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Appendix A Proofs and Additional Results

Section A.1 collects the proofs and additional results for a finite economy, while those related

to asymptotics and the continuum economy are presented in Section A.2.

A.1 Finite Economy: Proofs from Sections I.B and I.C

Proof of Proposition 1.

(i) Sufficiency. Without application cost, STT is a dominant strategy (Dubins and

Freedman, 1981; Roth, 1982), so we only need to prove it is the unique equilibrium.

Suppose that a non-STT strategy, σ, is another equilibrium. Without loss of generality,

let us assume σ is in pure strategy.

Since STT is a weakly dominant strategy, it implies that, for any i and any θ�i P ΘI�1,

Ş

s�1

ui,sas prpuiq, ei;σpθ�iq, e�iq ¥
Ş

s�1

ui,sas pσpθiq, ei;σpθ�iq, e�iq ,

in which both terms are non-negative given the assumptions on G. Moreover, σ being an

equilibrium means that, for any i:

Ş

s�1

ui,s

»
as prpuiq, ei;σpθ�iq, e�iq dGpθ�iq ¤

Ş

s�1

ui,s

»
as pσpθiq, ei;σpθ�iq, e�iq dGpθ�iq.

It therefore must be that, for any i and any θ�i P ΘI�1 except a measure-zero set of θ�i,

Ş

s�1

ui,sas prpuiq, ei;σpθ�iq, e�iq �
Ş

s�1

ui,sas pσpθiq, ei;σpθ�iq, e�iq . (A.1)

Through the following claims, we then show that σ must be STT, i.e., σpθiq � rpuiq.
Claim 1 : σpθiq and rpuiq have the same top choice.

Proof of Claim 1 : Given the full support of G, there is a positive probability that i’s

priority indices at all schools are the highest among all students. In this event, i is accepted

by r1
i (her most preferred school) when submitting rpuiq and accepted by the top choice in

σpθiq when submitting σpθiq. As preferences are strict, σpθiq must have r1
i as the top choice

to have Equation (A.1) satisfied.

Claim 2 : σpθiq and rpuiq have the same top two choices.
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Proof of Claim 2 : From Claim 1, we know that σpθiq and rpuiq agree on their top choices.

Given G’s full support, there is a positive probability that i’s type and others’ types are such

that: (a) i’s priority index is the lowest among all students at school r1
i ; (b) i’s priority index

is the highest among all students at all other schools; and (c) all other students have r1
i as

their most preferred school. In this event, by Claim 1, all students rank r1
i as top choice.

Therefore, i is rejected by r1
i , but she is definitely accepted by her second choice. Because

STT means she is accepted by r2
i , Equation (A.1) implies that σpθiq must also rank r2

i as

the second choice. This proves the claim.

We can continue proving a series of similar claims that σpθiq and rpuiq must agree on top

S choices. In other words, σpθiq � rpuiq. This proves that there is no non-STT equilibrium,

and, therefore, STT is the unique Bayesian Nash equilibrium.

(ii) Necessity. The following shows that the zero-application-cost condition is necessary

for STT to be an equilibrium strategy for every student type.

Without loss of generality, suppose that CpSq � CpS � 1q ¡ 0 , which implies that

applying to the Sth choice is costly. Let σSTT be the STT strategy. Let us consider students

whose Sth choice in terms of true preferences, rSi , has a low cardinal value. More specifically,

ui,rSi   CpSq � CpS � 1q. For such students, σSTT is a dominated strategy, dominated by

dropping rSi and submitting pr1
i , . . . , r

S
i q. In other words, σSTT is not an equilibrium strategy

for these students.

In fact, σSTT is not an equilibrium strategy for more student types, given others playing

σSTT . If a student drops an arbitrary school s and submits a partial true preference order Li

of length pS� 1q, the saved cost of is CpSq�CpS� 1q, while the associated foregone benefit

is at most ui,s
³
as
�
Li, ei;σ

STT
�i pθ�iq, e�i

�
dGpθ�iq. The saved cost can exceed the forgone

benefit because the latter can be close to zero when s tends to have cutoff much higher than

ei,s or when i can be almost certainly accepted by more desirable schools, given that everyone

else plays STT. When it is the case, i deviates from STT.

The above arguments can be extended to any non-zero application cost. �

Proof of Lemma 1.

The sufficiency of the first statement is implied by the strategy-proofness of DA and by

DA producing a stable matching when everyone is STT. That is, STT is a dominant strategy
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if C p|L|q � 0 for all L, which always leads to stability.

To prove its necessity, it suffices to show that there is no dominant strategy when

C p|L|q ¡ 0 for some L P L.

If C p|L|q � �8 for some L, we are in the case of the constrained/truncated DA, and it

is well known that there is no dominant strategy (see, e.g., Haeringer and Klijn, 2009).

Now suppose that 0   C p|L|q   �8 for some L P L. If a strategy ranks fewer than S

schools with a positive probability, we know that it cannot be a dominant strategy for the

same reason as in the contrained/truncated DA. If a strategy does always rank all schools,

then it is weakly dominated by STT. We therefore need to show that STT is not a dominant

strategy for all student types, for which we can construct an example where it is profitable

for a student to drop some schools from her ROL to save application costs for some profiles

of ROLs submitted by other students.

Therefore, there is no dominant strategy when C p|L|q ¡ 0 for some L P L, and hence

stability cannot be an equilibrium outcome in dominant strategy.

The second statement is implied by Proposition 1 and that DA produces a stable matching

when everyone is STT. �

Proof of Proposition 3.

(i) Suppose that given a realized matching µ̂, there is a student-school pair pi, sq such

that µ̂pθiq � H, ui,s ¡ ui,µ̂pθiq, and ei,s ¥ Pspµ̂q. That is, i is not matched with her favorite

feasible school.

Since i is weakly truth-telling, she must have ranked all schools that are more preferred

to µ̂pθiq, including s. The DA algorithm implies that i must have been rejected by s at some

round given that she is accepted by a lower-ranked school µ̂pθiq. As i is rejected by s in some

round, the cutoff of s must be higher than ei,s. This contradiction rules out the existence of

such matchings.

(ii) Given the result in part (i), when every student who has at least one feasible school

is matched, everyone must be assigned to her favorite feasible school. Moreover, unmatched

students have no feasible school. Therefore, the matching is stable. �
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A.2 Asymptotics: Proofs and Additional Results

We now present the proofs of results in the main text as well as some additional results on

the asymptotics and the continuum economy.

A.2.1 Matching and the DA Mechanism in the Continuum Economy

We follow Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016) to extend the defi-

nitions of matching and DA to the continuum economy, E.

Similar to that in finite economies, a matching in E is a function µ : Θ Ñ S YtHu, such

that (i) µ pθiq � s if student i is matched with s; (ii) µ pθiq � H if student i is unmatched;

(iii) µ�1psq is measurable and is the set of students matched with s, while Gpµ�1psqq ¤ qs;

and (iv) for any s P S, the set tθ P Θ : ui,µpθq ¤ ui,su is open.

The last condition is imposed because in the continuum model it is always possible to add

a measure-zero set of students to a school without exceeding its capacity. This would generate

multiplicities of stable matchings that differ only in sets of measure zero. Condition (iv) rules

out such multiplicities. The intuition is that the condition implies that a stable matching

always allows an extra measure zero set of students into a school when this can be done

without compromising stability.

The DA algorithm works almost the same as in a finite economy. Abdulkadiroğlu et al.

(2015) formally define the algorithm, and prove that it converges. A sketch of the mechanism

is as follows. At the first step, each student applies to her most preferred school. Every school

tentatively admits up to its capacity from its applicants according to its priority order, and

rejects the rest if there are any. In general, each student who was rejected in the previous

step applies to her next preferred school. Each school considers the set of students it has

tentatively admitted and the new applicants. It tentatively admits up to its capacity from

these students in the order of its priority, and rejects the rest. The process converges when

the set of students that are rejected has zero measure. Although this process might not

complete in finite time, it converges in the limit (Abdulkadiroğlu et al., 2015).
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A.2.2 Proofs of Propositions 4 and 5

We start with some intermediate results. Similar to Azevedo and Leshno (2016), we define

the convergence of tF pIquIPN to E if qpIq converges to q and if GpIq converges to G in the

weak-* topology.A.1 We similarly define the convergence of tF pIq, σpIquIPN to pE, σ8q, addi-

tionally requiring the empirical distributions of ROLs prescribed by σpIq in finite economies

to converge to those in E prescribed by σ8.

Lemma A1. For a sequence of random economies and equilibrium strategies tF pIq, σpIquIPN
satisfying Assumption 2, P pIq, the random cutoff associated with pF pIq, σpIqq, converges to

P pµpE,σ8qq almost surely.

Proof of Lemma A1.

First, we note that the sequence of random economies tF pIquIPN converges to E almost

surely. By construction, qpIq converges to q. Moreover, by the Glivenko-Cantelli Theorem,

the empirical distribution functions GpIq converge to G in the weak-* topology almost surely.

Therefore, we have that tF pIquIPN converges to E almost surely.

Second, we show that tF pIq, σpIquIPN converges to pE, σ8q almost surely. As σpIq and

σ8 map student types to ROLs, tF pIq, σpIquIPN is a sequence of random economies that are

defined with ROLs. A student’s “type” is now characterized by pLi, eiq P L � r0, 1sS. Let

M8 be the probability measure on the modified student types in pE, σ8q. That is, for any

Λ � L � r0, 1sS, M8pΛq � Gptθi P Θ | pσ8pθiq, eiq P Λuq. Similarly, M pIq is the empirical

distribution of the modified types in the random economy tF pIq, σpIqu. We shall show that

M pIq converges to M8 in the weak-* topology almost surely.

Let X : L� r0, 1sS Ñ rx, xs � R be a bounded continuous function. We also define M
pIq
σ8

the random probability measure on L � r0, 1sS when students play σ8 in random economy

F pIq. Because the strategy is fixed at σ8 for all I, by the same arguments as above (i.e., the

convergence of qpIq to q and the Glivenko-Cantelli Theorem), M
pIq
σ8 converges to M8 almost

surely.

A.1The weak-* convergence of measures is defined as
³
XdĜpIq Ñ

³
XdG for every bounded continuous

function X : r0, 1s2S Ñ R, given a sequence of realized empirical distributions tĜpIquIPN. This is also known
as narrow convergence or weak convergence.
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Let ΘpIq � tθi P Θ | σpIqpθiq � σ8pθiqu. We have the following results:����» XdM pIq �
»
XdM8

����
¤
����» XdM pIq �

»
XdM

pIq
σ8

����� ����» XdM pIq
σ8 �

»
XdM8

����
�
����» XpσpIqpθiq, eiqdGpIq �

»
Xpσ8pθiq, eiqdGpIq

����� ����» XdM pIq
σ8 �

»
XdM8

����
�
����»
θiPΘpIq

�
XpσpIqpθiq, eiq �Xpσp8qpθiq, eiq

�
dGpIq

����� ����» XdM pIq
σ8 �

»
XdM8

����
¤px� xqGpIqpΘpIqq �

����» XdM pIq
σ8 �

»
XdM8

���� ,
where the first inequality is due to the triangle inequality; the equalities are because of the

definitions of M pIq and M
pIq
σ8 and because XpσpIqpθiq, eiq � Xpσ8pθiq, eiq whenever θi R ΘpIq;

the last inequality comes from the boundedness of X.

