Var(XsG1)=Var(ZsΓΓΓ+

ξs)−Var(Z2sG2 + vs), capturing directly the degree to which our estimator Var(Z2sG2 + vs) un-
derstates or overstates the true neighborhood/school effect variance. And this sum is positive in
every specification and outcome we use, and usually substantially so. Thus, the limited evidence
that our empirical estimates provide about Assumption 6 strongly suggest that it holds in our data.

Even when Assumption 6 is violated (but Assumptions 1-5 hold), the quantity Var(Z2sG2) is still
an object of interest. In particular, it still represents a component of variance that purely captures
across school/neighborhood differences in external inputs. When interpreting our estimated shifts
in outcomes from moving from a 10th to 90th quantile school, we have generally considered the
move from the perspective a single family making a school/neighborhood choice. Through that
lens, when Assumption 6 is violated the shifts we estimate could overstate the change in the ex-
pected outcome for the student from such a family, because the improvement in school inputs and
policies captured by Z2sG2 would be partially offset by a decrease in peer inputs (or other school
inputs that project onto Xs).

However, the same 10th-to-90th quantile shifts could also be interpreted as an estimate of the
gain in expected outcomes of students at the 10th quantile school that would occur if the non-
peer school inputs and policies Z2s of a school at the 90th quantile of Var(Z2sG2) were bestowed
upon the 10th quantile school. This counterfactual is more relevant for the state policy maker or
principal, who wants a broader understanding of how important school inputs and policies are for
student outcomes. Importantly, this counterfactual holds the peer inputs at each school fixed when
changing school inputs, so that the correlation between peer and school inputs induced by sorting
or compensation is irrelevant. Thus, violations of Assumption 6 do not change what we learn about
the importance of school inputs in producing student outcomes, and about the potential for outcome
gains from applying superior school inputs or successful policies currently observed in some high
value-added schools (conditional on peer inputs) to other schools in the nation.

A9. Estimation of Model Parameters

In this section we discuss estimation of the coefficients B, G1, G2 and the variances of the error
components Var(vs) and (vsi−vs). The estimation strategy depends on the outcome, so we consider
the outcomes in turn. To simplify the notation, let v′si ≡ vsi− vs

A. Years of Postsecondary Academic Education

Parameter estimation is most straightforward in the case of years of postsecondary academic ed-
ucation. Recall that Zs is comprised of two components: Zs = [Xs;Z2s]. Z2s consists of school
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and neighborhood characteristics for which direct measures are available, such as student/teacher
ratio, city size, and school type. Xs consists of school wide averages for each variable in Xi, such
as parental education or income, which we do not observe directly but must estimate from sample
members at each school. Consequently, the makeup of Xs differs across specifications that use
different X vectors. G1 and G2 are the corresponding subsets of the coefficients in G. We replace
Xs with X̂s, where X̂s is the average of Xi computed over all available students from the school,
leading to the equation below.12 The regression model is

(102) Ysi = XiB+X̂sG1 +Z2sG2 +[Xs−X̂s]G1+vs + v′si

using the appropriate panel weights from the surveys. We estimate the model parameters us-
ing restricted maximum likelihood (REML). We treat vs as a random effect and assume the error
components are normally distributed, ignoring the error component [Xs−X̂s]G1. REML accounts
for degrees of freedom in estimating Var(vs) and Var(v′si), while maximum likelihood does not.13

Computations were performed using the STATA Version 14 procedure mixed with the REML op-
tion. Because we experienced computational difficulties when using panel weights, the estimates
are unweighted.

B. Permanent Wage Rates

Abstracting from the effects of labor market experience and a time trend, let the log wage Ysit of
individual i, from school s, at time t be governed by

Ysit = Ysi + ςsit .

In the above equation Ysi is i’s “permanent” log wage (given that he/she attended high school s)
as of the time by which most students have completed education and spent at least a couple of
years in the labor market, which we take to be 1979 in the case of NLS72. ςsit is a stationary
component that evolves as a result of luck in the job search process or within a company, changes
in motivation or productivity due to health and other short term factors that may persist for up to 7
years. It also includes measurement error.14 The determination of Ysi is given by (8) which leads to
the regression equation (12). After substituting for Ysi and replacing Xs with X̂s, the wage equation

12A substantial number of students who appear in the base year of the surveys can be used to construct X̂s but cannot be used
to estimate (102) because some variables, such as test scores, are missing, or because the students are not included in the follow-up
surveys that provide the measure of Ysi. As we discuss in Section V, we impute missing values for most of our explanatory variables
prior to estimating B and G, but we do not use the imputed values when constructing the school averages.

13See Harvey (1977) for an overview. In the normal regression model without the random effect vs, the REML estimator of Var(v′si)
is the usual OLS estimator—the sum of squared residuals divided by the sample size minus 1 plus the number of regressors. The ML
estimator of Var(v

′
si) divides the sum of squared residuals by the sample size only, thus ignoring the lost degrees of freedom absorbed

by additional regressors.
14In prior drafts of the paper we used a different estimation procedure based on the method of moments. We were able to include a

random walk component esit as well as ςsit , and we did so because the earnings dynamics literature typically finds evidence of a highly
persistent wage component. Some studies fail to reject the hypothesis that esit is a random walk. Recent examples include Baker and
Solon (2003), Haider (2001), and Meghir and Pistaferri (2004). We were unable to modify the method of moments estimator of Var(vs)
to account for the degrees of freedom used in estimating the regression coefficients. The mixed effects estimator we use assumes that
Var(ςsit) does not depend on t. This rules out a random walk component.
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is
Ysit = XiB+ X̂sG1 +Z2sG2 +(Xs− X̂s)G1 + vs + v′si + ςsit .

We estimate the model by REML under the assumption that the error components are normally
distributed and that Cov(ςsi1979,ςsi1986) is 0.15

C. High School Graduation and College Enrollment

For binary outcomes such as high school graduation we reinterpret Ysi to be the latent variable that
determines the indicator for whether a student graduates, HSGRADsi. That is,

HSGRADsi = 1(Ysi > 0),

or, after substituting for Ysi,

(103) HSGRADsi = 1(XiB+XsG1 +Z2sG2 + vs + v′si > 0).

We replace Xs with X̂s and estimate the equation

(104) HSGRADsi = 1(XiB+ X̂sG1 +Z2sG2 +(Xs− X̂s)G1 + vs + v′si > 0)

via maximum likelihood random effects probit using STATA xtprobit (version 14). Because of
software constraints, student weights are set to the average student-level weights for the students’
schools. The procedure for enrollment in a four-year college is analogous to that of high school
graduation. In both cases, we adjust the ML estimates of Var(vs) and Var(v′si) to correct for degrees
of freedom. Essentially, we treat the equation for the latent variable Ysi as a continuous regression
model and assume that the small sample bias corrections for the regression model carry over. We
provide the necessary detail in the next section.

FORMULAE FOR ESTIMATING Var(vi) AND Var(vs) IN THE CASE OF BINARY OUTCOME VARIABLES

We start with formulae for the unweighted case. In the random effects regression model with a
continuous dependent variable, the formula for the unbiased estimator of Var(vi) is:

(105) V̂ar(vi) =
∑

S
s=1 ∑

Ns
i=1 êis

2

N−S−Kw−1
,

15In reality, we also include a vector Tit consisting of a dummy indicator for the year 1979 (relative to 1986), years of work
experience of i at time t, and experience squared. Let ϒϒϒ be the corresponding vector of wage coefficients. The term Titϒ̂ϒϒ does not
contribute to Ysi and does not play a role in the variance decompositions. The estimate of ϒ̂ϒϒ depends on whether tests, postsecondary
education, or both are in Xi. We report results with and without these variables. In our main specification, we exclude postsecondary
education from Xi.
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where Kw is the number elements of Xi (i.e., the number of regressors that vary within schools) and
S is the number of schools. In the continuous case, the ML estimator is:

(106) V̂ar(vi)ML =
∑

S
s=1 ∑

Ns
i=1 êis

2

N−S−1
.

In the binary case Ysi is latent, so the squared residual êit
2 is also unobserved. However, since

the variance of the latent index is not identified, the probit estimator normalizes scale so that the
variance of eis is 1. In the ML case, this means that the scale is chosen so that:

(107) V̂ar(vi)ML =
∑

S
s=1 ∑

Ns
i=1 êis

2

N−S−1
= 1.

This equation and (105) implies that we can estimate Var(vi) via

(108) V̂ar(vi) =
N−S−1

N−S−Kw−1
V̂ar(vi)ML =

N−S−1
N−S−Kw−1

(1).

In the continuous case the standard unbiased estimator for the group-level error component, Var(vs),
is:

(109) V̂ar(vs) = max{0, SSRb

S−Kb
− V̂ar(vi)

Ns
}

where the max function is taken to prevent a negative variance estimate, Kb is the number of vari-
ables that vary only across s (Xs and Z2s), Ns is the harmonic mean of the number of observations
(students) per school, and SSRb is the sum of squared residuals from the between-group regression:

SSRb =
S

∑
s=1

(Y s−XsB̂−XsĜ1−Z2sĜ2)
2.

Let V̂ar(vs)ML denote the ML estimator of Var(vs), which does not correct for the degrees of
freedom used to estimate G1 and G2:

(110) V̂ar(vs)ML = max{0, SSRb

S
− V̂ar(vi)

Ns
}.

In the binary case the group mean Y s of the latent index Yi is unobserved for the binary outcomes,
so we must approximate SSRb. In the continuous case one can see from (110) that ML will choose
Var(vs) to be equal to the remaining between-school variance not accounted for by (1) the between
school variance contributed by XsB̂+XsĜ1 +Z2sĜ2 or (2) variation across schools in the mean of
vi for students chosen for the sample. Reasoning by analogy (and assuming a non-negative variance
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estimate), in the binary case we approximate V̂ar(vs)ML as:

(111) V̂ar(vs)ML ≈
SSRb

S
− V̂ar(vi)

Ns
,

where S is the number of schools. Rearranging, we obtain:

(112) SSRb ≈ S(V̂ar(vs)ML +
V̂ar(vi)

Ns
).

Using the above approximation and incorporating the estimator V̂ar(vi), our estimator of Var(vs)
becomes:
(113)

V̂ar(vs)=max{0,
S(V̂ar(vs)ML +

V̂ar(vi)

Ns
)

S−Kb
− V̂ar(vi)

Ns
}=max{0, S

S−Kb
V̂ar(vs)ML+(

S
S−Kb

−1)(
V̂ar(vi)

Ns
)}.

where V̂ar(vi) is given by (108) above.

The bias-corrected estimators must be modified when sampling weights are incorporated into the
ML estimator. We replace the sample size N in (108) by Kish’s “effective sample size”, NE f f =
(∑N

i=1 wi)
2

∑
N
i=1 w2

i
, where wi is the observation weight:

(114) V̂ar(vi) =
Ne f f

Ne f f −S−Kw−1
(1).

We redefine SSRb and N̄s to be their school-weighted counterparts and we replace S with Kish’s
“effective sample size” of schools, SE f f =

(∑S
s=1 ws)

2

∑
S
s=1 w2

s
, where ws is the mean of the individual weights

wi of the sampled students at the school. Let V̂ar(vs)WML be the weighted maximum likelihood
estimator. This yields:

(115) V̂ar(vs) = max{0, SE f f

SE f f −Kb
V̂ar(vs)WML +(

SE f f

SE f f −Kb
−1)(

V̂ar(vi)

Ns
)}.

where our estimator for V̂ar(vi) is given by (114) above.

