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This note contains three Appendices: Appendix A is the Main
Appendix to the paper providing proofs of the main results, Ap-
pendix B provides additional results pertaining to the uniqueness
of the proposed equilibria, and Appendix C provides proofs in
the common bond scenario to the simultaneous three assets global
game considered as the robustness check for the sequential game
presented in the paper.

Appendix A: Main Appendix

A1. Joint-safety Equilibrium with non-monotone strategies and zero recovery

We now construct a joint safety equilibrium with non-monotone strategies and joint safety on the
endogenously determined interval [δL, δH ]. Given this equilibrium, we will compute the minimum value
of z = z for which this equilibrium exists. The possibility of joint safety means that our equilibrium
construction using threshold strategies is no longer possible. In a region where both countries are known
to be safe (recall we consider the limit where σ → 0), investors must be indifferent between the two

countries, thus equalizing bond returns. Outside the joint safety interval, i.e., δ̃ ∈ [−δ̄, δL) ∪ (δH , δ̄], we
are back to the case where the signal is so strong that only one country is safe.

We conjecture the following non-monotone strategy whereby investment in country 1 and in country
2 alternates on discrete intervals of length kσ and (2− k)σ, with k ∈ (0, 2). The investor j’s strategy
given his private signal δj is φ (δj) ∈ {0, 1}:

(A.1) φ (δj) =


0, δj < δL
1, δj ∈ [δL, δL + kσ] ∪ [δL + 2σ, δL + (2 + k)σ] ∪ [δL + 4σ, δL + (4 + k)σ] ∪ ...
0, δj ∈ [δL + kσ, δL + 2σ] ∪ [δL + (2 + k)σ, δL + 4σ] ∪ [δL + (4 + k)σ, δL + 6σ] ∪ ...
1, δj > δH

As we will show shortly, the non-monotone oscillation occurs only when both countries are safe, where
the equilibrium requires proportional investment in each safe country to equalize returns across two safe
bonds. Clearly, k determines the fraction of agents in investing in country 1 when oscillation occurs, to
which we turn next.

Fraction of agents in investing in country 1

Consider a region where all investors know that both countries are safe. In this case, the total

investment in country 1 and 2 has to be 1+f
1+s

and
s(1+f)
1+s

, respectively, to equalize returns. Take an

agent with signal δ; introduce the function ρ (δ), which is the expected proportion of agents investing in
country 1 given (own) signal δ. Then, given the assumed strategy for all agents and given that we are in
the region where both countries are safe,

ρ(δ) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

kσ

2σ
.

We choose k so that ρ(δ) = 1
1+s

⇐⇒ k = 2
1+s

. This is because in equilibrium the proportion investing

in country 1 must be constant and equal to 1
1+s

to equalize returns.
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Recall that x denotes the fraction of agents with signal realizations above the agent’s private signal δ;
and x follows a uniform distribution on [0, 1]. For any value of δ and x,

(A.2) ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


0, δ + 2σx < δL
δ+2σx−δL

2σ
, δ + 2σx ∈ (δL, δL + kσ)

1
1+s

, δH − (2− k)σ > δ > δL + kσ

When we evaluate δ at the marginal agent with signal δ = δL, we have

(A.3) ρ (δL, x) =


0, x = 0

x, x ∈
(

0, 1
1+s

)
1

1+s
, x > 1

1+s

where we observe that ρ (δL, x) is less than or equal to 1
1+s

.

Lower boundary δL

In the completely safe region discussed above (for δ exceeding δL sufficiently), investors were indifferent
between both strategies. This is not the case for agent with signals around the threshold signal δL: as
the agent knows investors with signal below are always investing in country 2, country 1 is a perceived
default risk. We now calculate the return of investing in either country, from the perspective of the
boundary agent δL.

For the boundary agent δL, the return from investing only in country 2 (i.e. φ = 0) is given by

(A.4) Π2 (δL) =

∫ 1

0

s

(1 + f) (1− ρ(δL, x))
dx

where we integrate over all x as country 2 is safe regardless of x. We will show consistency of this
assumption with the derived equilibrium later. Thus, plugging in, we have

(A.5) Π2 (δL) =
s

1 + f

[∫ 1
1+s

0

1

1− x
dx+

∫ 1

1
1+s

1
s

1+s

dx

]
=

s

1 + f

[
ln

1 + s

s
+ 1

]
<

1 + s

1 + f
.

where we used s ln 1+s
s

< 1. Here, we see that payoff to investing in country 2 is lower than the expected
payoff that would have realized if both countries were safe. This reflects the strategic substitution effect:
because more people (in expectation) invest in the safe country 2, the return in country 2 is lower.

Now we turn to country 1. Since country 1 has default risk, we need to calculate the threshold
x = xmin so that country 1 becomes safe if there are x > xmin measure of agents receiving better
signals. To derive xmin, we first solve for ρmin1 (δ), which is the minimum proportion of agents investing
in country 1 that are needed to make country 1 safe given fundamental δ. We have

θ1 (δ) + (1 + f) ρmin1 (δ) = 1 ⇐⇒ ρmin1 (δ) =
1− θ1 (δ)

1 + f

Define xmin as the solution to ρ (δL, x) = ρmin1 (δL). Given equation (A.3), we have that,

(A.6) xmin =
1− θ1 (δL)

1 + f
.

The expected return of investing in country 1 given one’s own signal δL and the conjectured strategies
φ (·) of everyone else is given by,

Π1 (δL) =

∫ 1

xmin

1

(1 + f) ρ(δL, x)
dx =

1

1 + f

[∫ 1
1+s

xmin

1

x
dx+

∫ 1

1
1+s

1

1/ (1 + s)
dx

]

=
1

1 + f

[
ln

1

1 + s
− lnxmin + s

]
.(A.7)

The boundary agent δL must be indifferent between investing in either country, i.e., Π2 (δL) = Π1 (δL).
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Plugging in (A.4) and (A.7), we have

s

1 + f

[
ln

1 + s

s
+ 1

]
=

1

1 + f

[
ln

1

1 + s
− lnxmin + s

]
⇐⇒ xmin =

ss

(1 + s)1+s
.(A.8)

We combine our two equations for xmin, (A.6) and (A.8), and use 1 − θ1 (δL) = (1− θ) exp (−δL), to
obtain:

ss

(1 + s)1+s
=

(1− θ) exp (−δL)

1 + f
.

Recall z = ln 1+f
1−θ ; we have

(A.9) δL (z) = −z + (1 + s) ln (1 + s)− s ln s

Upper boundary δH

The derivation is symmetric to the above. We have

(A.10) ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s
, δ − 2σ (1− x) < δH − (2− k)σ

δ+2σx−δH
2σ

δ − 2σ (1− x) ∈ (δH − (2− k)σ, δH)

1, δ − 2σ (1− x) > δH

so that

(A.11) ρ (δH , x) =


1

1+s
, x < 1

1+s

x, x ∈
(

1
1+s

, 1
)

1, x = 1

which yields

Π1 (δH) =

∫ 1

0

1(
1 + f̂

)
ρ(δH , x)dy

dx =
1

1 + f
[ln (1 + s) + 1] <

1 + s

1 + f
,

where we integrated over all x as country 1 is always safe in the vicinity of δH .

The default condition for country 2 is

sθ2 (δH) + (1 + f) [1− ρmax2 (δH)] = s ⇐⇒ 1− ρmax2 (δH) = s
1− θ2 (δH)

1 + f

where ρmax2 (δ) is the maximum amount of agents investing in country 1 so that country 2 does not
default. Assume, but later verify, that at δH we have 1 − ρmax2 (δH) < s

1+s
, that is, country 2 would

survive even if less than s
1+s

of investors invest in country 2. Define xmax (δH) as the solution to

ρ (δH , xmax) = ρmax2 (δH); (A.11) implies that

(A.12) 1− xmax (δH) = s
1− θ2 (δH)

1 + f
.

As a result, the return to country 2 is,

Π2 (δH) =

∫ xmax(δH )

0

s

(1 + f) (1− ρ(δH , x))dy
dx =

s

1 + f̂

[∫ 1
1+s

0

1

1− 1
1+s

dx+

∫ xmax(δH )

1
1+s

1

1− x
dx

]

=
s

1 + f

[
1

s
+ ln

s

1 + s
− ln (1− xmax (δH))

]
Indifference at the boundary agent δH requires Π1 (δH) = Π2 (δH), which yields 1 − xmax (δH) =

s

(1+s)
1+s
s

. Combining this result with (A.12) and 1− θ2 (δH) = (1− θ) exp (δH), we solve,

δH (z) = z −
1 + s

s
ln (1 + s)(A.13)
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Verifying the equilibrium

We now verify the interior agents δ ∈ (δL, δH) have the appropriate incentives to play the conjectured
strategy, and that our assumptions of country 1 (2) is always safe at δH (δL) are correct. As an investor
with signal δ = δL is indifferent, it is easy to show that agents with δ < δL find it optimal to invest in
country 2. Consider an investor with signal δ = δL+kσ (i.e. let us consider the investors depicted by the
black dot in Figure 3). Regardless of his relative position (as measured by x) in the signal distribution,

this agent knows that a proportion 1
1+s

of investors invest in country 1, thus making it safe for sure.

Further, he knows that a proportion s
1+s

of investors invest in country 2, also making it safe. Therefore,

this agent knows that (i) both countries are completely safe and that (ii) investment flows give arbitrage
free prices. He is thus indifferent, and so is every investor with δL + kσ < δ < δH − (2− k)σ.

Next, we consider an investor with δ ∈ (δL, δL + kσ). We know that country 2 will always survive,
and thus we have

Π2 (δ) =

∫ 1

0

s

(1 + f)
∫ δ+2σx
δ−2σ(1−x)

1−φ(y)
2σ

dy
dx.

Note that for any x with x ≥ − δ−δL−kσ
2σ

we are in the oscillating region; for x below we are in the

increasing part. Let ε ≡ δ−δL
2σ
∈
(

0, 1
1+s

)
so that so that δ = δL + 2σε. Thus, we have

1− ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

1− φ (y)

2σ
dy =

1− ε− x, x ∈
(

0, 1
1+s
− ε
)
,

s
1+s

, x ∈
(

1
1+s
− ε, 1

)
.

(A.14)

Then, we have

Π2 (δ) =
s

1 + f

[∫ 1
1+s
−ε

0

1

1− ε− x
dx+

∫ 1

1
1+s
−ε

1
s

1+s

dx

]
= Π2 (δL) +

s
(
ln (1− ε) + 1+s

s
ε
)

1 + f

For investment in country 1, we know that, since δ > δL, we have ρmin1 (δ) < ρmin1 (δL). First, note
that

ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =

ε+ x, x ∈
(

0, 1
1+s
− ε
)

1
1+s

, x ∈
(

1
1+s
− ε, 1

)
Let xmin (δ) be the measure of investors with higher signals than δ so that country 1 is safe. Since

ρmin1 (δ) =
1−θ1(δ)

1+f
, xmin (δ) is the lowest x ∈ [0, 1] such that

ρ (δ, x) = ε+ x ≥ ρmin1 (δ) .