Because limIÑ8GpΘpIqq � 0 by Assumption 1 and GpIq converges to G almost surely,

limIÑ8G
pIqpΘpIqq � 0 almost surely. Moreover, M

pIq
σ8 converges to M8 almost surely, and

thus the above inequalities implies
³
XdM pIq converges to

³
XdM8 almost surely. By the

Portmanteau theorem, M pIq converge to M8 in the weak-* topology almost surely.

This proves tF pIq, σpIquIPN converges to pE, σ8q almost surely. By Proposition 3 of

Azevedo and Leshno (2016), P pIq converges to P pµpE,σ8qq almost surely. �

Proposition A1. Given Assumption 1, in a sequence of random economies and equilibrium

strategies tF pIq, σpIquIPN satisfying Assumption 2, µpE, σ8q � µ8 and thus σ8pθiq ranks

µ8pθiq for all θi P Θ except a measure-zero set of student types.

Proof of Proposition A1.

Suppose that the first statement in the proposition is not true, Gptθi P Θ | µpE,σ8qpθiq �
µ8pθiquq ¡ 0 and therefore P pE, σ8q � P8. Because there is a unique stable matching in E,

which is the unique equilibrium outcome, by Assumption 1, µpE,σ8q is not stable and thus is

not an equilibrium outcome.

Recall that P pE, σ8q, P8, µpE,σ8q, and µ8 are constants, although their counterparts in

finite economies are random variables. Moreover, σpIq and σ8 are not random either.
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For some η, ξ ¡ 0, we define:

Θpη,ξq �

$''''''&''''''%
θi P Θ

������������

ei,µ8pθiq � P8
µ8pθiq

¡ η,

ei,µpE,σ8qpθiq � PµpE,σ8qpθiq
pµpE,σ8qq ¡ η,

ei,s � PspµpE,σ8qq   �η, for all s ranked above µpE,σ8qpθiq by σ8pθiq;
ui,µ8pθiq � ui,µpE,σ8qpθiq ¡ ξ.

,//////.//////-
,

Θpη,ξq must have a positive measure for some η, ξ ¡ 0 and is a subset of students who can form

a blocking pair in µpE,σ8q. Clearly, σ8pθiq ranks µpE,σ8qpθiq but not µ8pθiq for all θi P Θpη,ξq.

We further define:

Θ
pIq
pη,ξq � Θpη,ξq X tθi P Θ | σpIqpθiq ranks µpE,σ8qpθiq but not µ8pθiqu.

By Assumption 2, σpIq converges to σ8, and thus Θ
pIq
pη,ξq converges to Θpη,ξq and has a positive

measure when I is sufficiently large.

We show below that tσpIquIPN is not a sequence of equilibrium strategies. Consider a

unilateral deviation for θi P Θ
pIq
pη,ξq from σpIqpθiq to Li such that the only difference between

the two actions is that µpE,σ8qpθiq, ranked in σpIqpθiq, is replaced by µ8pθiq in Li while Li is

kept as a partial order of i’s true preferences.

By Lemma A1, for 0   φ   ξ{p1� ξq there exists n P N such that, in all F pIq with I ¡ n,

i is matched with µpE,σ8qpθiq with probability at least p1�φq if submitting σpIqpθiq but would

have been matched with µ8pθiq if instead Li had been submitted.

Let EUpσpIqpθiqq be the expected utility when submitting σpIqpθiq. Then EUpσpIqpθiqq ¤
p1�φqui,µpE,σ8qpθiq�φ because maxstui,su ¤ 1 by assumption, and EUpLiq ¥ p1�φqui,µ8pθiq.
The difference between the two actions is:

EUpLiq � EUpσpIqpθiqq ¥p1� φqui,µ8pθiq � p1� φqui,µpE,σ8qpθiq � φ

¥p1� φqξ � φ ¡ 0,

which proves that tσpIquIPN is not a sequence of equilibrium strategies. This contradiction

further shows that Gptθi P Θ | µpE,σ8qpθiq � µ8pθiquq � 0 and that σ8pθiq ranks µ8pθiq for

all θi P Θ except a measure-zero set of student types. �

We are now ready to prove Proposition 4.
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Proof of Proposition 4.

Part (i) is implied by Lemma A1 and Proposition A1. Because F pIq converges to E

almost surely and σpIq converges to σ8, P pIq converges to P pµpE,σ8qq almost surely. Moreover,

µpE,σ8q � µ8 except a measure-zero set of students implies that P pµpE,σ8qq � P8. Therefore,

limIÑ8 P
pIq � P8 almost surely.

To show part (ii), we first define ΘpIq � tθi P Θ | σpIqpθiq � σ8pθiqu. By Assumption 1,

GpIqpΘpIqq converges to zero almost surely. We have the following inequalities:

GpIq

�#
θi P Θ : µpIqpθiq R arg max

sPSpei,P pIqq

ui,s

+�

¤
�����GpIq

�#
θi P Θ : µpIqpθiq R arg max

sPSpei,P pIqq

ui,s

+�
�GpIq

�#
θi P Θ : µpIqpθiq R arg max

sPSpei,P8q

ui,s

+������
�GpIq

�#
θi P Θ : µpIqpθiq R arg max

sPSpei,P8q

ui,s

+�
¤GpIq

� 
θi P Θ | Spei, P8q � Spei, P pIqq(��GpIq

� 
θi P Θ | µpIqpθiq � µ8pθiq

(�
,

where the first inequality is due to the triangle inequality; the second inequality is be-

cause
 
θi P Θ : µpIqpθiq R arg maxsPSpei,P pIqq ui,s

(
and

 
θi P Θ : µpIqpθiq R arg maxsPSpei,P8q ui,s

(
can possibly differ only when Spei, P8q � Spei, P pIqq and because:#

θi P Θ : µpIqpθiq R arg max
sPSpei,P8q

ui,s

+
�  

θi P Θ | µpIqpθiq � µ8pθiq
(
.

Furthermore,

GpIq
� 
θi P Θ | Spei, P8q � Spei, P pIqq(�

�GpIq
�tθi P Θ | minpP8

s , P
pIq
s q ¤ ei,s   maxpP8

s , P
pIq
s q, Ds P Su� .

The right hand side converges to zero almost surely, because almost surely GpIq converges to

G, which is atomless, and limnÑ8 P
pIq � P8 almost surely. Therefore,

lim
IÑ8

GpIq
� 
θi P Θ | Spei, P8q � Spei, P pIqq(� � 0 almost surely. (A.2)
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Moreover,

GpIq
� 
θi P Θ | µpIqpθiq � µ8pθiq

(�
¤GpIqpΘpIqq �GpIq

� 
θi P ΘzΘpIq | µpIqpθiq � µ8pθiq

(�
¤GpIqpΘpIqq �GpIq

�!
θi P ΘzΘpIq | ui,µpIqpθiq ¡ ui,µ8pθiq & ei,µpIqpθiq ¥ P

pIq

µpIqpθiq

)	
�GpIq

�!
θi P ΘzΘpIq | ui,µpIqpθiq   ui,µ8pθiq, ei,µ8pθiq   P

pIq
µ8pθiq

, & ei,µpIqpθiq ¥ P
pIq

µpIqpθiq

)	
In the first inequality, we decompose the student type space into two, ΘpIq and ΘzΘpIq. In

the former, students do not adopt σ8, while those in the latter set do and thus rank the

school prescribed by µ8. The second inequality consider the events when µpIqpθiq � µ8pθiq
can possibly happen.

The almost-sure convergence of GpIq to G and that of P pIq to P8 implies that:

lim
IÑ8

GpIq
�!
θi P ΘzΘpIq | ui,µpIqpθiq ¡ ui,µ8pθiq & ei,µpIqpθiq ¥ P

pIq

µpIqpθiq

)	
� 0 almost surely,

because for any s such that ui,s ¡ ui,µ8pθiq, we must have ei,s   P8
s .

Similarly, almost surely,

lim
IÑ8

GpIq
�!
θi P ΘzΘpIq | ui,µpIqpθiq   ui,µ8pθiq, ei,µ8pθiq   P

pIq
µ8pθiq

, & ei,µpIqpθiq ¥ P
pIq

µpIqpθiq

)	
� 0.

Therefore, GpIq
� 
θi P Θ | µpIqpθiq � µ8pθiq

(� � 0 almost surely. Together with (A.2), it

implies that GpIq
� 
θi P Θ : µpIqpθiq R arg maxsPSpei,P pIqq ui,s

(�
converges to zero almost surely.

In other words, tµpIquIPN is asymptotically stable. �

Proof of Proposition 5.

The first statement in part (i) is implied by Proposition 2. Suppose that i is in a blocking

pair with some school s. It means that the ex post cutoff of s is lower than i’s priority index

at s. Therefore, if s P LpIqi , the stability of DA (with respect to ROLs) implies that i must

be accepted by s or by schools ranked above and thus preferred to s. Therefore, i and s

cannot form a blocking pair if s P LpIqi , which proves the second statement in part (i).

Part (iii) is implied by Proposition 4 (part (i)).
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To show part (ii), we let SpIq0 � SzLpIqi and therefore:

B
pIq
i �PrpDs P S0, ui,s ¡ ui,µpIqpθiq and ei,s ¥ P pIq

s q
¤

¸
sPSpIq0

Pr
�
ei,t   P

pIq
t , @t P LpIqi , s.t., ui,t ¡ ui,s; ei,s ¥ P pIq

s

	
.

Let B
pIq
i,s be Pr

�
ei,t   P

pIq
t , @t P LpIqi , s.t., ui,t ¡ ui,s; ei,s ¥ P

pIq
s

	
for s P SpIq0 . Since s P S0 and

L
pIq
i is ex ante optimal for i in F pIq, σpIq, it implies:

¸
sPS

ui,s

»
as

�
L
pIq
i , ei;σ

pIqpθ�iq, e�i
	
dGpθ�iq � C

����LpIqi ���	
¥
¸
sPS

ui,s

»
as
�
L, ei;σ

pIqpθ�iq, e�i
�
dGpθ�iq � C

����LpIqi ���� 1
	

where L ranks all schools in L
pIq
i and s while respecting their true preference rankings, i.e.,

adding s to the true partial preference order L
pIq
i while keeping the new list a true partial

preference order.

For notational convenience, we relabel the schools such that school k is the kth choice in

L and that s is k�th school in L. Those not ranked in L are labeled as |LpIqi | � 2, � � � , S. It

then follows that:

C
����LpIqi ���� 1

	
� C

����LpIqi ���	
¥

k��1¸
t�1

0�B
pIq
i,s ui,s

�
|L

pIq
i |�1¸

t�k��1

ui,t �
�� Pr

�
ei,t ¥ P

pIq
t ; ei,τ   P

pIq
τ , τ � 1, . . . , t� 1

	
�

Pr
�
ei,t ¥ P

pIq
t ; ei,τ   P

pIq
τ , τ � 1, . . . , k� � 1, k� � 1, � � � , t� 1

	
�
,

�
k��1¸
t�1

0�B
pIq
i,s ui,s

�
|L

pIq
i |�1¸

t�k��1

ui,t � Pr
�
ei,t ¥ P

pIq
t ; ei,s ¥ P

pIq
s ; ei,τ   P

pIq
τ , τ � 1, . . . , k� � 1, k� � 1, � � � , t� 1

	
,

where the zeros in the first term on the right come from the upper invariance of DA. That

is, the admission probability at any school ranked above s is the same when i submits either

L
pIq
i or L.

11



Also note that ui,s ¡ ui,t for all t ¥ k� � 1 and that:

|L
pIq
i |�1¸

t�k��1

Pr
�
ei,t ¥ P

pIq
t ; ei,s ¥ P pIq

s ; ei,τ   P pIq
τ , τ � 1, . . . , k� � 1, k� � 1, � � � , t� 1

	
¤ B

pIq
i,s .

