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PROOF APPENDIX

In this proof appendix, we first prove two intermediate results that (i) de-
scribe the stationary distribution for a finite S (Lemma 1), and, (ii) describe
the limit of the steady-state value of the wage w and the entry/exit threshold
s∗ when S goes to infinity (Lemma 2). This is given in Appendix B.B1. We then
prove Proposition 1, giving the value and policy functions of an incumbent firm
at the steady-state, in Appendix B.B2. We then prove Corollary 2 giving the sta-
tionary distribution when S → ∞. In Appendix B.B4, we prove Proposition
2, giving the ergodic behavior of the firm productivity distribution for the case
without entry and exit. In Appendix B.B5, we state and prove a general theorem
that extends Theorem 2 to the case with entry and exit. We then prove Propo-
sition 3. We then find the asymptotic value of the ratio between the number
of incumbents and the number of potential entrants, when the former goes to
infinity (Appendix B.B7). This intermediate result will be used in the the proof
of Propositions 4 and 5 in Appendix B.B8. Finally, we prove Proposition 6 that
solve for the value and policy function under Assumption 3. This last proof
involves two intermediate results, Lemma 3 and 4.
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B1. Preliminary Results

Lemma 1 For a given S, if (i) the entrant distribution is Pareto (i.e Gs =

Ke (ϕ
s)−δe) and (ii) the productivity process follows Gibrat’s law (Assumption

1) with parameters a and c on the grid defined by ϕ, then the stationary distri-
bution (i.e when Vartǫt+1 = 0) is:
For s∗ ≤ s ≤ S:

µs = P{ϕ = ϕs} =MKeC1

(
ϕs

ϕs∗

)−δ

+MKeC2 (ϕ
s)−δe +MKeC3

and µs∗−1 = a
(
µs∗ +MKe

(
ϕs∗
)−δe

)
and µs = 0 for s < s∗ − 1.

Where δ = log(a/c)
log(ϕ) and C1, C2, C3 are constants, independent of s, and where

C1 =
c
(
a(ϕ−δe )S+2−a(ϕ−δe )s

∗−c(ϕ−δe )S+3+c(ϕ−δe)s
∗
)

a(1−ϕ−δe )(a−c)(aϕ−δe−c)
,C2 =

(a(ϕ−δe )2+bϕ−δe+c)
(a(ϕ−δe )2−ϕ−δe (a+c)+c)

and

C3 =
−(ϕ−δe )S+1

(1−ϕ−δe )(a−c)
.

Proof: To find the stationary distribution of the Markovian process described
by the transition matrix P , we need to solve for µ in µ = (P ∗

t )
′(µ +MG) where

P is given by assumption 1 and where µ is the (S × 1) vector (µ1, . . . , µS)
′. For

simplicity, we assumeM = 1.

The matrix equation µ = (P ∗
t )

′(µ +MG) can be equivalently written as the
following system of equations:

For s < s∗ − 1:

(B1) µs = 0

For s = s∗ − 1:

(B2) µs∗−1 = a(µs∗ +Gs∗)

For s = s∗:

(B3) µs∗ = b(µs∗ +Gs∗) + a(µs∗+1 +Gs∗+1)

For s = S:

(B4) µS = c(µS−1 +GS−1) + (b+ c)(µS +GS)

For s∗ + 1 ≤ s ≤ S − 1:

(B5) µs = c(µs−1 +Gs−1) + b(µs +Gs) + a(µs+1 +Gs+1)
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The system of Equations B3, B4 and B5 gives a linear second order difference
equation with two boundary conditions. The system has a exogenous term
given by the distribution of entrants G. For this system, we define the associ-
ated homogeneous system by the same equations with Gs = 0,∀s. To solve for
a linear second order difference equation, we follow four steps: (i) Solve for the
general solution of the homogeneous system; these solutions are parametrized
by two constants (ii) Find one particular solution for the full system (iii) The
general solution of the full system is then given by the sum of the general so-
lution of the homogeneous system and the particular solution we have found
(iv) Solve for the undetermined coefficient using the boundary conditions.

The recurrence equation of the homogeneous system is equivalent to cµs−1−
(a + c)µs + aµs+1 = 0 since b = 1 − a − c. To find the general solution of this
equation, let us solve for the root of the polynomial aX2 − (a + c)X + c. This
polynomial is equal to a(X − c/a)(X − 1) and thus its roots are r1 = c/a and 1.
The general solution of the homogeneous system associated to Equation B5 is
then µs = A(c/a)s +B where A and B are constants.

Using the form of the entrant distribution Gs = Ke(ϕ
−δe)s, and assuming

that ϕ−δe 6= a
c , a particular solution is Ke

a(ϕ−δe )2+bϕ−δe+c
a(ϕ−δe )2−(a+c)ϕ−δe+c

(ϕ−δe)s.

The general solution of the second order linear difference equation is then

A(c/a)s +B +Ke
a(ϕ−δe)2 + bϕ−δe + c

a(ϕ−δe)2 − (a+ c)ϕ−δe + c
(ϕ−δe)s

By substituting this general solution in the boundary condition B3 and B4, we
find

A = Ke

( c
a

)−s∗ c
(
a(ϕ−δe)S+2 − a(ϕ−δe)s

∗ − c(ϕ−δe)S+3 + c(ϕ−δe)s
∗
)

a(1− ϕ−δe)(a− c)(aϕ−δe − c)

and

B = Ke
−(ϕ−δe)S+1

(1− ϕ−δe)(a− c)
.

Since the sth productivity level isϕs, then s = logϕs

logϕ and thus
(
c
a

)s
= (ϕs)

− log a/c
logϕ .

Let us define δ = log a/c
logϕ . The expression of the stationary distribution is then:

(B6) µs = KeC1

(
ϕs

ϕs∗

)
−δ

+KeC2 (ϕ
s)−δe +KeC3

for s∗ ≤ s ≤ S. The value of µs∗−1 is given by B2 and ∀s < s∗ − 1, µs = 0. �
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Lemma 2 The limits s∗ and w of s∗ and w when S goes to infinity satisfy w =(
α

1
1−αA∞

) 1−α
γ(1−α)+1

where

A

M
−→
S→∞

A∞

with

A
∞ :=a(ϕs∗−1)

1
1−α

(

(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(

ϕ
s∗
)

−δe
)

+ . . .

. . .+ (ϕδe − 1)C∞

1

(

ϕ
1

1−α

)s∗

1− ϕ
−δ+ 1

1−α

+ (ϕδe − 1)C2

(

ϕ
−δe+

1
1−α

)s∗

1− ϕ
−δe+

1
1−α

and C2 =
(a(ϕ−δe )2+bϕ−δe+c)

(a(ϕ−δe )2−ϕ−δe(a+c)+c)
, as defined in Lemma 1 and C∞

1 =

c
a

(ϕ−δe )s
∗

(1−ϕ−δe )(c−aϕ−δe )

Proof: To show this lemma, let us first note that w =
(
α

1
1−α A

M

) 1−α
γ(1−α)+1

and

let us take the limit of A
M when S goes to infinity. For a given S, let us look at the

expression of A:

A =
S∑

s=1

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α µs∗−1 +
S∑

s=s∗
(ϕs)

1
1−α µs

=(ϕs∗−1)
1

1−α a

(
MKeC1 +MKeC2

(
ϕs∗

)
−δe

+MKeC3 +MKe(ϕ
s∗ )−δe

)

+
S∑

s=s∗
(ϕs)

1
1−α

(
MKeC1

(
ϕs

ϕs∗

)
−δ

+MKeC2 (ϕ
s)−δe +MKeC3

)

By dividing both sides by M , we get

A

M
=a(ϕs∗−1)

1
1−α

(
KeC1 +KeC2

(
ϕs∗

)
−δe

+KeC3 +Ke(ϕ
s∗ )−δe

)

+KeC1

(
ϕs∗

)δ S∑

s=s∗

(
ϕ
−δ+ 1

1−α

)s
+KeC2

S∑

s=s∗

(
ϕ
−δe+

1
1−α

)s
+KeC3

S∑

s=s∗
(ϕ

1
1−α )s

=a(ϕs∗−1)
1

1−α

(
KeC1 +KeC2

(
ϕs∗

)
−δe

+KeC3 +Ke(ϕ
s∗ )−δe

)

+KeC1

(
ϕs∗

)δ
(
ϕ
−δ+ 1

1−α

)s∗
−
(
ϕ
−δ+ 1

1−α

)S+1

1− ϕ
−δ+ 1

1−α

+KeC2

(
ϕ
−δe+

1
1−α

)s∗
−
(
ϕ
−δe+

1
1−α

)S+1

1− ϕ
−δe+

1
1−α

+KeC3
(ϕ

1
1−α )s

∗ − (ϕ
1

1−α )S+1

1− ϕ
1

1−α

Since ϕ > 1, δ(1−α) > 1 and δe(1−α) > 1, we have that − δe
δ + 1

δ(1−α) < 0 and
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−1+ 1
δ(1−α) < 0. This implies that both

(
ϕ−δ+ 1

1−α

)S
and

(
ϕ−δe+

1
1−α

)S
converge

to zero when S goes to infinity. We also have that

C3(ϕ
1

1−α )S =
−(ϕ−δe )S+1

(1− ϕ−δe)(a − c)
(ϕ

1
1−α )S =

−ϕ−δe (ϕ
−δe+

1
1−α )S

(1− ϕ−δe)(a − c)
−→
S→∞

0

Putting these results together yields

A

M
−→
S→∞

A∞ := a(ϕs∗−1)
1

1−α

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(
ϕs∗

)
−δe

)

+ (ϕδe − 1)C∞

1

(
ϕ

1
1−α

)s∗

1− ϕ
−δ+ 1

1−α

+ (ϕδe − 1)C2

(
ϕ
−δe+

1
1−α

)s∗

1− ϕ
−δe+

1
1−α

�

B2. Proof of Proposition 1

In this section we prove Proposition 1. We first solve for the value and the
policy function for the general case of a finite S and then present the simpler
special case - given in the main text - when S goes to infinity.

INSTANTANEOUS PROFIT:

It is easy to show that instantaneous profit is equal to

π∗(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α
1−α

(1− α)− cf

Note that this is a function of µ through the equilibrium wagew. In the station-
ary equilibrium this wage is fixed. In the following we will drop the notation µ
whenever no confusion arises from this.

BELLMAN EQUATION:

In the stationary equilibrium, the Bellman equation is given by

Vs = (ϕs)
1

1−α

(α
w

) α
1−α

(1− α)− cf + βmax {0, aVs−1 + bVs + cVs+1}

where Vs = V (µ,ϕs). The policy function of this problem follows a threshold
rule: there exist a s∗ such that

Vs = (ϕs)
1

1−α

(α
w

) α
1−α

(1− α)− cf + β (aVs−1 + bVs + cVs+1) for s ≥ s∗

Vs = (ϕs)
1

1−α

(α
w

) α
1−α

(1− α)− cf for s ≤ s∗ − 1
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FOR s ≥ s∗:

Let us first look at the case when s ≥ s∗. We want to solve for the following
second order linear difference equation:

(B7) aVs−1 +

(
1− a− c− 1

β

)
Vs + cVs+1 =

cf
β

− (ϕs)
1

1−α

(α
w

) α
1−α 1− α

β

which is associated with the homogeneous equation

(B8) aVs−1 +

(
1− a− c− 1

β

)
Vs + cVs+1 = 0

This homogeneous equation is associated with the polynomial cX2+
(
1− a− c− 1

β

)
X+

a which has discriminant ∆ =
(
1− a− c− 1

β

)2
− 4ca =

(
β−1
β

)2
+ (a − c)2 +

2(a+ c)1−β
β > 0. Thus, this polynomial has two real roots:

r1 =
(a+ c+ 1

β − 1) +
√
∆

2c
and r2 =

(a+ c+ 1
β − 1)−

√
∆

2c

Since a− c+ 1
β − 1 > 0 it is trivial to show that r2 < 1 < r1. The general solution

of the homogeneous Equation B8 is

Vs = K1r
s
1 +K2r

s
2

where K1 and K2 are (for now) undetermined constants.

To find the general solution of the Equation B7, we need to find a particular
solution of this equation. A particular solution of Equation B7 is

Vs = − cf
1− β

+ (ϕs)
1

1−α

(α
w

) α
1−α 1− α

1− ρβ

where ρ = aϕ
−1
1−α + b+ cϕ

1
1−α .

The general solution of Equation B7 takes the following form

V GS
s = K1r

s
1 +K2r

s
2 −

cf
1− β

+ (ϕs)
1

1−α

(α
w

) α
1−α 1− α

1− ρβ

whereK1 andK2 are constants to be solved for. To solve for these constants we
use the boundary conditions.
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AT s = s∗,

the value function of a firms satisfies

aVs∗−1 +

(
1− a− c− 1

β

)
V GS
s∗ + cV GS

s∗+1 =
cf
β

−
(
ϕs∗
) 1

1−α
(α
w

) α
1−α 1− α

β

with Vs∗−1 =
(
ϕs∗−1

) 1
1−α

(
α
w

) α
1−α (1− α)− cf . Note that V GS

s also satisfies

aV GS
s∗−1 +

(
1− a− c− 1

β

)
V GS
s∗ + cV GS

s∗+1 =
cf
β

−
(
ϕs∗
) 1

1−α
(α
w

) α
1−α 1− α

β

It follows that V GS
s∗−1 = Vs∗−1, which yields

K1r
s∗−1
1 +K2r

s∗−1
2 − cf

1− β
+
(
ϕs∗−1

) 1
1−α

(α
w

) α
1−α 1− α

1− ρβ
=
(
ϕs∗−1

) 1
1−α

(α
w

) α
1−α

(1−α)−cf

After rearranging terms we get

(B9) K1r
s∗−1
1 +K2r

s∗−1
2 = β

cf
1− β

− βρ
(
ϕs∗−1

) 1
1−α

(α
w

) α
1−α 1− α

1− ρβ

AT s = S ,

the value function at level ϕS , VS , satisfies

aV GS
S−1 + (1− a− c+ c)VS =

1

β
VS +

cf
β

− 1− α

β

(α
w

) α
1−α

(
ϕ

1
1−α

)S

Solving for VS yields

VS =
1

1− 1
β − a

(
cf
β

− 1− α

β

(α
w

) α
1−α

(
ϕ

1
1−α

)S
− aV GS

S−1

)
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which implies

VS =
1

1− 1
β
− a

(
cf

β
− 1− α

β

(α
w

) α
1−α

(
ϕ

1
1−α

)S
− a(K1r

S−1
1 +K2r

S−1
2 ) + a

cf

1− β
− a

(
ϕS−1

) 1
1−α

(α
w

) α
1−α 1− α

1− ρβ

)

VS =
1

1− 1
β
− a


cf

(
1

β
+ a

1

1− β

)
− (1− α)

( α

w

) α
1−α

(
ϕ

1
1−α

)S

 1

β
+ a

ϕ
−1
1−α

1− βρ


− a(K1r

S−1
1 +K2r

S−1
2 )




VS =
1

1− 1
β
− a


cf

( 1
β
− 1 + a

1− β

)
− (1− α)

( α

w

) α
1−α

(
ϕ

1
1−α

)S

 1

β
+ a

ϕ
−1
1−α

1− βρ


− a(K1r

S−1
1 +K2r

S−1
2 )




VS =
1

1− 1
β
− a


cf

( 1
β
− 1 + a

1− β

)
− (1− α)

( α

w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− βρ


− a(K1r

S−1
1 +K2r

S−1
2 )




VS =
−cf

1− β
− 1− α

1− βρ

( α

w

) α
1−α

(
ϕ

1
1−α

)S



1
β
− ρ+ aϕ

−1
1−α

1− 1
β
− a


− a(K1r

S−1
1 +K2r

S−1
2 )

AT s = S − 1,

we have

aV GS
S−2 +

(
1− a− c− 1

β

)
V GS
S−1 + cVS =

cf
β

−
(
ϕS−1

) 1
1−α

(α
w

) α
1−α 1− α

β

but, at the same time

aV GS
S−2 +

(
1− a− c− 1

β

)
V GS
S−1 + cV GS

S =
cf
β

−
(
ϕS−1

) 1
1−α

(α
w

) α
1−α 1− α

β

it follows that VS = V GS
S and thus

−cf

1 − β
−

1 − α

1 − βρ

(
α

w

) α
1−α

(
ϕ

1
1−α

)S




1
β

− ρ + aϕ

−1
1−α

1 − 1
β

− a


 − a(K1r

S−1
1

+ K2r
S−1
2

) = K1r
S
1 + K2r

S
2 −

cf

1 − β
+
(
ϕ
S
) 1
1−α

(
α

w

) α
1−α

1 − α

1 − ρβ

⇔

−
1 − α

1 − βρ

(
α

w

) α
1−α

(
ϕ

1
1−α

)S




1
β

− ρ + aϕ

−1
1−α

1 − 1
β

− a


 −

(
ϕ
S
) 1
1−α

(
α

w

) α
1−α

1 − α

1 − ρβ
= K1r

S
1 + K2r

S
2 + a(K1r

S−1
1

+ K2r
S−1
2

)