In the probit model Var(vi) is normed to 1, so the final step is to divide V̂ar(vs) by V̂ar(vi) and
then set V̂ar(vi) to 1. We perform analogous scale adjustments to the estimates of the variance
and covariances among the regression indices that enter into the variance decompositions and the
10−90 treatment effect calculations.
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D. Estimating the Variances and Covariances of the Components of the Regression Index

Here we describe how we account for the effects of sampling error in the B̂, Ĝ1, and Ĝ2 coefficient
vectors when estimating Var(XiB), Var(XsG1), Var(Z2sG2), and the covariance terms that enter
the variance decompositions reported in the paper. Consider the case of Var(Z2sG2). Recalling
that Z2s has mean 0, note first that

Var(Z2sĜ2) =
1
N ∑

i
(Z2s(i)Ĝ2Ĝ′2Z′2s(i))(116)

=
1
N ∑

i
(Z2s(i)G2G′2Z′2s(i))+

1
N ∑

i
Z2s(i)[Ĝ2−G2][Ĝ2−G2]

′Z′2s(i).(117)

In the above equation we have made the dependence of s on i explicit. The expectation of the first
term on the right is Var(Z2sG2). The second term is the effect of sampling error in Ĝ2, conditional
on Z2s(i). It has expectation

(118)
1
N ∑

i
Z2s(i)Var(Ĝ2)Z

′
2s(i).

Using (118) we generate a bias-adjusted estimator of Var(Z2sG2) as

V̂ar(Z2sG2) =[
1
N ∑

i
(Z2s(i)Ĝ2Ĝ′2Z′2s(i))−

1
N ∑

i
Z2s(i)V̂ar(Ĝ2)Z′2s(i)]

In the above formula V̂ar(Ĝ2) is the estimator based on the formula for the asymptotic variance
associated with the estimator Ĝ1, which depends on the outcome. We do not account for the use of
imputed data. In practice, we report population weighted variances, so sample weights appear in the
two sums. The estimators of Var(XiB), Var(XsB) and Var(Z2sG2) are almost exactly analogous.

To estimate Cov(XsG1,Z2sG2), we first estimate Var(ZsG)≡Var(XsG1 +Z2sG2) via:

(119) V̂ar(ZsG) =[
1
N ∑

i
(Zs(i)ĜĜ′Z′s(i))−

1
N ∑

i
Zs(i)V̂ar(Ĝ)Z′s(i)]

Then we generate Ĉov(XsG1,Z2sG2) via:

(120) Ĉov(XsG1,Z2sG2) =
V̂ar(ZsG)−V̂ar(XsG1)−V̂ar(Z2sG2)

2

We use an analogous procedure for Cov(XsB,XsG1) and Cov(XsB,Z2sG2).
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A10. Decomposing the Variance in Educational Attainment and Permanent Wages

In this section we discuss an analysis of variance based on (23) that can be used to place a lower
bound on the importance of factors that are common to students from the same school.16 As with
parameter estimation, the details of our procedure depend upon the outcome. We begin with years
of postsecondary education and permanent wages.

A. Years of Postsecondary Education and Wages

We start with years of education. One may decompose Var(Ysi) into its within and between school
components

Var(Ysi) =Var(Ysi−Ys)+Var(Ys)

where Ys is the average outcome for students from s. From (21) we obtain

(Ysi−Ys) = (Xi−Xs)B+(vsi− vs)

and
Ys = XsB+XsG1 +Z2sG2 + vs.

Thus, one may express the outcome variance as17

Var(Ysi) = [Var((Xi−Xs)B)+Var(vsi− vs)]+(121)
[Var(XsB)+2Cov(XsB,XsG1)+2Cov(XsB,Z2sG2)+Var(XsG1)+(122)
2Cov(XsG1,Z2sG2)+Var(Z2sG2)+Var(vs)].(123)

We replace the population moments on the right hand side with the population weighted estimates
discussed in the proceeding section. The sum of the weighted estimates of the components of
Var(Ysi) need not equal the weighted sample variance of Ysi, so we use:

V̂ar(Ysi)≡ [V̂ar((Xi−Xs)B)+V̂ar(vsi− vs)]+(124)

[V̂ar(XsB)+2Ĉov(XsB,XsG1)+2Ĉov(XsB,Z2sG2)+V̂ar(XsG1)+(125)

2Ĉov(XsG1,Z2sG2)+V̂ar(Z2sG2)+V̂ar(vs)].(126)

as the estimator of Var(Ysi). We express the variance and covariance estimates as fractions of
Var(Ysi) by dividing the variance and covariance terms by V̂ar(Ysi). For example, we compute
V̂ar(Z2sG2)/V̂ar(Y s). The fractions are reported in Table 6, Columns 1 and 2 and Appendix Table
A22, Columns 1 and 2.

The procedure for decomposing the variance of the permanent log wage component Ysi is essen-

16Jencks and Brown (1975) propose and implement a similar decomposition.
17The equation below imposes Cov(Xi,vsi−vs) = 0, which is implied by our definition of B and vsi−vs. The equation also imposes

Cov(Xs,vs) = 0 and Cov(Z2s,vs) = 0, which are implied by our definition of [G1,G2] and vs (see Section III).
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tially the same as the procedure just described for years of postsecondary education. We exclude
V̂ar(ςsit) from V̂ar(Ysi) because ςsit is transitory. The fractions of variance for permanent log wages
are reported in Table 6, Columns 3-6 and Appendix Table A22, Columns 3-6.

B. High School Graduation and College Enrollment

For both of our binary outcomes, high school graduation and enrollment in a four-year college, we
decompose the latent variable that determines the outcome. Given that there is no natural scale to
the variance of the latent variable, we normalize Var(vsi− vs) to one, and define the total variance
of the latent variable to be

Var(Ysi)≡Var((Xi−Xs)B)+1+(127)
[Var(XsB)+2Cov(XsB,XsG1)+2Cov(XsB,Z2sG2)+Var(XsG1)+

2Cov(XsG1,Z2sG2)+Var(Z2sG2)+Var(vs)](128)

We thus estimate Var(Ysi) via:

V̂ar(Ysi)≡ V̂ar((Xi−Xs)B)+1(129)

[V̂ar(XsB)+2Ĉov(XsB,XsG1)+2Ĉov(XsB,Z2sG2)+V̂ar(XsG1)+(130)

2Ĉov(XsG1,Z2sG2)+V̂ar(Z2sG2)+V̂ar(vs)].(131)

In the tables we report the fractions of Var(Ysi) contributed by the various components.

C. Calculation of Standard Errors

We calculate bootstrap standard errors for each of our point estimates and bound estimates based
on re-sampling schools with replacement using 500 replications. We bootstrap the entire estima-
tion procedure, including imputation of missing data, estimation of model parameters, variance
decompositions, and treatment effects. To preserve the size distribution of the samples of students
from particular schools, we divide the sample into five school sample size classes and re-sample
schools within class.

A11. Using the North Carolina Data to Assess the Magnitude of Bias from Limited Samples of
Students Per School

The monte carlo simulations in Online Appendix A6 suggest that estimation based on subsamples
of 20 students per school (similar to those used to construct Xs in the three panel survey datasets)
could diminish the ability of school-average observables to capture sorting on unobservables. How-
ever, these simulations are based on particular assumptions about the dimensionality of the under-
lying desired amenities, the joint distribution of the observable and unobservable characteristics,
and the degree to which these characteristics predict tastes for schools/neighborhoods.
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In this appendix, we assess the potential for bias in our survey-based estimates more directly by
drawing samples of students from North Carolina schools using either the NLS72, NELS88, or
ELS2002 sampling schemes and re-estimating the model for high school graduation using these
samples. By comparing the results derived from such samples to the true results based on the
universe of students in North Carolina, we can determine which if any of the survey datasets is
likely to produce reliable results. To remove the chatter produced by a single draw from these
sampling schemes, we computed estimate averages over 200 samples drawn from each sampling
scheme.

Tables A10 and A11 present the results of this exercise for the baseline and full specifications,
respectively. For comparison, the first column of Panel A in each table presents the variance de-
composition described in Section IV for the entire North Carolina sample, while the first column
of Panel B converts the variance components isolating school/neighborhood effects into our lower
bound estimates of the average impact of moving from the 10th to the 90th quantile of the dis-
tribution of school/neighborhood contributions. Columns 2 through 4 display the results from
recomputing these estimates for subsamples of the North Carolina population featuring the same
distributions of school-specific sample sizes as the high schools in NLS72 and ELS2002 and the
8th grade schools in NELS88. In both tables, Columns 2-4 report very similar numbers to one an-
other, and reveal that the use of small student samples at each school may produce relatively small
amounts of bias for each of our panel survey datasets. Most of the rows of Panel A exhibit close
matches between the true results in Column 1 and the sample-based results in Columns 2-4. Of
particular interest are the last two rows of Panel A. In the baseline specification in Table A10, we
see that the panel survey sample size distributions lead to an understatement of the true variance
fraction for the lower bound without common shocks (Var(Z2sG2)) of around 25% but fairly ac-
curate estimates of the unobserved school component (Var(vs)). These translate to underestimates
of the impact of a 10th-90th quantile shift in school quality on the probability of graduation of
around one percentage point for both the estimators that include and exclude Var(vs). The results
for the full specification in Table A11 show much smaller understatement of Var(Z2sG2) (around
10%), but now also display a 10% understatement of Var(vs). Overall, the effects of 10th-to-90th
shifts in school/neighborhood quality are understated by less than half a percentage point for our
more conservative estimator based on Var(Z2sG2) and by closer to a percentage point for our less
conservative estimator based on Var(Z2sG2 + vs).

Taken together, Tables A10 and A11 show that the use of small samples from each school to
construct the school averages Xs need not generate significant bias in our lower bound estimators
of the impact of shifts in school/neighborhood quality. If anything, the slight bias that is generated
only serves to make the lower bound estimators more conservative.

A12. Construction and Use of Weights

In the NLS72 analyses of four-year college enrollment and postsecondary years of education, we
use a set of panel weights (w22) designed to make nationally representative a sample of respondents
who completed the base-year and fourth-follow up (1979) questionnaires. For the NLS72 wage
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analysis, we chose a set of panel weights (comvrwt) designed for all 1986 survey respondents for
whom information exists on 5 of 6 key characteristics: high school grades, high school program,
educational attainment as of 1986, gender, race, and socioeconomic status. Since there are very
few 1986 respondents who did not also respond in 1979, this weight matches the wage sample
fairly well. For the NELS88 sample, we use a set of weights (f3pnlwt) designed to make nationally
representative the sample of respondents who completed the first four rounds of questionnaires
(through 1994, when our outcomes are measured). For the ELS02 sample, we use a set of weights
(f2bywt) designed to make nationally representative a sample of respondents who completed the
second follow up questionnaire (2006) and for whom information was available on certain key
baseline characteristics (gathered either in the base year questionnaire or the first follow-up). This
seemed most appropriate given that our outcomes are measured in the 2006 questionnaire and we
require non-missing observations on key characteristics for inclusion in the sample.