Besides, ui,k��1 ¥ ui,t for all t � k� � 2, � � � , |Li| � 1. Therefore, for all s P SpIq0 ,

C
����LpIqi ���� 1

	
� C

����LpIqi ���	 ¥ B
pIq
i,s ui,s �B

pIq
i,s ui,k��1

This leads to:

B
pIq
i,s ¤

C
����LpIqi ���� 1

	
� C

����LpIqi ���	
ui,s � ui,k��1

¤
C
����LpIqi ���� 1

	
� C

����LpIqi ���	
ui,s

.

Finally, B
pIq
i ¤ °

sPSpIq0
B
pIq
i,s ¤ |SzLi|Cp|Li|�1q�Cp|Li|q

max
sPSzLpIq

i

ui,s
. �

A.2.3 Asymptotic Distribution of Cutoffs and Convergence Rates

For the next result, we define the demand for each school in pE, σq as a function of the

cutoffs:

DspP | E, σq �
»
1pui,s � max

s1PSpei,P q
�
σpθiq

ui,s1qdGpθiq,
where σpθiq also denotes the set of schools ranked by i; 1pq is an indicator function. Let

DpP | E, σq � rDspP | E, σqssPS .

Assumption A1.

(i) There exists n P N such that σpIq � σ8 for all I ¡ n;

(ii) Dp� | E, σ8q is C1 and BDpP8 | E, σ8q is invertible;

(iii)
°S
s�1 qs   1.

Part (i) says that σ8 maintains as an equilibrium strategy in any economy of a size that

is above a threshold. This is supported partially by the discussion in Section A.2.4. In

particular, when Cp2q ¡ 0, part (i) is satisfied. Dp� | E, σ8q being C1 (in part ii) holds

when G admits a continuous density. In this case, the fraction of students whose demand is

affected by changes in P is continuous. Part (iii) guarantees that every school has a positive

cutoff in the stable matching of E.
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Because of Assumption A1, our setting with cardinal preferences can be transformed

into one defined by students’ ROLs that is identical to that in Azevedo and Leshno (2016).

Therefore, some of their results are also satisfied in our setting.

Proposition A2. In a sequence of matchings, tµpIquIPN, of the sequence of random economies

and equilibrium strategies, tF pIq, σpIquIPN, satisfying Assumption A1, we have the following

results:

(i) The distribution of cutoffs in pF pIq, σpIqq satisfies:

?
I
�
P pIq � P8

� dÝÑ Np0, V pσ8qq

where V pσ8q � BDpP8 | E, σ8q�1Σ pBDpP8 | E, σ8q�1q1, and

Σ �

��������
q1p1� q1q �q1q2 � � � �q1qS

�q2q1 q2p1� q2q � � � ...
...

...
. . . �qS�1qS

�qSq1 � � � �qSqS�1 qSp1� qSq

�������
.

(ii) For any η ¡ 0 and I ¡ n, there exist constants γ1 and γ2 such that the probability

that the matching µpIq has cutoffs ||P pIq � P8|| ¡ η is bounded by γ1e
�γ2I :

Pr
�||P pIq � P8|| ¡ η

�   γ1e
�γ2I .

(iii) Moreover, suppose that G admits a continuous density. For any η ¡ 0 and I ¡ n,

there exist constants γ11 and γ12 such that, in matching µpIq, the probability of the fraction of

students who can form a blocking pair being greater than η is bounded by γ11e
�γ12I :

Pr

�
GpIqptθi P Θ | µpIqpθiq R arg max

sPSpei,P pIqq

ui,suq ¡ η

�
  γ11e

�γ12I .

Parts (i) and (ii) are from Azevedo and Leshno (2016) (Proposition G1 and part 2 of

Proposition 3), although our part (iii) is new and extends their part 3 of Proposition 3.

Proposition A2 describes convergence rates and thus has implications for empirical ap-

proaches based on stability (see Section II.C).

Proof of Proposition A2 (part iii).

13



To show part (iii), we use similar techniques as in the proof for Proposition 3 (part 3) in

Azevedo and Leshno (2016). We first derive the following results.

GpIqptθi P Θ | µpIqpθiq R arg max
sPSpei,P pIqq

ui,suq

�GpIqptθi P Θ | ei,s R rminpP8
s , P

pIq
s q,maxpP8

s , P
pIq
s qq, @s P S;µpIqpθiq R arg max

sPSpei,P8q

ui,su

�GpIqptθi P Θ | ei,s P rminpP8
s , P

pIq
s q,maxpP8

s , P
pIq
s qq, Ds P S;µpIqpθiq R arg max

sPSpei,P pIqq

ui,suq

¤GpIqptθi P Θ | µpIqpθiq � µ8pθiqu
�GpIqptθi P Θ | ei,s P rminpP8

s , P
pIq
s q,maxpP8

s , P
pIq
s qq, Ds P Suq

In the first equality, whenever ei,s R rminpP8
s , P

pImq
s q,maxpP8

s , P
pImq
s qs, @s P S, i faces the

same set of feasible schools given either P pIq or P8, Spei, P pIqq � Spei, P8q. Because µ8 is

stable, µ8pθiq is i’s favorite school in Spei, P8q; together with the relaxation of the conditions

in the second term, it leads to the inequality.

By Azevedo and Leshno (2016) Proposition 3 (part 3), we can find γ11 and γ12 such that:

Pr
�
GpIqptθi P Θ | µpIqpθiq � µ8pθiquq ¡ η{2�  γ11e�γ12I{2. (A.3)

Let g be the supremum of the marginal probability density of ei,s across all s. Denote

the set of student types with priority indices which have at least one coordinate close to P8

by distance η1{p2Sgq (where η1 � η{4):

Θη1 � tθi P Θ | Ds P S, |ei,s � P8
s | ¤ η1{p2Sgqu.

Then GpΘη1q ¤ 2Sg � η1{p2Sgq � η1. The fraction of students in F pIq that have types in

Θη1 is then GpIqpΘη1q. Note that GpIqpΘη1q is a random variable with mean GpΘη1q. By the

Vapnik-Chervonenkis Theorem,A.2

PrpGpIqpΘη1q ¡ 2η1q   Prp|GpIqpΘη1q �GpΘη1q| ¡ η1q   γ11e
�γ12I{4. (A.4)

A.2See Azevedo and Leshno (2016) and the references therein for more details on the theorem for its
application in our context.
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Moreover, by part (ii), we know that:

Pr
�||P pIq � P8|| ¡ η1{p2Sgq

�   γ11e
�γ12I{4. (A.5)

We can choose γ11 and γ12 appropriately, so that (A.3), (A.4), and (A.5) are all satisfied.

When the event, ||P pIq � P8|| ¡ η1{p2Sgq, does not happen,

tθi P Θ | ei,s P rminpP8
s , P

pIq
s q,maxpP8

s , P
pIq
s qq, Ds P Su � Θη1 .

When neither ||P pIq � P8|| ¡ η1{p2Sgq nor GpIqpΘη1q ¡ 2η1 happens,

GpIqptθi P Θ | ei,s P rminpP8
s , P

pIq
s q,maxpP8

s , P
pIq
s qq, Ds P Suq ¤ 2η1 � η{2;

the probability that neither of these two events happens is at least 1�γ11e�γ12I{4�γ11e�γ12I{4 �
1� γ11e

�γ12I{2. This implies,

PrpGpIqptθi P Θ | ei,s P rminpP8
s , P

pIq
s q,maxpP8

s , P
pIq
s qq, Ds P Suq ¡ η{2q   γ11e

�γ12I{2. (A.6)

The events in (A.3) and (A.6) do not happen with probability at least 1 � γ11e
�γ12I{2 �

γ11e
�γ12I{2 � 1� γ11e

�γ12I ; and when they do not happen,

GpIqptθi P Θ | µpIqpθiq R arg max
sPSpei,P pIqq

ui,suq

¤GpIqptθi P Θ | µpIqpθiq � µ8pθiqu
�GpIqptθi P Θ | ei,s P rminpP8

s , P
pIq
s q,maxpP8

s , P
pIq
s qq, Ds P Suq

¤η.

Therefore,

Pr

�
GpIqptθi P Θ | µpIqpθiq R arg max

sPSpei,P pIqq

ui,suq ¡ η

�
  γ11e

�γ12I .

�

A.2.4 Properties of Equilibrium Strategies in Large Economies

We now discuss the properties of Bayesian Nash equilibria in a sequence of random economies

and thus provide some justifications to Assumptions 2 and A1.
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We start with Lemma A2 showing that a strategy, which does not result in the stable

matching in the continuum economy when being adopted by students in the continuum

economy, cannot survive as an equilibrium strategy in sufficiently large economies. This

immediately implies that, in finite large economies, every student always includes in her

ROL the matched school in the continuum-economy stable matching (Lemma A3). Moreover,

students do not pay a cost to rank more schools in large economies (Lemma A4). Lastly,

when it is costly to rank more than one school (Cp2q ¡ 0), in sufficiently large economies, it

is an equilibrium strategy for every students to only rank the matched school prescribed by

the continuum-economy stable matching.

Lemma A2. If a strategy σ results in a matching µpE,σq in the continuum economy such

that Gptθi P Θ | µpE,σqpθiq � µ8pθiquq ¡ 0, then there must exist n P N such that σ is not an

equilibrium in F pIq for all I ¡ n.

Proof of Lemma A2.

Suppose instead that there is a subsequence of finite random economies tF pInqunPN such

that σ is always an equilibrium. Note that we still have F pInq Ñ E almost surely, and

therefore tF pInq, σu converges to tE, σu almost surely.

Given the student-proposing DA, we focus on the student-optimal stable matching (SOSM)

in pF pIq, σq. By Proposition 3 of Azevedo and Leshno (2016), it must be that P pInqÑP σ al-

most surely, where P pInq � P pµpF pInq,σqq and P σ � P pµpE,σqq.
Because there is a unique equilibrium outcome in E, which is also the unique stable

matching in E by assumption, Gptθi P Θi | µpE,σqpθiq � µ8pθiquq ¡ 0 in the continuum

economy implies that P σ is not the cutoffs of µ8 (E’s stable matching), P σ � P8.

Because there is a unique stable matching in E by assumption, µpE,σ8q is not stable and

thus is not an equilibrium outcome in E. There exist some η, ξ ¡ 0, such that:

Θpη,ξq �

$''''''&''''''%
θi P Θ

������������

ei,µ8pθiq � P8
µ8pθiq

¡ η,

ei,µpE,σqpθiq � P σ
µpE,σqpθiq

¡ η,

ei,s � P σ
s   �η, for all s ranked above µpE,σqpθiq by σpθiq;

ui,µ8pθiq � ui,µpE,σqpθiq ¡ ξ.

,//////.//////-
Θpη,ξq must have a positive measure for some η, ξ ¡ 0 and is a subset of students who can
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form a blocking pair in µpE,σq. Clearly, σpθiq ranks µpE,σqpθiq but not µ8pθiq for all θi P Θpη,ξq.

We show below that σ is not an equilibrium strategy in sufficiently large economies.

Consider a unilateral deviation for θi P Θpη,ξq from σpθiq to Li such that the only difference

between the two actions is that µpE,σqpθiq, ranked in σpθiq, is replaced by µ8pθiq in Li while

Li is kept as a partial order of i’s true preferences.