⇔

(1 + ar
−1
1

)K1r
S
1 + (1 + ar

−1
2

)K2r
S
2 = −

1 − α

1 − βρ

(
α

w

) α
1−α

(
ϕ

1
1−α

)S




1
β

− ρ + aϕ

−1
1−α

1 − 1
β

− a
+ 1




which yields
(B10)

(1+ar−1
1 )K1r

S
1+(1+ar−1

2 )K2r
S
2 = − 1− α

1− βρ

(α
w

) α
1−α

(
ϕ

1
1−α

)S
(
a(ϕ

−1
1−α − 1) + 1− ρ

1− 1
β − a

)
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SOLVING FOR K1 AND K2:

Equations B9 and B10 form a system of two equations in two unknowns.
Solving this system gives K1 and K2 and thus the full solution of the incum-
bent’s value function over the state space Φ. Let us rewrite the system of Equa-
tions B9 and B10 as

K1r
s∗−1
1 +K2r

s∗−1
2 = A− βρ

(
ϕs∗−1

) 1
1−α

B

(1 + ar−1
1 )K1r

S
1 + (1 + ar−1

2 )K2r
S
2 = −κ

(
ϕ

1
1−α

)S
B

where A = β
cf
1−β , B =

(
α
w

) α
1−α 1−α

1−ρβ and κ = a(ϕ
−1
1−α −1)+1−ρ

1− 1
β
−a

. It is obvious to

show that

K1(s
∗) =

(1 + ar−1
2 )rS−s∗+1

2

(
A− βρ

(
ϕs∗−1

) 1
1−α B

)
+ κ

(
ϕ

1
1−α

)S
B

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

K2(s
∗) =

(1 + ar−1
1 )rS−s∗+1

1

(
A− βρ

(
ϕs∗−1

) 1
1−α B

)
+ κ

(
ϕ

1
1−α

)S
B

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2

or, after substituting the expression for A,B and κ,

K1(s
∗, w) =

(1 + ar−1
2 )rS−s∗+1

2

(
β

cf
1−β

− βρ
(
ϕs∗−1

) 1
1−α ( α

w

) α
1−α 1−α

1−ρβ

)
+ a(ϕ

−1
1−α −1)+1−ρ

1− 1
β
−a

(
ϕ

1
1−α

)S (
α
w

) α
1−α 1−α

1−ρβ

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

K2(s
∗, w) =

(1 + ar−1
1 )rS−s∗+1

1

(
β

cf
1−β

− βρ
(
ϕs∗−1

) 1
1−α ( α

w

) α
1−α 1−α

1−ρβ

)
+

a(ϕ
−1
1−α −1)+1−ρ

1− 1
β
−a

(
ϕ

1
1−α

)S (
α
w

) α
1−α 1−α

1−ρβ

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2

Note that bothK1 andK2 are also function of the wage and the threshold s∗. It
follows that the unique solution of the Bellman equation is

Vs =

{
K1(s

∗, w)rs1 +K2(s
∗, w)rs2 −

cf
1−β + (ϕs)

1
1−α

(
α
w

) α
1−α 1−α

1−ρβ for s ≥ s∗

(ϕs)
1

1−α
(
α
w

) α
1−α (1− α)− cf for s ≤ s∗ − 1
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SOLVING FOR s∗:

Note that by definition s∗ is the smallest integer such that aVs∗−1 + bVs∗ +
cVs∗+1 ≥ 0 (i.e that aVs∗−2 + bVs∗−1 + cVs∗ < 0). Note also that

ars−1
1 + brs1 + crs+1

1 =
rs1
β

ars−1
2 + brs2 + crs+1

2 =
rs2
β

a
(
ϕ

1
1−α

)s−1
+ b

(
ϕ

1
1−α

)s
+ c

(
ϕ

1
1−α

)s+1
= ρ

(
ϕ

1
1−α

)s

by definition of r1, r2 and ρ. Using the above equations, it is easy to show that

aVs∗−1 + bVs∗ + cVs∗+1 =
1

β

(
K1(s

∗, w)rs
∗

1 +K2(s
∗, w)rs

∗
2

)
− cf

1− β
+ ρ

(
ϕs∗

) 1
1−α

(α
w

) α
1−α 1− α

1− ρβ

Solving for s̃∗ such that 1
β

(
K1(s̃

∗, w)rs̃
∗

1 +K2(s̃
∗, w)rs̃

∗

2

)
− cf

1−β+ρ
(
ϕs̃∗
) 1

1−α
(
α
w

) α
1−α 1−α

1−ρβ =

0 implies that s∗ = ⌈s̃∗⌉. This completes the characterization of the solution of
the Bellman equation. In order to obtain a more intuitive expression, we now
turn to the special case where S → ∞.

SOLUTION OF THE BELLMAN WHEN S → ∞:

Since r1 > ϕ
1

1−α > 1 > r2 (we know that ϕ
1

1−α > 1 > r2 and we have assumed

that r1 > ϕ
1

1−α i.e ϕ is small enough), it is easy to show that

K1(s
∗) =

(1 + ar−1
2 )rS−s∗+1

2

(
A− βρ

(
ϕs∗−1

) 1
1−α

B

)
+ κ

(
ϕ

1
1−α

)S
B

(1 + ar−1
2 )rS−s∗+1

2 rs
∗−1

1 − (1 + ar−1
1 )rS1

−→
S→∞

0

K2(s
∗) =

(1 + ar−1
1 )rS−s∗+1

1

(
A− βρ

(
ϕs∗−1

) 1
1−α

B

)
+ κ

(
ϕ

1
1−α

)S
B

(1 + ar−1
1 )rS−s∗+1

1 rs
∗−1

2 − (1 + ar−1
2 )rS2

−→
S→∞

A− βρ
(
ϕs∗−1

) 1
1−α

B

rs
∗−1

2

It follows that for s ≥ s∗

V S=∞
s =

(
A− βρ

(
ϕs∗−1

) 1
1−α

B

)
rs−s∗+1
2 − cf

1− β
+
(
ϕ

1
1−α

)s (α
w

) α
1−α 1− α

1− ρβ

where A = β
cf
1−β and B =

(
α
w

) α
1−α 1−α

1−ρβ and w and s∗ are the limits of, respec-

tively, w and s∗ when S goes to infinity. After substituting the expression of A



VOL. VOL NO. ISSUE ONLINE APPENDIX OF “LARGE FIRM DYNAMICS AND THE BUSINESS CYCLE” 11

andB and rearranging terms, the solution of the Bellman equation is, for all s:

V S=∞
s =

−cf
1− β

(
1− βr

[s−s∗+1]+

2

)
+

1− α

1− ρβ

(α
w

) α
1−α

(
ϕ

1
1−α

)s

1− ρβ

(
r2

ϕ
1

1−α

)[s−s∗+1]+



where [x]+ = |x|+x
2 = max(x, 0).

SOLVING FOR s∗ WHEN S → ∞:

Following the same steps as in the case S < ∞, it is easy to show that, for
s ≥ s∗,

aVs−1 + bVs + cVs+1 =
−cf
1− β

(
1− rs−s∗+1

2

)
+

1− α

1− ρβ

(α
w

) α
1−α

(
ϕ

1
1−α

)s

ρ− ρ

(
r2

ϕ
1

1−α

)[s−s∗+1]+



and thus, for s = s∗,

aVs∗−1 + bVs∗ + cVs∗+1 =
−cf
1− β

(1− r2) +
1− α

1− ρβ

(α
w

) α
1−α

(
ϕ

1
1−α

)s∗
ρ

(
1− r2

ϕ
1

1−α

)

It follows that aVs∗−1 + bVs∗ + cVs∗+1 ≥ 0 is equivalent to

s∗ ≥ (1− α)

log

[
cf (1−r2)(1−ρβ)

ρ(1−β)(1−α)α
α

1−α (1−r2ϕ
−1
1−α )

]

logϕ
+ α

logw

logϕ

Since s∗ is the smallest integer such that this inequality is satisfied, it follows
that

s∗ =



(1− α)

log

[
cf (1−r2)(1−ρβ)

ρ(1−β)(1−α)α
α

1−α (1−r2ϕ
−1
1−α )

]

logϕ
+ α

logw

logϕ




which complete the proof. �

B3. Proof of Corollary 2

In this appendix, we prove that the productivity stationary distribution is a
mixture of two distributions: (i) the stationary distribution associated with the
Markovian firm-level productivity process and (ii) the distribution of entrants.
These are weighted by the constants K1 and K2, respectively. Formally, we

show thatK1 = − c
a

(ϕδe−1)(ϕ−δe )s
∗

(1−ϕ−δe )(aϕ−δe−c)
andK2 =

(ϕδe−1)(a(ϕ−δe )2+bϕ−δe+c)
a(ϕ−δe )2−ϕ−δe (a+c)+c

(ϕs∗)−δe .

In the corollary in the main text, we only reported the value of the stationary
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productivity distribution for productivity levels above the entry/exit thresh-
olds. In this appendix, for completeness, we describe this distribution over the
full idiosyncratic state-space. We then show that:

µ̂s =





− c
a

(
ϕδe−1

)
(ϕ−δe )s

∗

(1−ϕ−δe )(aϕ−δe−c)

(
ϕs

ϕs∗

)
−δ

+

(
ϕδe−1

)(
a(ϕ−δe )2+bϕ−δe+c

)

a(ϕ−δe )2−ϕ−δe (a+c)+c
(ϕs)−δe if s ≥ s∗

a
(
ϕδe − 1

)(
−c/a

(1−ϕ−δe )(aϕ−δe−c)
+

a(ϕ−δe )2+bϕ−δe+c

a(ϕ−δe )2−(a+c)ϕ−δe+c
+ 1

)
(ϕs∗ )−δe if i = s∗ − 1

0 if s < s∗ − 1

with δ = log(a/c)
log(ϕ) .

The proof of this corollary builds on the result of Lemma 1 and then takes
the limit of this distribution when the maximum level of productivity goes to
infinity.

We first find the limit of constants Ke, C1, C2 and C3 as the number of pro-
ductivity bins S goes to infinity. After finding these limits, we take the limit of
Equation B6 in the previous lemma.

Let us first describe the asymptotic behavior of Ke. Recall that the entrant
distribution sums to one.1

1 =
S∑

s=1

Gs = Ke

S∑

s=1

(ϕs)−δe = Ke

S∑

s=1

(
ϕ−δe

)s
= Ke

ϕ−δe −
(
ϕ−δe

)S+1

1− ϕ−δe

Rearranging terms, it follows that

Ke =
1− ϕ−δe

ϕ−δe −
(
ϕ−δe

)S+1

Since ϕ > 1 and δe, δ > 0 we have
(
ϕ−δe

)S −→
S→∞

0 by applying these results

to the expression for Ke, it follows that Ke −→
S→∞

ϕδe − 1. Let us now focus

on the asymptotic behavior of C3, C2 and C1. From Lemma 1, we have C3 =
−(ϕ−δe )S+1

(1−ϕ−δe )(a−c)
−→
S→∞

0. We also have that

C2 :=

(
a(ϕ−δe )2 + bϕ−δe + c

)
(
a(ϕ−δe )2 − ϕ−δe (a+ c) + c

)

which is independent of S.
Finally, we have

C1 =
c
(
a(ϕ−δe )S+2 − a(ϕ−δe )s

∗ − c(ϕ−δe )S+3 + c(ϕ−δe)s
∗)

a(1 − ϕ−δe)(a − c)(aϕ−δe − c)

−→
S→∞

c
(
−a(ϕ−δe )s

∗
+ c(ϕ−δe)s

∗
)

a(1 − ϕ−δe )(a − c)(aϕ−δe − c)
=

c

a

−(a− c)(ϕ−δe )s
∗

(1− ϕ−δe)(a − c)(aϕ−δe − c)

1The way we define the model, we assume that G sums to one. We also assume that the number of
potential entrants in bin s is MGs, so that the total number of potential entrants is M .
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and therefore

C1 −→
S→∞

C∞

1 :=
c

a

(ϕ−δe )s
∗

(1 − ϕ−δe )(c− aϕ−δe )

We have just found the limit of Ke, C1, C2 and C3 when S goes to infinity. We
then apply these results to the stationary distribution by taking S to infinity.
According to Lemma 1, we have for s∗ ≤ s:

µs

M
= KeC1

(
ϕs

ϕs∗

)
−δ

+KeC2(ϕ
s)−δe +KeC3

We have just shown that when S goes to infinity, the stationary distribution
is given by:

µs

M
=
(
ϕδe − 1

) c

a

(ϕ−δe )s
∗

(1− ϕ−δe )(c− aϕ−δe )

(
ϕs

ϕs∗

)
−δ

+
(
ϕδe − 1

) (
a(ϕ−δe )2 + bϕ−δe + c

)
(
a(ϕ−δe )2 − ϕ−δe(a + c) + c

) (ϕs)−δe

�

B4. Proof of Proposition 2

Proposition 2 claims that for the no entry and exit case and under Assump-
tion 1, the unconditional mean of µt is given by

E [µs,t] = µs = N
1− ϕ−δ

ϕ−δ(1− (ϕS)−δ)
(ϕs)−δ

where δ = log(a/c)
log(ϕ) . Furthermore, the unconditional variance-covariance matrix

of µt is

Var [µt] =

∞∑

k=0

(P ′)k
(

S∑

s=1

µsWs

)
P k

whereP is the transition matrix for firm-level productivity, and,Ws = diag(Ps,.)−
P

′

s,.Ps,. where Ps,. denotes the sth-row of the transition matrix P in Assumption

1. Where for 1 < s < S, Ws =

(
0 0 0
0 Σ 0
0 0 0

)
with Σ =

(
a(1− a) −ab −ac

−ab b(1− b) −bc

−ac −bc c(1− c)

)
,

while W1 =

(
Σ(1) 0
0 0

)
with Σ(1) =

(
c(1− c) −c(1− c)
−c(1− c) c(1− c)

)
, and, WS =

(
0 0

0 Σ(S)

)

with Σ(S) =

(
a(1− a) −a(1− a)
−a(1− a) a(1− a)

)
.

Proof:

Let us define fk,st+1 as the number of firms in state k at t + 1 that were in state

s at t. Under Assumption 1, it is easy to show that, for 1 < s < S, fk,st+1 = 0 for

both k > s+ 1 and k < s − 1. Similarly, we have fk,1t+1 = 0 for k > 2 and fk,St+1 for
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k < S − 1. It is easy to see that

µ1,t+1 = f1,1t+1 + f1,2t+1 for s = 1

µs,t+1 = f s,s−1
t+1 + f s,st+1 + f s,s+1

t+1 for 1 < s < S

µS,t+1 = fS,S−1
t+1 + fS,St+1 for s = S

As in the proof of Theorem 1, the vector f .,st+1 = (f s−1,s
t+1 , f s,st+1, f

s+1,s
t+1 )′ is dis-

tributed according to a multinomial distribution with number of trials µs,t and
probability of events (a, b, c)′. As the number of firms in productivity state s
becomes large, we can approximate this multinomial distribution with a nor-
mal distribution (see Severini 2005, p377 example 12.7). It follows that, for
1 < s < S, we have:

f .,s
t+1 =



fs−1,s
t+1

fs,s
t+1

fs+1,s
t+1


 N


µs,t



a
b
c


 ;µs,tΣ


 where Σ =



a(1 − a) −ab −ac
−ab b(1 − b) −bc
−ac −bc c(1− c)




Similarly for s = 1, we have

f .,1
t+1 =

(
f1,1
t+1

f2,1
t+1

)
 N

(
µ1,t

(
1− c
c

)
;µ1,tΣ1

)
where Σ1 =

(
c(1− c) −c(1− c)
−c(1− c) c(1− c)

)

and for s = S, we have

f .,S
t+1 =

(
fS−1,S
t+1

fS,S
t+1

)
 N

(
µS,t

(
a

1− a

)
;µS,tΣS

)
where ΣS =

(
a(1 − a) −a(1 − a)
−a(1 − a) a(1− a)

)

It follows that we can rewrite the vector f .,st+1 as

f .,1t+1 = µ1,t

(
1− c
c

)
+

√
µ1,tǫ

.,1
t+1

f .,st+1 = µs,t



a
b
c


+

√
µs,tǫ

.,s
t+1 for 1 < s < S

f .,St+1 = µS,t

(
a

1− a

)
+
√
µS,tǫ

.,S
t+1

where ǫ.,1t+1  N (0,Σ1), ǫ
.,s
t+1  N (0,Σ) for 1 < s < S, and, ǫ.,St+1  N (0,ΣS).