Thus, we have

xmin (δ) = xmin (δL + 2σε) = max

{
1− θ1 (δL + 2σε)

1 + f
− ε, 0

}
.(A.15)

The expected investment return from country 1 is

Π1 (δ) =

∫
x:ρ(δ,x)≥ρmin1 (δ)

1

(1 + f)
∫ δ+2σx
δ−2σ(1−x)

φ(y)
2σ

dy
dx

= Π1 (δL) +
1

1 + f
{lnxmin (δL)− ln [ε+ xmin (δL + 2σε)] + (1 + s) ε}

Thus, to show that Π1 (δL + 2σε) ≥ Π2 (δL + 2σε), we need to show that the following inequality holds

for ε ∈
(

0, 1
1+s

)
:

(A.16) gL (ε) ≡ (1 + f) (Π1 −Π2) = lnxmin (δL)− ln [ε+ xmin (δL + 2σε)]− s ln (1− ε) ≥ 0.

First, by using lnxmin (δL) = s ln s − (1 + s) ln (1 + s) and xmin

(
δL + 2σ 1

1+s

)
= 0, we know the

above inequality holds with equality at both end points ε = 0 and ε = 1
1+s

, i.e., gL (0) = gL

(
1

1+s

)
= 0.
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Second, it is easy to show that there exists a unique ε∗ such that
1−θ1(δL+2σε∗)

1+f
= ε∗, at which point

(A.15) binds at zero. We further note that at ε = 0 we have
1−θ1(δL)

1+f
> 0. Thus, in (A.15) we have

ε∗ > 0 and for ε ∈ (0, ε∗) we have xmin (δ) =
1−θ1(δL+2σε)

1+f
− ε > 0, and for ε ∈

[
ε∗, 1

1+s

]
we have

xmin (δ) = 0. Plugging in and taking derivative with respect to ε, we have

∂

∂ε
ln [ε+ xmin (δL + 2σε)] =


−2σθ′1(δL+2σε)

1−θ1(δL+2σε)
, ε ∈ (0, ε∗)

1
ε

, ε ∈
[
ε∗, 1

1+s

]
Then, for (A.16), we have gL (ε) first rises and then drops:

g′L (ε) =


2σθ′1(δL+2σε)

1−θ1(δL+2σε)
+ s

1−ε > 0 , ε ∈ (0, ε∗) ,

− 1
ε

+ s
1−ε =

(1+s)ε−1
1−ε < 0 , ε ∈

[
ε∗, 1

1+s

]
.

Combined with gL (0) = gL

(
1

1+s

)
= 0 we know that gL (ε) > 0, ∀ε ∈

(
0, 1

1+s

)
, i.e., Thus, on ε ∈(

0, 1
1+s

)
the investors strictly want to invest in country 1.

We now consider the investors with δ ∈ (δH − (2− k)σ, δH). We know that country 1 will always
survive, and thus we have

Π1 (δ) =

∫ 1

0

1

(1 + f)
∫ δ+2σx
δ−2σ(1−x)

φ(y)
2σ

dy
dx.

Let ε ≡ δH−δ
2σ

∈
(

0, s
1+s

)
so that so that δ = δH − 2σε. Thus, we have

ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

φ (y)

2σ
dy =


1

1+s
, x ∈

(
0, 1

1+s
+ ε
)
,

x− ε, x ∈
(

1
1+s

+ ε, 1
)
.

(A.17)

Plugging in, we have

Π1 (δ) =
1

1 + f

[∫ 1
1+s

+ε

0

1
1

1+s

dx+

∫ 1

1
1+s

+ε

1

x− ε
dx

]
=

1

1 + f
[1 + (1 + s) ε+ ln (1− ε) + ln (1 + s)] .

For investment in country 2, we know that, since δ < δH , we have 1− ρmax2 (δ) < 1− ρmax2 (δL) ⇐⇒
ρmax2 (δL) < ρmax2 (δ). First, note that

1− ρ (δ, x) =

∫ δ+2σx

δ−2σ(1−x)

1− φ (y)

2σ
dy =


s

1+s
, x ∈

(
0, 1

1+s
+ ε
)
,

1 + ε− x, x ∈
(

1
1+s

+ ε, 1
)
.

Let xmax (δ) be the measure of investors with higher signals than δ so that country 2 is safe. Since

1− ρmax2 (δ) = s
1−θ2(δ)

1+f
, xmax (δ) is the highest x ∈ [0, 1] such that

1− ρ (δ, x) = 1 + ε− x ≤ 1− ρmax2 (δ) .

Thus, we have

xmax (δ) = xmax (δH − 2σε) = min

{
1 + ε− s

1− θ2 (δH − 2σε)

1 + f
, 1

}
.(A.18)

The expected investment return from country 2 is

Π2 (δ) =

∫
x:ρ(δ,x)≤ρmax2 (δ)

s

(1 + f)
∫ δ+2σx
δ−2σ(1−x)

1−φ(y)
2σ

dy
dx

=
s

1 + f

[
1 + s

s

(
1

1 + s
+ ε

)
− ln [1 + ε− xmax (δ)] + ln

(
s

1 + s

)]
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Differencing, we have

gH (ε) = (1 + f) [Π1 (ε)−Π2 (ε)] = ln (1− ε)− s ln s+ (1 + s) ln (1 + s) + s ln [1 + ε− xmax (δ)]

with similar properties to gL (ε).
Finally, we need to pick σ appropriately so that there exists some natural number N > 1 so that

2Nσ = δH −δL. For this particular choice of σ = σ̂, the limiting case of zero signal noise can be achieved
when we take the sequence of σn = σ̂/n for n = 1, 2, .....

Equilibrium properties

First, with joint safety, the probability of survival for country 1 (or the probability of its bonds being

the safe asset) is no longer one minus the probability of survival of country 2. Using δ̃ ∼ U
(
−δ, δ

)
, the

probability of country 1 survival is

(A.19) Pr (country 1 safe) =
δ − δL

2δ
=
δ + z − (1 + s) ln (1 + s) + s ln s

2δ
,

and the probability of country 2 survival is

Pr (country 2 safe) =
δH + δ

2δ
=
δ + z − 1+s

s
ln (1 + s)

2δ
.

As a result, the bonds issued by country 1 are more likely to be the safe assets than that issued by
country 2 if the following condition holds:

(A.20) s ln s− (1 + s) ln (1 + s) +
1 + s

s
ln (1 + s) = s ln s+

(
1

s
− s
)

ln (1 + s) > 0.

This condition always holds: Define F (s) ≡ s2 ln s+
(
1− s2

)
ln (1 + s), then F (s) > 0 holds for s ∈ (0, 1).

It is clear that F (0) = 0 while F (1) = 0. Simple algebra shows that

F ′ (s) = 2s ln s− 2s ln (1 + s) + 1,
1

2
F ′′ (s) = ln s− ln (1 + s) + 1−

s

1 + s
= ln

(
s

1 + s

)
+ 1−

s

1 + s
.

Let y = s
1+s

∈ (0, 1); then because it is easy to show ln y + 1 − y < 0 (due to concavity of ln y), we

know that F ′′ (s) < 0. As a result, F (s) is concave but F (0) = F (1) = 0. This immediately implies
that F (s) > 0, which is our desired result. The condition is the same if we focus on sole survivals only
instead of sole and joint survival, i.e., the bonds of country j are the only safe asset, the condition is
exactly the same.

Country 1 has the highest likelihood of survival when s→ 0, which immediately follow from− (1 + s) ln (1 + s)+
s ln s is decreasing in s.

Obviously, the above equilibrium construction requires that δL (z) < δH (z). Since δL (z) in (A.9) is
decreasing in z while δH (z) in (A.13) is increasing in z, this condition δL (z) < δH (z) holds if z > z so
that δL (z) = δH (z) which gives z:

−z + (1 + s) ln (1 + s)− s ln s = z −
1 + s

s
ln (1 + s)⇒ z =

1

2

[(
2 + s+

1

s

)
ln (1 + s)− s ln s

]

A2. Extension for a negative β asset

Suppose that θ, which proxies for the aggregate fundamental for both countries, is subject to shocks.

For convenience, suppose that θ̃ is drawn from the following uniform distribution θ̃ ∼ U
[
θ, θ
]
, and recall

z
(
θ̃
)

= ln 1+f

1−θ̃
. Also, suppose that

li = lθ̃, i ∈ {1, 2}
where l > 0 is a positive constant, so that recovery is increasing in the fundamental shock. Using (16),

we calculate the threshold δ∗ (θ) as a function of the realization of θ̃ = θ, to be

δ∗ (θ) =
[(1− lθ) s− (1− lθ)] z (θ)− (s+ lθ) ln (s+ lθ) + (1 + slθ) ln (1 + lθs) + lθ ln (lθ)− slθ ln (lθ)

(1− lθ) + s (1− lθ)
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Note that d
dθ
δ∗ (θ) < 0; that is, a higher θ, by reducing rollover risk, makes country 1 safer.

In this exercise we consider a distribution so that the relative fundamental δ is almost surely, δ >

δ∗ (E [θ]). This implies that ex-ante country 1 bonds are more likely to be safe. Also, define θ̂ (δ) so that

δ∗
(
θ̂
)

= δ holds; this is the critical value of fundamental θ = θ̂ so that country 1’s bonds lose safety.

We choose δ so that θ̂ > θ, which implies that with strictly positive probability, country 1 defaults given
a sufficiently low fundamental.

We are interested in the β of the bond price of each country with respect to the θ shock, i.e.,

(A.21) βi (δ) =
Cov

(
pi

(
θ̃; δ
)
, θ̃
)

V ar
(
θ̃
) =

E
[
pi

(
θ̃; δ
)
· θ̃
]
− E

[
θ̃
]
E
[
pi

(
θ̃; δ
)]

V ar
(
θ̃
) ,

From equation (18), we know that

p1 (θ; δ) =

{
(1+f)lθ
s+lθ

if θ¡θ̂ (δ) so country 1 defaults;
1+f
1+lθs

if θ ≥ θ̂ (δ) so country 1 survives;

and

p2 (θ; δ) =

{
1+f
s+lθ

if θ¡θ̂ (δ) so country 2 survives;
(1+f)lθ
1+lθs

if θ ≥ θ̂ (δ) so country 2 defaults.

Given these pricing functions, it is straightforward to evaluate βs in (A.21). We vary country 1’s relative
strength δ and plot the βs for both bonds as a function of δ in Figure 4. We only plot the β for country
1’s bonds, because β2 = −β1/s in our model.1

A3. Single-survivor equilibrium with common bonds

In this appendix, we proof that δ∗ (α) is unique, δ∗ (α) ≤ 0, exists on [0, α∗], and has δ∗ (α∗) = 0.
First, assume s = 1. Then, conjecture that δ∗ (α) = 0 throughout by a simple symmetry argument.

From (26), with θdef (δ∗ (α)) = θ, we then have

(A.22) α∗ =
1 + s

1 + f
(1− θ) = e−z (1 + s)

Next, assume s < 1 and ez > (1 + s) so that δ∗ (0) < 0. Then, let us conjecture δ∗ (α) ≤ 0 for α ∈ (0, α∗).