Because P pInqÑP σ almost surely, for 0   φ   ξ{p1�ξq there exists n1 P N such that, in all

F pInq with In ¡ n1, i is matched with µpE,σqpθiq with probability at least p1�φq if submitting

σpθiq, but would have been matched with µ8pθiq if instead Li had been submitted.

Let EUpσpθiqq be the expected utility when submitting σpθiq. Then EUpσpθiqq ¤ p1 �
φqui,µpE,σqpθiq� φ, because maxstui,su ¤ 1 by assumption, and EUpLiq ¥ p1� φqui,µ8pθiq. The

difference between the two actions is:

EUpLiq � EUpσpθiqq ¥p1� φqui,µ8pθiq � p1� φqui,µpE,σqpθiq � φ

¥p1� φqξ � φ ¡ 0,

implying that σ is not an equilibrium strategy in F pInq for In ¡ n1. This contradiction

further implies that there exist n P N such that σ is not an equilibrium strategy in all F pIq

with I ¡ n. �

Lemma A3. If a strategy σ is such that Gptθi P Θ | σpθiq does not rank µ8pθiquq ¡ 0, then

there must exist n P N such that σ is not an equilibrium in F pIq for all I ¡ n.

Proof of Lemma A3.

Note that Gptθi P Θ | σpθiq does not rank µ8pθiquq ¡ 0 implies Gptθi P Θ | µpE,σqpθiq �
µ8pθiquq ¡ 0, because i cannot be matched with µ8pθiq if σpθiq does not rank µ8pθiq.
Lemma A2 therefore implies the statement in this lemma. �

Lemmata A2 and A3 imply that, in large enough economies, there exist equilibrium

strategies with which every student ranks her matched school prescribed by µ8. The follow-

ing lemma further bounds the number of choices that a student ranks.

Lemma A4. Suppose CpKq � 0 and CpK � 1q ¡ 0 for 1 ¤ K ¤ pS � 1q. Consider a

strategy σ such that σpθiq ranks at least K � 1 schools for all θi P Θ1 � Θ and GpΘ1q ¡ 0.
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In the sequence of random economies, tF pIquIPN, there exists n P N such that σ is not an

equilibrium strategy in any economy F pIq for I ¡ n.

Proof of Lemma A4.

By Lemma A3, we only need to consider all σ that rank µ8pθiq for θi. Otherwise, the

statement is satisfied already.

Let CpK � 1q � ξ. By Proposition 3 of Azevedo and Leshno (2016), it must be that

P pIqÑP σ almost surely in the sequence tF pIq, σuIPN, where P pIq � P pµpF pIq,σqq and P σ �
P pµpE,σqq. For 0   φ   2ξ, there must exit n P N such that i is matched with µ8pθiq with

probability at least 1� φ in F pIq for all I ¡ n.

Let EUpσpθiqq be the expected utility when submitting σpθiq. We compare this strategy

with any unilateral deviation Li that keeps ranking µ8pθiq but drops one of the other ranked

schools in σpθiq.
Then EUpσpθiqq ¤ p1�φqui,µ8pθiq�φ� ξ, where the right side assumes that i obtains the

highest possible utility (equal to one) whenever not being matched with µ8pθiq. Moreover,

EUpLiq ¥ p1� φqui,µ8pθiq � ξ. The difference between the two actions is:

EUpLiq � EUpσpθiqq ¥ 2ξ � φ ¡ 0,

which proves that σ is an equilibrium strategy in F pIq for I ¡ n. �

Moreover, when Cp2q ¡ 0, we can obtain even sharper results:

Lemma A5. Suppose Cp2q ¡ 0 (i.e., it is costly to rank more than one school), and σpθiq �
pµ8pθiqq (i.e., only ranking the school prescribed by µ8) for all student types. In a sequence of

random economies tF pIquIPN, there exists n P N such that σ is a Bayesian Nash equilibrium

in F pIq for all I ¡ n.

Proof of Lemma A5. This is implied by Lemmata A3 and A4 (when K � 1). �

A.2.5 Equilibrium and Stable Matching

In a finite economy with complete information, it is known that a matching in equilibrium

can be unstable (Haeringer and Klijn, 2009). They further show that, in finite economies, DA

18



with constraints implements stable matchings in Nash equilibria if and only if the student

priority indices at all schools satisfy the so-called Ergin acyclicity condition (Ergin, 2002). We

extend this result to the continuum economy and to a more general class of DA mechanisms

where application costs, Cp|L|q, are flexible.

Definition A1. In a continuum economy, we fix a vector of capacities, tqsuSs�1, and a

distribution of priority indices, H. An Ergin cycle is constituted of distinct schools ps1, s2q
and subsets of students tΘ1,Θ2,Θ3u (of equal measure q0 ¡ 0 ), whose elements are denoted

by θ1, θ2, and θ3, respectively, and whose “identities” are i1, i2, and i3, such that the following

conditions are satisfied:

(i) Cycle condition: ei1,s1 ¡ ei2,s1 ¡ ei3,s1, and ei3,s2 ¡ ei1,s2, for all i1, i2, and i3.

(ii) Scarcity condition: there exist (possibly empty) disjoint sets of agents Θs1, Θs2 P
Θz tΘ1,Θ2,Θ3u such that ei,s1 ¡ ei2,s1 for all θi P Θs1, |Θs1 | � qs1 � q0; ei,s2 ¡ ei1,s2 for all

i P Θs1, and |Θs2 | � qs2 � q0.

A priority index distribution H is Ergin-acyclic if it allows no Ergin cycles.

This acyclicity condition is satisfied if all schools rank students in the same way. With

this, we extend Theorem 6.3 in Haeringer and Klijn (2009) to the continuum economy.

Proposition A3. In the continuum economy E:

(i) If Cp2q � 0, every (pure-strategy) Bayesian Nash equilibrium results in a stable match-

ing if and only if the economy satisfies Ergin-acyclicity (Haeringer and Klijn, 2009).

(ii) If Cp2q ¡ 0, all (pure-strategy) Bayesian Nash equilibrium outcomes are stable.

Proof. To prove parts (i) and (ii), we use the proof of Theorem 6.3 in Haeringer and Klijn

(2009) and, therefore, that of Theorem 1 in Ergin (2002). They can be directly extended to

the continuum economy under more general DA mechanisms. We notice the following:

(a) The continuum economy can be “discretized” such that each subset of students can

be treated as a single student. When doing so, we do not impose restrictions on the

sizes of the subsets, as long as they have a positive measure. This allows us to use the

derivations in the aforementioned proofs.
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(b) The flexibility in the cost function of ranking more schools does not impose additional

restrictions. As we focus on equilibrium, for any strategy with more than one school

listed, we can find a one-school list that has the same or higher payoff. Indeed, many

steps in the aforementioned proofs involve such a trick.

�

A.3 Consistency of the Preference Estimator under the Assump-

tion of Asymptotic Stability

We provide a proof of the consistency of MLE under the assumption of asymptotic stability.

The same proof can be extended to the corresponding GMM estimator.

Let us consider a sequence of random economies and strategies that satisfies Assump-

tions 1 and 2. The associated matchings and cutoffs are tµpIq, P pIquIPN. We further assume

that limIÑ8 P
pIq � P8, almost surely, and that tµpIquIPN is asymptotically stable.A.3

In this section, we follow the notation in Newey and McFadden (1994) and define:

Q0pβ|P8q � EtZ,eu

�
ln

�
Pr

�
µ8pui, eiq � arg max

sPSpei,P8q

ui,s | Zi, ei,Spei, P8q; β
���

,

where the expectation is taken over Zi, ei. Recall that both µ8 and P8 are deterministic.

We also define the following regularity conditions.

Assumption A2. Suppose that the data are i.i.d., that β0 is the true parameter value, and

that the sequence tµpIq, P pIquIPN has limIÑ8 P
pIq � P8, almost surely, and tµpIquIPN being

asymptotically stable. We impose the following regularity conditions:

(i) Q0pβ|P8q is continuous in β and uniquely maximized at β0.

(ii) β P B, which is compact.

(iii) At any β P B for almost all Zi and ei, Pr

�
µ8pui, eiq � arg max

sPSpei,P8q

ui,s | Zi, ei,Spei, P8q; β
�

is bounded away from zero and continuous.

A.3Recall that under the stability assumption, only students who have at least two feasible schools contribute
to the estimation. If one has zero or one feasible school, her match (or her choice) does not reveal any
information about her preferences. To simplify the notations below, we implicitly assume that a student’s
probability of being matched with the school prescribed by the match in a finite economy or the continuum
economy is one, whenever she has no feasible school.
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(iv) EtZ,eu

�
sup
βPB

�����ln
�

Pr

�
µ8pui, eiq � arg max

sPSpei,P8q

ui,s | Zi, ei,Spei, P8q; β
�������

�
  8.

(v) GpΘδqEpZ,eq

��� sup
βPB,sPS,PPPpei,sq

�������ln
Pr

�
s� arg max

sPSpei,P q
ui,s|Zi,ei,Spei,P q;β

�

Pr

�
µ8pui,eiq� arg max

sPSpei,P8q

ui,s|Zi,ei,Spei,P8q;β

�
������� | pui, eiq P Θδ

��
con-

verges to zero as δ Ñ 0, where Θδ � tpui, eiq P Θ : ei,s P pP8
s � δ, P8

s � δq, Ds P Su for

δ ¡ 0 and Ppei, sq � tP P r0, 1sS : s P Spei, P qu is the set of all possible cutoffs making

s feasible to i.

Conditions (i) and (ii) are standard for identification of the model; conditions (iii) and

(iv) are satisfied in common applications of discrete choice models, including logit and probit

models with or without random coefficients.

Condition (v) extends condition (iv). Without loss in our setting, we assume G admits

a marginal density of ei, and thus GpΘδq Ñ 0 as δ Ñ 0. Condition (v) is then satisfied if the

conditional expectation in (v) is either bounded or grows to infinity at a slower rate than

1{GpΘδq when δ Ñ 0. This is satisfied in the aforementioned discrete choice models that

have full-support utility shocks, as choice probabilities are bounded away from zero almost

surely given that β P B.A.4

To proceed, we define pQIpβ|P pIqq as the average of log-likelihood based on stability when

the economy is of size I. That is,

pQIpβ|P pIqq � 1

I

I̧

i�1

Ş

s�1

1pµpIqpui, eiq � sq ln

�
Pr

�
s � arg max

s1PSpei,P pIqq

ui,s1 | Zi, ei,Spei, P pIqq; β
��

.

pQIpβ|P pIqq is possibly incorrectly specified because µpIq may not be exactly stable. That is,

some students may not be matched with their favorite feasible school in µpIq.

Correspondingly, we also define:

pQIpβ|P8q � 1

I

I̧

i�1

ln

�
Pr

�
µ8pui, eiq � arg max

sPSpei,P8q

ui,s | Zi, ei,Spei, P8q; β
��

.

In this definition, with the same economy as used in pQIpβ|P pIqq, we construct the hypothetical

matching µ8 and cutoff P8. Recall that both µ8 and P8 are deterministic. pQIpβ|P8q is then

A.4Equivalently, this requires that a choice probability is strictly positive for almost all Z. This is also true
in the usual models with random coefficients; random coefficients often have full support on the real line and
therefore lead to strictly positive choice probabilities.
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the average of the log-likelihood function of this hypothetical dataset. pQIpβ|P8q is correctly

specified because in matching µ8, every student is matched with her favorite feasible school

given P8.

The following lemma shows that the MLE estimator would be consistent if we could have

access to the hypothetical dataset and use pQIpβ|P8q.