Note that the ǫ.,st+1 are then independent of the µs,t. Let us introduce some no-
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tation that turns out to be useful:

Is ≡




0 0 0
...

...
...

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
...

...
...

0 0 0




and I1 ≡




1 0
0 1
0 0
...

...
0 0




and IS ≡




0 0
...

...
0 0
1 0
0 1




where the sth row of Is is (0, 1, 0). With this notation, it is easy to see that

µt =

S∑

s=1

Isf
.,s
t+1

= µ1,tI1

(
1− c
c

)
+

S−1∑

s=2

µs,tIs



a
b
c


+ µS,tIS

(
a

1− a

)
+

S∑

s=1

Is
√
µs,tǫ

.,s
t+1

from which it follows that

(B11) µt = P ′µt +
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

where P is the transition matrix of the idiosyncratic productivity process in As-
sumption 1, es is the sth base vector, and,

√
µt = (

√
µ1,t, . . . ,

√
µs,t, . . . ,

√
µS,t)

′.

Let us call the vector µ = E [µt], the unconditional expectation of the pro-
ductivity distribution µt. From Equation B11 it is easy to show that µ satisfies
µ = P ′µ. Using a similar approach to the proof of Corollary 2 and the fact that∑S

s=1 µs = N , one can show that

µs = E [µs,t] = N
1− ϕ−δ

ϕ−δ(1− (ϕS)−δ)
(ϕs)−δ

To compute the unconditional variance-covariance matrix of µt, let us take
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the variance of Equation B11:

Var [µt] =Var

[
P ′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= Cov

[
P ′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);P
′µt +

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= Cov
[
P ′µt;P

′µt
]
+ Cov

[
P ′µt;

S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]
+ Cov

[
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);P
′µt

]
. . .

. . .+ Cov

[
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es);
S∑

s=1

(Isǫ
.,s
t+1)(

√
µt

′es)

]

= P ′
Var [µt]P +

S∑

s=1

P ′
Cov

[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
]
+

S∑

s=1

(
P ′

Cov
[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
])

′

. . .

. . .+
S∑

s=1

S∑

s′=1

Cov
[
(Isǫ

.,s
t+1)(

√
µt

′es); (Is′ ǫ
.,s′
t+1)(

√
µt

′es′)
]

Note thatE
[
(Isǫ

.,s
t+1)(

√
µt

′es)
]
= IsE

[
(ǫ.,st+1)(

√
µt

′)
]
es = IsE

[
(ǫ.,st+1)

]
E
[
(
√
µt

′)
]
es =

0 since E
[
ǫ.,st+1

]
= 0, and, ǫ.,st+1 and µt are independent. Let us look at the second

and third term of the equation above:

P ′
Cov

[
µt; (Isǫ

.,s
t+1)(

√
µt

′es)
]
= E

[
(µt − µ)

(
(Isǫ

.,s
t+1)(

√
µt

′es)
)′]

= E
[
(µt − µ)(

√
µt

′es)′(Isǫ
.,s
t+1)

′]

= E
[
(µt − µ)(

√
µt

′es)′
]
E
[
(Isǫ

.,s
t+1)

′] = 0

since E
[
ǫ.,st+1

]
= 0, and, ǫ.,st+1 and µt are independent. Let us now look at the last

term:

S∑

s=1

S∑

s′=1

Cov
[
(Isǫ

.,s
t+1)(

√
µt

′es); (Is′ ǫ
.,s′

t+1)(
√
µt

′es′)
]
=

S∑

s=1

S∑

s′=1

E

[
(Isǫ

.,s
t+1)(

√
µt

′es)
(
(Is′ ǫ

.,s′

t+1)(
√
µt

′es′)
)
′

]

=
S∑

s=1

S∑

s′=1

E

[
(Isǫ

.,s
t+1)

√
µt

′ese
′

s′
√
µt(Is′ ǫ

.,s′

t+1)
′

]

=
S∑

s=1

E [µs,t] IsE
[
ǫ.,st+1(ǫ

.,s
t+1)

′

]
I′s

= µ1I1Σ1I
′

1 +

S−1∑

s=2

µsIsΣI′s + µSISΣSI
′

S

where in the fourth line we use the fact that if s 6= s′ then
√
µt

′ese′s′
√
µt = 0 and

if s = s′ then
√
µt

′ese′s′
√
µt = µs,t. The variance-covariance matrix of µt is thus
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characterized by the following discrete Lyapunov equation:

(B12) Var [µt] = P ′
Var [µt]P + µ1I1Σ1I

′
1 +

S−1∑

s=2

µsIsΣI
′
s + µSISΣSI

′
S

The solution of the discrete Lyapunov Equation B12 is thus:

Var [µt] =

∞∑

k=0

(P ′)k
(
µ1I1Σ1I

′
1 +

S−1∑

s=2

µsIsΣI
′
s + µSISΣSI

′
S

)
P k

note that IsΣI
′
s =



0 0 0
0 Σ 0
0 0 0


, I1Σ1I

′
1 =

(
Σ1 0
0 0

)
and ISΣSI

′
S =

(
0 0
0 ΣS

)
. �

B5. Proof of Theorem 2

In this appendix, we state and prove the more general Theorem 3 which ex-
tends the results of Theorem 2 to the entry and exit case. Formally, we show
that the following theorem is true:
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Theorem 3 Assume 1, then

(i) The dynamic of aggregate productivity is given by

(B13) At+1 = ρAt + ρEt(ϕ) +OA
t + σtεt+1

(B14) σ2t = ̺Dt + ̺Et(ϕ
2) +Oσ

t

where E[εt+1] = 0 and Var[εt+1] = 1. The persistence of the aggre-

gate state is ρ = aϕ
−1
1−α + b + cϕ

1
1−α . The term Dt is given by Dt :=

∑S
s=s∗(µt)−1

(
(ϕs)

1
1−α

)2
µs,t and ̺ = aϕ

−2
1−α+b+cϕ

2
1−α−ρ2. The termsEt(ϕ)

and Et(ϕ
2) are defined using the Et(x) =

∑S
s=s∗t

xsMGs − x
s∗t−1

1−α µs∗t−1,t for

any x. The terms OA
t and Oσ

t are a correction for the upper and lower re-
flecting barriers in the idiosyncratic state space definied in the proof. Fur-
thermore, for a large number of firms the distribution of εt+1 can be ap-
proximate by a standard normal distribution.

(ii) Aggregate output (in percentage deviation from its steady-state value) has
the following law of motion:

(B15) Ŷt+1 = ρŶt + κÔA
t + ψ

σt
A
ǫt+1

ÔA
t is the percentage deviation from steady-state of OA

t , κ and ψ are con-
stants defined below and A is the steady-state value of the aggregate pro-
ductivity At.

Proof: Aggregate productivity
Note first that

At+1 =

Nt+1∑

i=1

ϕ
st+1,i
1−α =

S∑

s=1

ϕ
s

1−αµs,t+1

where µs,t+1, the number of firms in productivity bin s at time t+1, is stochastic
as shown in Theorem 1. Using the proof of this theorem for S > s > s∗(µt) and
under Assumption 1, we have:

µs,t+1 = f s,s−1
t+1 + f s,st+1 + f s,s+1

t+1 + gs,s−1
t+1 + gs,st+1 + gs,s+1

t+1

where f s
′,s

k,t+1 is the number of firms in state s′ at t+1 that were in state s at time

t and gs
′,s

k,t+1 is the number of entrants in state s′ at t + 1 that received a signal

s at time t. Given Assumption 1 the 3 × 1 vector f .,sk,t+1 = (f s−1,s
t+1 , f s,st+1, f

s+1,s
t+1 )′
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follows a multinomial distribution with number of trials µs,t+1 and event prob-

abilities (a, b, c)′. Similarly, the 3× 1 vector g.,sk,t+1 = (gs−1,s
t+1 , gs,st+1, g

s+1,s
t+1 )′ follows

a multinomial distribution with number of trials MGs and event probabilities
(a, b, c)′. In other words, for S > s ≥ s∗(µt):

f .,s
t+1 =




f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1


  Multi

(
µs,t,

( a
b
c

))
and g.,st+1 =




g
s−1,s
t+1

g
s,s
t+1

g
s+1,s
t+1


 Multi

(
MGs,

( a
b
c

))

Furthermore, we also have:

µs∗(µt)−1,t+1 = f
s∗(µt)−1,s∗(µt)
t+1 + g

s∗(µt)−1,s∗(µt)
t+1

µs∗(µt),t+1 = f
s∗(µt),s∗(µt)
t+1 + f

s∗(µt),s∗(µt)+1
t+1 + g

s∗(µt),s∗(µt)
t+1 + g

s∗(µt),s∗(µt)+1
t+1

µS,t+1 = fS,S−1
t+1 + fS,St+1 + gS,S−1

t+1 + gS,St+1

Note that we have

f .,S
t+1 =

(
f
S−1,S
t+1

f
S,S
t+1

)
 Multi

(
µS,t,

( a
b+c

))
and g.,St+1 =

(
g
S−1,S
t+1

g
S,S
t+1

)
 Multi

(
MGS ,

( a
b+c

))
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Having shown these preliminary results, let us consider: 2

At+1 =

S∑

s=1

(ϕ
1

1−α )
s
µs,t+1 = (ϕ

1
1−α )

s∗t −1
µ
s∗t −1,t+1 + (ϕ

1
1−α )

s∗t µ
s∗t ,t+1 +

S−1∑

s=s∗t +1

(ϕ
1

1−α )
s
µs,t+1 + (ϕ

1
1−α )

S
µS,t+1

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1

+ g
s∗t −1,s∗t
t+1

)
+ (ϕ

1
1−α )

s∗t
(
f
s∗t ,s∗t
t+1

+ f
s∗t ,s∗t +1

t+1
+ g

s∗t ,s∗t
t+1

+ g
s∗t ,s∗t +1

t+1

)

. . . +

S−1∑

s=s∗
t
+1

(ϕ
1

1−α )
s
(
f
s,s−1
t+1

+ f
s,s
t+1

+ f
s,s+1
t+1

+ g
s,s−1
t+1

+ g
s,s
t+1

+ g
s,s+1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S−1
t+1

+ f
S,S
t+1

+ g
S,S−1
t+1

+ g
S,S
t+1

)

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1

+ (ϕ
1

1−α )f
s∗t ,s∗t
t+1

+ g
s∗t −1,s∗t
t+1

+ (ϕ
1

1−α )g
s∗t ,s∗t
t+1

)
+

. . . + (ϕ
1

1−α )
s∗t

(
f
s∗t ,s∗t +1

t+1
+ g

s∗t ,s∗t +1

t+1

)
+

. . . +

S−1∑

s=s∗
t
+1

(ϕ
1

1−α )
s
(
f
s,s−1
t+1

+ g
s,s−1
t+1

)
+

S−1∑

s=s∗
t
+1

(ϕ
1

1−α )
s
(
f
s,s
t+1

+ g
s,s
t+1

)
+

S−1∑

s=s∗
t
+1

(ϕ
1

1−α )
s
(
f
s,s+1
t+1

+ g
s,s+1
t+1

)
+

. . . + (ϕ
1

1−α )
S
(
f
S,S−1
t+1

+ g
S,S−1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S
t+1

+ g
S,S
t+1

)

=(ϕ
1

1−α )
s∗t −1

(
f
s∗t −1,s∗t
t+1

+ (ϕ
1

1−α )f
s∗t ,s∗t
t+1

+ g
s∗t −1,s∗t
t+1

+ (ϕ
1

1−α )g
s∗t ,s∗t
t+1

)
+

. . . + (ϕ
1

1−α )
s∗t

(
f
s∗t ,s∗t +1

t+1
+ g

s∗t ,s∗t +1

t+1

)
+

. . . + ϕ

1
1−α

S−2∑

s=s∗
t

(ϕ
1

1−α )
s
(
f
s+1,s
t+1

+ g
s+1,s
t+1

)
+

S−1∑

s=s∗
t
+1

(ϕ
1

1−α )
s
(
f
s,s
t+1

+ g
s,s
t+1

)
+ (ϕ

1
1−α )

−1
S∑

s=s∗
t
+2

(ϕ
1

1−α )
s−1

(
f
s−1,s
t+1

+ g
s−1,s
t+1

)
+

. . . + (ϕ
1

1−α )
S
(
f
S,S−1
t+1

+ g
S,S−1
t+1

)
+ (ϕ

1
1−α )

S
(
f
S,S
t+1

+ g
S,S
t+1

)

=(ϕ
1

1−α )
s∗t


ϕ

−1
1−α

(
f
s∗t −1,s∗t
t+1

+ g
s∗t −1,s∗t
t+1

)
+ f

s∗t ,s∗t
t+1

+ g
s∗t ,s∗t
t+1

+ ϕ

1
1−α

(
f
s∗t +1,s∗t
t+1

+ g
s∗t +1,s∗t
t+1

)
+

. . . + (ϕ
1

1−α )
s∗t +1


ϕ

−1
1−α

(
f
s∗t ,s∗t +1

t+1
+ g

s∗t ,s∗t +1

t+1

)
+ f

s∗t +1,s∗t +1

t+1
+ g

s∗t +1,s∗t +1

t+1
+ ϕ

1
1−α

(
f
s∗t +2,s∗t +1

t+1
+ g

s∗t +2,s∗t +1

t+1

)
+

. . . + ϕ

1
1−α

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s+1,s
t+1

+ g
s+1,s
t+1

)
+

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s,s
t+1

+ g
s,s
t+1

)
+ ϕ

−1
1−α

S−2∑

s=s∗t +2

(ϕ
1

1−α )
s
(
f
s−1,s
t+1

+ g
s−1,s
t+1

)
+

. . . + (ϕ
1

1−α )
S−1


ϕ

−1
1−α

(
f
S−2,S−1
t+1

+ g
S−2,S−1
t+1

)
+ f

S−1,S−1
t+1

+ g
S−1,S−1
t+1

+ ϕ

1
1−α

(
f
S,S−1
t+1

+ g
S,S−1
t+1

)



. . . + (ϕ
1

1−α )
S


ϕ

−1
1−α

(
f
S−1,S
t+1

+ g
S−1,S
t+1

)
+ f

S,S
t+1

+ g
S,S
t+1




=

S−1∑

s=s∗t

ϕ

s
1−α


ϕ

−1
1−α

(
f
s−1,s
t+1

+ g
s−1,s
t+1

)
+ f

s,s
t+1

+ g
s,s
t+1

+ ϕ

1
1−α

(
f
s+1,s
t+1

+ g
s+1,s
t+1

)

 + (ϕ

1
1−α )

S


ϕ

−1
1−α

(
f
S−1,S
t+1

+ g
S−1,S
t+1

)
+ f

S,S
t+1

+ g
S,S
t+1




=

S−1∑

s=s∗t

ϕ

s
1−α







ϕ

−1
1−α

1

ϕ

1
1−α




′ 


f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1


 +




ϕ

−1
1−α

1

ϕ

1
1−α




′ 


g
s−1,s
t+1

g
s,s
t+1

g
s+1,s
t+1





 + (ϕ

1
1−α )

S



(

ϕ

−1
1−α

1

)′



f
S−1,S
t+1

f
S,S
t+1


 +

(

ϕ

−1
1−α

1

)′



g
S−1,S
t+1

g
S,S
t+1







It is easy to see that for s < S,

E

[(
ϕ

−1
1−α

1

ϕ
1

1−α

)′( fs−1,s
t+1

fs,s
t+1

fs+1,s
t+1

)]
= µs,t

(
ϕ

−1
1−α

1

ϕ
1

1−α

)′ (
a
b
c

)
= ρµs,t

2note that we use the notation s∗t instead of s∗(µt) to keep the notation parsimonious)
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and