We use panel weights in the estimation when possible for a number of reasons. The first is to reduce
the influence of choice-based sampling, which is an issue in NELS88. It is also a potential issue
for the wage analysis based on NLS72, but we had difficulty computing weighted estimates. The
second is to correct for non-random attrition from follow-up surveys. The third is a pragmatic ad-
justment to account for the possibility that the link between the observables and outcomes involves
interaction terms or nonlinearities that we do not include. The weighted estimates may provide
a better indication of average effects in such a setting. Finally, various populations and school
types were oversampled in the three datasets, so that applying weights makes our sample more
representative of the universe of American 8th graders, 10th graders, and 12th graders, respec-
tively. For all outcomes, including wages, we employ sample weights when using the regression
model parameters to construct estimates of Var(Z2sG2), Var(XsG1). Note, though, that we do not
adjust weights for item non-response associated with the key variables required for inclusion in
our sample. As discussed in section IV.A, due to computational difficulties, for our continuous
outcomes (years of postsecondary education and log wages) we do not incorporate weights into
the REML procedure used to estimate the coefficients B, G1, and G2 and the error component
variances Var(vsi− vs) and Var(vs). However, conditional on the estimated coefficient vectors and
error variances, panel weights are still used to compute the variances of the various regression in-
dices (such as Var(Z2sG2)), and they are still used to average over the population of students when
estimating the impact of 10th-to-90th quantile shifts in school quality.

A13. Other Applications: Estimating Teacher Value-Added

This section examines how our central insight that group averages of observed individual charac-
teristics can control for group averages of unobserved individual characteristics can be extended
to contexts in which group assignments are determined by a central administrator rather than a
decentralized competitive equilibrium. The particular context we consider is one in which a school
principal is assigning students to classrooms based on a combination of observed and unobserved
(to the econometrician) student inputs, where the goal is to estimate each teacher’s value-added to
test score achievement.
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A. Sorting of Students Across Class Rooms

Assume for now that the administrator has already determined which teachers to allocate to which
courses for which periods of the day, so that a classroom c can be effectively captured by a vector
of amenity values Ac. Some of the amenities are likely to reflect the demographic makeup of the
class and thus are endogenous to classroom assignment. Others can be considered exogenous to the
principal’s student-to-classroom allocation problem. These would include the principal’s percep-
tions of various teacher attributes or skills, but could also include classroom amenities unrelated to
teacher quality that might capture whether the heating works, the quality of classroom technology
in the room, the time in the day that the class is held, or the difficulty level of the class.

We can then adapt the utility function featured in (2) to model the payoff that the principal obtains
from assigning student i to class c (simply replace all s subscripts with c subscripts). As before,
Xi is a vector of student characteristics that are observed by the econometrician and are relevant
for the outcome Ysi, the student’s end-of-year standardized test score. Similarly, XU

i is a vector of
student characteristics that are unobserved by the econometrician but are observed by the principal
and are relevant for test score performance, and Qi represents a vector of student characteristics that
are unobserved by the econometrician and observed by the principal, but do not affect test score
performance. The ΘΘΘ, ΘΘΘ

U and ΘΘΘ
Q matrices might capture a principal’s belief about which types of

students are most likely to benefit from a better teacher or difficulty level. ΘΘΘ, ΘΘΘ
U, and ΘΘΘ

Q might
also reflect the desire to placate parents or students, where students/parents with certain values of
Xi, XU

i , or Qi are more likely to advocate for particular classroom assignments. Some parental
or student characteristics may predict a stronger preference for a particular difficulty level or time
of day, while others predict a stronger preference for teacher quality. Similarly, the idiosyncratic
match value εic might capture, for example, the desire to fulfill a particular family’s request that
their child be assigned to the same teacher that his brother had. Thus, we model parent and student
preferences as affecting choice through their impact on principal preferences.18

Let I represent the set of students to be allocated, and let C represent the set of available class-
rooms (each of which has an associated teacher). First we consider the special case in which none
of the amenities reflect the demographic makeup of the class and thus Ac can be considered ex-
ogenous to the principal’s student-to-classroom allocation problem. The principal’s problem is to
choose the mapping c : I → C from students to classrooms that maximizes the sum of student
utilities, subject to the constraints that each classroom cannot exceed its capacity and every stu-
dent (or perhaps student-subject combination at the high school level) can only be assigned to one
classroom:

18Rothstein (2009) provides a useful classroom assignment model in which principals assign students to classrooms based on student
characteristics that are observable to both the principal and the econometrician Xi and student characteristics that are only available to
the principal (part of XU

i ). He discusses bias in VAM models that include Xi and possibly other controls. He does not consider the
potential for Xc to control for XU

c .
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max
c:I→C

∑
i∈I

Uic(i)

s.t. ∑
c′
1(c(i) = c′) = 1 ∀ i

s.t. ∑
i′
1(c(i′) = c) =Cc ∀ c ∈ C(132)

where 1(c(i) = c′) indicates that student i is assigned to classroom c′, and Cc′ is the capacity of
classroom c′.

This optimization problem can be recast as a binary integer programming problem:

max
d

a∗d

s.t. Mi ∗d = 1 ∀ i ∈I

s.t. Nc ∗d =Cc ∀ c ∈ C

s.t. d ∈ {0,1}(133)

Here a consists of a 1×(I ∗C) row vector of the student utility values associated with each potential
student-classroom combination:

a =
(
U11 . . . UI1 U12 . . . UI2 . . . U1C . . . UIC

)
d consists of a (I ∗C)×1 vector of potential student-classroom assignments:

d =



d11
...

dI1

d12
...

dI2
...

d1C
...

dIC


where dic′ = 1(c(i) = c′) is an indicator for whether student i is assigned to classroom c′.

Mi consists of a 1× I ∗C row vector capturing the number of classrooms to which each student (or
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student-subject combination) is assigned (restricted here to be 1 ∀ i):

Mi =

 i−1︷ ︸︸ ︷
0 . . .0 1

I−i︷ ︸︸ ︷
0 . . .0︸ ︷︷ ︸

repeated C times

. . .

i−1︷ ︸︸ ︷
0 . . .0 1

I−i︷ ︸︸ ︷
0 . . .0


Nc consists of a 1× I ∗C row vector capturing the number of students assigned to classroom c
(restricted to be less than or equal to the classroom capacity Cc):

Nc =

(c−1)∗I︷ ︸︸ ︷
0 . . .0 1 . . .1︸ ︷︷ ︸

I

(C−c)∗I︷ ︸︸ ︷
0 . . .0

 .

Koopmans and Beckmann (1957) show that the solution to this binary integer program problem
can be sustained by a one-sided set of prices for classrooms {Pc}.19 This means that the optimal
assignment for each individual is also the solution to his/her utility maximization problem:

(134) c(i) = argmax
c

Ũic−Pc ≡Uic

Notice that the structure of this utility maximization problem is isomorphic to that of the decentral-
ized school choice problem from Section I. Consequently, if the spanning condition ΘΘΘ

U = RΘ̃ΘΘ is
satisfied for some matrix R, Xc will be a linear function of XU

c .

Exogeneity of the amenity vector may be a reasonable assumption in some high school and college
contexts in which students submit course preferences and a schedule-making algorithm assigns
students to classrooms. However, in the elementary and middle school contexts, it is likely that
some elements of Ac reflect the student makeup of the class. Anticipated peer effects complicates
the principal’s problem, since now the utility from assigning a given student to a classroom would
depend on the other students assigned to the classroom. The classroom sorting problem differs
from the school/neighborhood sorting problem in that the principal would internalize the effect
that allocating a student to c has on Ac, while parents would take As as given. We have not yet
extended Proposition 1 to a classroom assignment problem with endogenous amenities.

B. Implications for Estimation of Teacher Value Added

Suppose that the true classroom contribution to a given student i’s test scores can be captured by
ZcΓΓΓ+zU

c +ηci, mirroring (8). As before, partition the vector of observed classroom characteristics
into two parts Zc = [Xc,Z2c], where Xc captures classroom averages of observed student character-

19The case they consider is 1:1, but it easy to recast the classroom assignment problem as assignment of students to seats. Each
class room has a fixed number of seats that have exactly the same value of Ac and the same shadow price. A student’s preferred seats
will all be in one classroom, and he/she will be indifferent among them. The student lets the principal (who is also indifferent) assign a
specific seat.
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istics and Z2c represents other observed classroom characteristics. Consider the classroom version
of our estimating equation (21):

(135) Ysi = XiBBB+XcG1 +Z2cG2 + vci,

When past test scores are elements of Xi and a design matrix Dc(i) indicating which classrooms
were taught by which teachers is included in Z2c, (135) represents a standard teacher value-added
specification.20

Suppose that Proposition 1 can be extended to the classroom choice setting (as proven in the ex-
ogenous amenities case) and that the corresponding spanning condition is satisfied, so that Xc and
Xc

U are linearly dependent. Suppose in addition that the principal’s perception of teacher quality is
noisy, so that Dc is not collinear with Ac (and therefore not collinear with Xc). Then our analysis in
Section III.C suggests that G2 = ΓΓΓ2 +ΠΠΠZc

U Z2c
. Since Z2c includes the teacher design matrix Dc(i),

we see that including classroom averages of student characteristics Xc in teacher value-added re-
gressions will purge estimates of individual teachers’ value-added from any bias from non-random
student sorting on either observables or unobservables. Any remaining bias ΠΠΠZc

UZ2c
stems from

the possible correlation between the assignment of the chosen teacher to the classroom and other
aspects of the classroom environment. Note that G1 should be allowed to differ across schools or
districts if the preference parameters ΘΘΘ and ΘΘΘ

Uare believed to differ.

However, suppose that all unobserved classroom factors that are inequitably distributed across
teachers are either being used as a basis for student allocation to classrooms (i.e. are elements of
Ac) or are directly included as other controls in Z2c. If in addition the mapping from Ac to Xc
is linear, then the analysis in Section III.C reveals that including classroom averages of observed
student characteristics will also purge teacher value-added estimates G2 of any omitted variables
bias driven by inequitable access to advantageous classroom environments (the subvector of ΠΠΠZU

c Z2c
corresponding to the teacher design matrix Dc will equal 0).

Of course, our simulations suggest that the effectiveness of the control function approach depends
on observing moderately large samples of students with each teacher. And in practice there may be
classroom factors ignored by students and principals that do not even out across teachers. While
these caveats should be kept in mind, our analysis may partially explain the otherwise surprising
finding that non-experimental OLS estimators of teacher quality produce nearly unbiased estimates
of true teacher quality as ascertained by quasi-experimental and experimental estimates (Chetty et
al. (2014), Kane and Staiger (2008)).