Lemma A6. When conditions (i)-(iv) in Assumption A2 are satisfied,

(i) supβPB | pQIpβ|P8q �Q0pβ|P8q| pÑ 0, and

(ii) β̃I is consistent (i.e., β̃I
pÑ β0), where β̃I � arg maxβPB pQIpβ|P8q.

Proof. Note that�����ln
�

Pr

�
µ8pui, eiq � arg max

sPSpei,P8q

ui,s | Zi, ei,Spei, P8q; β
�������

¤ sup
βPB

�����ln
�

Pr

�
µ8pui, eiq � arg max

sPSpei,P8q

ui,s | Zi, ei,Spei, P8q; β
������� .

Implied by condition (iv) of Assumption A2, the right-hand-side of the inequality has a

finite first moment. Together with conditions (ii) and (iii), this implies that the conditions

in Lemma 2.4 of Newey and McFadden (1994) are satisfied, leading to part (i) of the above

lemma. By Theorem 2.1 of Newey and McFadden (1994), part (ii) is also satisfied. �

Lemma A7. Given Assumption A2, supβPB | pQIpβ|P pIqq � pQIpβ|P8q| pÑ 0.

Proof. Lemma A3 shows that in sufficiently large economies, every student except a measure-

zero set includes in her ROL the school prescribed by µ8. For each student, whenever

Spei, P pIqq � Spei, P8q, µpIqpui, eiq � µ8pui, eiq.
Therefore, for any β P B, in sufficiently large economies,

��� pQIpβ|P pIqq � pQIpβ|P8q
���

�

����������
1

I

¸
i:Spei,P pIqq�Spei,P8q

Ş

s�1

1pµpIqpui, eiq � sq ln

Pr

�
s � arg max

s1PSpei,P pIqq

ui,s1 | Zi, ei,Spei, P pIqq;β

�

Pr

�
µ8pui, eiq � arg max

sPSpei,P8q

ui,s | Zi, ei,Spei, P8q;β

�
����������
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¤
1

I

¸
i:Spei,P pIqq�Spei,P8q

Ş

s�1

1pµpIqpui, eiq � sq

����������
ln

Pr

�
s � arg max

s1PSpei,P pIqq

ui,s1 | Zi, ei,Spei, P pIqq;β

�

Pr

�
µ8pui, eiq � arg max

sPSpei,P8q
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(A.7)

Since the above results apply to all β P B, inequality (A.7) is also satisfied if we replace the

first line with supβPB

��� pQIpβ|P pIqq � pQIpβ|P8q
���.

By the law of large numbers, as I Ñ 8, (�) in inequality (A.7) converges almost surely

to GpΘδqEpZ,eq

���� sup
βPB,sPS,
PPPpei,sq

��������ln
Pr

�
�s� arg max

s1PSpei,P pIqq
ui,s1 |Zi,ei,Spei,P pIqq;β

�



Pr

�
µ8pui,eiq� arg max

sPSpei,P8q

ui,s|Zi,ei,Spei,P8q;β

�
�������� | pui, eiq P Θδ

���
, which, as

a function of δ, converges to zero if δ Ñ 0 (condition v of Assumption A2). This implies

that, for η1 ¡ 0, there exists δη1 such that for all δ   δη1 , we have

GpΘδqEpZ,eq

������ sup
βPB,sPS,
PPPpei,sq

����������
ln

Pr

�
s � arg max

s1PSpei,P pIqq

ui,s1 | Zi, ei,Spei, P pIqq;β

�

Pr

�
µ8pui, eiq � arg max

sPSpei,P8q

ui,s | Zi, ei,Spei, P8q;β

�
����������
| pui, eiq P Θδ

�����
  η1{2.

By inequality (A.7) and the law of large numbers, we can choose n1 such that for any I ¡ n1,

supβPB

��� pQIpβ|P pIqq � pQIpβ|P8q
���   η1{2 � η1{2 � p��q|δ δη1 � η1 � p��q|δ δη1 almost surely,

where p��q|δ δη1 indicates the last term in inequality (A.7) evaluated at δ   δη1 .

Moreover, by assumption, limIÑ8 P
pIq � P8, almost surely. Given δ   δη1 and for

any η2, there exists n2 such that for I ¡ n2, Pr
���P pIq � P8

�� ¤ δ
� ¡ 1 � η2. When this
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happens (i.e.,
��P pIq � P8

�� ¤ δ), p��q in inequality (A.7) evaluated at δ is zero because

tpui, eiq P ΘzΘδ : Spei, P pIqq � Spei, P8qu is empty.

Therefore, for any η1 and η2, there exist n1 and n2 such that whenever I ¡ maxtn1, n2u,
Pr

�
supβPB

��� pQIpβ|P pIqq � pQIpβ|P8q
��� ¡ η1

	
  η2, which proves the lemma. �

Proposition A4. When Assumption A2 is satisfied, pβI is consistent (i.e., pβI pÑ β0), wherepβI � arg maxβPB pQIpβ|P pIqq.

Proof. Assumption A2, Lemma A6 (part i), and Lemma A7 imply that pQIpβ|P pIqq satisfies

the conditions in Theorem 2.1 of Newey and McFadden (1994). Hence, pβI pÑ β0. �

A.4 Estimation with Strict Truth-Telling and Outside Option

The following discussion supplements Section II.B in which we present how weak truth-telling

(WTT) can be applied to data on school choice and college admissions and what assump-

tions it entails. However, assuming the length of submitted ROL is exogenous (Assumption

WTT2) may seem restrictive. An alternative way to relax this assumption is to introduce

an outside option and to make some school unacceptable to some students.

Suppose that i’s utility for her outside option is denoted by ui,0 � Vi,0 � εi,0, where εi,0 is

a type I extreme value. We then augment the type space of each student with the outside

option and let σS : RpS�1q� r0, 1sS Ñ L be an STT pure strategy defined on the augmented

preference space. More precisely, one version of the STT assumption contains the following

two assumptions:

Assumption (Strict Truth-Telling with Outside Option).

STT1. σSpui, ui,0, eiq ranks all i’s acceptable schools according to her true preferences.

STT2. Students do not rank unacceptable schools: ui,0 ¡ ui,s1 for all s1 not ranked by

σSpui, ui,0, eiq.

Given these two assumptions, similar to the case with WTT, either MLE or GMM can
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be applied based on the following choice probabilities:A.5

Pr
�
σSpui, ui,0, eiq � L

�� Zi; β�
�Pr

�
ui,l1 ¡ � � � ¡ ui,lK ¡ ui,0 ¡ ui,s1 @ s1 P SzL

�� Zi; β�
� exppVi,0q

exppVi,0q �
°
s1RL exppVi,s1q

¹
sPL

�
exppVi,sq

exppVi,0q �
°
s1£Ls

exppVi,s1q

�
.

Recall that s1 £L s indicates that s1 is not ranked before s in L, which includes s itself and

the schools not ranked in L.

Assumptions STT1 and STT2 can be justified as an equilibrium outcome when there

is no application cost. However, there may be an issue of multiple equilibria created by

unacceptable schools. Namely, if a student can always decline to enroll at an unacceptable

school, she may not mind including or excluding that school in her ROL and being assigned

to it (He, 2015).

A.5 Assumption EXO2 for the Stability-Based Estimator

The necessity of Assumption EXO2 can be seen in a following modified utility function:

ui,s � ui,s �8� 1pei,s   Pspµqq � V pZi,s, βq � 8 � 1pei,s   Pspµqq � εi,s,

where �8� 1ptei,s   Pspµqq is zero for feasible schools but equal to �8 for infeasible ones,

thus making them always less desirable. With 1pei,s   Pspµqq being personalized “prices,” a

stable matching is then equivalent to discrete choice based on the modified utility functions

(He et al., 2015, 2018). That is, a realized matching µ̂ is stable if and only if µ̂pθiq �
µ̂pui, eiq � arg maxsPS ui,s. Although utility shocks can depend on Zi for identification in

usual discrete choice models (Matzkin, 1993), 1pei,s   Pspµqq is special. Conditional on

1pei,s   Pspµqq and Zi, i’s ordinal preferences and thus i’s choice may lack variation without

Assumption EXO2. This is shown in the following example.

A.5For an example imposing the STT assumption, see He and Magnac (2016) in which the authors observe
students ranking all available options and have information on the acceptability of each option.
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An example with Assumption EXO2 violated. Let I � 3 and S � 3, each with one

seat. Students have the same preferences, pui,1, ui,2, ui,3q � p0.9, 0.6, 0.3q for i P t1, 2, 3u; the

priority index vectors pei,1, ei,2, ei,3q are p0.8, 0.5, 0.8q for i � 1, p0.5, 0.8, 0.3q for i � 2, and

p0.3, 0.3, 0.5q for i � 3.

Suppose students are strictly truth-telling. Therefore, the matching is stable. The cut-

offs are P � p0.8, 0.8, 0.5q, which leads to Spe1, P q � t1, 3u. However, if pui,1, ui,2, ui,3q �
p0.6, 0.9, 0.3q for i � 1, then P 1 � p0.5, 0.5, 0.5q and Spe1, P

1q � t1, 2, 3u. Therefore, for

i � 1, Spei, P pµqqMεi|Zi. If the data generating process is as such, conditional on student 1’s

set of feasible schools, we never observe u1,1 ¡ u1,2, or school 1 being chosen over school 2

when both are feasible.

An example with Assumption EXO2 satisfied. Let us consider the following example

with Ergin cyclicity where each school has one seat.

School priority ranking (high to low) Student ordinal preferences (more to less preferred)

s1: i1, i3, i2 i1: s2, s1, s3

s2: i2, i1, i3 i2: s1, s2, s3

s3: i2, i1, i3 i3: s1, s2, s3

When everyone is strictly truth-telling, i1’s set feasible schools Spei1 , P q � ts1, s3u. No

matter how i1’s ordinal preferences change, i1’s feasible schools do not change, as long as the

matching is stable.A.6 Therefore, given others’ preferences, Assumption EXO2 is satisfied for

i1.

A.6In any stable matching, i2 is assigned to s2; otherwise, either i3 or i2 would have justified envy. Therefore,
s2 is not feasible to i1. Both s1 and s3 are feasible to i1 in any stable matching, because i1 has a higher
priority at both schools than i3, while i2’s assignment is fixed at s2.
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Appendix B Data

B.1 Data Sources

For the empirical analysis, we use three administrative data sets on Parisian students, which

are linked using an encrypted version of the French national student identifer (Identifiant

National Élève).

(i) Application Data: The first data set was provided to us by the Paris Education

Authority (Rectorat de Paris) and contains all the information necessary to replicate

the assignment of students to public academic-track high schools in the city of Paris for

the 2013-2014 academic year. This includes the schools’ capacities, the students’ ROLs

of schools, and their priority indices at every school. Moreover, it contains information

on students’ socio-demographic characteristics (age, gender, parents’ SES, low-income

status, etc.), and their home addresses, allowing us to compute distances to each school

in the district.

(ii) Enrollment Data: The second data set is a comprehensive register of students en-

rolled in Paris’ middle and high schools during the 2012–2013 and 2013–2014 academic

years (Base Elèves Académique), which is also from the Paris Education Authority.

This data set allows to track students’ enrollment status in all Parisian public and

private middle and high schools.

(iii) Exam Data: The third data set contains all Parisian middle school students’ individ-

ual examination results for a national diploma, the Diplôme national du brevet (DNB),

which students take at the end of middle school. We obtained this data set from the

statistical office of the French Ministry of Education (Direction de l’Évaluation, de la

Prospective et de la Performance du Ministère de l’Éducation Nationale).