Var

[(
ϕ

−1
1−α

1

ϕ
1

1−α

)′( fs−1,s
t+1

fs,s
t+1

fs+1,s
t+1

)]
= µs,t

(
ϕ

−1
1−α

1

ϕ
1

1−α

)′

Σ

(
ϕ

−1
1−α

1

ϕ
1

1−α

)
= ̺µs,t

with

Σ =



a(1− a) −ab −ac
−ab b(1− b) −bc
−ac −bc c(1− c)




from which it follows that

(
ϕ

−1
1−α

1

ϕ
1

1−α

)′( fs−1,s
t+1

fs,s
t+1

fs+1,s
t+1

)
= ρµs,t +

√
̺µs,tε

f
s,t+1

where εfs,t+1 is a mean-zero, unit variance random variable, independent across
time and state s (and independent of µs,t). Furthermore, using the approxi-
mation of a multinomial by a multivariate distribution we can see that εs,t  
N (0, 1) for large µs,t (see p377 example 12.7 in Severini (2005)). Similarly,

(
ϕ

−1
1−α

1

ϕ
1

1−α

)′( gs−1,s
t+1

gs,st+1

gs+1,s
t+1

)
= ρMGs +

√
̺MGsε

g
s,t+1

where εgs,t+1 is a mean-zero, unit variance random variable independent across
time and state s. This again can be approximated by a standard normal distri-
bution N (0, 1). Using the same reasoning, we have

(
ϕ

−1
1−α

1

)′( fS−1,S
t+1

fS,S
t+1

)
= ρSµS,t +

√
̺SµS,tε

f
S,t+1

and (
ϕ

−1
1−α

1

)′( gS−1,S
t+1

gS,St+1

)
= ρSMGS +

√
̺SMGSε

g
S,t+1

where εfS,t+1 and εgS,t+1 is a mean-zero, unit variance random variable indepen-

dent across time and state for s 6= S. This can be approximated by a standard
normal distribution N (0, 1). Finally,

ρS =
(

ϕ
−1
1−α

1

)′
( a
b+c ) and ̺S =

(
ϕ

−1
1−α

1

)′ ( a(1−a) −a(1−a)
−a(1−a) a(1−a)

)(
ϕ

−1
1−α

1

)
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Let us these results to compute At+1

At+1 =

S−1∑

s=s∗t

ϕ

s
1−α







ϕ

−1
1−α

1

ϕ

1
1−α




′ 


f
s−1,s
t+1

f
s,s
t+1

f
s+1,s
t+1


 +




ϕ

−1
1−α

1

ϕ

1
1−α




′ 


g
s−1,s
t+1

g
s,s
t+1

g
s+1,s
t+1





 + (ϕ

1
1−α )

S



(

ϕ

−1
1−α

1

)′



f
S−1,S
t+1

f
S,S
t+1


 +

(

ϕ

−1
1−α

1

)′



g
S−1,S
t+1

g
S,S
t+1







=

S−1∑

s=s∗t

ϕ

s
1−α

(
ρµs,t +

√
̺µs,tε

f
s,t+1

+ ρMGs +
√

̺MGsε
g
s,t+1

)
+ (ϕ

1
1−α )

S
(
ρSµS,t +

√
̺SµS,tε

f
S,t+1

+ ρSMGS +
√

̺SMGSε
g
S,t+1

)

=ρ

S∑

s=s∗t

ϕ

s
1−α µs,t + ρ

S∑

s=s∗t

ϕ

s
1−α MGs +

√
̺

S∑

s=s∗t

ϕ

s
1−α

(√
µs,tε

f
s,t+1

+
√

MGsε
g
s,t+1

)
+ . . .

. . . + (ϕ
1

1−α )
S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS +

(√
̺SµS,t − √

̺µS,t

)
ε
f
S,t+1

+
(√

̺SMGS −
√

̺MGS

)
ε
g
S,t+1

)

=ρ

S∑

s=s∗t −1

ϕ

s
1−α µs,t + ρ

S∑

s=s∗t

ϕ

s
1−α MGs − ρϕ

s∗t −1

1−α µs∗t −1,t +
√

̺

S∑

s=s∗t

ϕ

s
1−α

(√
µs,tε

f
s,t+1

+
√

MGsε
g
s,t+1

)
+ . . .

. . . + (ϕ
1

1−α )
S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS +

(√
̺SµS,t − √

̺µS,t

)
ε
f
S,t+1

+
(√

̺SMGS −
√

̺MGS

)
ε
g
S,t+1

)

=ρ

S∑

s=s∗
t
−1

ϕ

s
1−α µs,t + ρ

S∑

s=s∗
t

ϕ

s
1−α MGs − ρϕ

s∗t −1

1−α µs∗
t
−1,t + (ϕ

1
1−α )

S
(
(ρS − ρ)µS,t + (ρS − ρ)MGS

)
+ . . .

. . . +
√

̺

S∑

s=s∗
t

ϕ

s
1−α √

µs,tε
f
s,t+1

+
√

̺

S∑

s=s∗
t

ϕ

s
1−α

√
MGsε

g
s,t+1

+ (ϕ
1

1−α )
S
((√

̺SµS,t −√
̺µS,t

)
ε
f
S,t+1

+
(√

̺SMGS −
√

̺MGS

)
ε
g
S,t+1

)

Note that, by definition,At =
∑S

s=s∗t−1 ϕ
s

1−αµs,t andEt(ϕ) =
∑S

s=s∗t
ϕ

s
1−αMGs−

ϕ
s∗t−1

1−α µs∗t−1,t. We define OA
t ≡ (ϕ

1
1−α )S ((ρS − ρ)µS,t + (ρS − ρ)MGS). Further-

more,

Vart [At+1] = σ
2
t =Var





√
̺

S
∑

s=s∗t

ϕ
s

1−α
√
µs,tε

f
s,t +

√
̺

S
∑

s=s∗t

ϕ
s

1−α
√
MGsε

g
s,t+1 . . .

. . .+ (ϕ
1

1−α )S
(

(√
̺SµS,t+1 −

√
̺µS,t

)

ε
f
S,t+1 +

(

√

̺SMGS −
√

̺MGS

)

ε
g
S,t+1

)]

=̺

S
∑

s=s∗t

ϕ
2s

1−α µs,t + ̺

S
∑

s=s∗t

ϕ
2s

1−α MGs + ϕ
2S

1−α
(

(
√
̺S −

√
̺)2 µS,t + (

√
̺S −

√
̺)2 MGS

)

=̺

S
∑

s=s∗t

ϕ
2s

1−α µs,t + ̺

S
∑

s=s∗t

ϕ
2s

1−α MGs + ϕ
2S

1−α
(

(
√
̺S −

√
̺)2 µS,t + (

√
̺S −

√
̺)2 MGS

)

=̺

S
∑

s=s∗t−1

ϕ
2s

1−α µs,t + ̺

S
∑

s=s∗t

ϕ
2s

1−αMGs − ̺ϕ
2(s∗t −1)

1−α µs∗t ,t . . .

. . .+ ϕ
2S

1−α
(

(
√
̺S −

√
̺)2 µS,t + (

√
̺S −

√
̺)2 MGS

)

Note thatDt =
∑S

s=s∗t−1 ϕ
2s

1−αµs,t whileEt(ϕ
2) =

∑S
s=s∗t

ϕ
2s

1−αMGs−ϕ
2(s∗t−1)

1−α µs∗t ,t

and we define Oσ
t ≡ ϕ

2S
1−α

((√
̺S −√

̺
)2
µS,t +

(√
̺S −√

̺
)2
MGS

)
. It follows

that

At+1 = ρAt + ρEt(ϕ) +OA
t + σtεt+1 where σt = ̺Dt + ̺Et(ϕ

2) +Oσ
t
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with εt+1 a mean zero and unit variance random variable. When using the ap-
proximation of a multinomial by a multivariate normal distribution, it is easy to
show that εt+1 follow a standard normal distribution. The above proof applies
to the no entry-exit case with little changes using the fact that

f .,1t+1 =

(
f1,1
t+1

f2,1
t+1

)
 Multi (µ1,t, ( a+b

c ))

This completes the proof of the law of motion of aggregate productivity At. �

Proof: Aggregate Output

To prove the law of motion of aggregate output (in percentage deviation from
its steady-state value), we first solve for aggregate output, Yt, as a function of
the univariate state variable At analytically. We then study their first order re-
lationship. The next step is then to take the first-order approximation of the
equation describing the dynamics ofAt. Finally, we find the implied first-order
dynamics of Yt.

Let us first compute aggregate output Yt as a function of At only:

Yt =

Nt∑

i=1

yit =
S∑

s=1

µs,t(ϕ
s)

1
1−α

( α

wt

) α
1−α

=
( α

wt

) α
1−α

At

Recall that wt =
(
α

1
1−α At

LM

) 1−α
γ(1−α)+1

. Substituting the expression of the wage in

the latter equation yields Yt = α
αγ

γ(1−α)+1

(
1

L(M)

) −α
γ(1−α)+1

(At)
1− α

γ(1−α)+1 . This last

equality, taken at the first order, implies that:

(B16) Ŷt =

(
1− α

γ(1 − α) + 1

)
Ât

where X̂t of a variableXt is the percentage deviation from its steady-state value

X: X̂t = (Xt −X)/X. Let us define ψ ≡
(
1− α

γ(1−α)+1

)
.

We then take the percentage deviation from steady-state of Equation B13:

At+1 =ρAt + ρEt + OA
t + σtεt+1

A =ρA+ ρE + OA

At+1 −A =ρ(At −A) + ρ(Et −E) + (OA
t − O) + σtεt+1

At+1 −A

A
=ρ

At − A

A
+ ρ

E

T

Et −E

E
+

OA

A

OA
t −O

O
+

σt

A
εt+1

Ât+1 =ρÂt + ρ
E

A
Êt +

OA

A
ÔA

t +
σt

A
εt+1

Ŷt+1 =ρŶt +

(
1− α

γ(1 − α) + 1

)
ρ
E

A
Êt +

(
1− α

γ(1 − α) + 1

)
OA

A
ÔA

t +

(
1− α

γ(1 − α) + 1

)
σt

A
εt+1

where the second line is Equation B13 at the steady-state; in the third line we
subtract the second from the first line; in the fourth line we divide both sides



24 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

by the steady-state value of A and in the last line we use Equation B16. �

B6. Proof of Proposition 3: Aggregate Persistence

In this appendix, we prove Proposition 3 regarding the comparative statics
results for aggregate persistence, ρ. We first express ρ as a function of b, a mea-
sure of micro-level persistence, and of δ, the tail of the productivity stationary
distribution.

First, note that from definition δ = log(a/c)
logϕ , it follows that c = aϕ−δ . Secondly,

from the fact that b = 1− a− c = 1− a(1 + ϕ−δ) we have that a = 1−b
1+ϕ−δ . From

Theorem 2, aggregate persistence is ρ = aϕ
−1
1−α +b+cϕ

1
1−α . In this last equation,

let us substitute c and a using c = aϕ−δ and a = 1−b
1+ϕ−δ :

ρ =
1− b

1 + ϕ−δ
ϕ

−1
1−α + b+ ϕ−δϕ

1
1−α

1− b

1 + ϕ−δ

ρ =
1− b

1 + ϕ−δ

[
ϕ

−1
1−α − ϕ−δ + ϕ−δϕ

1
1−α − 1

]
+ 1

First, it is clear that if δ = 1
1−α , then it follows that ρ = 1. This is exactly (iii)

of the Proposition 3.

Second, from the expression of ρ, it is clear that dρ
db > 0 if and only if g(δ) =

ϕ
−1
1−α −ϕ−δ +ϕ−δϕ

1
1−α − 1 < 0. Note that g( 1

1−α ) = 0 and g(δ) −→
δ→∞

ϕ
−1
1−α − 1 < 0

sinceϕ > 1. The derivative of g is g′(δ) = −(− logϕ)ϕ−δ+(− logϕ)ϕ−δ+ 1
1−α < 0.

It follows that for δ > 1
1−α , then g(δ) < 0 and thus dρ

db > 0. We have just shown
(i).

Finally to show (ii), let us rewrite ρ = − (b−1)g(δ)
1+ϕ−δ + 1. We have shown that for

g(δ) is decreasing in δ, since b < 1 it is clear that (b − 1)g(δ) is increasing in δ.

Note that 1
1+ϕ−δ is also increasing in δ. It follows that

(b−1)g(δ)
1+ϕ−δ is increasing in δ

which then implies that ρ is decreasing in δ, which is the statement in (ii).

�

B7. Intermediate result: the link between the number of incumbents N and the

number of potential entrants M

In this appendix, we are interested in the relationship between the number
of incumbents N , the number of potentials entrants M , and the value of their
ratio whenN goes to infinity. We show that asN goes to infinity, the ratioM/N
goes to a constant. This means that taking the endogenous variable N or the
exogenous parameter M to infinity is strictly equivalent.
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The number of firms is simply the sum of the number of firms in each bin:

N =
S∑

s=1

µs = µs∗−1 +
S∑

s=s∗
µs

=a
(
MKeC1 +MKeC2(ϕ

s∗ )−δe +MKeC3 +MKe(ϕ
s∗ )−δe

)
+MKeC3

S∑

s=s∗
1

+MKeC1(ϕ
s∗ )δ

S∑

s=s∗
(ϕs)−δ +MKeC2

S∑

s=s∗
(ϕs)−δe

=a
(
MKeC1 +MKeC2(ϕ

s∗ )−δe +MKeC3 +MKe(ϕ
s∗ )−δe

)
+MKeC3(S − s∗ + 1)

+MKeC1(ϕ
s∗ )δ

(
ϕ−δ

)s∗ −
(
ϕ−δ

)S

1− ϕ−δ
+MKeC2

(
ϕ−δe

)s∗ −
(
ϕ−δe

)S

1− ϕ−δe

thus, by dividing both side by M , we have

N

M
= a

(
KeC1 + Ke(C2 + 1)(ϕ

s∗
)
−δe + KeC3

)
+KeC3(S−s

∗
+1)+KeC1(ϕ

s∗
)
δ

(
ϕ−δ

)s∗ −
(
ϕ−δ

)S

1 − ϕ−δ
+KeC2

(
ϕ−δe

)s∗ −
(
ϕ−δe

)S

1 − ϕ−δe

Let us note that under assumption 2
(
ϕ−δ

)S
=
(
ϕS
)
−δ

=
(
ZN1/δ

)
−δ

= Z−δN−1 −→
N→∞

0

and that, since S = 1
logϕ(logZ + 1

δ logN), we have

SC3 =
1

logϕ
(logZ +

1

δ
logN)

−ϕ−δeZ−δe

(1 − ϕ−δe )(a − c)
N−δe/δ −→

N→∞

0

Thus, we have that

N

M
−→

M→∞

(E∞)−1 :=a
(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)(ϕs∗ )−δe
)

+ (ϕδe − 1)C∞

1

1

1− ϕ−δ
+ (ϕδe − 1)C2

(
ϕ−δe

)s∗

1− ϕ−δe

where E∞ is the ratio of the number of potential entrants M and the num-
ber of incumbents, when there is an infinite number of potential entrant. Note
that this ratio is a function of the equilibrium threshold s∗ when S → ∞. The
last equation shows that M and N are equivalent when the number of incum-
bents is large. Thus, taking N to infinity is the same as taking M to infinity i.e
E∞N ∼

M→∞
M .

B8. Proof of Propositions 4 and 5: Aggregate Volatility

In this appendix, we prove Proposition 5 describing how aggregate volatility
decays with the number of firms N . This proof nests the proof of Proposition
4.

To prove this proposition, we study the asymptotic behavior of A, D and de-
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duce the one for D/A2, when M goes to infinity. We complete the proof by
studying the behavior of the remaining terms E(ϕ2) and Oσ and E(ϕ2)/A2 and
Oσ/A2.

At this stage is important to note that, under Assumption 2, when N (and
therefore S) goes to infinity, the limit of the wage and the threshold are w and
s∗ which satisfy the system of equations given by the equation in Lemma 2 and
Equation 8 in Proposition 1. This system of equations shows thatw and s∗ are a
function of structural parameters of the model. On many occasions in the fol-
lowing proof, we will take limits of expressions that are functions of s∗. These
limits will therefore depend on s∗ which, in turn, depend on the structural pa-
rameters of the model.

Note further, that in the context of Proposition 4 without entry/exit, the num-
ber of incumbents firms N is an exogenous variable that we can take to the
infinity. However, in the context of Proposition 5 with entry/exit, N is an en-
dogenous variable. Nevertheless, taking the number of potential entrantsM to
infinity also implies that the incumbent number of firmsN also goes to infinty,
as it is shown in the above Online Appendix B.B7.