20Z2c might also include a set of indicators for the teacher’s experience level. We assume here that teacher quality is not classroom-
specific, as in most teacher value-added models.
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Table A1—: Estimates of the Contribution of School Systems and Neighborhoods to High School
Graduation Decisions Under the Assumption that Only Observables Xi Drive Sorting

Appendix Tables

Panel A: Fraction of Latent Index Variance Determining Graduation
Attributable to School/Neighborhood Quality

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full (1)

(1) (2) (3) (4) (5) (6)

No Unobs. Sort. 0.052 0.042 0.090 0.083 0.049 0.032
Var(XsG1 +Z2sG2 + vs) (0.017) (0.011) (0.009) (0.009) (0.011) (0.010)

Panel B: Effect on Graduation Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NC NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort.: 10th-90th 0.181 0.162 0.183 0.175 0.095 0.077
Based on Var(XsG1 +Z2sG2 + vs) (0.025) (0.015) (0.015) (0.019) (0.009) (0.009)

No Unobs. Sort.: 10th-50th 0.100 0.089 0.111 0.105 0.056 0.044
Based on Var(XsG1 +Z2sG2 + vs) (0.017) (0.010) (0.024) (0.013) (0.006) (0.006)

Sample Mean 0.769 0.769 0.827 0.827 0.897 0.897

Bootstrap standard errors based on resampling at the school level are in parentheses.
Panel A reports lower bound estimates of the fraction of variance in the latent index that determines
high school graduation that can be directly attributed to school/neighborhood choices for each dataset.
The label “No Unobs. Sort.” reports Var(XsG1 +Z2sG2 + vs), which captures the variance in true
school/neighborhood contributions under the assumption that sorting is driven only by Xi.
Panel B reports estimates of the average effect of moving students from a school/neighborhood at the
10th quantile of the quality distribution to one at the 50th or 90th quantile.
The columns headed “NC” are based on the North Carolina data and refer to a decomposition that
uses the 9th grade school as the group variable. The columns headed “NELS88 gr8” are based on the
NELS88 sample and refer to a decomposition that uses the 8th grade school as the group variable.
The columns headed “ELS2002” are based on the ELS2002 sample and refer to a decomposition that
uses the 10th grade school as the group variable.
For each data set the variables in the baseline and full models are specified in Table 1.
The full variance decompositions underlying these estimates are presented in Online Appendix Table
A20.
Online Appendices A9 and A10 discuss estimation of model parameters and the variance decompo-
sitions. Section IV.D discusses estimation of the 10-50 and 10-90 differentials.
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Table A2—: Estimates of the Contribution of School Systems and Neighborhoods to Four Year
College Enrollment Decisions Under the Assumption that Only Observables Xi Drive Sorting

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort. 0.062 0.046 0.076 0.071 0.068 0.043
Var(XsG1 +Z2sG2 + vs) (0.012) (0.006) (0.009) (0.007) (0.007) (0.005)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

No Unobs. Sort.: 10th-90th 0.216 0.184 0.261 0.246 0.264 0.204
Based on Var(XsG1 +Z2sG2 + vs) (0.017) (0.016) (0.018) (0.016) (0.018) (0.015)

No Unobs. Sort.: 10th-50th 0.097 0.084 0.117 0.112 0.124 0.097
Based on Var(XsG1 +Z2sG2 + vs) (0.007) (0.006) (0.007) (0.007) (0.008) (0.007)

Sample Mean .267 .267 .310 .310 .365 .365

Bootstrap standard errors based on resampling at the school level are in parentheses.
The notes to Table A1 apply, except that Table A2 reports results for enrollment in a 4-year college
two years after graduation.
The column headed NLS72 refers to a variance decomposition that uses the 12th grade school as the
group variable.
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Table A3—: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods
to Four Year College Enrollment Decisions (Naive OLS Specification: School-Averages Xs

omitted from estimating equation)

Panel A: Fraction of Latent Index Variance Determining Enrollment
Attributable to School/Neighborhood Quality

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.028 0.017 0.023 0.022 0.024 0.016
Var(Z2sG2) (0.007) (0.004) (0.005) (0.005) (0.010) (0.007)

LB w/ unobs 0.066 0.049 0.075 0.073 0.072 0.050
Var(Z2sG2 + vs) (0.015) (0.008) (0.009) (0.009) (0.023) (0.016)

Panel B: Effect on Enrollment Probability of a School System/Neighborhood at
the 50th or 90th Percentile of the Quality Distribution vs. the 10th Percentile

Lower Bound NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.141 0.111 0.138 0.136 0.152 0.124
Based on Var(Z2sG2) (0.013) (0.011) (0.014) (0.013) (0.014) (0.013)

LB w/ unobs: 10th-90th 0.219 0.187 0.253 0.246 0.266 0.218
Based on Var(Z2sG2 + vs) (0.016) (0.014) (0.014) (0.013) (0.017) (0.015)

LB no unobs: 10th-50th 0.066 0.052 0.065 0.064 0.073 0.060
Based on Var(Z2sG2) (0.005) (0.005) (0.006) (0.006) (0.007) (0.006)

LB w/ unobs: 10th-50th 0.098 0.085 0.114 0.111 0.124 0.104
Based on Var(Z2sG2 + vs) (0.007) (0.006) (0.007) (0.006) (0.008) (0.007)

Sample Mean .267 .267 .310 .310 .365 .365

“Naive OLS Specification” refers to a specification in which school-averages of individual
characteristics Xs are omitted from the estimating equation (or equivalently, the coefficient
vector G1 is constrained to be equal to 0).
The notes to Table 2 apply, except that Table A3 reports results for enrollment in a 4-year
college two years after graduation, and the naive OLS specification and estimates are used,
as described in Section VI.E
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Table A4—: Lower Bound Estimates of the Contribution of School Systems and Neighborhoods
to Completed Years of Postsecondary Education in NLS72 data (Naive OLS Specification:

School-Averages Xs omitted from estimating equation)

Panel A: Fraction of Variance
Attributable to School/Neighborhood Quality

Lower Bound Yrs. Postsec. Ed.

Baseline Full

(1) (2)

LB no unobs 0.006 0.003
Var(Z2sG2) (0.002) (0.001)

LB w/ unobs 0.024 0.014
Var(Z2sG2 + vs) (0.004) (0.003)

Panel B: Effects on Years of Postsecondary Education
of a School System/Neighborhood at the 50th or 90th Percentile

of the Quality Distribution vs. the 10th Percentile

Lower Bound Yrs. Postsec. Ed.

Baseline Full

(1) (2)

LB no unobs: 10th-90th 0.353 0.227
Based on Var(Z2sG2) (0.052) (0.045)

LB w/unobs: 10th-90th 0.679 0.526
Based on Var(Z2sG2 + vs) (0.059) (0.056)

LB no unobs: 10th-50th 0.176 0.114
Based on Var(Z2sG2) (0.026) (0.022)

LB w/unobs: 10th-50th 0.339 0.263
Based on Var(Z2sG2 + vs) (0.029) (0.028)

Sample Mean 1.62 1.62

“Naive OLS Specification” refers to a specification in which school-
averages of individual characteristics Xs are omitted from the esti-
mating equation (or equivalently, the coefficient vector G1 is con-
strained to be equal to 0).
Panel A reports lower bound estimates of the fraction of variance of
years of postsecondary education that can be directly attributed to
school/neighborhood choices in NLS72.
Panel B reports estimates of the average effect of moving students
from a school/neighborhood at the 10th quantile of the quality dis-
tribution to one at the 50th or 90th quantile. It is equal to 2 ∗ 1.28
times the value of [V̂ar(Z2sG2 + vs)]

0.5 or [V̂ar(Z2sG2)]
0.5 in the

corresponding column of the table.
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Table A5—: Principal Components Analysis of the Vector of School Average Observable
Characteristics Xs

Panel A: Fraction of Total Variance in Xs
Explained by Various Numbers of Principal Components

NLS72 NELS88 gr8 ELS2002

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

(1) # of Variables in Xs 32 34 39 49 40 51

# Factors Needed to Explain:

(2) 75% of Total Xs Var. 7 7 7 9 6 8
[7,8] [8,8] [7,8] [8,9] [6,7] [7,8]

(3) 90% of Total Xs Var. 12 12 13 16 11 14
[11,12] [12,13] [11,13] [14,15] [11,12] [14,15]

(4) 95% of Total Xs Var. 15 15 17 20 14 19
[14,15] [14,15] [14,16] [18,19] [14,15] [17,19]

(5) 99% of Total Xs Var. 20 21 22 26 20 25
[18,19] [17,18] [19,21] [23,25] [18,20] [23,25]

(6) 100% of Total Xs Var. 24 25 27 32 26 33
[21,23] [18,19] [23,26] [29,31] [23,25] [29,31]

Panel B: Fraction of Variance in the Regression Index XsĜ1
Explained by Various Numbers of Principal Components

NLS NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

(1) # of Variables in Xs 32 34 39 49 40 51

# Factors Needed to Explain:

(2) 75% of Var(XsG1) 3 3 6 5 2 5
[3,5] [3,6] [3,7] [5,8] [2,3] [4,7]

(3) 90% of Var(XsG1) 8 7 10 10 5 11
[5,9] [5,10] [6,11] [9,14] [3,7] [8,14]

(4) 95% of Var(XsG1) 10 9 13 13 7 15
[8,13] [7,11] [9,14] [12,17] [5,11] [11,17]

(5) 99% of Var(XsG1) 14 15 19 20 14 22
[13,17] [10,15] [13,19] [19,24] [11,16] [17,23]

(6) 100% of Var(XsG1) 24 25 27 32 26 33
[21,23] [18,19] [23,26] [29,31] [23,25] [29,31]

See Online Appendix A3 for details. The numbers in brackets are bootstrapped 90% con-
fidence interval estimates of the number of factors required to explain the variance fraction
specified in a given row.
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Table A6—: Estimating the Number of Latent Amenities (dim(As)): Kleibergen and Paap (2006)
Heteroskedasticity-Robust and Cluster Robust Tests of the Rank of the Xs Covariance Matrix

(Baseline Specification Results)

Dataset (Number of Variables in Xs)

NLS72 (32) NELS88 gr8 (39) ELS2002 (40)

Het. Only Cluster Het. Only Cluster Het. Only Cluster

# Fact. (1) (2) (3) (4) (5) (6)
H0 HA P-val P-val P-val P-val P-val P-val

0 1+ 0 NaN 0 NaN 0 NaN
1 2+ 0 NaN 0 NaN 0 NaN
2 3+ 0 .483 0 NaN 0 NaN
3 4+ 0 .332 0 NaN 0 NaN
4 5+ 0 .137 0 NaN 0 NaN
5 6+ 0 .096 0 NaN 0 NaN
6 7+ 0 .049 0 NaN 0 NaN
7 8+ 0 .066 0 NaN 0 NaN
8 9+ 0 .230 0 NaN 0 NaN
9 10+ 0 .270 0 .485 0 NaN
10 11+ 0 .210 0 .401 0 NaN
11 12+ 0 .199 0 .370 0 NaN
12 13+ 0 .211 .001 .389 0 NaN
13 14+ .016 .354 .001 .368 .047 NaN
14 15+ .278 .485 .009 .309 .532 NaN
15 16+ .834 .641 .139 .253 .942 NaN
16 17+ .995 .944 .557 .349 .993 NaN
17 18+ .999 .950 .718 .349 .999 NaN
18 19+ 1 .991 .879 .576 1 NaN
19 20+ 1 .996 .984 .705 1 NaN
20 21+ 1 .990 .998 .747 1 NaN
21 22+ 1 .994 .999 .865 1 NaN
22 23+ 1 .999 1 .867 1 NaN
23 24+ 1 .999 1 .902 1 NaN
24 25+ 1 1 1 .918 1 NaN
25 26+ 1 1 1 .990 1 .499
26 27+ 1 1 1 .986 1 .580
27 28+ 1 1 1 .991 1 .690
28 29+ 1 1 1 .997 1 .701
29 30+ .998 .999 1 .999 1 .888
30 31+ .982 .978 1 .999 1 .973
31 32+ .921 .940 1 1 1 .991
32 33+ – – 1 1 1 .997
33 34+ – – 1 1 1 .999
34 35+ – – 1 1 1 1
35 36+ – – 1 1 1 1
36 37+ – – .999 .999 1 1
37 38+ – – .998 .998 1 1
38 39+ – – .985 .985 .998 1
39 40+ – – – – .886 1