B.2 Definition of Variables

Priority Indices. Students’ priority indices at every school are recorded as the sum of

three main components: (i) students receive a “district” bonus of 600 points on each of

the schools in their list which are located in their home district; (ii) students’ academic

performance during the last year of middle school is graded on a scale of 400 to 600 points;
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(iii) students from low-income families are awarded an additional bonus of 300 points. We

convert these priority indices into percentiles between 0 and 1.

Student Scores. Based on the DNB exam data set, we compute several measures of

student academic performance, which are normalized as percentiles between 0 and 1 among

all Parisian students who took the exam in the same year. Both French and math scores

are used, and we also construct the students’ composite score, which is the average of the

French and math scores. Note that students’ DNB scores are different from the academic

performance measure used to calculate student priority indices as an input into the DA

mechanism. Recall that the latter is based on the grades obtained by students throughout

their final year of middle school.

Socio-Economic Status. Students’ socio-economic status is based on their parents’ oc-

cupation. We use the French Ministry of Education’s official classification of occupations

to define “high SES”: if the occupation of the student’s legal guardian (usually one of the

parents) belongs to the “very high SES” category (company managers, executives, liberal

professions, engineers, academic and art professions), the student is coded as high SES,

otherwise she is coded as low SES.A.7

B.3 Construction of the Main Data Set for Analyses

In our empirical analysis, we use data from the Southern District of Paris (District Sud).

We focus on public middle school students who are allowed to continue their studies in the

academic track of upper secondary education and whose official residence is in the Southern

District. We exclude those with disabilities, those who are repeating the first year of high

school, and those who were admitted to specific selective tracks offered by certain public

high schools in Paris (e.g., music majors, bilingual courses, etc.), as these students are

given absolute priority in the assignment over other students. This leads to the exclusion

of 350 students, or 18 percent of the total, the majority of whom are grade repeaters. Our

data thus include 1,590 students from 57 different public middle schools, with 96 percent of

students coming from one of the district’s 24 middle schools.

A.7There are four official categories: low SES, medium SES, high SES, and very high SES.
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Appendix C Monte Carlo Simulations

This appendix provides details on the Monte Carlo simulations that we perform to assess our

empirical approaches and model selection tests. Section C.1 specifies the model, Section C.2

describes the data generating processes, Section C.3 reports a number of summary statistics

for the simulated data, and Section C.4 discusses the main results.

C.1 Model Specification

Economy Size. We consider an economy where I � 500 students compete for admission

to S � 6 schools. The vector of school capacities is specified as follows:

I � tqsu6
s�1 � t50, 50, 25, 50, 150, 150u.

Setting the total capacity of schools (475 seats) to be strictly smaller than the number of

students (500) simplifies the analysis by ensuring that each school has a strictly positive

cutoff in equilibrium.

Spatial Configuration. The school district is stylized as a disc of radius 1 (Figure C1).

The schools (represented by red circles) are evenly located on a circle of radius 1{2 around

the district centroid; the students (represented by blue circles) are uniformly distributed

across the district area. The cartesian distance between student i and school s is denoted

by di,s.

Student Preferences. To represent student preferences over schools, we adopt a parsi-

monious version of the random utility model described in Section II.A. Student i’s utility

from attending school s is specified as follows:

ui,s � 10� αs � di,s � γpai � āsq � εi,s, s � 1, . . . , 6; (A.8)

where 10�αs is school s’s fixed effects; di,s is the walking distance from student i’s residence

to school s; ai is student i’s ability; ās is school s’s quality; and εi,s is an error term that is

drawn from a type-I extreme value distribution. Setting the effect of distance to �1 ensures

that other coefficients can be interpreted in terms of willingness to travel.

29



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

Students
Schools

Figure C1: Monte Carlo Simulations: Spatial Distribution of Students and Schools

Notes: This figure shows the spatial configuration of the school district considered in one of the Monte Carlo samples, for the
case with 500 students and 6 schools. The school district is represented as a disc of radius 1. The small blue and large red
circles show the location of students and of schools, respectively.

The school fixed effects above the common factor, 10, are specified as follows:

tαsu6
s�1 � t0, 0.5, 1.0, 1.5, 2.0, 2.5u

Adding the common value of 10 for every school ensures that all schools are acceptable in

the simulated samples.

Students’ abilities taiuIi�1 are randomly drawn from a uniform distribution on the interval

r0, 1s. School qualities tāsuSs�1 are exogenous to students’ idiosyncratic preferences εi,s. The

procedure followed to ascribe values to the schools’ qualities is discussed at the end of this

section.

The positive coefficient γ on the interaction term ai � ās reflects the assumption that high-

ability students value school quality more than low-ability students. In the simulations, we

set γ � 3.

Priority Indices. Students are ranked separately by each school based on a school-specific

index ei,s. The vector of student priority indices at a given school s, tei,suIi�1 is constructed

as correlated random draws with marginal uniform distributions on the interval [0,1], such

that: (i) student i’s index at each school is correlated with her ability ai with a correlation
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coefficient of ρ; (ii) i’s indices at any two schools s1 and s2 are also correlated with correlation

coefficient ρ. When ρ is set equal to 1, a student has the same priority at all schools. When

ρ is set equal to zero, her priority indices at the different schools are uncorrelated. For the

simulations presented in this appendix, we choose ρ � 0.7. It is assumed that student know

their priority indices but not their priority ranking at each school.

School Quality. To ensure that school qualities tāsuSs�1 are exogenous to students’ id-

iosyncratic preferences, while being close to those observed in Bayesian Nash equilibrium of

the school choice game, we adopt the following procedure: we consider the unconstrained

student-proposing DA where students rank all schools truthfully; students’ preferences are

constructed using random draws of errors and a common prior about the average quality of

each school; students rank schools truthfully and are assigned through the DA mechanism;

each school’s quality is computed as the average ability of students assigned to that school; a

fixed-point vector of school qualities, denoted by tā�suSs�1, is found; the value of each school’s

quality is set equal to mean value of ā�s across the samples.

The resulting vector of school qualities is:

tāsu6
s�1 � t0.28, 0.39, 0.68, 0.65, 0.47, 0.61u

C.2 Data Generating Processes

The simulated data are constructed under two distinct data generating processes (DGPs).

DGP 1: Constrained/Truncated DA. This DGP considers a situation where the

student-proposing DA is used to assign students to schools but where the number of schools

that students are allowed to rank, K, is strictly smaller than the total number of available

schools, S. For expositional simplicity, students are assumed to incur no cost when ranking

exactly K schools. Hence:

C p|L|q �
$&% 0 if |L| ¤ K

�8 if |L| ¡ K

In the simulations, we set K � 4 (students are allowed to rank up to 4 schools out of 6).
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DGP 2: Unconstrained DA with Cost. This DGP considers the case where students

are not formally constrained in the number of schools they can rank but nevertheless incur a

constant marginal cost, denoted by cp¡ 0q, each time they increase the length of their ROL

by one, if this list contains more than one school. Hence:

C p|L|q � c � p|L| � 1q ,

where the marginal cost c is strictly positive. In the simulations, we set c � 10�6.

For each DGP, we adopt a two-stage procedure to solve for a Bayesian Nash equilibrium of

the school choice game.

Stage 1: Distribution of Cutoffs Under Unconstrained DA. Students’ “initial”

beliefs about the distribution of school cutoffs are based on the distribution of cutoffs that

arises when students submit unrestricted truthful rankings of schools under the standard

DA. Specifically:

(i) For m � 1, � � � ,M , we independently generate sample m by drawing students’ geo-

graphic coordinates, ability a
pmq
i , school-specific priority indices e

pmq
i,s , and idiosyncratic

preferences ε
pmq
i,s over the S schools for all I students. We then calculate u

pmq
i,s for all

i � 1, � � � , I, s � 1, � � � , S, and m � 1, � � � ,M .

(ii) Student i in sample m submits a complete and truthful ranking rpupmqi q of the schools;

i.e., i is strictly truth-telling.

(iii) After collecting trpupmqi quIi�1, the DA mechanism assigns students to schools taking into

account their priority indices in sample m.

(iv) Each matching µpmq in samplem determines a vector of school cutoffs P pmq � tP pmq
s uSs�1.

(v) The cutoffs tP pmquMm�1 are used to derive the empirical distribution of school cutoffs

under the unconstrained DA, which is denoted by F̂ 0p� | tP pmquMm�1q.

In the simulations, we set M � 500.

Stage 2: Bayesian Nash Equilibrium. For each DGP, the M Monte Carlo samples

generated in Stage 1 are used to solve the Bayesian Nash equilibrium of the school choice
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game. Specifically:

(i) Each student i in each sample m determines all possible true partial preference orders

tLpmqi,n uNn�1 over the schools, i.e., all potential ROLs of length between 1 and K that

respect i’s true preference ordering Ri,m of schools among those ranked in L
pmq
i,n ; for

each student, there are N � °K
k�1 S!{rk!pS � kq!s such partial orders. Under the

constrained/truncated DA (DGP 1), students consider only true partial preference

orderings of length K (  S), i.e., 15 candidate ROLs when they rank exactly 4 schools

out of 6;A.8 under the unconstrained DA with cost (DGP 2), students consider all true

partial orders of length up to S, i.e., 63 candidate ROLs when they can rank up to 6

schools.

(ii) For each candidate ROL L
pmq
i,n , student i estimates the (unconditional) probabilities

of being admitted to each school by comparing her indices ei,s to the distribution of

cutoffs. Initial beliefs on the cutoff distribution are based on F̂ 0p� | tP pmquMm�1q, i.e.,

the empirical distribution of cutoffs under unconstrained DA with strictly truth-telling

students.

(iii) Each student selects the ROL L
pmq�
i that maximizes her expected utility, where the

utilities of each school are weighted by the probabilities of admission according to her

beliefs.

(iv) After collecting tLpmq�i uIi�1, the DA mechanism is run in sample m.

(v) The matchings across the M samples jointly determine the “posterior” empirical dis-

tribution of school cutoffs, F̂ 1p� | �q.
(vi) Students use F̂ 1p� | �q as their beliefs, and steps (ii) to (v) are repeated until a fixed

point is found, which occurs when the posterior distribution of cutoffs (F̂ tp� | �q) is

consistent with students’ beliefs F̂ t�1p� | �q. The equilibrium beliefs are denoted by

F̂ �p� | �q.

The simulated school choice data are then constructed based on a new set of M Monte

Carlo samples, which are distinct from the samples used to find the equilibrium distribution

of cutoffs. In each of these new Monte Carlo samples, submitted ROLs are students’ best

A.8This is without loss of generality, because in equilibrium the admission probability is non-degenerate
and it is, therefore, in students’ best interest to rank exactly 4 schools.
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response to the equilibrium distribution of cutoffs (F̂ �p� | �q). The school choice data consist

of students’ priority indices, their submitted ROLs, the student-school matching, and the

realized cutoffs in each sample.

C.3 Summary Statistics of Simulated Data

We now present some descriptive analysis on the equilibrium cutoff distributions and the

500 Monte Carlo samples of school choice data that are simulated for each DGP.

Equilibrium Distribution of Cutoffs. The equilibrium distribution of school cutoffs is

displayed in Figure C2 separately for each DGP. In line with the theoretical predictions

(Proposition A2), the marginal distribution of cutoffs is approximately normal. Because

both DGPs involve the same profiles of preferences and produce almost identical matchings,

the empirical distribution of cutoffs under the constrained/truncated DA (left panel) is very

similar to that observed under the unconstrained DA with cost (right panel).