Now, the proof below applies to both Propositions 4 and 5. All the limits be-
low are taken with respect to M ; however, when the proof applies to Propo-
sition 4 without entry/exit, every such limit should be read as with respect to
N .

Step 0: Limit of the stationary distribution when the number of firms goes
to infinity

The second step of the proof below will consist of finding the limit of con-
stants Ke, C1, C2 and C3 as M (and thus the number of firms N ) goes to infin-
ity. After finding these limits, we take the limit of Equation B6 in the previous
lemma.

Here we first describe the asymptotic behavior of Ke. Recall that the entrant
distribution sums to one.3

1 =
S∑

s=1

Gs = Ke

S∑

s=1

(ϕs)−δe = Ke

S∑

s=1

(
ϕ−δe

)s
= Ke

ϕ−δe −
(
ϕ−δe

)S+1

1− ϕ−δe

Rearranging terms, it follows that

Ke =
1− ϕ−δe

ϕ−δe −
(
ϕ−δe

)S+1

Under Assumption 2 and since δe, δ > 0 we have
(
ϕ−δe

)S
=
(
ϕS
)
−δe

=
(
ZN1/δ

)
−δe

= Z−δeN−δe/δ −→
M→∞

0

by applying these results to the expression forKe, it follows thatKe −→
M→∞

ϕδe −
1.

3Recall that we assume that G sums to one. We also assume that the number of potential entrants in bin
s is MGs, so that the total number of potential entrants is M .
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Let us now focus on the asymptotic behavior of C3, C2 and C1. From Lemma
1, we have

C3 =
−(ϕ−δe )S+1

(1− ϕ−δe)(a − c)
=

−ϕ−δe (ϕS)−δe

(1− ϕ−δe )(a − c)
=

−ϕ−δeZ−δe

(1 − ϕ−δe )(a − c)
N−δe/δ −→

M→∞

0

We also have that

C2 :=

(
a(ϕ−δe )2 + bϕ−δe + c

)
(
a(ϕ−δe )2 − ϕ−δe (a+ c) + c

)

which is independent of S and thus of N .

Finally, we have

C1 =
c
(
a(ϕ−δe )S+2 − a(ϕ−δe )s

∗ − c(ϕ−δe)S+3 + c(ϕ−δe )s
∗)

a(1 − ϕ−δe )(a − c)(aϕ−δe − c)

−→
M→∞

c
(
−a(ϕ−δe )s

∗
+ c(ϕ−δe )s

∗
)

a(1 − ϕ−δe)(a − c)(aϕ−δe − c)
=

c

a

−(a − c)(ϕ−δe )s
∗

(1− ϕ−δe )(a − c)(aϕ−δe − c)

and therefore

C1 −→
M→∞

C∞

1 :=
c

a

(ϕ−δe )s
∗

(1− ϕ−δe)(c − aϕ−δe )

We have just found the limit of Ke, C1, C2 andC3 whenN goes to infinity. We
then apply these results to the stationary distribution by taking N to infinity.
According to Lemma 1, we have for s∗ ≤ s ≤ S:

µs

M
= KeC1

(
ϕs

ϕs∗

)
−δ

+KeC2(ϕ
s)−δe +KeC3

Under assumption 2, we have just shown that when the number of firms, N ,
goes to infinity, the stationary distribution is given by:

µs

M
−→

M→∞

(
ϕδe − 1

) c

a

(ϕ−δe )s
∗

(1 − ϕ−δe )(c− aϕ−δe )

(
ϕs

ϕs∗

)
−δ

+
(
ϕδe − 1

) (
a(ϕ−δe )2 + bϕ−δe + c

)
(
a(ϕ−δe )2 − ϕ−δe(a + c) + c

) (ϕs)−δe

Step 1: How A evolves when the number of incumbents converges to infin-
ity

For a given number of firms, let us look at the expression for A:

A =
S∑

s=1

(ϕs)
1

1−α µs

=(ϕs∗−1)
1

1−α µs∗−1 +
S∑

s=s∗
(ϕs)

1
1−α µs

=(ϕs∗−1)
1

1−α a

(
MKeC1 +MKeC2

(
ϕs∗

)
−δe

+MKeC3 +MKe(ϕ
s∗ )−δe

)

+
S∑

s=s∗
(ϕs)

1
1−α

(
MKeC1

(
ϕs

ϕs∗

)
−δ

+MKeC2 (ϕ
s)−δe +MKeC3

)
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Dividing both sides by M , we get

A

M
=a(ϕs∗−1)

1
1−α

(
KeC1 +KeC2

(
ϕs∗

)
−δe

+KeC3 +Ke(ϕ
s∗ )−δe

)

+KeC1

(
ϕs∗

)δ S∑

s=s∗

(
ϕ
−δ+ 1

1−α

)s
+KeC2

S∑

s=s∗

(
ϕ
−δe+

1
1−α

)s
+KeC3

S∑

s=s∗
(ϕ

1
1−α )s

=a(ϕs∗−1)
1

1−α

(
KeC1 +KeC2

(
ϕs∗

)
−δe

+KeC3 +Ke(ϕ
s∗ )−δe

)

+KeC1

(
ϕs∗

)δ
(
ϕ
−δ+ 1

1−α

)s∗
−
(
ϕ
−δ+ 1

1−α

)S+1

1− ϕ
−δ+ 1

1−α

+KeC2

(
ϕ
−δe+

1
1−α

)s∗
−
(
ϕ
−δe+

1
1−α

)S+1

1− ϕ
−δe+

1
1−α

+KeC3
(ϕ

1
1−α )s

∗ − (ϕ
1

1−α )S+1

1− ϕ
1

1−α

Recall that under assumption 2, we have

(ϕ
1

1−α )S = (ϕS)
1

1−α = (ZN1/δ)
1

1−α = Z
1

1−α N
1

δ(1−α)

(
ϕ
−δ+ 1

1−α

)S
=
(
ϕS
)
−δ+ 1

1−α
=
(
ZN1/δ

)
−δ+ 1

1−α
= Z

−δ+ 1
1−α N

−1+ 1
δ(1−α)

(
ϕ
−δe+

1
1−α

)S
=
(
ϕS
)
−δe+

1
1−α

=
(
ZN1/δ

)
−δe+

1
1−α

= Z
−δe+

1
1−α N

−
δe
δ

+ 1
δ(1−α)

Since we assume that δ(1 − α) > 1 and δe(1 − α) > 1 we have both − δe
δ +

1
δ(1−α) < 0 and −1 + 1

δ(1−α) < 0 and thus both
(
ϕ−δ+ 1

1−α

)S
and

(
ϕ−δe+

1
1−α

)S

converge to zero whenM (and thus N ) goes to infinity. We also have that

C3(ϕ
1

1−α )S =
−ϕ−δeZ−δe

(1− ϕ−δe)(a − c)
Z

1
1−α N

−δe/δ+
1

δ(1−α) −→
M→∞

0

Putting these results together yields

A

M
−→

M→∞

A∞ := a(ϕs∗−1)
1

1−α

(
(ϕδe − 1)C∞

1 + (ϕδe − 1)(C2 + 1)
(
ϕs∗

)
−δe

)

+ (ϕδe − 1)C∞

1

(
ϕ

1
1−α

)s∗

1− ϕ
−δ+ 1

1−α

+ (ϕδe − 1)C2

(
ϕ
−δe+

1
1−α

)s∗

1− ϕ
−δe+

1
1−α

In other words, under assumption 2 and if δ(1−α) > 1 and δe(1−α) > 1 then
A ∼

M→∞
A∞M or

(B17) A ∼
M→∞

E∞A∞N

Note here that when M (N ) goes to infinity the threshold s∗ converges to s∗,
and therefore it follows that the constants E∞, A∞ are a function of s∗.

Step 2: How D evolves when the number of incumbents converges to infin-
ity
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For a given number of firms, the steady-state value of D:

D =
S∑

s=1

(
(ϕs)

1
1−α

)2
µs

=
(
(ϕs∗−1)

1
1−α

)2
µs∗−1 +

S∑

s=s∗

(
(ϕs)

1
1−α

)2
µs

D

M
=(ϕs∗−1)

2
1−α µ̂s∗−1 +KeC1(ϕ

s∗ )δ
S∑

s=s∗
(ϕs)

2
1−α

−δ
+KeC2

S∑

s=s∗
(ϕs)

2
1−α

−δe +KeC3

S∑

s=s∗
(ϕs)

2
1−α

=a(ϕs∗−1)
2

1−α

(
KeC1 +Ke(C2 + 1)

(
ϕs∗

)
−δe

+KeC3

)

+KeC1(ϕ
s∗ )δ

(ϕ
2

1−α
−δ

)s
∗ − (ϕ

2
1−α

−δ
)S+1

1− ϕ
2

1−α
−δ

+KeC2
(ϕ

2
1−α

−δe)s
∗ − (ϕ

2
1−α

−δe)S+1

1− ϕ
2

1−α
−δe

+KeC3
(ϕ

2
1−α )s

∗ − (ϕ
2

1−α )S+1

1− ϕ
2

1−α

Under assumption 2, we have

(ϕ
2

1−α
−δ

)S = (ϕS)
2

1−α
−δ

= (ZN1/δ)
2

1−α
−δ

= Z
2

1−α
−δ

N
2

δ(1−α)
−1

(ϕ
2

1−α
−δe)S = (ϕS)

2
1−α

−δe = (ZN1/δ)
2

1−α
−δe = Z

2
1−α

−δeN
2

δ(1−α)
−

δe
δ

C3(ϕ
2

1−α )S = C3(ϕ
S)

2
1−α =

−ϕ−δeZ−δe

(1− ϕ−δe)(a − c)
(Z)

2
1−α N

2
δ(1−α)

−
δe
δ

Under the assumption that δ(1 − α) < 2 and δe(1 − α) < 2, these terms
diverge when M (that is when N ) goes to infinity. Thus we are able to look at
the asymptotic equivalent of D/M ,

D

M
∼

M→∞

a(ϕs∗−1)
2

1−α

(
(ϕδ

e − 1)C∞

1 + (ϕδ
e − 1)(C2 + 1)

(
ϕs∗

)
−δe

)

+ (ϕδ
e − 1)C∞

1 (ϕs∗ )δ
−ϕ

2
1−α

−δ

1− ϕ
2

1−α
−δ

Z
2

1−α
−δ

N
2

δ(1−α)
−1

+


(ϕδ

e − 1)C2
−ϕ

2
1−α

−δe

1− ϕ
2

1−α
−δe

Z
2

1−α
−δe + (ϕδ

e − 1)
−ϕ

2
1−α

1− ϕ
2

1−α

−ϕ−δeZ−δe

(1− ϕ−δe )(a − c)
(Z)

2
1−α


N

2
δ(1−α)

−
δe
δ
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By using the intermediate result above on the link betweenN andM , we have

D ∼
M→∞

a(ϕs∗−1)
2

1−α

(
(ϕδ

e − 1)C∞

1 + (ϕδ
e − 1)(C2 + 1)

(
ϕs∗

)
−δe

)
E∞N

+ (ϕδ
e − 1)C∞

1 (ϕs∗ )δ
−ϕ

2
1−α

−δ

1− ϕ
2

1−α
−δ

Z
2

1−α
−δ

E∞N
2

δ(1−α)

+


(ϕδ

e − 1)C2
−ϕ

2
1−α

−δe

1− ϕ
2

1−α
−δe

Z
2

1−α
−δe + (ϕδ

e − 1)
−ϕ

2
1−α

1− ϕ
2

1−α

−ϕ−δeZ−δe

(1 − ϕ−δe )(a − c)
(Z)

2
1−α


E∞N

2
δ(1−α)

−
δe
δ

+1

Or equivalently, defining the appropriate constantsD∞
1 ,D

∞
2 andD∞

3 we have
that, under Assumption 2:

(B18) D ∼
M→∞

D∞

1 N +D∞

2 N
2

δ(1−α) +D∞

3 N
2

δ(1−α)
−

δe
δ

+1

Note that as we take the limit, the threshold s∗ converges to s∗ and therefore
the constants D∞

1 ,D
∞
2 and D∞

3 are a function of s∗.

Step 3: How D/A2 evolves withM,N :

The first term of aggregate volatility described by Equation B14 is D
A2 . Let us

look at its equivalent whenM goes to infinity by combining Equations B17 and
B18

D

A2
∼

M→∞

D∞
1

(E∞A∞)

N
+

D∞
2

(E∞A∞)

N
2− 2

δ(1−α)

+

D∞
3

(E∞A∞)

N
1+ δe

δ
−

2
δ(1−α)

Under the assumptions that δ(1−α) < 2 and δe(1−α) < 2, then 2− 2
δ(1−α) < 1

and 1 + δe
δ − 2

δ(1−α) < 1. In other words, the last two terms dominate the first

term and thus:

(B19)
D

A2
∼

M→∞

D∞
2

(E∞A∞)

N
2− 2

δ(1−α)

+

D∞
3

(E∞A∞)

N
1+ δe

δ
−

2
δ(1−α)

Note again that, for the case of entry/exit (Proposition 5), when we take the
limitM to infinity the threshold s∗ converges to s∗. It implies that the constants
E∞, A∞,D∞

2 and D∞
3 are a function of s∗. �

Step 4: How E(ϕ2) and Oσ evolve withM,N

Here we prove a similar result for the remaining terms in Equation B14, i.e.

E(ϕ2)/A2 and Oσ/A2. We first find the expression for
E(ϕ2)
M and then for Oσ

M ,
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whenM → ∞. The steady-state expression of E(ϕ2) is

E(ϕ2) =

(
M

S∑

s=s∗
Gs
(
ϕ2s
) 1

1−α

)
−
((

ϕ2(s∗−1)
) 1

1−α
µs∗−1,t

)

=

(
MKe

S∑

s=s∗
(ϕs)−δe

(
ϕ2s
) 1

1−α

)
−
((

ϕ2(s∗−1)
) 1

1−α
µs∗−1,t

)

=MKe

(
ϕ
−δe+

2
1−α

)S+1
−
(
ϕ
−δe+

2
1−α

)s∗

(
ϕ
−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1)
µs∗−1,t

)

Under Assumption 2, we still have

(ϕ
2

1−α
−δe)S = (ϕS)

2
1−α

−δe = (ZN1/δ)
2

1−α
−δe = Z

2
1−α

−δeN
2

δ(1−α)
−

δe
δ

Thus, it follows

E(ϕ2)

M
=Ke

(
Z

2
1−α

−δeN
2

δ(1−α)
−

δe
δ ϕ

−δe+
2

1−α

)
−
(
ϕ
−δe+

2
1−α

)s∗

(
ϕ
−δe+

2
1−α

)
− 1

−
((

ϕ
2

1−α

)(s∗−1) (
KeC1 +Ke(C2 + 1)ϕs∗ +KeC3

))

=KeN
2

δ(1−α)
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δe
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(
Z

2
1−α

−δeϕ
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+
δe
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(
ϕ
−δe+
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1−α
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(
ϕ
−δe+

2
1−α

)
− 1

−
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ϕ
2

1−α

)(s∗−1) (
KeC1 +Ke(C2 + 1)ϕs∗ +KeC3

))

Under the assumption that δe(1− α) < 2, we have

E(ϕ2)

M
∼KeN

2
δ(1−α)

−
δe
δ

(
Z

2
1−α

−δeϕ
−δe+

2
1−α

)

(
ϕ
−δe+

2
1−α

)
− 1

−
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ϕ
2

1−α

)(s∗−1) (
ϕδe − 1

)(
C∞

1 + (C2 + 1)ϕs∗
))

Recall thatM ∼ E∞N . Then, for some constantE∞
1 andE∞

2 , we haveE(ϕ2) ∼
E∞

1 N
1− δe

δ
+ 2

δ(1−α) + E∞
2 N . Using the fact that A2 ∼

M→∞
E∞A∞N and the above

equation, we get for some other constant E∞
1 and E∞

2 :

(B20)
E(ϕ2)

A2
∼ E∞

1

N
1+

δe
δ

−
2

δ(1−α)

+
E∞

2

N
∼ E∞

1

N
1+

δe
δ

−
2

δ(1−α)

where the last equivalence comes from the fact that δ(1−α) > 2 and δe(1−α) >
2 and thus 1 > 1 + δe

δ − 2
δ(1−α) . Note that as M goes to infinity, the threshold s∗

converges to s∗. It follows that E∞
1 and E∞

2 are a function of s∗.
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The steady-state expression for Oσ is:

Oσ

M
= −Ke(̺− ̺′)(ϕ−δe (ϕ

1
1−α )2)S − (̺ − ̺′)(ϕ

1
1−α )2S µ̂S
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Recall that under Assumption 2,
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Using the above relations, we then have, for some constants O∞
1 and O∞

2 ,

Oσ ∼ O∞

1 N
1−

δe
δ

+ 2
δ(1−α) + O∞

2 N
2

δ(1−α)

from which it follows that for, some other constants, O∞
1 and O∞

2

(B21)
Oσ

A2
∼ O∞

1

N
1+

δe
δ

−
2

δ(1−α)

+
O∞

2

N
2− 2

δ(1−α)

Again, note that as M goes to infinity, the threshold s∗ converges to s∗. It fol-
lows that O∞

1 and O∞
2 are a function of s∗.