Under the conditions laid out in Proposition 1 of the paper, the rank of the co-
variance of Xs reveals the number of amenity factors driving sorting. See Online
Appendix A3 for details. Each element in the table reports a p-value from a
test based on Kleibergen and Paap (2006) of the null that the rank of the covari-
ance matrix of school-averages of observable student characteristics Xs is equal
to value associated with the row label, against the alternative hypothesis that the
rank exceeds this value. “Het. Only” refers to the heteroskedasticity-robust (but
unclustered) version of the test. “Cluster” refers to the more general test that is
robust to arbitrary correlation in sampling error within clusters. We cluster at the
school level. Each test is implemented via the STATA ranktest.ado code provided
by Kleibergen and Paap (2006).
‘–’ indicates that the entry corresponds to a case in which the hypothesized rank
associated with the row is as large as or larger than the size of the covariance
matrix whose rank is being tested (which corresponds to the number of variables
in Xs for the dataset associated with the chosen column), thus obviating the need
for a rank test.
‘NaN’ indicates that the entry corresponds to a case in which the Kleibergen-Paap
rank test returned an error due to a non-positive definite covariance matrix.
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Table A7—: Estimating the Number of Latent Amenities (dim(As)): Kleibergen and Paap (2006)
Heteroskedasticity-Robust and Cluster Robust Tests of the Rank of the Xs Covariance Matrix

(Full Specification Results)

Dataset (Number of Variables in Xs)
NLS72 (34) NELS88 gr8 (49) ELS2002 (51)

Het. Only Cluster Het. Only Cluster Het. Only Cluster

# Fact. (1) (2) (3) (4) (5) (6)
H0 HA P-val P-val P-val P-val P-val P-val

0 1+ 0 NaN 0 NaN 0 NaN
1 2+ 0 NaN 0 NaN 0 NaN
2 3+ 0 NaN 0 NaN 0 NaN
3 4+ 0 NaN 0 NaN 0 NaN
4 5+ 0 .471 0 NaN 0 NaN
5 6+ 0 .341 0 NaN 0 NaN
6 7+ 0 .199 0 NaN 0 NaN
7 8+ 0 .185 0 NaN 0 NaN
8 9+ 0 .336 0 NaN 0 NaN
9 10+ 0 .347 0 NaN 0 NaN
10 11+ 0 .351 0 NaN 0 NaN
11 12+ 0 .275 0 NaN 0 NaN
12 13+ 0 .187 0 NaN 0 NaN
13 14+ .001 .399 0 NaN 0 NaN
14 15+ .074 .693 0 NaN 0 NaN
15 16+ .451 .596 0 NaN .001 NaN
16 17+ .918 .745 .002 NaN .136 NaN
17 18+ .998 .925 .021 NaN .632 NaN
18 19+ .999 .920 .139 NaN .970 NaN
19 20+ 1 .972 .445 .430 .996 NaN
20 21+ 1 .998 .762 .377 .999 NaN
21 22+ 1 .998 .967 .497 1 NaN
22 23+ 1 .999 .998 .576 1 NaN
23 24+ 1 1 .999 .590 1 NaN
24 25+ 1 1 1 .725 1 NaN
25 26+ 1 1 1 .697 1 .499
26 27+ 1 1 1 .701 1 .580
27 28+ 1 1 1 .636 1 .690
28 29+ 1 1 1 .858 1 .701
29 30+ 1 1 1 .944 1 .888
30 31+ 1 1 1 .952 1 .973
31 32+ 1 1 1 .996 1 .991
32 33+ .991 .996 1 .994 1 .997
33 34+ .996 .997 1 1 1 .999
34 35+ – – 1 1 1 1
35 36+ – – 1 1 1 1
36 37+ – – 1 1 1 1
37 38+ – – 1 1 1 1
38 39+ – – 1 1 1 1
39 40+ – – 1 1 1 1
40 41+ – – 1 1 1 1
41 42+ – – 1 1 1 1
42 43+ – – 1 1 1 1
43 44+ – – 1 1 1 1
44 45+ – – 1 1 1 1
45 46+ – – 1 1 1 1
46 47+ – – 1 1 1 1
47 48+ – – .999 .998 1 1
48 49+ – – .993 .992 1 1
49 50+ – – – – .998 .998
50 51+ – – – – .919 .911

Under the conditions laid out in Proposition 1 of the paper, the rank of the covariance of Xs reveals
the number of amenity factors driving sorting. See Online Appendix A3 for details. Each element in
the table reports a p-value from a test based on Kleibergen and Paap (2006) of the null that the rank
of the covariance matrix of school-averages of observable student characteristics Xs is equal to value
associated with the row label, against the alternative hypothesis that the rank exceeds this value. “Het.
Only” refers to the heteroskedasticity-robust (but unclustered) version of the test. “Cluster” refers to
the more general test that is robust to arbitrary correlation in sampling error within clusters. We
cluster at the school level. Each test is implemented via the STATA ranktest.ado code provided by
Kleibergen and Paap (2006).
‘–’ indicates that the entry corresponds to a case in which the hypothesized rank associated with the
row is as large as or larger than the size of the covariance matrix whose rank is being tested (which
corresponds to the number of variables in Xs for the dataset associated with the chosen column), thus
obviating the need for a rank test.
‘NaN’ indicates that the entry corresponds to a case in which the Kleibergen-Paap rank test returned
an error due to a non-positive definite covariance matrix.



VOL. VOLUME NO. ISSUE ALTONJI AND MANSFIELD: ESTIMATING GROUP EFFECTS 51

Table A8—: Monte Carlo Simulation Results: Cases in which the Spanning Condition
in Proposition 1 is Satisfied (ΘΘΘU = RΘΘΘ For Some R)

Row # Stu. # Sch. # Con. # Ob. # Un. # Am. ρΘΘΘ
Var(XU

s BU)
Var(Y )

Adj-R-Sq Resid Adj-R-Sq Resid
(All) (All) (10/20/40) (10/20/40)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 1000 50 50 10 10 5 0.25 .122 0.9979 .0003
.869 .016
.926 .009
.959 .005

(2) 500 50 50 10 10 5 0.25 .123 0.9961 .0005
.869 .016
.926 .009
.960 .005

(3) 2000 50 50 10 10 5 0.25 .122 0.9989 .0001
.869 .016
.925 .009
.959 .005

(4) 1000 100 50 10 10 5 0.25 .122 0.9979 .0002
.868 .017
.924 .009
.959 .006

(5) 1000 50 10 10 10 5 0.25 .100 0.9976 .0001
.835 .016
.908 .009
.950 .005

(6) 1000 50 50 20 20 5 0.25 .122 0.9993 .0002
.897 .014
.944 .007
.971 .003

(7) 1000 50 50 10 10 10 0.25 .136 0.9933 .0009
.872 .018
.923 .010
.952 .006

(8) 1000 50 50 20 20 10 0.25 .135 0.9988 .0002
.909 .014
.951 .007
.973 .003

(9) 1000 50 50 10 10 5 0 .048 0.9941 .0003
.649 .016
.779 .010
.867 .006

# Stu.: Number of students per school
# Sch.: Total number of schools
# Con.: Number of schools in each family’s consideration set
# Ob: Number of observable student characteristics
# Un: Number of unobservable student characteristics
# Am.: Number of latent amenity factors valued by families
ρΘΘΘ: Correlation in Θlk taste parameters across student characteristics for a given amenity and across amenities for a
given student characteristic
Var(XU

s β U)
Var(Yi)

: Fraction of variance in the student-level outcome accounted for by between-school variation in the re-
gression index of unobserved student characteristics

Adj-R-sq (All): Fraction of between-school variance in unobservable student characteristics XU
s β U explained by the

control function Xs (sample averages of both Xs and XU
s are computed using all students)

Resid (All): Fraction of outcome variance accounted for by the residual component of the between-school variation
in the regression index of unobserved student characteristics that cannot be predicted based on the vector of observed
school-averages Xs, [(1−Ad j−R2)Var(XU

s β U)]/Var(Yi) (sample averages of both Xs and XU
s are computed using

all students)
Adj-R-sq (10/20/40): Fraction of between-school variance in unobservable student characteristics XU

s β U explained
by the control function Xs (sample school averages of Xs are constructed using 10/20/40 students, while school
averages of XU

s are estimated using all students.)
Resid (10/20/40): Fraction of outcome variance accounted for by the part of the between-school variation in the
regression index of unobserved student characteristics that cannot be predicted based on the vector of observed
school-averages Xs (sample averages of Xs are computed using 10/20/40 students, while school averages of XU

s are
computed using all students.)
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Table A9—: Monte Carlo Simulation Results: Sensitivity of Control Function Performance to the
Spanning Condition in Proposition 1

Row X/XU Corr. WTP for A1-A4 WTP for A5 Assu. (A5) ΘΘΘ
U = RAΘΘΘ? ΘΘΘ

U = RBΠΠΠ
XU X

ΘΘΘ
U ? Var(XU

s BU)
Var(Y )

Adj-R-Sq Resid Adj-R-Sq Resid
Structure Depends On Depends On Satisfied (All) (All) (10/20/40) (10/20/40)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1)
Corr = .25 for each All elements All elements

Yes Yes Yes .122 0.998 .0003
.869 .016

pair of (obs. of Xi and XU
i of Xi and XU

i .926 .009
or unobs.) char. .959 .005

(2)
Elements of XU All elements All elements

Yes No Yes .101 0.965 .0035
.492 .052

independent of of Xi and XU
i of Xi and XU

i .607 .040
elements of X .717 .029

(3)
Corr = .25 for each All elements All elements

Yes Yes No .049 0.967 .0015
.622 .019

pair of (obs. of Xi of XU
i .720 .014

or unobs.) char. .795 .010

(4)
Elements of XU All elements All elements

No No No .069 0.148 .0591
.114 .062

independent of of Xi of XU
i .128 .060

elements of X .139 .059

(5)
Elements of XU All elements All elements

No No No .098 0.524 .0465
.325 .065

independent of of Xi and XU
i of XU

i .374 .062
elements of X .421 .057

(6)
Elements of XU All elements

XU
i,10 only No No No .109 0.948 .0051

.589 .045
independent of of Xi and XU

i .682 .035
elements of X .760 .026

(7)
Elements of XU All obs. and

XU
i,10 only No No No .095 0.952 .0050

.580 .040
independent of unobs. char. .677 .030
elements of X except XU

i,10 .756 .023

(8)
Corr = .25 for each All elements

XU
i,10 only No No No .117 0.997 .0003

.906 .013
pair of obs. or unobs. char. of Xi and XU

i .947 .006
except XU

i,10 (independent) .971 .004

(9)
Corr = .25 for each All obs. and

XU
i,10 only No No No .131 0.997 .0003

.893 .013
pair of obs. or unobs. char. unobs. char. .942 .006
except XU

i,10 (independent) except XU
i,10 .969 .004

All specifications share the following parameter values: # Stu. = 1000, # Sch. = 50, # Con. = 50, # Ob = 10, # Un = 10, # Am. = 5, ρΘΘΘ = 0.25 (See
Online Appendix Table A8 for definitions of parameters).
The column labeled “X/XU Corr. Structure” describes the correlation structure among and between the elements of the vectors of observed and
unobserved individual characteristics Xi and XU

i .
The columns labeled “WTP for A1-A4 Depends On” and “WTP for A5 Depends On” specifies which elements of the observable (Xi) and unobserv-
able (XU

i ) characteristics predict willingness-to-pay for amenity factors 1-4 and amenity factor 5, respectively.
The columns labeled “Assu. A5 Satisfied”, “ΘΘΘ