Setting Π1 (δ∗) = Π2 (δ∗) from (21) after substituting in for f̂ from (24), δ∗ (α) is implicitly defined
via

0 = h (δ∗, α) = ln

[
ez

1− α
e−δ∗ − α

1+s
ez

]
− s ln

[
ez

s

1− α
eδ∗ − α

1+s
ez

]
(A.23)

Then, consider δ̃ = δ∗ (α)+. At this point, country 1 just survives, even though the funding gap

(scaled by size) of country 2 is the best among all defaulting countries. Then, for the monotone cutoff
strategy to be consistent, we need the default condition

α ≤
1 + s

1 + f
[1− θ2 (δ∗)] =

1 + s

1 + f
(1− θ) eδ

∗
= e−z (1 + s) eδ

∗

Suppose that the constraint is binding, which defines a loosest δ∗ (α) by

(A.24) δ̂∗ (α) = z + ln

(
α

1 + s

)
⇐⇒ eδ̂

∗(α) =
α

1 + s
ez

Assume that α < α∗ = 1+s
1+f

(1− θ). Plugging in δ̂∗ (α), we see that

(A.25) h
(
δ̂∗ (α) , α

)
= ln

[
ez

1− α
e−z 1+s

α
− α

1+s
ez

]
− s ln

[
ez

s

1− α
ez α

1+s
− α

1+s
ez

]
< 0

1This is because cash-in-the-market-pricing implies that p1 + sp2 = 1 + f .
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as the second term explodes, i.e. ln [·] = ∞. Thus, it must be that 0 > δ∗ (α) > δ̂∗ (α)—the first part

by our assumption that δ∗ < 0 and the second by the construction. However, we note that δ̂∗ (α∗) = 0
so that δ∗ (α∗) = 0. This is possible as (δ, α) = (0, α∗) is a root of h – both sides are exploding at this

point. The restriction above also implies that 0 < δ∗α (α∗) < δ̂∗α (α∗) = 1
α∗ so that δ∗ (α) has a bounded

and positive derivative at α∗.
We next show that for a fixed α ∈ [0, α∗], there exists unique δ∗ (α) that solves h (δ∗, α). Fix α. Then,

consider h (δ∗, α) as a function of δ∗. Differentiating w.r.t. δ∗, we have

∂h (δ∗, α)

∂δ∗
=

e−δ
∗
(
eδ
∗ − α

1+s
ez
)

+ seδ
∗
(
e−δ
∗ − α

1+s
ez
)

(
e−δ∗ − α

1+s
ez
)(

eδ∗ − α
1+s

ez
)

Then, given that we have α < α∗ and δ̂∗ (α) < δ∗ < 0 by assumption, we have(
e−δ
∗
−

α

1 + s
ez
)
>

(
e−δ
∗
−

α∗

1 + s
ez
)

= e−δ
∗
− 1 > 0

by assumption on the sign of δ∗. Next, we have(
eδ
∗
−

α

1 + s
ez
)
>

(
eδ̂
∗(α) −

α

1 + s
ez
)

=
α

1 + s
ez −

α

1 + s
ez = 0

by the assumption on δ∗ ∈
(
δ̂∗ (α) , 0

)
. Thus, we have

∂h(δ∗,α)
∂δ∗ > 0. Finally, we know that h

(
δ̂∗ (α) , α

)
<

0 < h (0, α), so that a unique δ∗ (α) ∈
(
δ̂∗ (α) , 0

)
exists.

What remains to be shown is that δ∗ (α) does not cross 0 before α∗. Suppose it does. Then, there
exists an α̂ > 0 but α̂ 6= α∗ such that δ∗ (α̂) = 0. Then, we have

h (0, α̂) = ln

[
ez

1− α̂
1− α̂

1+s
ez

]
− s ln

[
ez

s

1− α̂
1− α̂

1+s
ez

]
= (1− s) ln

[
ez

1− α̂
1− α̂

1+s
ez

]
+ s ln s

Setting this equal to 0, we have

ln

[
1− α̂

1− α̂
1+s

ez

]
=
−s ln s

1 + s
− z ⇐⇒

1− e
[
−s ln s
1+s

−z
]

[
1− 1

1+s
e

[
−s ln s
1+s

]] = α̂

Simplifying, we have

α̂ =

(1 + s)

(
1− s

−s
1+s e−z

)
1 + s− s

−s
1+s

Then, notice that α̂ > α∗ ⇐⇒
(1+s)

(
1−s

−s
1+s e−z

)

1+s−s
−s
1+s

> e−z (1 + s), which simplifies to 1 > α∗. Thus,

the function δ∗ (α) does not cross 0 before α∗.

A4. Joint safety equilibrium with common bonds

Let us conjecture a non-monotone oscillating strategy as in A.1.

Lower boundary δL.

The definitions of ρ (δ, x) and ρ (δL, x) are as in Appendix A.A1, and most of the result simply have f̂

instead of f : as country 2 is safe to an agent with δ = δL, we have Π2 (δL) = s

1+f̂

[
ln 1+s

s
+ 1
]
< 1+s

1+f̂
.

The common bonds change the safety condition for country 1 to

θ1 (δ) + αpc +
(

1 + f̂
)
ρmin1 (δ) = 1 ⇐⇒ ρmin1 (δ) =

1− θ1 (δ)− αpc
1 + f̂
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Define xmin (δL) as the solution to ρ (δL, x) = ρmin1 (δL). Given equation (A.3), we have that,

(A.26) xmin (δL) =
1− θ1 (δL)− αpc

1 + f̂

Again, the expected return of investing in country 1 is given by Π1 (δL) = 1

1+f̂

[
ln 1

1+s
− lnxmin (δL) + s

]
.

Indifference requires that Π2 (δL) = Π1 (δL), which implies that

xmin (δL) = exp [s ln s− (1 + s) ln (1 + s)](A.27)

We combine the expressions for xmin (δL), (A.26) and (A.27), to solve for δL:

(A.28) δL = − ln

{
1

1− θ

[(
1 + f̂

) ss

(1 + s)(1+s)
+ αpc

]}
.

Upper boundary δH .

The derivation of ρ (δ, x) and ρ (δH , x) follow Appendix A.A1, , and most of the result simply have f̂

instead of f . We have Π1 (δH) =
ln(1+s)+1

1+f̂
as country 1 is considered safe at δj = δH .

The default condition for country 2 is

sθ2 (δ) + sαpc +
(

1 + f̂
)

[1− ρmax2 (δ)] = s ⇐⇒ [1− ρmax2 (δ)] = s
1− θ2 (δ)− αpc

1 + f̂

where ρmax2 (δ) is the maximum amount of people investing in country 1 so that country 2 does not
default. Define xmax (δH) as the solution to ρ (δH , xmax) = ρmax2 (δH). Given equation (A.11), we have
that,

(A.29) 1− xmax (δH) = s
1− θ2 (δH)− αpc

1 + f̂

Then the return to investing in country 2 is again given by Π2 (δH) = s

1+f̂

[
1
s

+ ln s
1+s
− ln (1− xmax (δH))

]
.

Indifference requires Π1 (δH) = Π2 (δH), which implies that

1− xmax (δH) =
s

(1 + s)
1+s
s

(A.30)

We combine the expressions for xmax (δH), (A.29) and (A.30), to solve for δH :

δH = ln

{
1

1− θ

[
1 + f̂

(1 + s)
1+s
s

+ αpc

]}
(A.31)

The remainder of the proof, i.e., the verification argument, is exactly the same as in Appendix A.A1
and hence omitted here.

Cutoff αHL < α∗.

First, the assumption ez > (1 + s) ⇐⇒ (1 + f) > (1− θ) (1 + s) guarantees that there is some

realizations of δ̃ that would allow joint safety. Consider the total funding requirement,

(A.32) total
(
δ̃
)

= (1− θ1) + (1− θ2) s = (1− θ)
(
e−δ̃ + s · eδ̃

)
This is minimized at δ̃ = − 1

2
ln s ≥ 0 for a total funding requirement of total

(
− 1

2
ln s
)

= (1− θ) 2
√
s.

Next, note that 1 + s > 2
√
s so that ez > (1 + s) > 2

√
s.
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Recall that α∗ = e−z (1 + s). Then, assume that z > ln (1 + s) so that α∗ ∈ (0, 1). Then, we have

δH (α∗)− δL (α∗) = ln

{
ez

1 + s

[(
1

1 + s

) 1
s

(1− α∗) + α∗

]}
+ ln

{
ez

1 + s

[(
s

1 + s

)s
(1− α∗) + α∗

]}

= ln

[(
1

1 + s

) 1
s
(

1

α∗
− 1

)
+ 1

]
+ ln

[(
s

1 + s

)s ( 1

α∗
− 1

)
+ 1

]
> 0

where we used
(

1
1+s

) 1
s
< 1 and

(
s

1+s

)s
< 1 and 1

α∗ > 1 in the last line. Thus, at α∗ the oscillating

equilibrium already exists. It is easy to show that the the joint safety region [δL (α) , δH (α)] is expanding
uniformly in α, and thus that αHL < α∗.

Finally, define αHL as the solution to

0 = δH (αHL)− δL (αHL)

= 2 [z − ln (1 + s)] + ln

[(
1

1 + s

) 1
s

(1− αHL) + αHL

]
+ ln

[(
s

1 + s

)s
(1− αHL) + αHL

]
Rearranging, we have[(

1

1 + s

) 1
s

(1− αHL) + αHL

][(
s

1 + s

)s
(1− αHL) + αHL

]
− e−2z (1 + s)2 = 0

which is a quadratic equation in αHL. We note that e−2z (1 + s)2 < 1 ⇐⇒ 2 [ln (1 + s)− z] < 0, so
that αHL = 1 makes the LHS positive. We also know that the LHS is increasing in αHL for αHL > 0.
Thus, there exists at most one positive root αHL ∈ (0, 1) under the assumption z > ln (1 + s), and if
not, both roots are negative. Solving for the larger root αHL, and after some algebra, we can show that
δ∗ (αHL) = δH (αHL) = δL (αHL).
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Appendix B: Additional Results

B1. Additive Fundamental Structure

We have considered the specification of 1 − θi = (1− θ) exp
(

(−1)i δ̃
)

for country i’s fundamental.

We now show that results are qualitatively similar with the alternative additive specification

θ1 = θ + δ̃, and θ2 = θ − δ̃.

As x = Pr
(
δ̃ + εj > δ∗

)
= δ̃+σ−δ∗

2σ
⇒ δ̃ = δ∗ + (2x− 1)σ, we know that

θ1 = θ + δ̃ = θ + δ∗ + (2x− 1)σ

θ2 = θ − δ̃ = θ − δ∗ − (2x− 1)σ

Given x, the large country 1 survives if and only if

p1 − 1 + θ1 = (1 + f)x− 1 + θ + δ∗ + (2x− 1)σ ≥ 0⇔ x ≥
1− θ − δ∗ + σ

1 + f + 2σ

which implies the expected return from investing in country 1 is

Π1 =

∫ 1

1−θ−δ∗+σ
1+f+2σ

1

(1 + f)x
dx =

1

1 + f
ln

1 + f + 2σ

1− θ − δ∗ + σ
.