Putting Equations B19, B20 and B21 together yields the results in Equation
14. �

B9. Proof of Proposition 6

To solve for the general case with aggregate uncertainty, we deploy a differ-
ent strategy relative to that used in the stationary case. Whereas we used a
constructive proof for the stationary case, we follow a guess and verify strategy
for the case featuring aggregate fluctuations. We first show some useful prelim-
inary results to compute conditional expectations. We then show that the value
function has to be bounded above by the value of a firm when cf = 0. Finally,
we form our guess and solve for the value function.
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PRELIMINARY RESULTS

Lemma 3 Under Assumption 3, for any ξ

Et

[
wξ
t+1

]
≈ wξ

t ρ
(1−α)ξ

γ(1−α)+1 I(ξ)

where

I(ξ) =

∫ ∞
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(
1 +

E(ϕ)

A
+
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A
+
σ

A
ε

) (1−α)ξ
γ(1−α)+1

φ(ε)dε

where φ(ε) is the probability distribution function of a standard normal random
variable and X is the stationary equilibrium value of Xt.

Proof: First note that, in equilibrium, wξ
t =

(
α

1
1−α At

M

) (1−α)ξ
γ(1−α)+1

. Let us now

compute the conditional expectation
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]
=

∫
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where we use Theorem 3 in the third line. Under Assumption 3, the integral in
the last equation is equal to I(ξ) which completes the proof of the lemma. �
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BOUNDED ABOVE BY THE CASE cf = 0

Lemma 4 For S → ∞, the value function of a firm at productivity level ϕs with
aggregate state µt satisfies the following inequality

V (µt, ϕ
s) ≤ V cf=0(µt, ϕ

s)

where V cf=0(µt, ϕ
s) is the value of a firm at productivity level ϕs with aggregate

state µt that faces an operating cost cf equal to zero. This is equal to

V cf=0(µt, ϕ
s) =

(1− α)α
α

1−α

1− ρβ̃α
w

−α
1−α

t (ϕs)
1

1−α

where β̃α = βI
(

−α
1−α

)
ρ

−α
γ(1−α)+1 and I(ξ) =

∫∞
−∞

(
1 + E(ϕ)

A + OA

A + σ
Aε
) (1−α)ξ

γ(1−α)+1
φ(ε)dε. The inequality becomes an equality

when cf = 0.

Proof:
We prove this proposition in two steps. We first show the inequality stated in

the Lemma and then solve for V cf=0(µt, ϕ
s).

Bounding V (µt, ϕ
s) ≤ V cf=0(µt, ϕ

s): First note that the instantaneous profit is
bounded above by the profit of a firm facing zero fixed operating costs cf :

π∗(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α
1−α

(1−α)−cf ≤ πcf=0(µ,ϕs) = (ϕs)
1

1−α

(α
w

) α
1−α

(1−α)

A firm j’s problem can be rewritten as a stopping time problem:

V (µt, ϕ
sj,t) = max

L

{
Et

L∑

i=t

βi−tπ∗(µi+t, ϕ
sj,t+i)

}

where the j firm choose the optimal time of exit, L, to maximize its discounted
sum of instantaneous profit. The same firm facing an operating cost cf = 0
every period will have a value

V cf=0(µt, ϕ
sj,t) = max

L

{
Et

L∑

i=t

βi−tπcf=0(µi+t, ϕ
sj,t+i)

}

It is optimal for this firm to chooseL = ∞. Since ∀(s, µ), π∗(µ,ϕs) ≤ πcf=0(µ,ϕs)
we have

V (µt, ϕ
sj,t) ≤ V cf=0(µt, ϕ

sj,t)



VOL. VOL NO. ISSUE ONLINE APPENDIX OF “LARGE FIRM DYNAMICS AND THE BUSINESS CYCLE” 35

This completes the first part of the proof.

Solving for V cf=0(µt, ϕ
s): Note that V cf=0(µt, ϕ

s) must satisfy the following
Bellman equation:

(B22) V cf=0(µt, ϕ
sj,t) = πcf=0(µ,ϕsj,t) + βEt

[
V cf=0(µt, ϕ

sj,t+1)
]

We are following a guess and verify strategy. Our guess is

V cf=0(µt, ϕ
s) = K1 +K2w

−α
1−α
t (ϕs)

1
1−α

and we are solving for K1 and K2. Let us compute the right hand side of the
Bellman equation above. It is easy to show using the definition of ρ

aV cf=0(µt, ϕ
s−1) + bV cf=0(µt, ϕ

s) + cV cf=0(µt, ϕ
s+1) = K1 +K2ρw

−α
1−α

t (ϕs)
1

1−α

and the continuation value is
∫

w′

(
aV cf=0(µ′, ϕs−1) + bV cf=0(µ′, ϕs) + cV cf=0(µ′, ϕs+1)

)
Γ(dµ′|µt)

= K1 +K2ρ (ϕ
s)

1
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1−αΓ(dµ′|µt)
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1
1−α w

−α
1−α

t I

( −α
1− α

)
ρ

−α
γ(1−α)+1

where we use Lemma 3 in the last line of derivations. The Bellman Equation
B22 writes

K1 +K2w
−α
1−α

t (ϕs)
1

1−α = (ϕs)
1

1−α

(
α

wt

) α
1−α

(1 − α) + βK1 + βK2ρ (ϕ
s)

1
1−α w

−α
1−α

t I

( −α

1− α

)
ρ

−α
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Matching coefficients yields

K1 = βK1

K2 =
(1− α)α

α
1−α

1− ρβI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

Since β < 1 it follows that K1 = 0 and the value of a firm facing zero operating
cost at productivity level ϕs and aggregate state µt is equal to

V cf=0(µt, ϕ
s) =

(1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
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t (ϕs)
1
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�
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PROOF OF THE PROPOSITION

The value of an incumbent firm, V (µt, ϕ
s), satisfies the following Bellman

equation:

V (µt, ϕ
s) = π∗(µt, ϕ

s) + βmax

{
0,

∫

µ′

(
aV (µ′, ϕs−1) + bV (µ′, ϕs) + cV (µ′, ϕs+1)

)
Γ(dµ′|µt)

}

the policy function of such a problem satisfies a threshold rule, with threshold
s∗(µ) such that
(B23)

V (µt, ϕ
s) =

{
π∗(µt, ϕs) + β

∫
µ′
(
aV (µ′, ϕs−1) + bV (µ′, ϕs) + cV (µ′, ϕs+1)

)
Γ(dµ′|µt) for s ≥ s∗(µt)

π∗(µt, ϕs) for s ≤ s∗(µt)− 1

We adopt a guess and verify strategy to prove this proposition. In this case,
we are forming a guess for both s∗(µt) and V (µt, ϕ

s). To form our guess we
are going to draw our inspiration from the stationary case. In that case, we
first solved for the homogeneous equation, and we were using the roots of this
equation. The equivalent of this homogeneous equation in the current setting
is:

a+ bX + cX2 =
X

βρ
−α(1−α)
γ(1−α)+1

logX
logϕ I

(
−α logX

logϕ

)

Let r̃1 and r̃2 be the two solutions of this equation, such that r̃1 > ϕ
1

1−α > r̃2.

Let us define the constants β̃i = βρ
−α(1−α)
γ(1−α)+1

log r̃i
log ϕ I

(
−α log r̃i

logϕ

)
for i = 1, 2. It is clear

that r̃i satisfies

ar̃i
s + br̃i

s+1 + cr̃i
s+2 = r̃i

s
(
a+ br̃i + cr̃i

2
)
= r̃i

s r̃i

β̃i
=
r̃i

s+1

β̃i

GUESS FOR s∗(µt):

We are guessing that the entry/exit thesholds take the same form as in the
stationary case:

s∗(µt) = (1− α)
log χ

logϕ
+ α

logwt

logϕ

where χ is a constant to be solved for. Given this, it is easy to show that for any
X > 0

X−s∗(wt) = X
−(1−α) log χ

logϕ
−α

logwt
logϕ = X

−(1−α) log χ
logϕX

−α
logwt
logϕ = χ

−(1−α) log X
logϕ w

−α logX
logϕ

t
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GUESS FOR V (µt, ϕ
s):

To form a guess of the value function, we draw inspiration from the stationary
case and thus our guess is, for s ≥ s∗(wt)

V (µt, ϕ
s) = K1 +K2w

−α
1−α
t

(
ϕ

1
1−α

)s
+K3r̃2

s+1−s∗(wt) +K4r̃1
s+1−s∗(wt)

where the constants K1,K2,K3 and K4 have to be solves for. Using this guess
for s∗(wt) gives

V (µt, ϕ
s) = K1+K2w

−α
1−α

t

(
ϕ

1
1−α

)s
+K3χ

−(1−α)
log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s+1+K4χ

−(1−α)
log r̃1
log ϕ w

−α
log r̃1
log ϕ

t r̃1
s+1

Let us introduce the following simplifying notation. Let us define K̃3 = K3χ
−(1−α)

log r̃2
logϕ

and K̃4 = K4χ
−(1−α)

log r̃1
logϕ , and V (wt, s) = V (µt, ϕ

s). With this notation, our
guess can be written, for s ≥ s∗(wt)

V (wt, s) = K1 +K2w
−α
1−α
t

(
ϕ

1
1−α

)s
+ K̃3w

−α
log r̃2
logϕ

t r̃2
s+1 + K̃4w

−α
log r̃1
logϕ

t r̃1
s+1

BELLMAN EQUATION:

We are computing the right hand side of the Bellman Equation B23 starting
with the continuation value of an incumbent firm. Note that

aV (wt, s− 1) + bV (wt, s) + cV (wt, s+ 1) =

K1(a+ b+ c)

+K2w
−α
1−α
t

(
ϕ

1
1−α

)s (
aϕ

−1
1−α + b+ cϕ

1
1−α

)

+ K̃3w
−α

log r̃2
logϕ

t

(
ar̃2
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)

+ K̃4w
−α
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logϕ

t
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)

=K1 +K2ρw
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t

(
ϕ

1
1−α

)s
+ K̃3w

−α
log r̃2
logϕ

t

1
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r̃2

s+1 + K̃4w
−α

log r̃1
logϕ

t

1

β̃1
r̃1

s+1
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using the definition of ρ and r̃i. Let us now compute the continuation value of
an incumbent
∫

w′

[
aV (w′, s− 1) + bV (w′, s) + cV (w′, s+ 1)

]
Γ(dµ′|µt)

= K1 +K2ρ
(
ϕ

1
1−α

)s ∫

w′
w

′
−α
1−α Γ(dµ′|µt) + K̃3

1

β̃2

r̃2
s+1

∫

w′
w

′−α
log r̃2
log ϕ Γ(dµ′|µt) + K̃4

1

β̃1

r̃1
s+1

∫

w′
w

′−α
log r̃1
log ϕ Γ(dµ′|µt)

= K1 +K2ρ
(
ϕ

1
1−α

)s
I

( −α

1− α

)
w

−α
1−α

t ρ
−α

γ(1−α)+1

+ K̃3
1

β̃2

r̃2
s+1I

(
−α

log r̃2

logϕ

)
w

−α
log r̃2
log ϕ

t ρ
−α(1−α)
γ(1−α)+1

log r̃2
log ϕ + K̃4

1

β̃1

r̃1
s+1I

(
−α

log r̃1

logϕ

)
w

−α
log r̃1
log ϕ

t ρ
−α(1−α)
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log r̃1
log ϕ

= K1 +K2ρ
(
ϕ

1
1−α

)s
I

( −α

1− α

)
w

−α
1−α

t ρ
−α
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1

β
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s+1w
−α

log r̃2
log ϕ

t + K̃4
1

β
r̃1

s+1w
−α

log r̃1
log ϕ

t

where we use Lemma 3 and the definition of β̃i = βρ
−α(1−α)
γ(1−α)+1

log r̃i
logϕ I

(
−α log r̃i

logϕ

)
.

We can now write the Bellman equation for s ≥ s∗(wt):

V (wt, s) = K1 +K2w
−α
1−α

t

(
ϕ

1
1−α

)s
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α
log r̃1
log ϕ

t r̃1
s+1 =

(ϕs)
1

1−α

(
α

wt

) α
1−α

(1− α)− cf

+ βK1 +K2βρ
(
ϕ

1
1−α

)s
I

( −α

1− α

)
w

−α
1−α

t ρ
−α

γ(1−α)+1 + K̃3r̃2
s+1w

−α
log r̃2
log ϕ

t + K̃4r̃1
s+1w

−α
log r̃1
log ϕ

t

which yields (after simplification and matching coefficients)

{
K1 = −cf + βK1

K2 = K2βρI
(

−α
1−α

)
ρ

−α
γ(1−α)+1 + (1− α)α

α
1−α

⇔





K1 =
−cf
1−β

K2 = (1−α)α
α

1−α

1−βρI( −α
1−α)ρ

−α
γ(1−α)+1

We are then left to solve for K3 and K4 with the following guess

V (wt, s) =
−cf

1− β
+

(1 − α)α
α

1−α

1− βρI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α

t

(
ϕ

1
1−α

)s
+K̃3w

−α
log r̃2
log ϕ

t r̃2
s+1+K̃4w

−α
log r̃1
log ϕ

t r̃1
s+1

SOLVING FOR K4:

To solve for K4, we are using Lemma 4.

V (s∗(µt), wt) ≤
−cf

1− β
+

(1− α)α
α

1−α

1− βρI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α

t

(
ϕ

1
1−α

)s
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s+1 + K̃4w

−α
log r̃1
log ϕ

t r̃1
s+1

≤ (1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α

t (ϕs)
1

1−α
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where the first equality comes from the fact that V (s,wt) is increasing in s for
a givenwt and the second inequality from Lemma 4. Let us divide both sides of

this inequality by (ϕs)
1

1−α

V (s∗(µt), wt)

(ϕs)
1

1−α

≤
−cf

1 − β

1

(ϕs)
1

1−α

+
(1 − α)α

α
1−α

1 − βρI
( −α
1−α

)
ρ

−α
γ(1−α)+1

w

−α
1−α
t + K̃3w

−α
log r̃2
log ϕ

t r̃2




r̃2

ϕ

1
1−α




s

+ K̃4w
−α

log r̃1
log ϕ

t r̃1




r̃1

ϕ

1
1−α




s

≤
(1 − α)α

α
1−α

1 − ρβI
( −α
1−α

)
ρ

−α
γ(1−α)+1

w

−α
1−α
t

Since r̃2 < ϕ
1

1−α < r̃1 and ϕ
1

1−α > 1, for s→ ∞ this inequality becomes

0 ≤ 0 +
(1− α)α

α
1−α

1− βρI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α
t + 0 + lim

s→∞
K̃4w

−α
log r̃1
logϕ

t r̃1

(
r̃1

ϕ
1

1−α

)s

≤ (1− α)α
α

1−α

1− ρβI
(

−α
1−α

)
ρ

−α
γ(1−α)+1

w
−α
1−α
t

which implies that lims→∞ K̃4w
−α

log r̃1
logϕ

t r̃1

(
r̃1

ϕ
1

1−α

)s

= 0 and, thus, that K4 = 0

since ϕ
1

1−α < r̃1. We are thus left to solve for K3 with the guess

V (wt, s) =
−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α
w

−α
1−α
t

(
ϕ

1
1−α

)s
+ K̃3w

−α
log r̃2
logϕ

t r̃2
s+1

where β̃α = βI
(

−α
1−α

)
ρ

−α
γ(1−α)+1 .
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SOLVING FOR K3:

To solve for K3 we are using the Bellman Equation B23 at s∗(wt):

aV (wt, s
∗

t − 1) + bV (wt, s
∗

t ) + cV (wt, s
∗

t + 1) =

= a

((
ϕs∗t−1

) 1
1−α

(
α

wt

) α
1−α

(1 − α) − cf

)