U = RAΘΘΘ?”, and “ΘΘΘ
U = RBΠΠΠ

XU X
ΘΘΘ

U ?” specify whether the taste matrix ΘΘΘ
U can be written as

ΘΘΘ
U = RΘ̃ΘΘ (i.e. Assumption A5 is satisfied), ΘΘΘ

U = RAΘΘΘ, and ΘΘΘ
U = RBΠΠΠ

XU X
ΘΘΘ

U , for some matrix (matrices) R, RA, and RB, respectively. The
condition ΘΘΘ

U = RΘ̃ΘΘ for some matrix R (Assumption A5) is a necessary condition for Proposition 1 to hold, while the conditions ΘΘΘ
U = RAΘΘΘ and

ΘΘΘ
U = RBΠΠΠ

XU X
ΘΘΘ

U for some matrices RA and RB are each sufficient conditions for A5 to hold. See Section II.B for further discussion of these
conditions.
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Table A10—: Bias from Observing Subsamples of Students from Each School: Comparing
Results from the Full North Carolina Sample to Results from Subsamples Mirroring the Sampling

Schemes of NLS72, NELS88, and ELS2002 - Baseline Specification

Panel A: Fractions of Total Outcome Variance

Row Full NC Sample NLS72 NELSg8 ELS2002

Within School:
Total

0.913 0.916 0.917 0.916

Var(Yis−Ys)
Observable Student-Level (Within):

0.123 0.119 0.119 0.118Var((Xsi−Xs)B)

Unobservable Student-Level (Within)
0.790 0.797 0.798 0.798Var(vsi− vs)

Between School:
Total

0.087 0.084 0.083 0.084Var(Ys)

Observable Student-Level:
0.018 0.016 0.016 0.016Var(XsB)

Student-Level/
0.017 0.019 0.018 0.018

School-Level Covariance
2∗Cov(XsB,XsG1 +Z2sG2)

School-Avg. Student-Level/
-0.016 -0.007 -0.008 -0.008

School Char. Covariance
2∗Cov(XsG1,Z2sG2)

School-Avg. Student-Level
0.017 0.009 0.010 0.010Var(XsG1)

School Char.
0.018 0.013 0.013 0.014Var(Z2sG2)

Unobservable School-Level
0.033 0.033 0.032 0.033Var(vs)

Panel B: 10th to 90th Quantile Shifts in School Quality

Row Full NC Sample NLS72 NELSg8 ELS2002

LB no unobs
0.104 0.088 0.089 0.091Var(Z2sG2)

LB w/unobs
0.178 0.167 0.167 0.169Var(Z2sG2 + vs)

The column “Full NC Sample” reports variance decompositions based on the full North Carolina sample. They are the
same as the estimates reported for NC sample in Online Appendix Table A20.
The other columns report estimates based on draws of samples of students from the North Carolina schools to match
the distributions of sample sizes per school from the NLS72, NELS88 grade 8, NELS88 grade 10, or ELS2002 samples
(respectively).
To remove the chatter produced by a single draw from these sampling schemes, we report averages of estimates for
each of 100 samples drawn from each sampling scheme.
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Table A11—: Bias from Observing Subsamples of Students from Each School: Comparing
Results from the Full North Carolina Sample to Results from Subsamples Mirroring the Sampling

Schemes of NLS72, NELS88, and ELS2002 - Full Specification

Panel A: Fractions of Total Outcome Variance

Row Full NC Sample NLS72 NELSg8 ELS2002

Within School:
Total

0.913 0.919 0.919 0.918

Var(Yis−Ys)
Observable Student-Level (Within):

0.229 0.231 0.232 0.230Var((Xsi−Xs)B)

Unobservable Student-Level (Within)
0.684 0.688 0.687 0.688Var(vsi− vs)

Between School:
Total

0.087 0.081 0.081 0.082Var(Ys)

Observable Student-Level:
0.033 0.032 0.032 0.033Var(XsB)

Student-Level/
0.012 0.014 0.012 0.012

School-Level Covariance
2∗Cov(XsB,XsG1 +Z2sG2)

School-Avg. Student-Level/
-0.007 -0.006 -0.006 -0.006

School Char. Covariance
2∗Cov(XsG1,Z2sG2)

School-Avg. Student-Level
0.011 0.008 0.008 0.008Var(XsG1)

School Char.
0.010 0.010 0.009 0.010Var(Z2sG2)

Unobservable School-Level
0.027 0.023 0.024 0.025Var(vs)

Panel B: 10th to 90th Quantile Shifts in School Quality

Row Full NC Sample NLS72 NELSg8 ELS2002

LB no unobs
0.079 0.076 0.075 0.078Var(Z2sG2)

LB w/unobs
0.153 0.142 0.144 0.146Var(Z2sG2 + vs)

The column “Full NC Sample” reports variance decompositions based on the full North Carolina sample. They are the
same as the estimates reported for NC sample in Online Appendix Table A20.
The other columns report estimates based on draws of samples of students from the North Carolina schools to match
the distributions of sample sizes per school from the NLS72, NELS88 grade 8, NELS88 grade 10, or ELS2002 samples
(respectively).
To remove the chatter produced by a single draw from these sampling schemes, we report averages of estimates for
each of 100 samples drawn from each sampling scheme.
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Table A12—: Summary Statistics for Student Characteristics in NLS72

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .505 .500
1(Black) 0.00 .088 .283
1(Hispanic) 0.00 .034 .181
1(Asian) 0.00 .010 .101

Student Ability

Std. Math Score 0.00 .007 .997
Std. Reading Score 0.00 .005 .989

Student Behavior

[None]

Family Background Characteristics

SES Index 0.00 -.028 1.01
Number of Siblings 2.90 2.81 2.04
1(Both Parents Present) 43.17 .754 .360
1(Mother, Male Guardian) 43.17 .020 .117
1(Mother Only Present) 43.17 .123 .272
1(Father Only Present) 43.17 .040 .162
Father’s Years of Educ. 0.74 12.53 2.47
Mother’s Years of Educ. 0.00 12.28 2.05
1(Mother’s Ed. Missing) 0.00 .003 .057
Log(Family Income) 19.98 10.89 .661
1(Eng. Spoken at Home) 0.46 .920 .271
1(Home Environ. Index) 3.33 .112 1.25
1(No Religion) 0.00 .052 .222
1(Eastern Religion) 0.00 .041 .199
1(Jewish) 0.00 .023 .151
1(Catholic) 0.00 .313 .464
1(Oth. Christian Relig.) 0.00 .181 .385
1(Fath. Occ.: Service) 22.21 .106 .276
1(Fath. Occ.: Security/Military) 22.21 .050 .195
1(Fath. Occ.: Farmer/Laborer) 22.21 .309 .415
1(Fath. Occ.: Craftsman/Technician) 22.21 .214 .362
1(Fath. Occ.: Manager) 22.21 .126 .306
1(Fath. Occ.: Owner) 22.21 .067 .227
1(Fath. Occ.: Professional) 22.21 .125 .313
1(Moth. Occ.: Sales) 18.42 .035 .171
1(Moth. Occ.: Service) 18.42 .060 .216
1(Moth. Occ.: Clerical) 18.42 .147 .328
1(Moth. Occ.: Professional) 18.42 .088 .267
1(Moth. Occ.: Other) 18.42 .095 .267

Parental Beliefs/Desires

[None]

Outcomes

1(Enrolled at a 4-Yr. Coll.) 0.00 .267 .442
Years of Postsec. Education 0.00 1.62 1.72
Log Wage (1979) 0.00 2.78 .451
Log Wage (1986) 0.00 2.98 .479
Log Wage (Pooled) 0.00 2.88 .475
The summary statistics reported above incorporate sample weights. See Appendix A12 for further
details about these weights.
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Table A13—: Summary Statistics for School Characteristics in NLS72

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Xs)*

% Minority Students 1.87 .146 .228

School Characteristics (Treated as elements of Z2s)*

1(Catholic School) 3.52 .074 .259
1(Private School) 3.52 .004 .060
% of Teachers with Masters’ Deg. 1.03 .412 .210
Teacher Turnover Rate 0.27 .082 .087
Total School Enrollment 0.86 1362 864
Student-to-Teacher Ratio 1.51 20.30 4.35
% of Minority Teachers 2.61 .070 .137
1(Tracking System Exists) 17.80 .761 .385
Age of School Building 1.32 20.83 16.84

Neighborhood Characteristics

Distance to 4-Year College 4.61 18.70 24.99
Distance to Community College 4.64 18.12 25.02
1(South Region) 0.00 .282 .450
1(Midwest Region) 0.00 .296 .457
1(West Region) 0.00 .167 .373
1(Small Town) 0.00 .294 .456
1(Medium-Sized City) 0.00 .087 .282
1(Suburb of Medium-Sized City) 0.00 .054 .225
1(Large City) 0.00 .096 .295
1(Suburb of Large City) 0.00 .113 .316
1(Huge City) 0.00 .074 .262
1(Suburb of Huge City) 0.00 .087 .281

*School characteristics treated as elements of Xs are included to reduce measurement error in school
sample averages of student characteristics. They do not contribute to the estimated lower bound on
contributions of schools/neighborhoods.
The summary statistics reported above incorporate sample weights. See Appendix A12 for further
details about these weights.
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Table A14—: Summary Statistics for Student Characteristics in NELS88

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .503 .500
1(Black) 0.00 .127 .333
1(Hispanic) 0.00 .099 .299
1(Asian) 0.00 .033 .179
1(Immigrant) 6.80 .048 .205

Student Ability

Std. Math Score (8th grd.) 0.00 .060 1.01
Std. Reading Score (8th grd.) 0.00 .061 1.00

Student Behavior

Parent checks HW 0.36 .448 .496
# Weekly HW Hours 5.71 5.85 4.93
# Weekly Reading Hours 4.28 2.21 2.58
# Weekly TV Hours 14.15 22.09 10.20
1(Often Missing Pencil) 4.20 .221 .406
1(Fought at School) 1.45 .226 .415