For country 2, the bond is paid back if

(1 + f)x′ − s+ sθ2 = (1 + f)x′ − s+ s [θ − δ∗ − (2x− 1)σ] ≥ 0

⇔ x′ ≥
s (1− θ + δ∗ − σ)

1 + f + 2sσ

which implies an expected return of

Π2 =

∫ 1

s(1−θ+δ∗−σ)
1+f+2sσ

s

(1 + f)x′
dx′ =

s

1 + f
ln

1 + f + 2sσ

s (1− θ + δ∗ + σ)

As a result, the equilibrium threshold δ∗ is pinned by by the indifference condition

ln
1 + f + 2σ

1− θ − δ∗ + σ
= s ln

1 + f + 2sσ

s (1− θ + δ∗ + σ)
.

Letting σ → 0 we obtain

(B.1) ln
1 + f

1− θ − δ∗
= s ln

1 + f

s (1− θ + δ∗)
.

We no longer have close-form solution for δ∗ in (B.1), as δ∗ shows up in both sides. However, the solution
is unique because LHS (RHS) is increasing (decreasing) in δ∗. Finally, to ensure δ∗ < 0 so that the larger

country 1 is relatively safer, we require the same sufficient condition of z = ln 1+f
1−θ > 1 in this alternative

specification.

B2. Uniqueness of the single-survivor equilibrium with threshold strategies within

monotone strategies

First, let us define a few primitives. Let δj be a generic signal, and δ be the true state of the
world. Further, let x denote the amount of pessimism of the investors, so that x = 1 is the most
pessimistic agent (amongst all agents out there) and x = 0 is the least pessimistic agent. We then

have δ (δj , x) = δj + 2σ
(
x− 1

2

)
. For most of the proofs, we assume wlog that the investor believes his

signal to be the true signal, and thus all the action comes from movements in his relative position. As
σ → 0, fundamental uncertainty (that is movements in δ as a function of x) will vanish, whereas strategic
uncertainty (relative ranking of investors as represented by x) remains.
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Next, let us define φ (δj) as the proportion of funds an investor with signal δj invests in country 1.
Then define

ρ (δj , x) =
1

2σ

∫ δj+2σx

δj−2σ(1−x)
φ (y) dy

as the aggregate proportion of investors in country 1 an investor with signal δj and level of pessimism x
expects given the conjecture strategies φ (·). Note that there is translation invariance

ρ (δj , x) = ρ
(
δj + ε, x−

ε

2σ

)
, ∀x ∈

( ε

2σ
, 1
)

Finally, define the (scaled by 1 + f) difference in expected returns as

∆ (δj) =

∫ 1

0
1{ρ(δ,x)≥ρmin(δ)}

1

ρ (δ, x)
dx−

∫ 1

0
1{ρ(δ,x)≤ρmax(δ)}

s

1− ρ (δ, x)
dx

Then, for any given conjectured difference function ∆ (y), we must have

φ (y) =


1, ∆ (y) > 0

∈ [0, 1] , ∆ (y) = 0

0, ∆ (y) < 0

A monotone strategy is defined by φ′ (y) ≥ 0 for all y ∈
[
−δ, δ

]
, which implies that ρδ (δ, x) ≥ 0 as

well as ρx (δ, x) ≥ 0, i.e., ρ (δ, x) is monotone. This implies that we can write

∆ (δj) =

∫ 1

0
1{ρ(δj ,x)≥ρmin(δ(δj ,x))}

1

ρ (δ, x)
dx−

∫ 1

0
1{ρ(δj ,x)≤ρmax(δ(δj ,x))}

s

1− ρ (δ, x)
dx

≈
∫ 1

0
1{ρ(δj ,x)≥ρmin(δj)}

1

ρ (δ, x)
dx−

∫ 1

0
1{ρ(δj ,x)≤ρmax(δj)}

s

1− ρ (δ, x)
dx

=

∫ 1

xmin(δj)

1

ρ (δj , x)
dx−

∫ xmax(δj)

0

s

1− ρ (δj , x)
dx

Country 1 survives if ρ (δj , x) is larger than ρmin (δ (δj , x)). As the agent becomes more pessimistic
relative to the other agents, i.e., x increases, the actual relative fundamental increases, and thus the
threshold decreases:

∂xρmin (δ (δj , x)) = ∂xe
−ze−δ(δj ,x) = −e−ze−δ(δj ,x)2σ < 0

∂δjρmin (δ (δj , x)) = −e−ze−δ(δj ,x) < 0

Thus, if ρ (δ, x) is monotone, there exists a unique threshold xmin (δ) above which country 1 is safe.
Further, by the implicit function theorem, we have

x′min (δ) = −
ρδ (δ, x)− ∂δρmin

(
δ̃ (δ, x)

)
ρx (δ, x)− ∂xρmin

(
δ̃ (δ, x)

)
= −

φ(δ+2σx)−φ(δ−2σ(1−x))
2σ

+ e−ze−δ̃(δ,x)

φ (δ + 2σx)− φ (δ − 2σ (1− x)) + e−ze−δ̃(δ,x)2σ

= −
1

2σ
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so that the pessimism threshold falls that makes country 1 safe. Similarly, we have

x′max (δ) = −
ρδ (δ, x)− ∂δρmax

(
δ̃ (δ, x)

)
∂x (δ, x)− ∂xρmax

(
δ̃ (δ, x)

)
= −

φ(δ+2σx)−φ(δ−2σ(1−x))
2σ

+ se−zeδ̃(δ,x)

φ (δ + 2σx)− φ (δ − 2σ (1− x)) + se−zeδ̃(δ,x)2σ

= −
1

2σ

We can thus approximate

xmax (δ + ε) +
ε

2σ
≈ xmax (δ) + x′max (δ) ε+

ε

2σ
= xmax (δ) and xmin (δ + ε) +

ε

2σ
≈ xmin (δ)

Finally, suppose a δ exists for which the investor expects joint safety, i.e., both countries to be safe
for sure. Then, we must have φ (δ) = 1

1+s
by the no arbitrage condition. A single-survivor equilibrium

with threshold strategies is defined by a single-crossing condition on ∆ = Π1 − Π2 and a non-flat part
at 0, where ∆ (δ) > 0 implies φ = 1 and ∆ (δ) < 0 implies φ = 0. Consider any other equilibrium. By
dominance regions, we know that for high δ, φ = 1 will eventually be optimal, and for very low δ, φ = 0
will eventually be optimal.

Thus, any other equilibrium is either characterized by (1) a flat part ∆ (δ) = 0, (2) multiple crossings
∆ (δ) = 0 or (3) a combination of the two. In our joint safety equilibrium supported by oscillating
strategy, (3) is the case, with a flat part in the middle.

Monotonicity and uniqueness of threshold equilibrium

A monotone strategy φ (δ) requires ∆ (δ) to change signs only once. Thus, ∆ (δ) either crosses zero
at a single point, or approaches it from below, stays flat on an interval [δL, δH ], and then rises above
zero. Thus, at any point δ s.t. ∆ (δ) = 0 we must have ∆′ (δ) ≥ 0. As we want to show that a threshold
equilibrium is the only equilibrium possible, we now rule out any flat parts of ∆ at zero.

To this end, suppose an interval [δL, δH ] exists on which ∆ (δ) = 0. Interior xmin, xmax. Suppose
now that xmin (δ) , xmax (δ) ∈ (0, 1). This means that both countries are at risk of default, so there is no
possibility of joint safety across all possible x ∈ [0, 1] (it might exists for some x if xmin (δ) < xmax (δ)).
Take ε ∈ (0, δH − δL). Then, we write

Π1 (δ + ε) =

∫ 1

xmin(δ+ε)

1

ρ (δ + ε, x)
dx

=

∫ 1+ ε
2σ

xmin(δ+ε)+
ε
2σ

1

ρ
(
δ + ε, x− ε

2σ

)dx
=

∫ 1

xmin(δ+ε)+
ε
2σ

1

ρ
(
δ + ε, x− ε

2σ

)dx+

∫ 1+ ε
2σ

1

1

ρ
(
δ + ε, x− ε

2σ

)dx
≈

∫ 1

xmin(δ)

1

ρ (δ, x)
dx+

∫ 1

1− ε
2σ

1

ρ (δ + ε, x)
dx

= Π1 (δ) +

∫ 1

1− ε
2σ

1

ρ (δ + ε, x)
dx︸ ︷︷ ︸

new pessimists
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Similarly, we have

Π2 (δ + ε) =

∫ xmax(δ+ε)

0

s

1− ρ (δ + ε, x)
dx

=

∫ xmax(δ+ε)+
ε
2σ

ε
2σ

s

1− ρ
(
δ + ε, x− ε

2σ

)dx
≈

∫ xmax(δ)

ε
2σ

s

1− ρ (δ, x)
dx+

∫ ε
2σ

0

s

1− ρ (δ, x)
dx−

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

=

∫ xmax(δ)

0

s

1− ρ (δ, x)
dx−

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

= Π2 (δ)−
∫ ε

2σ

0

s

1− ρ (δ, x)
dx︸ ︷︷ ︸

old optimists

so that

∆ (δL + ε) = Π1 (δL + ε)−Π2 (δL + ε)

= Π1 (δL) +

∫ 1

1− ε
2σ

1

ρ (δL + ε, x)
dx−

[
Π2 (δL)−

∫ ε
2σ

0

s

1− ρ (δL, x)
dx

]

=

∫ 1

1− ε
2σ

1

ρ (δL + ε, x)
dx+

∫ ε
2σ

0

s

1− ρ (δL, x)
dx > 0

But this implies that
φ (δL + ε) = 1

By monotonicity then, δL is the only point at which ∆ (δ) = 0 and no flat parts can exist for xmin, xmax ∈
(0, 1). Cornered xmin, xmax. Next, suppose that at least one of the countries is going to survive regardless
of x because of the assumed strategies. Wlog, let us focus on δL. First, let us rule out that xmin (δL) = 0.
Note that for any ε > 0, we have by the dominance boundaries ∆ (δL − ε) < 0 and ∆ (δH + ε) > 0, the
highest and lowest point of the all flat parts. Further note that xmin (δL) = 0 implies that country 1
always survives in the eyes of an investor with signal δL. By construction we have ρ (δ, 0) = 0— when
the agent with signal δL is the most optimistic agent, he must believe by the conjecture on ∆ (δ) that
everyone below him investors fully into country 2. But then this agent cannot believe that country 1 is
safe regardless of x, as by assumption no country can survive without a minimum amount of investment.