+ b

(
−cf

1− β
+

(1 − α)α
α

1−α

1− ρβ̃α

w
−α
1−α

t

(
ϕ

1
1−α

)s∗t
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s∗t +1

)

+ c

(
−cf

1− β
+

(1− α)α
α

1−α

1− ρβ̃α

w
−α
1−α

t

(
ϕ

1
1−α

)s∗t +1
+ K̃3w

−α
log r̃2
log ϕ

t r̃2
s∗t+2

)

=
−cf

1− β
(a(1 − β) + b+ c)

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α

t

(
ϕ

1
1−α

)s∗t (
aϕ

−1
1−α

(
1− ρβ̃α

)
+ b+ cϕ

1
1−α

)

+ K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t
(
br̃2 + cr̃2

2
)

=
−cf

1− β
(1− aβ)

+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α

t

(
ϕ

1
1−α

)s∗t (
ρ− aϕ

−1
1−α ρβ̃α

)

+ K̃3w
−α

log r̃2
log ϕ

t r̃2
s∗t

(
r̃2

β̃2

− a

)

Note that K̃3w
−α

log r̃2
logϕ

t r̃2
s∗t = K3χ

−(1−α)
log r̃2
logϕ w

−α
log r̃2
logϕ

t r̃2
s∗t = K3r̃2

−s∗t r̃2
s∗t = K3

and that
(
ϕ

1
1−α

)s∗t
= χ

(1−α) log ϕ
1

1−α

logϕ w
α log ϕ

1
1−α

logϕ

t = χw
α

1−α
t . With these in hand it

follows

aV (wt, s
∗
t − 1) + bV (wt, s

∗
t ) + cV (wt, s

∗
t + 1) =

=
−cf
1− β

(1− aβ) +
(1− α)α

α
1−α

1− ρβ̃α
χ
(
ρ− aϕ

−1
1−αρβ̃α

)
+K3

(
r̃2

β̃2
− a

)

Note that the above expression is independent of wt. The Bellman Equation
B23 at s = s∗t is

−cf
1− β

+
(1− α)α

α
1−α

1− ρβ̃α
w

−α
1−α

t

(
ϕ

1
1−α

)s∗t
+ K̃3w

−α
log r̃2
logϕ

t r̃2
s∗t+1

=
(
ϕs∗t
) 1

1−α

(
α

wt

) α
1−α

(1− α)− cf

+
−cfβ
1− β

(1− aβ) +
(1− α)α

α
1−α

1− ρβ̃α
βχ
(
ρ− aϕ

−1
1−α ρβ̃α

)
+K3β

(
r̃2

β̃2
− a

)
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which after simplification yields

−cf

1− β
+

(1 − α)α
α

1−α

1− ρβ̃α

χ+K3r̃2

= χα
α

1−α (1 − α) − cf +
−cfβ

1− β
(1− aβ) +

(1− α)α
α

1−α

1− ρβ̃α

βχ

(
ρ− aϕ

−1
1−α ρβ̃α

)
+K3β

(
r̃2

β̃2

− a

)

⇔

K3

(
r̃2 − r̃2

β

β̃2

+ βa

)
=

cf

1− β
aβ2 + χα

α
1−α (1− α)


1 +

ρβ − ρβaϕ
−1
1−α β̃α)

1− ρβ̃α

− 1

1− ρβ̃α




⇔

K3β

(
r̃2

(
1

β
− 1

β̃2

)
+ a

)
=

cf

1− β
aβ2 + χα

α
1−α (1− α)

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

1− ρβ̃α

⇔

K3 =

cf
1−β

aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

+ χα
α

1−α (1 − α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α(

1− ρβ̃α

)
β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
)

where β̃α = βI
(

−α
1−α

)
ρ

−α
γ(1−α)+1 . It follows that the value of an incumbent for

s ≥ s∗t is

V (wt, s) =
−cf

1− β
+

(1− α)α
α

1−α

1− ρβ̃α

w
−α
1−α

t

(
ϕ

1
1−α

)s
+

cf
1−β

aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

χ
−(1−α)

log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s+1

+χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α(

1− ρβ̃α

)
β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
)χ−(1−α)

log r̃2
log ϕ w

−α
log r̃2
log ϕ

t r̃2
s+1

or equivalently

V (wt, s) =
−cf

1− β
+

(1− α)α
α

1−α

1− ρβ̃α

w
−α
1−α

t

(
ϕ

1
1−α

)s
+

cf
1−β

aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2
s+1−s∗(wt)

+χα
α

1−α (1− α)
−ρβ̃α + ρβ − ρβaϕ

−1
1−α β̃α(

1− ρβ̃α

)
β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) r̃2s+1−s∗(wt)
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which, after rearranging terms, yields

V (wt, s) =
−cf

1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2
s+1−s∗(wt)




+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α

t

(
ϕ

1
1−α

)s
+

α
α

1−α (1− α)

1− ρβ̃α

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) w

−α
1−α

t

(
ϕ

1
1−α

)s∗(wt)
r̃2

s+1−s∗(wt)

or

V (wt, s) =
−cf

1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2
s+1−s∗(wt)




+
(1− α)α

α
1−α

1− ρβ̃α

w
−α
1−α

t

(
ϕ

1
1−α

)s
+

α
α

1−α (1− α)

1− ρβ̃α

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) w

−α
1−α

t

(
ϕ

1
1−α

)s+1
(

r̃2

ϕ
1

1−α

)s+1−s∗(wt)

or

V (wt, s) =
−cf

1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2
s+1−s∗(wt)




+ w
−α
1−α

t

(
ϕ

1
1−α

)s (1− α)α
α

1−α

1− ρβ̃α


1 +

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
)

(
ϕ

1
1−α

)( r̃2

ϕ
1

1−α

)s+1−s∗(wt)



SOLVING FOR χ:

χ is such that the continuation value at s = s∗(wt) is equal to zero. The con-
tinuation value is

aV (wt, s
∗

t − 1) + b+ cV (wt, s
∗

t + 1) =
−cf

1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

(
a+ br̃2 + cr̃2

2
)



+ w
−α
1−α

t

(
ϕ

1
1−α

)s∗(wt) (1 − α)α
α

1−α

1− ρβ̃α


ρ+

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) (

a+ br̃2 + cr̃2
2
)



=
−cf

1− β


1− aβ

r̃2
(

1
β
− 1

β̃2

)
+ a

r̃2

β̃2


+ χ

(1 − α)α
α

1−α

1− ρβ̃α


ρ+

−ρβ̃α + ρβ − ρβaϕ
−1
1−α β̃α

β
(
r̃2
(

1
β
− 1

β̃2

)
+ a
) r̃2

β̃2




The last expression is independent of wt. Thus, to solve for χ we just need to
equate the above to zero and this yields

χ =

cf
1−β


1− aβ

r̃2

(
1
β
− 1

β̃2

)
+a

r̃2
β̃2




(1−α)α
α

1−α

1−ρβ̃α


ρ+ −ρβ̃α+ρβ−ρβaϕ

−1
1−α β̃α

β

(
r̃2

(
1
β
− 1

β̃2

)
+a

) r̃2
β̃2



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which completes the proof. �

DATA APPENDIX

In this appendix, we describe the different data sources used in the paper.
The first data source is the Business Dynamics Statistics (BDS), giving firm
counts by size and age on the universe of firms in the US economy. Compus-
tat data contains information on publicly traded firms. Finally, we use publicly
available aggregate time series.

C1. BDS data

According to the US Census Bureau, the Business Dynamics Statistics (BDS)
provides annual measures of firms’ dynamics covering the entire economy. It
is aggregated into bins by firm characteristics such as size and size by age. The
BDS is created from the Longitudinal Business Database (LBD), a US firm-level
census. The BDS database gives us the number of firms by employment size
categories (1-5, 5-10, 10-20, 20-50, 50-100, 100-250, 500-1000, 1000-2500, 2500-
5000, 5000-10000) for the period ranging from 1977 to 2012. Note that the num-
ber of firms in each bin is the number of firms on March 12 of each year. We
also source from the BDS the number of firms of age zero by employment size.
We call the latter entrants.

We compute the empirical counterpart of the steady-state stationary distri-
bution in our model based on this data, by taking the average of each bin over
years. We do this for the entrant and incumbent distributions. We then esti-
mate the tail of these distribution following Virkar and Clauset (2014). We find
that the tail estimate for the (average) incumbent size distribution is 1.0977
with a standard-deviation of 0.0016. For entrants, this estimate is 1.5708 with
standard deviation of 0.0166. To compute the entry rate, we divide the aver-
age number of entrants over the period 1977-2012 by the average number of
incumbents. Over this period there are 48,8140 entrant firms and 4,477,300 in-
cumbent firms; the entry rate is then 10.9%.

To perform the exercise described in Section IV.D, we need to compute the
model counterpart of the time t firm size distribution. According to Theorem 1,
these are deviations of the firm size distribution around the (deterministic) sta-
tionary firm size distribution. However, in the BDS data, the trend of each bin
is different. We thus HP-filter each bin of the BDS data with a smoothing pa-
rameter λ = 6.25. Each bin is thus decomposed µBDS

s,t = µBDS−trend
s,t +µBDS−dev

s,t

where µBDS
s,t is the original bin value, µBDS−trend

s,t is its HP-trend and µBDS−dev
s,t

is the HP-deviation from trend. The empirical counterpart of time t firm size

distribution in our model is thus µBDS−average
s + µBDS−dev

s,t where µBDS−average
s

is the average of bins s over the period 1977-2012. We then use Equations 1, 3

and 13 to compute the time series for aggregate TFP, Yt and
σ2
t

T 2 which we plot
in Figure 6 along with data aggregate time series describe below.
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C2. Compustat

The Compustat database is compiled from mandatory public disclosure doc-
uments by publicly listed firm in the US. It is a firm-level yearly (unbalanced)
panel with balance sheet information. Apart from firm-level identifiers, year
and sector (4 digit SIC) information, we use two variables from Compustat: em-
ployment and sales. We use data from the year 1958 to 2009. Sales is a nominal
variable. We deflate it using the price deflator given by the NBER-CES Manu-
facturing Industry Database for shipments (PISHIP) in the corresponding SIC
industry. We focus on real sales because our firm-level outcomes in the model
are real, and therefore, the most immediate counterpart is real sales data.

Using this dataset, we estimate tail indexes following Gabaix and Ibragimov
(2011), performing a log rank-log size regression on the cross-section of firms
each year. Our measure of size is given by the number of employees. We com-
pute tail estimates for firms above 1k, 5k, 10k, 15k and 20k employees. We then
HP-filter the resulting time-series of tail estimates (with a smoothing parame-
ter of 6.25).

For each year, we also compute the cross-sectional variance of (log) real sales
and then HP-filter the time series using a smoothing parameter of 6.25. As
described above, sales are deflated using price deflator given by the NBER-
CES Manufacturing Industry Database. This helps ensure that the empirical
correlation between dispersion and aggregate volatility are not being driven
by industry-specific price cyclicality features, which our model is silent on.4

We restrict our sample to manufacturing firms because of the need for de-
tailed industry-specific price indexes spanning five decades, and, to maintain
comparability across our robustness exercises.5 Finally, we find that there are
trends in this level of cross-sectional dispersion over time.6 Our model is silent
about such trends and the mechanisms that might account for this; we are
solely interested in business cycle implications. As such, we follow Kehrig (2015)
in analysing percentage deviations of dispersion from its non-linear trend7.

C3. Aggregate Data

The aggregate data comes from two sources. We take quarterly time series
of aggregate TFP and Output from Fernald (2014). Note that our measure of

4To see this, think of a world where our hypothesis is false. Suppose that the dispersion of real sales is,
in fact, fixed over time and thus uncorrelated with aggregate volatility. Suppose further that in this counter-
factual world, nominal prices are differentially correlated with aggregate volatility. To the econometrician
it would seem as nominal sales dispersion is indeed correlated with aggregate volatility though, clearly, our
model - which only carries predictions for real sales - would be rejected by data.

5The alternative measures of dispersion (based on the ASM and graciously made available by Bloom
et al (2018) and Kehrig (2015)) which we use as a robustness check in Table C2, are only available for the
manufacturing sector.

6Note that this is also consistent with the recent literature on the rise of market power and concentration
(e.g. Autor et al (2017) and De Loecker and Eeckhout (2017)).

7Bachmann and Bayer (2014) use a linear trend
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aggregate TFP is Fernald’s Solow residual quarterly TFP series (not utilization
adjusted). To be precise, from Fernald’s data, we use the "dtfp" series, defined
as output growth minus contribution of primary inputs. For the exercise in
Section IV.D, since the BDS data are computed on March 12 of each year, we
compute the average over 4 quarters up to, and including, March. For exam-
ple, for the year 1985 we compute the average of 1984Q2, 1984Q3, 1984Q4 and
1985Q1. We do this for TFP and Output before HP-filtering the resulting time
series with a smoothing parameter of 6.25. The other source for annual time
series on aggregate output is taken from the St-Louis FED. We use this series
for the correlations reported in Table 4, either after HP-filtering with smooth-
ing parameter 6.25 or by computing its growth rate.

For the results in Table 5, we estimate a GARCH(1,1) on the de-meaned growth
rate of both aggregate TFP and output, both at a quarterly frequency. The
source for this data is Fernald (2014). We take the square of 4 quarter-average of
the conditional standard deviation vector resulting from the estimated GARCH.
We then HP-filter these series with a smoothing parameter of 6.25.

C4. Robustness Check

TABLE C1—CORRELATION OF TAIL ESTIMATE WITH AGGREGATE OUTPUT.

Sample Firms with more than 1k 5k 10k 15k 20k

Model Correlation in level −0.68
(0.000)

−0.72
(0.000)

−0.69
(0.000)

−0.64
(0.000)

−0.57
(0.000)

Correlation in growth rate −0.22
(0.000)

−0.29
(0.000)

−0.38
(0.000)

−0.41
(0.000)

−0.43
(0.000)

Data Correlation in (HP filtered) level −0.36
(0.005)

−0.17
(0.20)

−0.34
(0.008)

−0.51
(0.000)

−0.46
(0.000)

Correlation in growth rate −0.29
(0.030)

−0.21
(0.114)

−0.33
(0.011)

−0.43
(0.001)

−0.38
(0.004)

Note: The tail in the model is estimated for simulated data based on our baseline calibration (cf. Table 2) for
an economy simulated during 20,000 periods. The tail in the data is estimated on Compustat data over the
period 1958-2008. The aggregate output data is from the St-Louis Fed.

CALIBRATION AND NUMERICAL APPENDIX

D1. Firm-Level Productivity and its Volatility: Mapping the Model to the Data

In this appendix, we are explaining the details of the mapping between the
model and the data in the calibration. First, we discuss what is the data coun-
terpart of firm-level productivity ϕsi,t . Second, we discuss how its volatility is
measured. Third, we explain how the introduction of the fixed cost cf is affect-
ing this mapping between the data and the model for firm-level productivity.
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TABLE C2—CORRELATION OF DISPERSION AND AGGREGATE VOLATILITY

(1) (2) (3)
IQR of Real Sales STD of Pdy (Durables) IQR of real sales

(Compustat) (Kehrig 2015) (Bloom et al (2018))

Aggr. Vol. in TFP growth 0.2532
(0.0825)

0.3636
(0.0269)

0.3583
(0.030)

Aggr. Vol. in GDP growth 0.1911
(0.1932)

0.2923
(0.079)

0.3504
(0.034)

Note: In this table, we display the correlation of various measures of micro-level dispersion with two mea-
sures of aggregate volatility. Aggregate volatility is measured by the fitted values of an estimated GARCH on
growth rates of TFP and output. Both are sourced from Fernald (2014) (see description above). In column
(1) the Inter Quartile Range (IQR) of real sales is computed using Compustat data from 1960 to 2008 for
manufacturing firms. Nominal values are deflated using the NBER-CES Manufacturing Industry Database
4-digits price index. In column (2) we take the establishment-level median standard deviation of produc-
tivity (levels) from Kherig (2015) who, in turn, computes it from Census data. In column (3) we take the
establishment-level IQR of sales growth from Bloom at al. (2018).

FIRM-LEVEL PRODUCTIVITY:

To understand what is the empirical counterpart of the firm-level productiv-
ity ϕsi,t in the model, recall that the production function is yi,t = ϕsi,tnαi,t, and
take logs to get that:

(D1) log(ϕsi,t) = log(yi,t)− α log(ni,t).