(a) Constrained/truncated DA

School 1
School 2

School 5

School 6

School 4
School 3

0
5

10
15

20
D

en
si

ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

School cutoff

(b) Unconstrained DA with cost
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Figure C2: Monte Carlo Simulations: Equilibrium Distribution of School Cutoffs (6 schools,
500 students)

Notes: This figure shows the equilibrium marginal distribution of school cutoffs under the constrained/truncated DA (left panel)
and the DA with cost (right panel) in a setting where 500 students compete for admission to 6 schools. With 500 simulated
samples, the line fits are from a Gaussian kernel with optimal bandwidth using MATLAB’s ksdensity command.

School cutoffs are not strictly aligned with the school fixed effects, since cutoffs are also

influenced by school size. In the simulations, small schools (e.g., Schools 3 and 4) tend to
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have higher cutoffs than larger schools (e.g., Schools 5 and 6) because, in spite of being less

popular, they can be matched only with a small number of students, which pushes their

cutoffs upward.A.9

Figure C3 reports the marginal distribution of cutoffs in the constrained/truncated DA

for various economy sizes. The simulations show that as the number of seats and the num-

ber of students increase proportionally while holding the number of schools constant, the

distribution of school cutoffs degenerates and becomes closer to a normal distribution.

Summary Statistics. Table C1 shows some descriptive statistics of the simulated data

from both DGPs. The reported means are averaged over the 500 Monte Carlo samples.

All students under the constrained/truncated DA submit ROLs of the maximum allowed

length (4 schools). Under the unconstrained DA with cost, students are allowed to rank

as many schools as they wish but, due to the cost of submitting longer lists, they rank

4.6 schools on average.

Under both DGPs, all school seats are filled, and, therefore, 95 percent of students are as-

signed to a school. Weak truth-telling is violated under the constrained/truncated DA, since

less than half of submitted ROLs rank truthfully students’ most-preferred schools. Although

less widespread, violations of WTT are still observed under the unconstrained DA with cost,

since about 20 percent of students do not truthfully rank their most-preferred schools. By

contrast, almost every student is matched with her favorite feasible school under both DGPs.

Comparative Statics. To explore how the cost of ranking more schools affects weak

truth-telling and ex post stability in equilibrium, we simulated data for DGP 2 (DA with

cost) using different values of the cost parameter c, while keeping the other parameters at

their baseline values.A.10

A.9Note that this phenomenon is also observed if one sets γ � 0, i.e., when students’ preferences over schools
do not depend on the interaction term ai � ās.
A.10We performed a similar exercise for DGP 1 (constrained/truncated DA) by varying the number of schools
that students are allowed to rank. The results (available upon request) yield conclusions similar to those
based on DGP 2 (DA with cost).

35



(a) 100 students

School 1
School 2

School 5 School 6 School 4 School 3

0
10

20
30

40
50

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

School cutoff

(b) 200 students

School 1
School 2

School 5
School 6 School 4 School 3

0
10

20
30

40
50

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

School cutoff
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Figure C3: Monte Carlo Simulations: Impact of Economy Size on the Equilibrium Distri-
bution of Cutoffs (Constrained/Truncated DA)

Notes: This figure shows the equilibrium marginal distribution of school cutoffs under the constrained/truncated DA (ranking
4 out of 6 schools) when varying the number of students, I, who compete for admission into 6 schools with a total enrollment
capacity of I � 0.95 seats. Using 500 simulated samples, the line fits are from a Gaussian kernel with optimal bandwidth using
MATLAB’s ksdensity command.

For each value of the cost parameter, we simulated 500 samples of school choice data

and computed the following statistics by averaging across samples: (i) average length of

submitted ROLs; (ii) average fraction of weakly truth-telling students; and (iii) average

fraction of students assigned to their favorite feasible school.

The results of this comparative statics exercise are displayed in Figure C4. They confirm

that, in our simulations, stability is a weaker assumption than WTT whenever students face

a cost of ranking more schools: the share of students assigned to their favorite feasible school

(blue line) is always larger than the share of WTT students (red line). Consistent with the
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Table C1: Monte Carlo Simulations: Summary Statistics

Data generating process

Constrained/truncated DA Unconstrained DA with cost
(1) (2)

Panel A. Outcomes

Average length of submitted ROLs 4.00 4.60
(0.000) (0.054)

Assigned to a school 0.950 0.950
(0.000) (0.000)

Weakly truth-telling 0.391 0.792
(0.022) (0.018)

Assigned to favorite feasible school 1.000 1.000
(0.001) (0.000)

Panel B. Parameters

Number of students 500 500
Number of schools 6 6
Number of simulated samples 500 500
Maximum possible length of ROL 4 6
Marginal application cost (c) 0 10�6

Notes: This table presents summary statistics of simulated data under two DGPs: (i) constrained/truncated DA (column 1):
students are only allowed to rank 4 schools out of 6; and (ii) unconstrained DA with cost (column 2): students can rank as
many schools as they like, but incur a constant marginal cost of c � 10�6 per extra school included in their ROL beyond the
first choice. Standard deviations across the 500 simulation samples are in parentheses.

predictions from Section I.D.2, the fraction of students who are matched with their favorite

feasible school decreases with the marginal cost of ranking more schools (parameter c). In

our simulations, violations of this assumption are very rare, except in the extreme case where

students face a large marginal application cost c equal to 1 (in which case students rank only

1.3 school on average).

C.4 Results

Estimation and Testing. With the simulated data at hand, student preferences described

by Equation (A.8) are estimated under different sets of identifying assumptions: (i) weak

truth-telling; (ii) stability; and (iii) stability and undominated strategies. Estimates under

assumption (i) are based on a rank-ordered logit model using maximum likelihood. Estimates

under assumption (ii) are obtained from a conditional logit model where each student’s choice

set is restricted to the ex post feasible schools and where the matched school is the chosen
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Figure C4: Monte Carlo Simulations: Impact of the Marginal Cost of Applying to Schools
on Equilibrium Outcomes (500 Students, 6 Schools)

Notes: This figure presents summary statistics of simulated data under unconstrained DA with cost (DGP 2), in which students
can rank as many schools as they like, but incur a constant marginal cost c per extra school included in their ROL beyond the
first. The data are simulated using different values of the marginal cost parameter c, while maintaining the other parameters
at their baseline values. For each value of the cost parameter, 500 samples of school choice data are simulated. The following
statistics are computed by averaging across samples: (i) average length of submitted ROLs; (ii) average fraction of weakly
truth-telling students; (iii) average fraction of students matched with favorite feasible school.

alternative.A.11 Finally, estimates under assumption (iii) are based on Andrews and Shi

(2013)’s method of moment (in)equalities, using the approach proposed by Bugni et al.

(2017) to construct the marginal confidence intervals for the point estimates.A.12

The results from 500 Monte Carlo samples are reported and discussed in the main

text (Table 2). They are consistent with the theoretical predictions for both the con-

strained/truncated DA (Panel A) and the unconstrained DA with cost (Panel B).

A.11Our stability-based estimator is obtained using maximum likelihood. It can be equivalently obtained
using a GMM estimation with moment equalities defined by the first-order conditions of the log-likelihood
function.
A.12The conditional moment inequalities are derived from students’ observed orderings of all 15 possible
pairs of schools (see Section II.E). The variables that are used to interact with these conditional moment
inequalities and thus to obtain the unconditional ones are student ability (ai), distance to School 1 (di,1)
and distance to School 2 (di,2), which brings the total number of moment inequalities to 120.
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Efficiency Loss from Stability-Based Estimates. The efficiency loss from estimat-

ing the model under stability is further explored by comparing the truth-telling-based and

stability-based estimates in a setting where students are strictly truth-telling. To that end,

we generate a new set of 500 Monte Carlo samples using the unconstrained DA DGP, after

setting the marginal application cost c to zero. In this setting, all students submit truthful

ROLs that rank all 6 schools. The estimation results, which are reported in Table C2, show

that while both truth-telling-based and stability-based estimates are close to the true pa-

rameters values, the latter are much more imprecisely estimated than the former (column 6

vs. column 3): the stability-based estimates have standard deviations 2.5 to 3.8 times larger

than the TT-based estimates. Note, however, that the efficiency loss induced by the stability

assumption is considerably reduced when combing stability and undominated strategies (col-

umn 9 vs. column 3): the standard deviations of estimates based on the moment (in)equality

approach are only 1.3 to 1.9 larger than their truth-telling counterparts.

Reassuringly, the Hausman test rejects truth-telling against stability in exactly 5 percent

of samples, which is the intended type-I error rate. This test can therefore serve as a useful

tool to select the efficient truth-telling-based estimates over the less efficient stability-based

estimates when both assumptions are satisfied.
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Table C2: Monte Carlo Results: Unconstrained DA (500 Students, 6 Schools, 500 Samples)

Identifying assumptions

Weak
Truth-telling

Stability of
the matching

Stability and
undominated

strategies

True value Mean SD CP Mean SD CP Mean SD CP
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Parameters
School 2 0.50 0.50 0.10 0.94 0.51 0.29 0.94 0.50 0.12 1.00
School 3 1.00 1.01 0.16 0.95 1.05 0.58 0.96 1.00 0.22 1.00
School 4 1.50 1.52 0.15 0.95 1.54 0.52 0.96 1.51 0.21 1.00
School 5 2.00 2.02 0.11 0.95 2.02 0.30 0.96 2.02 0.14 1.00
School 6 2.50 2.52 0.14 0.96 2.54 0.45 0.96 2.53 0.19 1.00
Own ability � school quality 3.00 2.98 0.66 0.95 2.96 2.29 0.96 3.08 0.99 1.00
Distance �1.00 �1.00 0.08 0.96 �1.01 0.20 0.95 �1.02 0.16 1.00

Summary statistics (averaged across Monte Carlo samples)
Average length of submitted ROLs 6.00
Fraction of weakly truth-telling students 1.00
Fraction of students assigned to favorite feasible school 1.00

Model selection tests
Truth-telling (H0) vs. Stability (H1): H0 rejected in 5% of samples (at 5% significance level).
Stability (H0) vs. Undominated strategies (H1): H0 rejected in 0% of samples (at 5% significance level).

Notes: This table reports Monte Carlo results from estimating students’ preferences under different sets of identifying assump-
tions: (i) weak truth-telling; (ii) stability; (iii) stability and undominated strategies. 500 Monte Carlo samples of school choice
data are simulated under the following data generating process for an economy in which 500 students compete for admission
to 6 schools: an unconstrained DA where students can rank as many schools as they wish, with no cost for including an
extra school in their ROL. Under assumption (iii), the model is estimated using Andrews and Shi (2013)’s method of moment
(in)equalities. Column 1 reports the true values of the parameters. The mean and standard deviation (SD) of point estimates
across the Monte Carlo samples are reported in columns 2, 5 and 8, and in columns 3, 6 and 9, respectively. Columns 4, 7 and
10 report the coverage probabilities (CP) for the 95 percent confidence intervals. The confidence intervals in models (i) and
(ii) are the Wald-type confidence intervals obtained from the inverse of the Hessian matrix. The marginal confidence intervals
in model (iii) are computed using the method proposed by Bugni et al. (2017). Truth-telling is tested against stability by
constructing a Hausman-type test statistic from the estimates of both approaches. Stability is tested against undominated
strategies by checking if the identified set of the moment(in)equality model is empty, using the test proposed by Bugni et al.
(2015).
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Appendix D Additional Results and Goodness of Fit

Section D.1 of this appendix presents additional results on students’ ranking behavior (ex-

tending Section IV.B in the main text). Section D.2 describes the goodness-of-fit statistics

that we use to compare the estimates of student preferences under different sets of identifying

assumptions (Section IV.D in the main text).