Thus, at δL we must have xmax (δL) = 1 and xmin (δH) = 0—country 2 always survives given the
strategies of the different agents. Then, we have the survival boundary of country 2 not changing, and
thus again for ε ∈ (0, δH − δL) we have

Π2 (δ + ε) =

∫ 1

0

s

1− ρ (δ + ε, x)
dx

=

∫ 1+ ε
2σ

ε
2σ

s

1− ρ
(
δ + ε, x− ε

2σ

)dx
=

∫ 1

ε
2σ

s

1− ρ (δ, x)
dx+

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx

=

∫ 1

0

s

1− ρ (δ, x)
dx+

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx−

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

= Π2 (δ) +

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx︸ ︷︷ ︸

new pessimists

−
∫ ε

2σ

0

s

1− ρ (δ, x)
dx︸ ︷︷ ︸

old optimists
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Then, we have

0 = ∆ (δ + ε) = Π1 (δ + ε)−Π2 (δ + ε)

= Π1 (δ) +

∫ 1

1− ε
2σ

1

ρ (δ + ε, x)
dx−

[
Π2 (δ) +

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx−

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

]

=

∫ 1

1− ε
2σ

1

ρ (δ + ε, x)
dx−

∫ 1

1− ε
2σ

s

1− ρ (δ + ε, x)
dx+

∫ ε
2σ

0

s

1− ρ (δ, x)
dx

=

∫ 1

1− ε
2σ

[
1

ρ (δ + ε, x)
−

s

1− ρ (δ + ε, x)

]
dx︸ ︷︷ ︸

new pessimists

+

∫ ε
2σ

0

s

1− ρ (δ, x)
dx︸ ︷︷ ︸

old optimists

and there is now a possibility of a flat part. The intuition here is that we are balancing the returns that
arise to the new most pessimistic investor (i.e. for high x) against the previous expected returns of the
most optimistic investors (i.e. low x).

Taking derivatives around ε = 0, we have

∆ (δ + ε) ≈ ∆ (δ) + ∆′ (δ) ε

=
1

2σ

[
1

ρ
(
δ + ε, 1− ε

2σ

) − s

1− ρ
(
δ + ε, 1− ε

2σ

)]
ε=0

ε

+

[∫ 1

1− ε
2σ

[
−
ρδ (δ + ε, x)

ρ (δ + ε, x)2
−
s (−ρδ (δ + ε, x))

[1− ρ (δ + ε, x)]2

]
dx

]
ε=0

ε

+
1

2σ

[
s

1− ρ
(
δ, ε

2σ

)]
ε=0

ε

=
1

2σ

[
1

ρ (δ, 1)
−

s

1− ρ (δ, 1)
+

s

1− ρ (δ, 0)

]
ε

When δ = δL we must have ρ (δL, 0) = 0 by definition of δL. Then, the derivative ∆′ (δL) = 0 if

ρ (δL, 1) =
−1 +

√
1 + 4s

2s
>

1

1 + s

which implies that least for some points on (δL, δL + 2σ) we must have φ (δ) > 1
1+s

.

By x′min (δ) ≤ 0 and x′max (δ) ≤ 0, as δ increases either we (i) move to a segment where xmin (δ) , xmax (δ) ∈
(0, 1), an interior situation, or (ii) to a segment with xmin (δ) = 0, xmax (δ) = 1, a completely safe part.

But we know from the previous section that (i) immediately has ∆′ (δ) > 0, a violation of the premise
that we are on a flat part for δ ∈ [δL, δH ]. Next, consider for (ii) any completely safe subset J ⊂ (δL, δH)

and δ ∈ J . Then, we require ρ (δ, x) = 1
1+s

, ∀x ∈ [0, 1] by no arbitrage, which implies φ (δ) = 1
1+s

. But

then we have a violation of monotonicity as ρ (δL, 1) > 1
1+s

. Thus, there cannot be any flat parts of

∆ (δ) at zero and the only equilibrium that survives is of the threshold form. By the construction in
the paper, this threshold equilibrium is unique. Existence of threshold equilibrium. Consider our unique
candidate equilibrium

δ∗ = −
1− s
1 + s

z −
s ln s

1 + s

derived in the main text. Consider now δj < δ∗. Then, we have

∆ (δj ; δ
∗) =

∫
ρ(x)>ρmin(δ̃(x;δj))

1

(1 + f) ρ (x)
dx− s

∫
ρ(x)<ρmax(δ̃(x;δj))

1

(1 + f) (1− ρ (x))
dx

We know that ∆ (δ∗; δ∗) = 0. But by our setup, we know that moving δj < δ∗ lowers both ρmin (δ)
and ρmax (δ). Thus, we need to look at the difference between the parts we are adding (region in which



APPENDIX B-6 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

country 1 survives) and parts we are subtracting (region in which country 2 survives):

∆δj (δj ; δ
∗) = −ρ′min (δj)

1

(1 + f) ρmin (δj)
+ sρ′max (δj)

1

(1 + f) (1− ρmax (δj))

=
1

(1 + f)
− s

1

(1 + f)
=

1− s
1 + f

> 0

where we used

ρ′min (δj) = −ρmin (δj) and ρ′max (δj) = − (1− ρmax (δj))

This is intuitive: as we increase δj , we are adding the most valuable states for country 1 (fixing ρ (x))
by evaluating at points set on which it will just survive, i.e., close to ρmin (δj), and we are taking away
the most valuable states for country 2 by evaluating at points set on which it will just default, i.e., close
to ρmax (δj).

B3. Single-survivor equilibrium with oscillating strategies because of positive recovery

Let us say that s1 = 1, s2 = s and lisi to be the recovery given default of country i, so that it returns
lisi
yi

per unit of dollar invested, where yi is total investment in country i. Then if country 1 survives, to

equalize return, we need
l2s

y2
=

1

y1
, y1 + y2 = 1 + f ⇒

y1

y2
=

1

l2s
.

This gives prices equal to

p1 = y1 =
(1 + f)

1 + l2s

p2 =
y2

s
=

(1 + f) l2

1 + l2s

Similarly, if country 2 survives, then

s

y2
=
l1

y1
, y1 + y2 = 1 + f ⇒

y1

y2
=
l1

s

which results in prices

p1 = y1 =
(1 + f) l1

l1 + s

p2 =
y2

s
=

(1 + f)

l1 + s

Let

z = ln
1 + f

1− θ
> 0

and fiscal surplus is given by

θ1 = 1− (1− θ) e−δ = 1− (1 + f) e−ze−δ

sθ2 = s
[
1− (1− θ) eδ

]
= s

[
1− (1 + f) e−zeδ

]
Define two constants k1 > 1 and k2 > 1 (which only occurs if s < l1) so that

k1

2− k1
=

1

l2s
⇐⇒ k1 =

2

1 + l2s
> 1

k2

2− k2
=

s

l1
⇐⇒ k2 =

2s

s+ l1
> 1

Then in the country-1-default region, k2σ measure of agents invest in country 2, i.e. play φ = 0, while
(2− k2)σ measure of agents play φ = 1. Similarly in the country-2-default region, , k1σ measure of
agents play φ = 1 while (2− k1)σ measure of agents play φ = 0.
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Conjecture the following equilibrium strategy with cutoff δ∗

φ (y) =



....

1, y ∈ [δ∗ − 2σ, δ∗ − k2σ]

0, y ∈ [δ∗ − k2σ, δ∗]
1, y ∈ [δ∗, δ∗ + k1σ]

0, y ∈ [δ∗ + k1σ, δ∗ + 2σ]

1, y ∈ [δ∗ + 2σ, δ∗ + 2σ + k1σ]

....

In other words, two types of equilibria collide at δ∗. We conjecture that marginal investor at δ∗ is
indifferent, while the agents between [δ∗ − k2σ, δ∗] strictly prefer φ = 0, and symmetrically the agents
between [δ∗, δ∗ + k1σ] strictly prefer φ = 1. Other agents in this economy are indifferent.

Let x denote the fraction of agents with signal realization above the agent’s private signal δj , so that
given x, the true fundamental is

δ (x) = δj − (1− 2x)σ

Further, let ρ (δj , x) be the expected proportion agents investing in country 1 given x. Then, we have

ρ (δj , x) =


1− k2

2
, δ + 2σx < δ∗ + (2− k2)σ

x+ cst, else
k1
2

δ − 2σ (1− x) > δ∗ − (2− k1)σ

where cst is picked so that ρ (δj , x) is continuous in x. We note that the slope is generically x as we are
replacing φ = 0 with φ = 1 marginally. At δj = δ∗, we have

ρ (δ∗, x) =


1− k2

2
, x < 1− k2

2

x, else
k1
2

x > k1
2

and we need

1−
k2

2
<
k1

2

Note that if we assume that ρmin (δ) , 1− ρmax (δ) ∈
[
1− k2

2
, k1

2

]
we have a 1-to-1 function between

x and ρ that yields

xmin =
1− θ1 (δ∗)

1 + f
=

1− θ
1 + f

e−δ
∗

⇐⇒ lnxmin = −z − δ∗

1− xmax = s
1− θ2 (δ∗)

1 + f
= s

1− θ
1 + f

eδ
∗

⇐⇒ ln (1− xmax) = ln s− z + δ∗

Note here that we are ignoring fundamental uncertainty. Otherwise, we need to take account of the fact
that in the mind of the agent,

ρmin (δ (x)) = e−ze−δ(x) = e−ze−[δj−(1−2x)σ]

is the minimum investment in country 1 needed for it to survive conditional on x. For everything else
below, we assume that ρmin (δ (x)) = ρmin (δj). Next, note that

x = Fraction of people with signal above agent

so that x = 1 is the most pessimistic agent, and x = 0 is the most optimistic. As ρ (δ, x) is increasing in
x, we have

x < xmin ⇐⇒ Country 1 fails

x > xmin ⇐⇒ Country 1 survives

x < xmax ⇐⇒ Country 2 survives

x > xmax ⇐⇒ Country 2 fails
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Then, for the boundary agent, the expected return of investing in country 2 is given by

Π2 (δ∗) = Return2 (survival) +Return2 (default)

=

∫ xmax

0

s

(1 + f) (1− ρ (δ∗, x))
dx+

∫ 1

xmax

l2s

(1 + f) (1− ρ (δ∗, x))
dx

=

∫ 1− k2
2

0

s

(1 + f)
(

1−
(

1− k2
2

))dx+

∫ xmax

1− k2
2

s

(1 + f) (1− x)

+

∫ k1
2

xmax

l2s

(1 + f) (1− x)
dx+

∫ 1

k1
2

l2s

(1 + f)
(

1− k1
2

)dx
=

(
1−

k2

2

)
s

(1 + f) k2
2

+
s

1 + f

[
ln

(
k2

2

)
− ln (1− xmax)

]
+

l2s

1 + f

[
ln (1− xmax)− ln

(
1−

k1

2

)]
+

(
1−

k1

2

)
l2s

(1 + f)
(

1− k1
2

)
=

s

(1 + f)

{(
1− k2

2
k2
2

)
+

[
ln

(
k2

2

)
− ln (1− xmax)

]
+ l2 + l2

[
ln (1− xmax)− ln

(
1−

k1

2

)]}

and the expected return of investing in country 1 is given by

Π1 (δ∗) =

∫ xmin

0

l1

(1 + f) ρ (δ∗, x)
dx+

∫ 1

xmin

1

(1 + f) ρ (δ∗, x)
dx

=

∫ 1− k2
2

0

l1

(1 + f)
(

1− k2
2

)dx+

∫ xmin

1− k2
2

l1

(1 + f)x
dx

+

∫ k1
2

xmin

1

(1 + f)x
dx+

∫ 1

k1
2

1

(1 + f) k1
2

dx

=

(
1−

k2

2

)
l1

(1 + f)
(

1− k2
2

) +
l1

1 + f

[
ln (xmin)− ln

(
1−

k2

2

)]