Family Background Characteristics

SES Index 0.00 .034 1.01
Number of Siblings 0.46 2.31 1.58
1(Both Parents Present) 0.84 .648 .476
1(Mother, Male Guardian) 0.00 .115 .319
1(Mother Only Present) 0.00 .149 .357
1(Father Only Present) 0.00 .053 .225
Father’s Years of Educ. 6.38 13.24 2.92
Mother’s Years of Educ. 0.00 12.91 2.32
1(Mother’s Ed. Missing) 0.00 .024 .152
Log(Family Income) 9.67 10.87 .910
1(Eng. Spoken at Home) 0.87 .902 .295
1(Moth. Is Immigrant) 7.66 .113 .306
1(Fath. Is Immigrant) 8.62 .106 .296
1(Parents Married) 7.70 .776 .403
1(No Religion) 0.00 .023 .148
1(Eastern Religion) 0.00 .039 .193
1(Jewish) 0.00 .019 .138
1(Catholic) 0.00 .286 .452
1(Oth. Christian Relig.) 0.00 .072 .258
1(Home Environ. Index) 6.49 -.010 1.41
1(Fath. Occ.: Service) 24.39 .109 .267
1(Fath. Occ.: Security/Military) 24.39 .047 .183
1(Fath. Occ.: Farmer/Laborer) 24.39 .286 .403
1(Fath. Occ.: Craftsman/Technician) 24.39 .201 .344
1(Fath. Occ.: Dentist/Lawyer/Etc.) 24.39 .040 .207
1(Fath. Occ.: Accountant/Nurse/Etc.) 24.39 .093 .287
1(Fath. Occ.: Manager) 24.39 .120 .313
1(Fath. Occ.: Owner) 24.39 .076 .237
1(Moth. Occ.: Sales) 11.23 .055 .218
1(Moth. Occ.: Service) 11.23 .132 .320
1(Moth. Occ.: Clerical) 11.23 .231 .405
1(Moth. Occ.: Teacher) 11.23 .075 .258
1(Moth. Occ.: Accountant/Nurse/Etc.) 11.23 .090 .278
1(Moth. Occ.: Other) 11.23 .256 .410
Parental Sch. Engage. Index 10.79 -.079 1.46

Parental Beliefs/Desires

Moth. Desired Educ. for Child 12.63 16.20 1.94
Fath. Desired Educ. for Child 16.09 16.13 1.94

Outcomes

1(High School Graduate) 0.00 .827 .379
1(Enrolled at a 4-Yr. Coll.) 0.00 .310 .463
The summary statistics reported above incorporate sample weights. See Appendix A12 for further
details about these weights.
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Table A15—: Summary Statistics for School Characteristics in NELS88

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Xs)*

% Minority Students 1.51 .232 .300
% Limited English Proficient 1.31 .071 .090
% Receiving Free/Reduced Price Lunch 1.49 .243 .234
% in Special Ed. 1.31 .068 .058
% in Remedial Reading 1.19 .104 .127
% in Remedial Math 1.19 .081 .112

Admin’s Perceived Sch. Problems Index 1.16 3.07 .671

School Characteristics (Treated as elements of Z2s)*

1(Catholic School) 0.00 .076 .267
1(Private School) 0.00 .038 .190
% of Teachers with Masters’ Deg. 3.75 .473 .246
Total School Enrollment 1.05 675.2 368.7
Student-to-Teacher Ratio 1.05 17.87 4.82
% of Minority Teachers 2.92 .118 .192
Log(Minimum Teacher Salary) 2.51 9.76 .188
1(Collectively Bargained Contracts) 1.49 .590 .491
1(Gifted Program Exists) 1.05 .693 .461
Admin.’s Reported Security. Policies Index (1) 1.36 .219 1.05
Admin.’s Reported Security. Policies Index (2) 1.36 -.046 1.03

Neighborhood Characteristics

1(Urban Neighborhood) 0.00 .248 .432
1(Suburban Neighborhood) 0.00 .437 .496
1(South Region) 0.00 .358 .479
1(Midwest Region) 0.00 .260 .439
1(West Region) 0.00 .189 .391

*School characteristics treated as elements of Xs are included to reduce measurement error in school
sample averages of student characteristics. They do not contribute to the estimated lower bound on
contributions of schools/neighborhoods.
The summary statistics reported above incorporate sample weights. See Appendix A12 for further
details about these weights.
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Table A16—: Summary Statistics for Student Characteristics in ELS2002

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .506 .500
1(Black) 0.00 .137 .344
1(Hispanic) 0.00 .152 .359
1(Asian) 0.00 .037 .189
1(Immigrant) 10.78 .082 .256

Student Ability

Std. Math Score 0.00 .038 1.01
Std. Reading Score 0.00 .036 1.01

Student Behavior

Parent checks HW 14.43 .345 .440
# Weekly HW Hours 3.72 10.49 8.80
# Weekly Reading Hours 4.06 2.81 4.10
# Weekly Computer Hours 3.92 2.19 1.69
# Weekly TV Hours 4.01 23.21 11.98
1(Often Missing Pencil) 1.71 .172 .374
1(Fought at School) 0.85 .137 .342

Family Background Characteristics

SES Index 0.00 .014 .997
Number of Siblings 17.22 2.34 1.39
1(Both Parents Present) 10.44 .571 .471
1(Mother, Male Guardian) 10.44 .131 .320
1(Mother Only Present) 10.44 .185 .367
1(Father Only Present) 10.44 .071 .235
Father’s Years of Educ. 9.24 13.61 2.53
Mother’s Years of Educ. 0.00 13.47 2.26
1(Mother’s Ed. Missing) 0.00 .034 .182
Avg. Grandparents’ Educ. 23.77 12.15 1.64
Log(Family Income) 21.01 10.87 .894
1(Eng. Spoken at Home) 13.32 .895 .286
1(Moth. Is Immigrant) 11.38 .176 .363
1(Fath. Is Immigrant) 12.33 .176 .363
1(Parents Married) 10.85 .723 .423
1(No Religion) 18.55 .033 .161
1(Eastern Religion) 18.55 .064 .215
1(Jewish) 18.55 .011 .091
1(Catholic) 18.55 .334 .437
1(Oth. Christian Relig.) 18.55 .199 .363
1(Home Environ. Index) 13.35 -.095 1.38
1(Fath. Occ.: Service) 30.74 .116 .259
1(Fath. Occ.: Security/Military) 30.74 .050 .177
1(Fath. Occ.: Farmer/Laborer) 30.74 .285 .377
1(Fath. Occ.: Craftsman/Technician) 30.74 .202 .328
1(Fath. Occ.: Dentist/Lawyer/Etc.) 30.74 .038 .197
1(Fath. Occ.: Accountant/Nurse/Etc.) 30.74 .103 .289
1(Fath. Occ.: Manager) 30.74 .149 .306
1(Fath. Occ.: Owner) 30.74 .051 .192
1(Fath. Occ.: Other) 30.74 .004 .047
1(Moth. Occ.: Sales) 21.10 .047 .187
1(Moth. Occ.: Service) 21.10 .158 .318
1(Moth. Occ.: Clerical) 21.10 .181 .342
1(Moth. Occ.: Teacher) 21.10 .070 .239
1(Moth. Occ.: Accountant etc.) 21.10 .148 .333
1(Moth. Occ.: Other) 21.10 .248 .378
Parental Sch. Engage. Index 20.71 -.141 1.34

Parental Beliefs/Desires

Moth. Desired Educ. for Child 15.90 16.55 2.21
Fath. Desired Educ. for Child 23.04 16.48 2.20

Outcomes

1(High School Graduate) 0.00 .897 .305
1(Enrolled at a 4-Yr. Coll.) 0.00 .365 .481
The summary statistics reported above incorporate sample weights. See Appendix A12 for further
details about these weights.
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Table A17—: Summary Statistics for School Characteristics in ELS2002

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Xs)*

% Minority Students 1.53 .338 .303
% Limited English Proficient 4.71 .047 .085
% Receiving Free/Reduced Price Lunch 7.68 .255 .234
% in Special Ed. 5.98 .104 .074
% in Remedial Reading 17.81 .049 .073
% in Remedial Math 19.24 .065 .089
Admin’s Perceived Sch. Problems Index 15.74 3.46 .768

School Characteristics (Treated as elements of Z2s)*

1(Catholic School) 1.23 .044 .205
1(Private School) 1.84 .032 .175
% of Teachers with Masters’ Deg. 33.72 .450 .182
Teacher Turnover Rate 28.01 .056 .049
Total School Enrollment 0.34 1408 830
Student-to-Teacher Ratio 2.67 17.1 3.99
% of Minority Teachers 37.99 .137 .174
Log(Minimum Teacher Salary) 20.01 10.26 .155
% of Teachers with Certification 3.35 95.37 12.82
Teacher Evaluation Policy Index 14.42 -.141 .941
Teacher Incentive Pay Index (1) 13.25 .023 1.34
Teacher Incentive Pay Index (2) 13.25 -.086 1.06
Teaching Technology Index 16.29 .190 1.47
1(High Stakes Competency Exam) 0.00 .994 .077
Observed Sch. Cleanliness/Disorder Index (1) 29.85 .021 1.78
Observed Sch. Cleanliness/Disorder Index (2) 29.85 .030 1.18
Security Policy Implementation Index (1) 8.56 .073 1.34
Security Policy Implementation Index (2) 8.56 -.152 .934
Admin.’s Reported Security. Policies Index (1) 15.78 .157 1.48
Admin.’s Reported Security. Policies Index (2) 15.78 -.257 1.09
Admin.’s Impression of Fac. Quality Index (1) 19.31 .187 2.20
Admin.’s Impression of Fac. Quality Index (2) 19.31 .025 1.03

Neighborhood Characteristics

1(Rural within MSA) 0.24 .108 .310
1(Small Town) 0.24 .103 .304
1(Large Town) 0.24 .014 .118
1(Suburb of Medium City) 0.24 .091 .288
1(Suburb of Large City) 0.24 .286 .452
1(Medium City) 0.24 .163 .369
1(Large City) 0.24 .133 .340
1(South Region) 0.00 .345 .476
1(Midwest Region) 0.00 .252 .434
1(West Region) 0.00 .220 .414
Admin. Perception of N-Hood Crime 12.24 2.93 .595

*School characteristics treated as elements of Xs are included to reduce measurement error in school
sample averages of student characteristics. They do not contribute to the estimated lower bound on
contributions of schools/neighborhoods.
The summary statistics reported above incorporate sample weights. See Appendix A12 for further
details about these weights.
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Table A18—: Summary Statistics for Student Characteristics in North Carolina Administrative
Data

Variable % Imputed Mean Std. Dev.