D.1 Additional Results on Students’ Ranking Behavior

The reduced-form evidence presented in Section IV.B of the main text suggests that stu-

dents’ ranking behavior could be influenced by their expected admission probabilities, as the

fraction of students ranking a selective school is shown to be close to one for students with a

priority index above the school cutoff, while decreasing rapidly when the priority index falls

below the cutoff.

We extend this analysis by evaluating whether the pattern in Figure 3 is robust to

controlling for potential determinants of student preferences. In particular, since the decision

to rank a selective school might be influenced by the student’s ability, we investigate whether

the correlation between the priority index and the probability of ranking a selective school

is still present once we control for the student’s DNB scores in French and math.A.13

Specifically, we estimate the following linear probability model separately for each of the

four schools with the highest cutoffs in the Southern District of Paris:

yi,s � δ0�δ1 �1tei,s   Psu�pei,s�Psq�δ2 �1tei,s ¥ Psu�pei,s�Psq�δ3 �1tei,s ¥ Psu�Z
1
i,sπ� εi,s, (A.9)

where yi,s is an indicator function that takes the value of one if student i included school s

in her ROL, and zero otherwise; the coefficients δ1 and δ2 allow the linear relationship

between student i’s priority index at school s (ei,s) and the probability of ranking that

school to differ on either side of the school cutoff (Ps), while the coefficient δ3 allows for a

discontinuous jump in the ranking probability at the cutoff; Zi,s is a vector of student-school-

specific characteristics, which includes the student’s DNB exam scores in French and math,

an indicator for having a high SES background, the distance to school s from i’s place of

A.13Note that students’ DNB scores are different from the academic performance measure that is used to
calculate student priority indices as an input into the DA mechanism (see Appendix B).
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Table D1: Correlation between Student Priority Index and Probability of Ranking the
Most Selective Schools in the Southern District of Paris

Dependent variable: School s is ranked by student

s � School 11 s � School 9
(school with the highest cutoff) (school with second highest cutoff)

(1) (2) (3) (4) (5) (6)

Priority index (original scale in points { 100)

(Priority index � school cutoff)�1tpriority index   cutoffu 0.549*** 0.428*** 0.430*** 0.381*** 0.213*** 0.236***
(0.052) (0.064) (0.064) (0.073) (0.078) (0.078)

(Priority index � school cutoff)�1tpriority index ¥ cutoffu 0.083 �0.074 0.074 0.043 �0.156* 0.061
(0.077) (0.079) (0.102) (0.077) (0.085) (0.089)

1tpriority index ¥ cutoffu �0.022 �0.025 �0.015 0.068** 0.058** 0.045*
(0.022) (0.022) (0.023) (0.026) (0.026) (0.026)

Student test scores

French score 0.054 0.124 0.153*** 0.524***
(0.050) (0.209) (0.049) (0.202)

Math score 0.179*** 0.370* 0.196*** 0.375*
(0.053) (0.214) (0.051) (0.211)

French score (squared) �0.100 �0.388**
(0.167) (0.160)

Math score (squared) �0.254 �0.268
(0.173) (0.171)

Other covariates

High SES student 0.094*** 0.092***
(0.020) (0.019)

Distance to School (in km) �0.051*** �0.069***
(0.014) (0.010)

Closest school 0.010 �0.090***
(0.036) (0.030)

School co-located with student’s middle school 0.014 -
(0.028) -

Number of students 1,344 1,344 1,344 1,344 1,344 1,344

Adjusted R-squared 0.123 0.132 0.164 0.086 0.108 0.164

F -Test: joint significance of the three coefficients on priority index

F -stat 79.04 18.14 21.48 51.61 10.62 13.32
p-value   0.001   0.001   0.001   0.001   0.001   0.001

Notes: Results are calculated with administrative data from the Paris Education Authority (Rectorat de Paris) for students
from the Southern District who applied for admission to public high schools for the academic year starting in 2013. Columns 1–
3 report estimates from of a linear probability model describing the probability that a student ranks the school with the
highest cutoff (School 11) as a function of her priority index, her test scores in French and math, and additional student-specific
characteristics. Columns 4–6 report estimates for the probability of ranking the school with the second highest cutoff (school 9).
The empirical specification allows for the effect of the priority index to vary depending on whether the student is above or below
the school’s cutoff, and allows for a discontinuous jump in the ranking probability at the cutoff. French and math scores are
from the exams of the Diplôme national du brevet (DNB) in middle school and are measured in percentiles and normalized to
be in r0, 1s. Low-income students are not included in the sample due to the low-income bonus of 300 points placing them well
above the cutoffs. Heteroskedasticity-robust standard errors are reported in parentheses. *** p   0.01, ** p   0.05, * p   0.1.
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residence, an indicator for school s being co-located with the student’s middle school, and

an indicator for school s being the closest to her residence.

For reasons of space, Table D1 only reports the OLS estimates of model (A.9) for the two

schools with the highest cutoffs, i.e., School 11 (columns 1–3) and School 9 (columns 4–6).

The results for the third and fourth most selective schools (Schools 10 and 7, respectively)

yield similar conclusions and are available upon request.

Columns 1 and 4 report estimates of the model without the covariates, Zi,s, and can be

viewed as the regression version of the graphs displayed in the upper panel of Figure 3 in the

main text. Columns 2 and 5 add controls for the student’s exam scores in French and math.

Columns 3 and 7 use a more flexible specification that controls for a quadratic function

of French and math scores, and includes the full set of covariates. Note that low-income

students are not included in the the estimation sample for the same reason as in Figure 3,

because the low-income bonus places them well above the cutoff.

Table D1 confirms that the kink-shaped relationship between student priority index and

the probability of ranking the district’s most selective schools is robust to controlling for stu-

dents’ academic performance and other observable characteristics. Across all specifications,

the probability of ranking School 11 or School 9 increases significantly with the student’s

priority index, up to the point where the school becomes ex post feasible; above the cutoff,

student ranking behavior is essentially uncorrelated with the value of the priority index.

Overall, these reduced-form results suggest that students’ submitted choices are influ-

enced by their priority index, in ways that seem uncorrelated with their underlying prefer-

ences. This type of behavior cannot be easily reconciled with weak truth-telling.

D.2 Goodness of Fit

The goodness-of-fit statistics reported in Panel A of Table 5 in the main text are based on

simulation techniques (Panel A), whereas those reported in Panel B use closed-form expres-

sions for the choice probabilities (due to the logit specification). We use these goodness-of-fit

measures to compare the predictive performance of the preference estimates obtained under

different sets of identifying assumptions.
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D.2.1 Simulation-Based Goodness-of-Fit Measures

To compare different estimators’ ability to predict school cutoffs and students’ assignment,

we use several simulation-based goodness-of-fit statistics. We keep fixed the estimated coeffi-

cients and Zi,s, and draw utility shocks as type-I extreme values. This leads to the simulated

utilities for every student in 300 simulation samples. When studying the WTT-based esti-

mates, we let students submit their top 8 schools according to their simulated preferences;

the matching is obtained by running DA. For the other sets of estimates, because stability is

assumed, we focus on the unique stable matching in each sample, which is calculated using

students’ priority indices and simulated ordinal preferences.

Predicted Cutoffs. Observed school cutoffs are compared to those simulated using the

different estimates. The results, which are averaged over the 300 simulated samples, are re-

ported in Table D2, with standard deviations across the samples in parentheses (see Figure 5

in the main text for a graphical representation).

Predicted Assignment. Students’ observed assignment is compared to their simulated

assignment by computing the average predicted fraction of students who are assigned to

their observed assignment school; in other words, this is the average fraction of times each

student is assigned to her observed assignment in the 300 simulated samples, with standard

deviations across the simulation samples reported in parentheses. The results are reported

in Panel A of Table 6 in the main text.

D.2.2 Predicted vs. Observed Partial Preference Order

Our second set of goodness of fit measures involves comparing students’ observed partial

preference order (revealed by their ROL) with the predictions based on different sets of

identifying assumptions. We use two distinct measures: (i) the mean predicted probability

that a student prefers the top-ranked school to the 2nd-ranked in her submitted ROL, which

is averaged across students; and (ii) the mean predicted probability that a student’s partial

preference order among the schools in her ROL coincides with the submitted rank order.

Because of the type-I extreme values, we can exactly calculate these probabilities. The
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results are reported in Panel B of Table 6 in the main text.

Table D2: Goodness of Fit: Observed vs. Simulated Cutoffs

Cutoffs in simulated samples with estimates from

Observed
cutoffs

Weak
Truth-telling

Stability of the
matching

Stability and
undominated

strategies
(1) (2) (3) (4)

School 1 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000)

School 2 0.015 0.004 0.024 0.019
(0.006) (0.012) (0.013)

School 3 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000)

School 4 0.001 0.043 0.017 0.017
(0.015) (0.007) (0.008)

School 5 0.042 0.064 0.053 0.040
(0.016) (0.012) (0.013)

School 6 0.069 0.083 0.077 0.062
(0.025) (0.022) (0.024)

School 7 0.373 0.254 0.373 0.320
(0.020) (0.010) (0.012)

School 8 0.239 0.000 0.241 0.153
(0.001) (0.023) (0.047)

School 9 0.563 0.371 0.564 0.505
(0.033) (0.017) (0.023)

School 10 0.505 0.393 0.506 0.444
(0.029) (0.011) (0.014)

School 11 0.705 0.409 0.705 0.663
(0.040) (0.009) (0.013)

Notes: This table compares the cutoffs, observed for the 11 high schools of the Southern District of Paris in 2013, to the
average cutoffs simulated under various identifying assumptions as in Table 5. The reported values for the simulated cutoffs
are averaged over 300 simulated samples, and the standard deviations across the samples are reported in parentheses. In all
simulations, we vary only the utility shocks, which are kept common across columns 2–4.
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Appendix E Supplementary Figure and Table
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Figure E1: The Southern District of Paris for Public High School Admissions

Notes: The Southern District of Paris covers four of the city’s 20 arrondissements (administrative divisions): 5th, 6th, 13th
and 14th. The large red circles show the location of the district’s 11 public high schools (lycées). The small blue circles show
the home addresses of the 1,590 students in the data.
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Table E1: Assigned and Unassigned Students in the Southern District of Paris

Assigned students Unassigned students

Panel A. Student characteristics

Age 15.0 15.0
Female 0.51 0.45
French score 0.56 0.45
Math score 0.54 0.47
Composite score 0.55 0.46
High SES 0.48 0.73
With low-income bonus 0.16 0.00

Panel B. Enrolment outcomes

Enrolled in assignment school 0.96
Enrolled in another public school 0.01 0.65
Enrolled in a private school 0.03 0.35

Number of students 1,568 22

Notes: The summary statistics are based on administrative data from the Paris Education Authority (Rectorat de Paris), for
students who applied to the 11 high schools of Paris’s Southern District for the academic year starting in 2013. All scores are
from the exams of the Diplôme national du brevet (DNB) in middle school and are measured in percentiles and normalized to
be in r0, 1s. Enrollment shares are computed for students who are still enrolled in the Paris school system at the beginning of
the 2013-2014 academic year (97 percent of the initial sample). Students unassigned after the main round have the possibility
of participating in a supplementary round, but with choices restricted to schools with remaining seats.
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