+
1

1 + f

[
ln

(
k1

2

)
− ln (xmin)

]
+

(
1−

k1

2

)
1

(1 + f) k1
2

=
1

1 + f

{
l1 + l1

[
ln (xmin)− ln

(
1−

k2

2

)]
+

[
ln

(
k1

2

)
− ln (xmin)

]
+

(
1− k1

2
k1
2

)}

Note that (
1− k1

2
k1
2

)
=

(
1
k1
2

− 1

)
= 1 + sl2 − 1 = sl2(

1− k2
2

k2
2

)
=

(
1
k2
2

− 1

)
=

s+ l1

s
−
s

s
=
l1

s

Setting these equal, we have

s

{
l1

s
+

[
ln

(
k2

2

)
− ln (1− xmax)

]
+ l2 + l2

[
ln (1− xmax)− ln

(
1−

k1

2

)]}
=

{
l1 + l1

[
ln (xmin)− ln

(
1−

k2

2

)]
+

[
ln

(
k1

2

)
− ln (xmin)

]
+ sl2

}
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Plugging in for k1, k2 and

k1

2
=

1

1 + l2s

k2

2
=

s

s+ l1

1−
k1

2
=

l2s

1 + l2s

1−
k2

2
=

l1

s+ l1

ln (xmin) = −z − δ∗

ln (1− xmax) = −z + δ∗ + ln s

Setting these equal, we have

s

{[
ln

(
k2

2

)
− ln (1− xmax)

]
+ l2

[
ln (1− xmax)− ln

(
1−

k1

2

)]}
= l1

[
ln (xmin)− ln

(
1−

k2

2

)]
+

[
ln

(
k1

2

)
− ln (xmin)

]
⇐⇒ s

{
− (1− l2) ln (1− xmax) +

[
ln

(
k2

2

)
− l2 ln

(
1−

k1

2

)]}
= − (1− l1) ln (xmin) +

[
ln

(
k1

2

)
− l1 ln

(
1−

k2

2

)]
⇐⇒ s

{
(1− l2) (z − δ∗ − ln s) +

[
ln

(
s

s+ l1

)
− l2 ln

(
l2s

1 + l2s

)]}
= (1− l1) (z + δ∗) +

[
ln

(
1

1 + l2s

)
− l1 ln

(
l1

s+ l1

)]
Finally, solving for δ∗, we have

δ∗ =
s
{

(1− l2) (z − ln s) +
[
ln
(

s
s+l1

)
− l2 ln

(
l2s

1+l2s

)]}
− (1− l1) z −

[
ln
(

1
1+l2s

)
− l1 ln

(
l1
s+l1

)]
(1− l1) + s (1− l2)

=
s {(1− l2) z − (1− l2) ln s+ ln s− ln (s+ l1)− l2 ln l2 − l2 ln s+ l2 ln (1 + l2s)}

(1− l1) + s (1− l2)

+
− (1− l1) z + ln (1 + l2s) + l1 ln (l1)− l1 ln (s+ l1)

(1− l1) + s (1− l2)

so that finally

(B.2) δ∗ =
[(1− l2) s− (1− l1)] z − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2

(1− l1) + s (1− l2)

Plugging in l1 = l2 = 0, we have

δ∗ =
− (1− s) z − s ln (s)

1 + s

our benchmark result absent recovery. This is the only single-survivor equilibrium supported by threshold
strategies.

We want to show that from the perspective of δ∗, for an x small enough so that ρ (δ∗, x) = 1 − k2
2

,
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does country 1 default? We know that ρmin (δ∗) = e−ze−δ
∗
, so that

ρmin (δ∗) > 1−
k2

2

⇐⇒ ln (ρmin (δ∗)) > ln

(
1−

k2

2

)
⇐⇒ − (δ∗ + z) > ln

(
l1

s+ l1

)
which gives

− [2 (1− l2) sz − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2]

> [(1− l1) + s (1− l2)] [ln l1 − ln (s+ l1)]

and ultimately yields

F ∗1 (l1, l2, s)] ≡ −2 (1− l2) sz−[1 + s (1− l2)] ln l1+sl2 ln l2+[1 + s (2− l2)] ln (s+ l1)−(1 + l2s) ln (1 + l2s)

and the default condition is given by F ∗1 (l1, l2, s) ≥ 0. Assume l1 = l2 = l. Then, we have

F ∗1 (l, l, s) = −2 (1− l) sz − [1− (1− 2l) s] ln l + [1 + s (2− l)] ln (s+ l)− (1 + ls) ln (1 + ls)

We can show that F ∗1 (l, l, s) is always positive for small enough recovery l as the term − [1− (1− 2l) s] ln l

explodes, swamping any negative z effect.2

Next, we want to show that from the perspective of δ∗, for an x large enough so that ρ (δ∗, x) = k1
2

,

does country 2 default? We know that 1− ρmax (δ∗) = se−zeδ
∗
, so that

1− ρmax (δ∗) > 1−
k1

2

⇐⇒ ln (1− ρmax (δ∗)) > ln

(
1−

k1

2

)
⇐⇒ ln s− z + δ∗ > ln

(
l2s

1 + l2s

)
so that

[(1− l1) + s (1− l2)] ln s− 2 (1− l1) z − (s+ l1) ln (s+ l1) + (1 + sl2) ln (1 + l2s) + l1 ln l1 − sl2 ln l2

> [(1− l1) + s (1− l2)] [ln l2 + ln s− ln (1 + l2s)]

Define

F ∗2 (l1, l2, s) ≡ −2 (1− l1) z − (s+ l1) ln (s+ l1) + (2− l1 + s) ln (1 + l2s) + l1 ln l1 − [s+ (1− l1)] ln l2

and the default condition is given by F ∗2 (l1, l2, s) ≥ 0. Assuming equal recovery l1 = l2 = l, we have

F ∗2 (l, l, s) = −2 (1− l) z − (s+ l) ln (s+ l) + (2− l + s) ln (1 + ls)− [s+ (1− 2l)] ln l

We can show that F ∗2 (l, l, s) is always positive for small enough recovery l as the term − [s+ (1− 2l)] ln l
explodes, swamping any negative z effect.

Let us consider an interior agent, i.e., δ ∈ [δ∗ − k2σ, δ∗ + k1σ]. Let

δ (ε) = δ∗ + 2εσ

2Taking derivatives w.r.t. l and s, we have

∂lF
∗
1 (l, l, s) = 2sz + s−

(1 + s)

l
+

1 + (2− l) s
s+ l

+ 2s ln l − s ln (s+ l)− s ln (1 + ls)

∂sF
∗
1 (l, l, s) =

1 + (2− l) s
s+ l

− l ln (1 + ls) + (2− l) ln (s+ l)− 2 (1− l) z − l − (1− 2l) ln l
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with ε ∈
[
− k2

2
, k1

2

]
. Let us first consider investment in country 1. We have ρmin (δ) as the default

boundary, and actual investment is given by

ρ (δ, x) =


1− k2

2
, δ∗ + ε2σ + 2σx < δ∗ + (2− k2)σ

x+ cst, else
k1
2

δ∗ + ε2σ − 2σ (1− x) > δ∗ − (2− k1)σ

=


1− k2

2
, 2εσ + 2σx < (2− k2)σ

x+ cst, else
k1
2

2εσ − 2σ (1− x) > − (2− k1)σ

which gives

ρ (δ, x) =


1− k2

2
, ε+ x < 1− k2

2

x+ ε, else
k1
2

ε+ x > k1
2

Note that we have cst = ε by imposing continuity (which has to follow from ρ (δ, x) being an integral
over strategies φ).

Let xmin (δ) be the lowest x ∈ [0, 1] such that

ρ (δ, x) = ε+ x ≥ ρmin (δ)

and we therefore have
xmin (δ) = max {ρmin (δ)− ε, 0}

Similarly, let xmax (δ) be the highest x ∈ [0, 1] such that

1− ρ (δ, x) = 1− ε− x ≥ 1− ρmax (δ)

and thus
1− xmax (δ) = max {1− ρmax (δ) + ε, 0}
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The expected return of investing in country 1 is then given by

Π1 (δ) =

∫
x:ρ(δ,x)<ρmin(x)

l1

(1 + f) ρ (δ, x)
dx+

∫
x:ρ(δ,x)≥ρmin(x)

1

(1 + f) ρ (δ, x)
dx

=

∫ xmin(δ)

0

l1

(1 + f) ρ (δ, x)
dx+

∫ 1

xmin(δ)

1

(1 + f) ρ (δ, x)
dx

=

∫ 1− k2
2
−ε

0

l1

(1 + f)
(

1− k2
2

)dx+

∫ xmin(δ)

1− k2
2
−ε

l1

(1 + f) (x+ ε)
dx

+

∫ k1
2
−ε

xmin(δ)

1

(1 + f) (x+ ε)
dx+

∫ 1

k1
2
−ε

1

(1 + f) k1
2

dx

=
l1

1 + f

[
1− k2

2
− ε

1− k2
2

+ ln (xmin (δ) + ε)− ln

(
1−

k2

2

)]

+
1

1 + f

[
ln

(
k1

2

)
− ln (xmin (δ) + ε) +

1− k1
2

+ ε
k1
2

]

=
l1

1 + f

[
1−

ε

1− k2
2

+ ln (xmin (δ) + ε)− ln

(
1−

k2

2

)]

+
1

1 + f

[
ln

(
k1

2

)
− ln (xmin (δ) + ε) +

1− k1
2

k1
2

+
ε
k1
2

]

= Π1 (δ∗) +
l1

1 + f

[
−

ε

1− k2
2

+ ln (xmin (δ) + ε)− lnxmin (δ∗)

]

+
1

1 + f

[
lnxmin (δ∗)− ln (xmin (δ) + ε) +

ε
k1
2

]

= Π1 (δ∗) +
1

1 + f

{
ε

(
1
k1
2

−
l1

1− k2
2

)
− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]

}

= Π1 (δ∗) +
1

1 + f
{ε [(1− l1)− s (1− l2)]− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]}

Similarly, investing in country 2 gives

Π2 (δ) =

∫ xmax(δ)

0

s

(1 + f) (1− ρ (δ, x))
dx+

∫ 1

xmax(δ)

l2s

(1 + f) (1− ρ (δ, x))
dx

=

∫ 1− k2
2
−ε

0

s

(1 + f)
(

1−
(

1− k2
2

))dx+

∫ xmax(δ)

1− k2
2
−ε

s

(1 + f) (1− x− ε)

+

∫ k1
2
−ε

xmax(δ)

l2s

(1 + f) (1− x− ε)
dx+

∫ 1

k1
2
−ε

l2s

(1 + f)
(

1− k1
2

)dx
=

s

1 + f

[
1− k2

2
− ε

k2
2

+ ln

(
k2

2

)
− ln (1− xmax (δ)− ε)