On the left hand side we have the log of firm-level productivity in the model,
while on the right hand side we have the difference between log quantity and
the labor input weighted by the respective elasticity. It follows that log(ϕsi,t)
is a firm-level Solow residual, a measure of Quantity Total Factor Productivity
(TFPQ). In most empirical studies, given the absence of firm-level prices, firm-
level Solow residuals are measures of Revenue Total Factor Productivity (TFPR).

Unfortunately, there are very few studies that can accurately measure TFPQ
at the firm/plant level and, among those, to the best of our knowledge none
reports the volatility of idiosyncratic TFPQ. Thus, we are forced to follow the
frontier in the quantitative firm dynamics literature (as in Bachmann and Bayer
(2014), Clementi and Palazzo, 2016, or, Bloom et al, 2018), and acknowledge
that the TFPR residuals - whose moments we match - may combine TFP and
demand shocks that are not controlled for (as per the argument in Foster et al
(2008, 2015).8

8Recall also that, as is well known, the model (without entry and exit) we write down is isomorphic to one
with horizontal product differentiation (i.e. where curvature comes from demand rather than decreasing
returns), and where idiosyncratic demand shocks play a major role. The important thing to note, is that
in this setting, such demand innovations are isomorphic to our own disturbances. Now, for ten narrowly
defined manufacturing industries, Foster et al (2008, 2015) argue that the observed dynamics of TFPR was
mostly the results of demand shocks. Further, the process for demand shocks posited in Foster et al (2015)
leads to TFPR dynamics very similar to ours. Therefore, as Clementi and Palazzo (2016), we conjecture
relabelling TFPR as demand shocks and working with the isomorphic demand-led model of firm dynamics
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Comparing the expression in Equation D1 with expression (9) in Foster, Halti-
wanger and Syverson (2008), with expression (1) in Castro, Clementi and Lee
(2015) or, with Online Appendix A.8 of Bachmann and Bayer (2014), we see that
the expressions for TFPR in the model and in these studies coincide, up to the
netting out of additional, elasticity-weighted, variable inputs in the data (capi-
tal, materials and, in Foster et al (2008), energy). Clearly, as is well known in the
literature, nothing would change in our analysis if we interpreted our model as
one with additional fixed factors in the short run, e.g. yi,t = ϕsi,tnαi,tk

1−α
i where

ki is capital, the fixed factor. Alternatively, one can also directly model multiple
variable inputs as is done in frontier quantitative papers in the firm dynamics
literature (e.g. Clementi and Palazzo, 2016). Because, as discussed early on in
the paper, we wish to make our point in the context of the canonical model in
the literature (i.e. Hopenhayn, 1992), we stick to the simpler production func-
tion but source studies for TFPR where the existence of additional factors in
data is acknowledged and controlled for.

From this discussion, we are now interpreting the empirical counterpart of
the model firm-level productivity ϕsi,t as TFPR as measured by Foster, Halti-
wanger and Syverson (2008), Castro, Clementi and Lee (2015) and Bachmann
and Bayer (2014).

FIRM-LEVEL PRODUCTIVITY VOLATILITY:

Let us look at how firm-level productivity volatility in the model matches with
its empirical counterpart. From the properties of our productivity process – as
summarized in Properties 1 in Section III –, recall that σe is the conditional
variance of firm-level productivity growth in the model, that is:

Var

[
ϕsi,t+1 − ϕsi,t

ϕsi,t
|ϕsi,t

]
= σ2e

To map this to the reported estimates in the literature, note that Foster et al
(2008), Castro, Clementi and Lee (2015) and Bachman and Bayer (2014), esti-
mate AR(1) processes for the log-level of TFPR and report the standard devia-
tion of the residual of this equation.9 Adopting the notation of our model, this
is log(ϕsi,t+1) = κ1 + κ2log(ϕ

si,t) + ǫi,t+1, for some constants κ1 and κ2. De-
noting ∆ as the first difference operator, this is equivalent to ∆ log(ϕsi,t+1) =
(κ2 − 1)log(ϕsi,t) + ǫi,t+1 which in turn implies that

Var [∆ log(ϕsi,t+1)|ϕsi,t ] = Var [ǫi,t+1|ϕsi,t ]

should lead to very similar conclusions.
9Castro et al (2015) also add a host of fixed effects in order to isolate the idiosyncratic component of

volatility. For Foster et al (2008), the implied standard deviation is most clearly spelled out in Haltiwanger
(2011, p 121). Bachman and Bayer (2014) also adopt a slightly different approach, for example, they intro-
duce measurement errors (See their Online Appendix A.8).
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The LHS of the above expression is exactly the conditional variance of the growth
rate of TFPR (up to a log difference approximation to the exact growth rate)
we wish to calibrate to (or rather its square root to obtain the standard devi-
ation). The (square root of the) RHS is the number reported by Castro et al
(2015), Bachman and Bayer (2014), and Haltiwanger (2011) based on Foster et
al (2008). It follows that this mapping between the empirical measure of firm-
level volatility and the model couterpart allows us to use the number reported
in the above cited studies as calibration targets for σe.

FIXED COST:

Note that the fixed cost is paid in units of output. Therefore, if the data used
in the above studies contains only information about the firm-level output net
of fixed costs, the estimation of TFPR volatility may be biased. To see this,
let us denote by ygi,t = ϕsi,tnαi,t firm-level gross output and by yni,t = ygi,t − cf
firm-level output net of fixed costs. In the case where there is only informa-
tion about firm-level output net of fixed costs in the data, TFPR is then de-
fined by log TFPRi,t ≡ log yni,t − α log ni,t. Using the fact that at the first order

∆ log yni,t ≈
ygi,t
yni,t

∆ log ygi,t, and, ∆ log ygi,t ≈ 1
1−α∆ logϕsi,t , it is easy to see that:

∆ log TFPRi,t =

(
1 +

1

1− α

(
ygi,t

yni,t
− 1

))
∆logϕsi,t

and

Var [∆ log TFPRi,t] =

(
1 +

1

1− α

(
ygi,t

yni,t
− 1

))2

σ2
e

From the above equation, one can see that, when
ygi,t
yni,t

=
ygi,t

ygi,t−cf
→ 1, that is,

when ygi,t → ∞ , we have Var [∆ log TFPRi,t] → σ2e . In other words, for large

firms, the variance of change in log TFPR is equal to the variance of log change
in productivity ϕsi,t . That is, for sufficiently large firms, fixed costs are irrelevant
for the relation between the variance of change in log TFPR and the variance
of change in log productivity. Because this need not be the case for the average
firm, this is an argument to choose a conservative target for σe on the low end
of the reported numbers in Castro et al (2015), Bachman and Bayer (2014), or,
Foster et al (2008).

D2. Numerical Appendix

In this numerical appendix, we first describe the numerical solution algo-
rithm and its implementation and assess the accuracy of the solution. We then
present a set of results obtained under an alternative calibration strategy.
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SOLUTION METHOD AND ACCURACY

In this appendix, we describe the numerical algorithm used to solve the model
described in the paper. Recall that given the Equation 2,At is a sufficient statis-
tic to describe the wage. Using Equation 16, it is clear that the law of motion of
At is a function of past values ofAt,Et(ϕ), and σt. As described in the main text,
we are assuming that firms do not take into account the time-varying volatility

of At and form their expectations by assuming that Et(ϕ)
At

,
OA

t
At

and σt
At

are con-

stant and equal to their steady-state value. It follows that, from the perspective
of the firms, At only depends on its past value.10

It follows that the value of being a incumbent only depends on A. To solve
the model we simply have to solve for the following Bellman equation:

V (A,ϕs) = π∗(A,ϕs) + max



0, β

∫

A′

∑

ϕs′∈Φ
V (A′, ϕs′)F (ϕs′ |ϕs)Υ(dA′|A)





where Υ(.|A) is the conditional distribution of next period’s state A′, given the

current period state A. This distribution is given by Equation 16 with
Et(ϕ)
At

=
E(ϕ)
A ,

OA
t

At
= OA

A and σt
At

= σ
A . We also assume that the shock εt+1 in this last

equation follows a standard normal distribution, which is a valid approxima-
tion as shown in the Theorem 3 in Appendix B.B5.

To solve for the above Bellman equation we are using a standard value func-
tion iteration algorithm implemented in Matlab with the Compecon toolbox
developed by Miranda and Fackler (2004). To do so, we define a grid for A (in
logs) along with productivity grid of the idiosyncratic state space Φ described
in the paper. We then form a guess on the value function as a function of log(A)
and log(ϕs), and plug it to the right hand side of the above Bellman equation.
This is repeated until convergence. This algorithm converges to the solution
of the above Bellman equation and allows us to compute the policy function
s∗(A). Figure D1 displays this policy function computed from the value func-
tion iteration procedure described above. In this figure, we also plot the ergodic
domain of log(At) for a 20 000 period simulation of our model (using the results
in Theorem 1). We observe that the value of log(At) is concentrated on the part
of the state space where the policy function s∗ is constant. Note this is a nu-
merical result rather than an assumption.

Given that firms solve their problem under the perceived law of motion given
by Assumption 3, it is important to see if there is an important deviation of this
perceived law of motion from the actual law of motion described in Theorem 3.
To see this, we plot the two implied aggregate TFP time series for a simulation

10We also explored the alternative assumption that firms form their expectations by assuming that Et(ϕ),
OA

t and σt are constant and equal to their steady-state value. With this alternative assumption, the policy
function is barely affected and all the results in the paper are quantitatively very similar.
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FIGURE D1. POLICY FUNCTION AND STOCHASTIC DOMAIN OF At

Note: The blue (dash-dot) line is the policy function s∗(A); For a 20 000 period simulation of the model, the
vertical black (solid) lines are the minimum and maximum of log(At) over this sample; the black (dashed)
line is the mean of log(At) over this sample; each of the vertical red (transparent) lines represent log(At) for
a given time t.

path of our model in Figure D2. We observe that the actual (blue solid) and the
perceived (red dashed) series follow each other closely. Furthermore, on a 20
000 periods simulated path, the correlation between these two series is 0.9963.

ALTERNATIVE CALIBRATIONS

In this section, we detail further the strategy, the targets, the resulting param-
eters and the results associated to the two alternative calibration described in
Section IV.B. Online Appendix D.D2 discusses the calibration strategy where
we are matching the volatility of sales by calibrating the value of the span of
control parameter α. Online Appendinx D.D2 discusses the calibration where
we match the volatility of the largest 10% of firms by reducing σe.

ALTERNATIVE CALIBRATION 1

In this section, we explore an alternative calibration strategy also discussed
in Section IV.B. Instead of fixing the value of α, the span of control param-
eter, and then matching the idiosyncratic volatility of productivity σe, we are
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FIGURE D2. A SIMULATED PATH FOR AGGREGATE TFP UNDER THE ACTUAL AND PERCEIVED LAW OF MOTIONS.

Note: The red (dashed) line is the actual times series of aggregate TFP (by Theorem 3); The blue (solid) line
is the time series of aggregate TFP implied by Assumption 3. The correlation between these two series is
0.9965.

now matching the volatility of idiosyncratic sales while fixing the volatility of
idiosyncratic productivity in the steady-state. To do so, we calibrate the value
of α rather than fix it. For the idiosyncratic volatility of sales, we choose a 35%
target following Gabaix (2011) and Comin and Mulani (2006). The targets of
this alternative calibration are summarized in Table D1, while the implied pa-
rameters can be found in Table D2. Note that the calibrated α is now equal to
0.77.

The results are qualitatively unchanged. If anything, the implied aggregate
volatility is stronger as the reallocation mechanism is weaker. We reproduce
here the business cycle statistics (Table D3) described in Section IV.B. Note
also that the correlation of cross-sectional variance of firm-level output and
employment with aggregate volatility is respectively 0.9966 and 0.9980. These
numbers are similar to the one for our baseline calibration in Table 5.
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TABLE D1—TARGETS FOR THE CALIBRATION OF PARAMETERS (ALTERNATIVE CALIBRATION 1)

Statistic Model Data References

Entry Rate 0.085 0.109 BDS firm data

Idiosyncratic Vol. σe 0.08 0.1− 0.2 See main text

Sales Vol. 0.35 0.2− 0.4 See main text

Tail index of Firm size dist. 1.097 1.097 BDS firm data

Tail index of Entrant Firm size dist. 1.570 1.570 BDS firm data

Share of Employment of the top 0.02% firms 0.264 0.255 BDS firm data

Number of Firms 4.5× 106 4.5× 106 BDS firm data

TABLE D2—ALTERNATIVE CALIBRATION 1

Parameters Value Description

a 0.5980 Pr. of moving down
c 0.4020 Pr. of moving up
S 42 Number of productivity levels
ϕ 1.0868 Step in pdty bins
Φ {ϕs}s=1..S Productivity grid
γ 2 Labor Elasticity
α 0.77 Production function
cf 1.0 Operating cost
ce 0 Entry cost
β 0.95 Discount rate

M 3.6435 ∗ 107 Number of potential entrants
G {MKe(ϕ

s)−δe}s=1..S Entrant’s distr. of the signal
Ke 0.7652 Scale parameter of the distr. G

δe(1− α) 1.570 Tail parameter of the distr. G

TABLE D3—BUSINESS CYCLE STATISTICS

Model Data

σ(x) σ(x)
σ(y) ρ(x, y) σ(x) σ(x)

σ(y) ρ(x, y)

Output 0.58 1.0 1.0 1.83 1.00 1.00
Hours 0.39 0.66 1.0 1.78 0.98 0.90
Aggregate TFP 0.28 0.48 1.0 1.04 0.57 0.66

Note: The model statistics are computed for the alternative calibration 1 (cf. Table D2) for an economy
simulated for 20,000 periods. The data statistics are computed from annual data in deviations from an HP
trend. The source of the data is Fernald (2014). The Aggregate Productivity series is the Solow residual series.
For further details refer to Appendix C.
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ALTERNATIVE CALIBRATION 2

In this section, we explore a different calibration strategy discussed in Sec-
tion IV.B. We choose σe to match a standard deviation of annual employment
volatility of 15%, corresponding to that of the largest 10% of firms (as measured
by the number of employees) present in Compustat. The targets of this alter-
native calibration are summarized in Table D4, while the implied parameters
can be found in Table D5. Note that the calibrated σe is now equal to 0.03.

The results are qualitatively unchanged. The volatility of aggregate output is
now 0.44%, that is, 24% of the same number in the data. We reproduce here the
business cycle statistics (Table D6) described in Section IV.B. Note also that the
correlation of cross-sectional variance of firm-level output and employment
with aggregate volatility is respectively 0.9976 and 0.9981. These numbers are
similar to the one for our baseline calibration in Table 5.

TABLE D4—TARGETS FOR THE CALIBRATION OF PARAMETERS (ALTERNATIVE CALIBRATION 2)

Statistic Model Data References

Entry Rate 0.0174 0.109 BDS firm data

Idiosyncratic Vol. σe 0.03 0.1− 0.2 See main text

Empl. Vol. 0.15 0.2− 0.4 See main text

Tail index of Firm size dist. 1.097 1.097 BDS firm data

Tail index of Entrant Firm size dist. 1.570 1.570 BDS firm data

Share of Employment of the top 0.02% firms 0.235 0.255 BDS firm data

Number of Firms 4.5× 106 4.5× 106 BDS firm data
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TABLE D5—ALTERNATIVE CALIBRATION 2

Parameters Value Description

a 0.5172 Pr. of moving down
c 0.4364 Pr. of moving up
S 105 Number of productivity levels
ϕ 1.0314 Step in pdty bins
Φ {ϕs}s=1..S Productivity grid

γ 2 Labor Elasticity
α 0.8 Production function
cf 1.0 Operating cost
ce 0 Entry cost
β 0.95 Discount rate

M 4.281 ∗ 107 Number of potential entrants
G {MKe(ϕ

s)−δe}s=1..S Entrant’s distr. of the signal
Ke 0.2749 Scale parameter of the distr. G

δe(1− α) 1.570 Tail parameter of the distr. G

TABLE D6—BUSINESS CYCLE STATISTICS

Model Data

σ(x) σ(x)
σ(y) ρ(x, y) σ(x) σ(x)

σ(y) ρ(x, y)

Output 0.44 1.0 1.0 1.83 1.00 1.00
Hours 0.29 0.66 1.0 1.78 0.98 0.90
Aggregate TFP 0.20 0.46 1.0 1.04 0.57 0.66

Note: The model statistics are computed for the alternative calibration 1 (cf. Table D5) for an economy
simulated for 20,000 periods. The data statistics are computed from annual data in deviations from an HP
trend. The source of the data is Fernald (2014). The Aggregate Productivity series is the Solow residual series.
For further details refer to Appendix C.
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