Student Demographics

1(Female) 0.00 .505 .500
1(Black) 0.00 .276 .447
1(Hispanic) 0.00 .059 .236
1(Asian) 0.00 .023 .149

Student Ability

Std. Math Score (Grade 8) 13.0 .059 .990
Std. Reading Score (Grade 8) 13.0 .054 .979
Std. Math Score (Grade 7) 15.9 .061 .985
Std. Reading Score (Grade 7) 16.0 .057 .971
1(Gifted in Math) 15.8 .136 .343
1(Gifted in Reading) 15.8 .133 .339

Student Behavior

1(Daily HW Hours < 1) 17.3 .267 .442
1(Daily HW Hours >= 1 and < 3) 17.2 .463 .499
1(Daily HW Hours >= 3) 17.3 .239 .426
1(Ignore Homework) 17.3 .013 .114
1(Daily TV Hours < 1) 17.3 .226 .418
1(Daily TV Hours ≈ 2) 17.3 .270 .444
1(Daily TV Hours ≈ 3) 17.3 .222 .416
1(Daily TV Hours >= 4 and <= 5) 17.3 .160 .367
1(Daily TV Hours >= 6) 17.3 .091 .287
1(Daily Free Reading Hours <= 1/2) 17.2 .489 .500
1(Daily Free Reading Hours ≈ 1) 17.2 .215 .411
1(Daily Free Reading Hours > 1 and <= 2) 17.2 .110 .313
1(Daily Free Reading Hours >= 2) 17.2 .055 .227

Family Background Characteristics

1(Highest Parent Education = HS Graduate) 0.00 .221 .415
1(Highest Parent Education = Some College) 0.00 .131 .337
1(Highest Parent Education = Community College) 0.00 .163 .370
1(Highest Parent Education = 4-Yr College Graduate) 0.00 .223 .417
1(Highest Parent Education = Graduate School) 0.00 .104 .306
1(Free/Reduced Price Lunch Eligible) 0.00 .596 .491
1(Limited English Proficiency) 0.54 .027 .161
1(Ever Limited English Proficient) 0.00 .062 .242

Parental Beliefs/Desires

[None]

Outcomes

1(High School Graduate) 0.00 .760 .427
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Table A19—: Summary Statistics for School Characteristics in North Carolina Administrative
Data

Variable % Imputed Mean Std. Dev.

School Characteristics (Treated as elements of Z2s)

# of Books Per Student 0.41 10.85 6.74
1(Magnet School) 0.00 .064 .244
1(Charter School) 0.00 .007 .083
% of Teachers with Advanced Degrees 0.79 .249 .079
% of Classrooms Taught by “High Quality” Teachers 0.03 .956 .060
Teacher Turnover Rate 0.87 .214 .081
Total School Enrollment 0.03 1323 581
Student-to-Teacher Ratio 0.03 15.5 2.02

Neighborhood Characteristics

1(Remote Rural) 0.00 .028 .166
1(Distant Rural) 0.00 .160 .366
1(Fringe Rural) 0.00 .284 .451
1(Remote Town) 0.00 .006 .078
1(Distant Town) 0.00 .075 .263
1(Fringe Town) 0.00 .050 .218
1(Small Suburb) 0.00 .006 .076
1(Mid-Sized Suburb) 0.00 .049 .216
1(Large Suburb) 0.00 .096 .295
1(Small City) 0.00 .072 .259
1(Midsize City) 0.00 .086 .281
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Table A20—: Decomposition of Variance in Latent Index Determining High School Graduation
from the NC, NELS88, and ELS2002 Datasets (Baseline and Full Specifications)

NC NELS88 gr8 ELS2002

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.913 0.913 0.812 0.812 0.891 0.904
Var(Yi−Ys) (0.021) (0.014) (0.019) (0.019) (0.014) (0.015)

Observable Student-Level (Within): 0.123 0.229 0.145 0.201 0.125 0.213
Var((Xi−Xs)B) (0.004) (0.005) (0.013) (0.014) (0.012) (0.015)

Unobservable Student-Level (Within) 0.790 0.684 0.667 0.611 0.767 0.690
Var(vsi− vs) (0.018) (0.010) (0.020) (0.019) (0.016) (0.017)

Between School:
Total 0.087 0.087 0.188 0.188 0.109 0.097
Var(Ys) (0.021) (0.014) (0.019) (0.019) (0.014) (0.015)

Observable Student-Level: 0.018 0.033 0.057 0.069 0.031 0.054
Var(XsB) (0.001) (0.003) (0.012) (0.012) (0.005) (0.007)

Student-Level/
School-Level Covariance 0.017 0.012 0.042 0.035 0.029 0.010
2∗Cov(XsB,XsG1 +Z2sG2) (0.004) (0.005) (0.018) (0.019) (0.010) (0.013)

School-Avg. Student-Level/
School Char. Covariance -0.016 -0.007 0.016 0.015 0.007 0.006
2∗Cov(XsG1,Z2sG2) (0.011) (0.005) (0.007) (0.007) (0.011) (0.011)

School-Avg. Student-Level 0.017 0.011 0.025 0.024 0.010 0.006
Var(XsG1) (0.010) (0.005) (0.010) (0.007) (0.012) (0.011)

School Char. 0.018 0.010 0.011 0.006 0.012 0.009
Var(Z2sG2) (0.008) (0.004) (0.008) (0.007) (0.010) (0.009)

Unobservable School-Level 0.033 0.027 0.038 0.038 0.023 0.012
Var(vs) (0.013) (0.008) (0.008) (0.008) (0.002) (0.000)

The table reports fractions of the total variance of the latent index that determines high
school graduation.
The rows labels indicate the variance component.
Bootstrap standard errors based on resampling at the school level are in parentheses.
Online Appendices A9 and A10 discuss estimation of model parameters and the variance
decompositions.
The columns headed NC refers to a variance decomposition that uses the 9th grade school
as the group variable for schools in North Carolina.
NELS88 gr8 is based on the NELS88 sample and refers to a decomposition that uses the
8th grade school as the group variable.
ELS2002 is based on the ELS2002 sample and refers to a decomposition that uses the 10th
grade school as the group variable.
For each data set the variables in the baseline model and the full model are specified in
Table 1
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Table A21—: Decomposition of Variance in Latent Index Determining Enrollment in a Four-Year
College from the NLS72, NELS88, and ELS2002 Datasets (Baseline and Full Specifications)

NLS72 NELS88 gr8 ELS2002

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.861 0.861 0.775 0.777 0.786 0.793
Var(Yis−Ys) (0.012) (0.012) (0.017) (0.017) (0.069) (0.066)

Observable Student-Level (Within): 0.170 0.354 0.170 0.261 0.180 0.327
Var((Xsi−Xs)B) (0.010) (0.012) (0.012) (0.013) (0.257) (0.201)

Unobservable Student-Level (Within) 0.691 0.507 0.606 0.517 0.606 0.466
Var(vsi− vs) (0.014) (0.013) (0.018) (0.016) (0.189) (0.137)

Between School:
Total 0.139 0.139 0.225 0.223 0.214 0.207
Var(Ys) (0.012) (0.012) (0.017) (0.017) (0.069) (0.066)

Observable Student-Level: 0.041 0.062 0.071 0.104 0.073 0.122
Var(XsB) (0.005) (0.006) (0.015) (0.015) (0.025) (0.040)

Student-Level/
School-Level Covariance 0.036 0.032 0.078 0.047 0.072 0.042
2∗Cov(XsB,XsG1 +Z2sG2) (0.007) (0.009) (0.014) (0.016) (0.024) (0.016)

School-Avg. Student-Level/
School Char. Covariance -0.003 -0.004 0.006 0.008 -0.001 -0.001
2∗Cov(XsG1,Z2sG2) (0.006) (0.005) (0.006) (0.005) (0.008) (0.006)

School-Avg. Student-Level 0.018 0.012 0.021 0.025 0.017 0.007
Var(XsG1) (0.006) (0.005) (0.006) (0.006) (0.011) (0.007)

School Char. 0.027 0.018 0.017 0.015 0.019 0.014
Var(Z2sG2) (0.006) (0.005) (0.006) (0.005) (0.010) (0.008)

Unobservable School-Level 0.021 0.020 0.032 0.024 0.033 0.023
Var(vs) (0.006) (0.006) (0.006) (0.005) (0.008) (0.005)

The table reports fractions of the total variance of the latent index that determines enroll-
ment in a 4-year college two years after high school graduation.
The rows labels indicate the variance component.
Bootstrap standard errors based on resampling at the school level are in parentheses.
NLS72 refers to a variance decomposition that employs NLS72 data and uses the 12th
grade school as the group variable.
See the note to Online Appendix Table A20 for additional details.
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Table A22—: Decomposition of Variance in Years of Post-Secondary Education and Adult Log
Wages using NLS72 (Baseline and Full Specifications)

Yrs. Postsec. Ed.
Perm. Wages Perm. Wages

No Post-sec Ed. w/ Post-sec Ed.

Fraction of Variance Baseline Full Baseline Full Baseline Full

Within School:
Total 0.899 0.901 0.831 0.826 0.844 0.839
Var(Yis−Ys) (0.008) (0.008) (0.021) (0.021) (0.024) (0.012)

Observable Student-Level (Within): 0.146 0.271 0.138 0.184 0.113 0.137
Var((Xsi−Xs)B) (0.006) (0.007) (0.012) (0.014) (0.012) (0.012)

Unobservable Student-Level (Within) 0.753 0.630 0.694 0.642 0.731 0.703
Var(vsi− vs) (0.009) (0.008) (0.023) (0.024) (0.026) (0.013)

Between School:
Total 0.101 0.099 0.169 0.174 0.156 0.161
Var(Ys) (0.008) (0.008) (0.021) (0.021) (0.024) (0.012)

Observable Student-Level: 0.038 0.056 0.044 0.056 0.029 0.036
Var(XsB) (0.003) (0.004) (0.006) (0.007) (0.005) (0.006)

Student-Level/
School-Level Covariance 0.036 0.027 0.031 0.029 0.020 0.021
2∗Cov(XsB,XsG1 +Z2sG2) (0.005) (0.006) (0.009) (0.010) (0.009) (0.009)

School-Avg. Student-Level/
School Char. Covariance 0.001 0.001 0.005 0.007 0.003 0.007
2∗Cov(XsG1,Z2sG2) (0.002) (0.002) (0.010) (0.009) (0.013) (0.011)

School-Avg. Student-Level 0.013 0.007 0.019 0.013 0.018 0.015
Var(XsG1) (0.004) (0.002) (0.011) (0.009) (0.013) (0.005)

School Char. 0.002 0.000 0.025 0.028 0.032 0.033
Var(Z2sG2) (0.002) (0.001) (0.010) (0.011) (0.012) (0.005)

Unobservable School-Level 0.011 0.009 0.045 0.042 0.053 0.048
Var(vs) (0.003) (0.002) (0.016) (0.015) (0.019) (0.006)

The table reports fractions of the total variance of years of postsecondary education, per-
manent wages controlling for year of post secondary education, and permanent wages not
controlling for years of post secondary education.
Bootstrap standard errors based on re-sampling at the school level are in parentheses.
See the note to Online Appendix Table A20 for additional details.
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Table A23—: Potential Bias from Violations of Assumption 6.2

Maximum Bias µ:Max. Bias µ:Zero Bias
ρ maxµ µ +2ρ

√
µ argmaxµ µ +2ρ

√
µ µ0(ρ)

-0.1 -0.01 0.01 0.04
-0.2 -0.04 0.04 0.16
-0.3 -0.09 0.09 0.36
-0.4 -0.16 0.16 0.64
-0.5 -0.25 0.25 1
-0.6 -0.36 0.36 1.45
-0.7 -0.49 0.49 1.96
-0.8 -0.64 0.64 2.56
-0.9 -0.81 0.81 3.23
-1 -1 1 4