]

+
sl2

1 + f

[
ln (1− xmax (δ)− ε)− ln

(
1−

k1

2

)
+

1− k1
2

+ ε

1− k1
2

]

= Π2 (δ∗) +
s

1 + f

{
ε

(
l2

1

1− k1
2

−
1
k2
2

)
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}

= Π2 (δ∗) +
s

1 + f

{
ε

[
(1− l1)− s (1− l2)

s

]
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}
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Let us define

g (ε) ≡ (1 + f) [Π1 (δ)−Π2 (δ)]

= ε [(1− l1)− s (1− l2)]− (1− l1) [ln (xmin (δ) + ε)− lnxmin (δ∗)]

−s
{
ε

[
(1− l1)− s (1− l2)

s

]
+ (1− l2) [ln (1− xmax (δ∗))− ln (1− xmax (δ)− ε)]

}
= − (1− l1) [ln (xmin (δ∗ + 2σε) + ε)− lnxmin (δ∗)]

+s (1− l2) [ln (1− xmax (δ∗ + 2σε)− ε)− ln (1− xmax (δ∗))]

+ε

{
[(1− l1)− s (1− l2)]− s

[
(1− l1)− s (1− l2)

s

]}
= − (1− l1) [ln (xmin (δ∗ + 2σε) + ε)− lnxmin (δ∗)]

+s (1− l2) [ln (1− xmax (δ∗ + 2σε)− ε)− ln (1− xmax (δ∗))]

Taking the derivative w.r.t. ε, we have many different cases. The issue is if xmin or xmax start binding
first. Regardless, close to ε = 0 we have neither xmin or xmax cornered, so that

ln (xmin (δ∗ + 2σε) + ε) = ln (ρmin (δ (ε))) = −z − δ (ε) = −z − (δ∗ + 2σε)

ln (1− xmax (δ∗ + 2σε)− ε) = ln (1− ρmax (δ (ε))) = s ln s− z + δ (ε) = s ln s− z + (δ∗ + 2σε)

and thus for ε small we have

g′ (ε) = − (1− l1) (−) 2σ + s (1− l2) 2σ = 2σ [(1− l1) + s (1− l2)] > 0

and indeed we have the incentives of the agents aligned with the conjectured strategies, at least around
δ∗.

Next, we have to account for all the different cases – that is, we know that at some distance ε that
xmin, xmax start binding at 0, 1, respectively.

Let εmin be the point at which xmin becomes cornered, that is

ρmin (δ) = ε ⇐⇒ e−ze−(δ∗+2σε) = ε ⇐⇒ 2σε+ ln ε = −z − δ∗

Note that ρmin (δ) > 0 so that there is no solution for ε < 0.

Similarly, let εmax be the point at which xmax becomes cornered, that is

1− ρmax (δ) = −ε ⇐⇒ se−zeδ
∗+2σε = −ε ⇐⇒ 2σ (−ε) + ln (−ε) = ln s− z + δ∗

Note that 1− ρmax (δ) ≥ 0 so that there is no solution for ε > 0. Positive ε. Consider positive ε. Thus,
we only have to worry about xmin cornered. When xmin becomes cornered, then

∂

∂ε
ln (xmin (δ∗ + 2σε) + ε) =

1

ε

Then, we have

g′ (ε) = − (1− l1)
1

ε
+ s (1− l2) 2σ

The derivative is increasing in ε, and is largest at ε = k1
2

at a value of

g′
(
k1

2

)
= − (1− l1) (1 + l2s) + s (1− l2) 2σ

For small enough σ, this is always negative. Negative ε. Consider negative ε. Thus, we only have to
worry about xmax cornered. When xmax becomes cornered, then

∂

∂ε
ln (1− xmax (δ∗ + 2σε)− ε) = −

1

ε

Then, we have

g′ (ε) = (1− l1) 2σ + s (1− l2)

(
−

1

ε

)
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The derivative is again increasing in ε, and is largest at ε = − k2
2

at a value of

g′
(
−
k2

2

)
= − (1− l2) (s+ l1) + (1− l1) 2σ

For small enough σ, this is always negative.
For s = 1 and l1 = l2 = l, we have symmetric conditions.
The last thing we need to do is to check that

g

(
−
k2

2

)
= g (0) = g

(
k1

2

)
= 0

To this end, we can also proof that as σ → 0, indeed one country (which one depending on on which
side of δ∗ the realization of δ falls) will always default. This is equivalent to the interior assumption for
xmax, xmin we made. For this to hold, we need the following restrictions

1−
k1

2
≤ 1− ρmax (δ∗) ≤

k2

2
(B.3)

1−
k2

2
≤ ρmin (δ∗) ≤

k1

2
(B.4)

The first line says that as σ → 0, if δ < δ∗ then a proportion k2
2

of investors invests in country 2, and

it survives. However, if δ > δ∗, then only a proportion 1 − k1
2

of investors invests in country 2, and it
defaults. Similar arguments hold for country 1, which is summarized by the second line.

This can be rewritten as

ln

(
1−

k1

2

)
≤ ln (1− ρmax (δ∗)) ≤ ln

(
k2

2

)
ln

(
1−

k2

2

)
≤ ln ρmin (δ∗) ≤ ln

(
k1

2

)
which gives

ln

(
l2s

1 + l2s

)
≤ ln s− z + δ∗ ≤ ln

(
s

s+ l1

)
ln

(
l1

s+ l1

)
≤ −z − δ∗ ≤ ln

(
1

1 + l2s

)
equivalent to

ln

(
l2

1 + l2s

)
+ z ≤ δ∗ ≤ ln

(
1

s+ l1

)
+ z

ln

(
l1

s+ l1

)
+ z ≤ −δ∗ ≤ ln

(
1

1 + l2s

)
+ z

equivalent to

ln (l2)− ln (1 + l2s) + z ≤ δ∗ ≤ − ln (s+ l1) + z

− ln

(
1

1 + l2s

)
− z ≤ δ∗ ≤ − ln

(
l1

s+ l1

)
− z

equivalent to

ln (l2)− ln (1 + l2s) + z ≤ δ∗ ≤ − ln (s+ l1) + z

ln (1 + l2s)− z ≤ δ∗ ≤ ln (s+ l1)− ln (l1)− z

so that finally
(B.5)

max [ln (l2)− ln (1 + l2s) + z, ln (1 + l2s)− z] ≤ δ∗ ≤ min [− ln (s+ l1) + z, ln (s+ l1)− ln (l1)− z]

The first term is binding on the RHS for z > ln (1 + l2s)− 1
2

ln (l2), and the first term is binding on the

left hand side for z < ln (s+ l1)− 1
2

ln (l1).
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Appendix C: Robustness Common Bonds

Notational Convention: We will refer to Common Bonds (aka Eurobonds) as asset 0, their price per
unit of face-value as p0, and the proportion of investors investing in common bonds as ρ0.

We maintain the main assumptions of the sequential setup: (i) there is an amount (face-value) α (1 + s)
of common bonds and an amount (1− α) si of individual bonds of country i available, (ii) each unit of

common bonds (that is, per unit of face-value) is made up of 1
1+s

units of country 1 bonds and s
1+s

units of country 2 bonds, and (iii) issuance proceeds of the common bonds accrue in proportions 1
1+s

and s
1+s

to country 1 and 2, respectively.

We are looking for a simultaneous three asset equilibrium between assets 0,1, and 2 that has the single-
survivor property, i.e., only one country survives. We will analyze the following oscillation strategy:

investment
proportion

...|0
α
| 2
(1−α)

|0
α
| 2
(1−α)

|0
h
| 1
(1−α)

|0
α
| 1
(1−α)

|0
α
|...

We will sometimes refer to the central interval 0 as the central region, the changeover region or loosely
the survival cutoff. The intuition of the strategy is as follows: when one country defaults for sure,
the no arbitrage condition between the surviving country and the common bond requires investors to
invests in proportions (1− α) and α into the surviving country’s bonds and common bonds, respectively.
Next, let us consider fundamentals close to the changeover region in which default risk of both countries
appears. As the fundamental δ increases, country 2 becomes riskier and country 1 becomes safer. As a
consequence, with common bonds being a portfolio of individual bonds, common bonds’ value moves less
than the individual country bonds. Thus, to achieve indifference, we would have to increase investment
in common bonds to decrease common bond returns to a level on par with individual bonds around the
central region when default risk starts affecting both countries. In particular, for any σ > 0, in such a
region our strategy requires endogenous investment in the common bond on an interval [δL, δH ] of length
2σ · h, i.e., we have two degrees of freedom in the two points δL and δH , as described in more detail
below. Importantly, for such a construction to be an equilibrium and still be tractable, we require that
any such construction does not necessitate any further endogenous adjustment of the strategies away
from the interval [δL, δH ]. We term such a property insulated – an insulated equilibrium only depends
on endogenous variables around the survival cutoff and does not require any further endogenous variables
away from it.

Formally, let the (endogenous) width of the interval 0 be given by 2σ · h, while the intervals 1 and 2
have width (1− α) 2σ, and the intervals 0 have width α · 2σ. Further, let δL and δH denote the lower

and upper end of interval 0, so that h = δH−δL
2σ

. Second, we note that when we take σ → 0, we have
δL → δ∗ ← δH as long as h remains finite. Thus, in the limit, we transform the two degrees of freedom
from (δL, δH) to (δ∗, h). For any strategy to yield an insulated equilibrium we require h > α.3 Lastly,
we note that in the limit σ → 0, we have

xmin (δL) = xmin (δH) + h

xmax (δL) = xmax (δH) + h

Suppose that country i is safe almost surely, and country −i defaults almost surely. Then, no arbitrage
between country i’s bond (paying of 1 per unit of face-value) and the common bond 0 requires

1

pi
=

si
1+s

p0

3In case h < α, we can still solve for δ∗ and h, but realize that some of the payoffs Πi (δ) away from δL
and δH do not converge to indifference: at least for some δ < δL, we do not have indifference at oscillation
widths 1−α and α – this is easiest to see when we consider δ = δL− (1− α) 2σ; at this point there is still
some influence of h as the no-arbitrage proportions, if indeed we assume play according to 1− α and α
away from δL, do not actually yield no arbitrage because of h+(1− α) < 1 and so the proportions are off.
Instead, we would need to build a sequence of intervals of endogenous width (similar to how we derived
h) to make sure indifference holds at all δ’s away from δL. But this any such equilibrium is not insulated
anymore, as we now need to solve for an infinite number of endogenous intervals. Consequently, we are
not succeeding at reducing the dimensionality of the problem significantly, and it remains intractable.
If, however, the equilibrium fulfills h > α, it is insulated, and the dimensionality reduces significantly
to just (δ∗, h), making the model tractable. Some generalization of single-survivor equilibria can still be
achieved in insulated form, but joint-safety equilibria immediately violate the insulated character of the
equilibrium.
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The supply of each bond is (1− α) si and α (1 + s), respectively. Let ρi be the proportion of money
flowing to bond i. Then, we must have

(1− α) sipi = ρi (1 + f)

α (1 + s) p0 = ρ0 (1 + f) = (1− ρi) (1 + f)

where ρ0 = (1− ρi) and ρ−i = 0. Plugging these into the no arbitrage condition, we have

(1 + s) p0 = sipi ⇐⇒
(1− ρi) (1 + f)

α
=
ρi (1 + f)

1− α
⇐⇒ ρi = 1− α

and ρ0 = (1− ρi) = α. Thus, regardless which country is considered “safe”, as long as investors are
certain of the safety of i they should invest their money in aggregate proportions 1−α and α in the safe
individual and common bonds, respectively. These no arbitrage investment proportions are incorporate
via oscillation outside of the central interval 0 in proportions ρi = 1− α and ρ0 = α.

Finally, the default condition for country i is given by

si

1 + s
(1− ρ1 − ρ2)︸ ︷︷ ︸

Common bond revenue

+ ρi︸︷︷︸
Individual bond revenue

≥ si
1− θi
1 + f

= sie
−ze(−1)iδ

Because the no-arbitrage proportions around the outside the central region are symmetric, we do not
have separate cases for δL and δH . For δL, the cutoffs are h, h+ 1− α, α, 1, whereas for δH , the cutoffs
are 0, 1− α, α− h, 1− h. This abstractly leads to 5 different cases:

C1 0 < h < α < h+ 1− α < 1 equivalent to 0 < α− h < 1− α < 1− h. We will ignore this case as
we are concentrating on an insulated equilibrium with h > α.

C2 0 < h < h+ 1− α < α < 1 equivalent to 0 < 1− α < α− h < 1− h. We will ignore this case as
we are concentrating on an insulated equilibrium with h > α.

C3 0 < α < h < 1 < h + 1 − α equivalent to α − h < 0 < 1 − h < 1 − α. This is a case consistent
with an insulated equilibrium.

C4 0 < α < h < h+ 1− α < 1 equivalent to α− h < 0 < 1− α < 1− h. But this cases is impossible
as h+ 1− α < 1 ⇐⇒ h < α which contradicts α < h.

C5 0 < h < α < 1 < h+ 1− α equivalent to 0 < α− h < 1− h < 1− α. But this case is impossible
as 1 < h+ 1− α ⇐⇒ α < h which contradicts h < α.

Thus, our analysis will focus solely on case C3. Lower boundary δL

C3 0 < α < h < 1 < h+ 1− α

ρ1 (δL, x) =

{
0 (0, h)

x− h (h, 1)

ρ2 (δL, x) =

{
1− α (0, α)

1− x (α, 1)

ρ1 (δL, x) + ρ2 (δL, x) =


1− α (0, α)

1− x (α, h)

1− h (h, 1)

For interior equilibria, we need xmin (δL) ∈ (h, 1) and xmax (δL) ∈ (α, 1).

Upper boundary δH

C3 0 < α < h < 1 < h+ 1− α equivalent to α− h < 0 < 1− h < 1− α

ρ1 (δH , x) =

{
x (0, 1− α)

1− α (1− α, 1)

ρ2 (δH , x) =

{
1− x− h (0, 1− h)

0 (1− h, 1)

ρ1 (δH , x) + ρ2 (δH , x) =


1− h (0, 1− h)

x (1− h, 1− α)

1− α (1− α, 1)
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For interior equilibria, we need xmin (δH) ∈ (0, 1− α) and xmax (δH) ∈ (0, 1− h).

Simultaneous equations when σ → 0

C3 0 < α < h < 1 < h+ 1− α equivalent to α− h < 0 < 1− h < 1− α

Π1 (δL) = (1− α)

[∫ 1

xmin(δL)

1

ρ1 (δL, x)
dx

]

= (1− α)

[∫ 1

xmin(δL)

1

x− h
dx

]
= (1− α) [ln (1− h)− ln (xmin (δL)− h)]

Π2 (δL) = (1− α) s

[∫ xmax(δL)

0

1

ρ2 (δL, x)
dx

]

= (1− α) s

[∫ α

0

1

1− α
dx+

∫ xmax(δL)

α

1

1− x
dx

]

= (1− α) s

[
α

1− α
+ ln (1− α)− ln (1− xmax (δL))

]

Π1 (δH) = (1− α)

[∫ 1

xmin(δH )

1

ρ1 (δH , x)
dx

]

= (1− α)

[∫ 1−α

xmin(δH )

1

x
dx+

∫ 1

1−α

1

1− α
dx

]

= (1− α)

[
ln (1− α)− ln (xmin (δH)) +

α

1− α

]
Π2 (δH) = (1− α) s

[∫ xmax(δH )

0

1

ρ2 (δH , x)
dx

]

= (1− α) s

[∫ xmax(δH )

0

1

1− x− h
dx

]
= (1− α) s [ln (1− h)− ln (1− xmax (δH)− h)]

4 Possible cases: xmin (δL) ∈ (h, 1) and xmax (δL) ∈ (α, h) ∪ (h, 1), xmin (δH) ∈ (0, 1− h) ∪
(1− h, 1− α) and xmax (δH) ∈ (0, 1− h).

a) xmax (δL) ∈ (α, h) (which implies xmax (δH) = 0) and xmin (δH) ∈ (0, 1− h) (which
implies xmin (δL) ∈ (h, 1))

1

1 + s
h+ xmin (δL)− h = e−ze−δL ⇐⇒ xmin (δL) = e−ze−δL +

s

1 + s
h

s

1 + s
xmax (δL) + 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = (1 + s)

(
1− s · e−zeδL

)
1

1 + s
h+ xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) = e−ze−δH −

1

1 + s
h

xmax (δH) = 0
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Π0 (δL) =α

[∫ 1

xmin(δL)

1

ρ0 (δL, x)
dx+ s

∫ xmax(δL)

0

1

ρ0 (δL, x)
dx

]

=α

[(∫ 1

xmin(δL)

1

h
dx

)
+ s

(∫ α

0

1

α
dx+

∫ xmax(δL)

α

1

x
dx

)]

=α

( [
1−xmin(δL)

h

]
+s [1 + ln (xmax (δL))− ln (α)]

)

Π0 (δH) =α

[∫ 1

xmin(δH )

1

ρ0 (δH , x)
dx+ s

∫ xmax(δH )

0

1

ρ0 (δH , x)
dx

]

=α

[(∫ 1−h

xmin(δH )

1

h
dx+

∫ 1−α

1−h

1

1− x
dx+

∫ 1

1−α

1

α
dx

)
+ s · 0

]

=α

([
1− h− xmin (δH)

h
+ ln (h)− ln (α) + 1

])

b) xmax (δL) ∈ (h, 1) (which implies xmax (δH) ∈ (0, 1− h)) and xmin (δH) ∈ (0, 1− h)
(which implies xmin (δL) ∈ (h, 1))

1

1 + s
h+ xmin (δL)− h = e−ze−δL ⇐⇒ xmin (δL) = e−ze−δL +

s

1 + s
h

s

1 + s
h+ 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = 1 +

s

1 + s
h− s · e−zeδL

1

1 + s
h+ xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) = e−ze−δH −

1

1 + s
h

s

1 + s
h+ 1− xmax (δH)− h = s · e−zeδH ⇐⇒ xmax (δH) = 1−

1

1 + s
h− s · e−zeδH

Π0 (δL) =α

[∫ 1

xmin(δL)

1

ρ0 (δL, x)
dx+ s

∫ xmax(δL)

0

1

ρ0 (δL, x)
dx

]

=α

[(∫ 1

xmin(δL)

1

h
dx

)
+ s

(∫ α

0

1

α
dx+

∫ h

α

1

x
dx+

∫ xmax(δL)

h

1

h
dx

)]

=α

 [
1−xmin(δL)

h

]
+s
[
1 + ln (h)− ln (α) +

xmax(δL)−h
h

] 
Π0 (δH) =α

[∫ 1

xmin(δH )

1

ρ0 (δH , x)
dx+ s

∫ xmax(δH )

0

1

ρ0 (δH , x)
dx

]

=α

[(∫ 1−h

xmin(δH )

1

h
dx+

∫ 1−α

1−h

1

1− x
dx+

∫ 1

1−α

1

α
dx

)
+ s

(∫ xmax(δH )

0

1

h
dx

)]

=α

 [
1−h−xmin(δH )

h
+ ln (h)− ln (α) + 1

]
+s
[
xmax(δH )

h

] 
c) xmax (δL) ∈ (α, h) (which implies xmax (δH) = 0) and xmin (δH) ∈ (1− h, 1− α) (which

implies xmin (δL) = 1)

xmin (δL) = 1

s

1 + s
xmax (δL) + 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = (1 + s)

(
1− s · e−zeδL

)
1

1 + s
(1− xmin (δH)) + xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) =

(1 + s) e−ze−δH − 1

s

xmax (δH) = 0
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Π0 (δL) =α

[∫ 1

xmin(δL)

1

ρ0 (δL, x)
dx+ s

∫ xmax(δL)

0

1

ρ0 (δL, x)
dx

]

=α

[
0 + s

(∫ α

0

1

α
dx+

∫ xmax(δL)

α

1

x
dx

)]
=α (s [1 + ln (xmax (δL))− ln (α)])

Π0 (δH) =α

[∫ 1

xmin(δH )

1

ρ0 (δH , x)
dx+ s

∫ xmax(δH )

0

1

ρ0 (δH , x)
dx

]

=α

[(∫ 1−α

xmin(δH )

1

1− x
dx+

∫ 1

1−α

1

α
dx

)
+ s · 0

]
=α ([ln (1− xmin (δH))− ln (α) + 1])

d) xmax (δL) ∈ (h, 1) (which implies xmax (δH) ∈ (0, 1− h)) and xmin (δH) ∈ (1− h, 1− α)
(which implies xmin (δL) = 1)

xmin (δL) = 1

s

1 + s
h+ 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = 1 +

s

1 + s
h− s · e−zeδL

1

1 + s
(1− xmin (δH)) + xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) =

(1 + s) e−ze−δH − 1

s
s

1 + s
h+ 1− xmax (δH)− h = s · e−zeδH ⇐⇒ xmax (δH) = 1−

1

1 + s
h− s · e−zeδH

Π0 (δL) =α

[∫ 1

xmin(δL)

1

ρ0 (δL, x)
dx+ s

∫ xmax(δL)

0

1

ρ0 (δL, x)
dx

]

=α

[
0 + s

(∫ α

0

1

α
dx+

∫ h

α

1

x
dx+

∫ xmax(δL)

h

1

h
dx

)]

=α

(
s

[
1 + ln (h)− ln (α) +

xmax (δL)− h
h

])
Π0 (δH) =α

[∫ 1

xmin(δH )

1

ρ0 (δH , x)
dx+ s

∫ xmax(δH )

0

1

ρ0 (δH , x)
dx

]

=α

[(∫ 1−α

xmin(δH )

1

1− x
dx+

∫ 1

1−α

1

α
dx

)
+ s

(∫ xmax(δH )

0

1

h
dx

)]

=α

(
[ln (1− xmin (δH))− ln (α) + 1]

+s
[
xmax(δH )

h

] )

Closed-form Approximations for α ≈ 0 Next, we approximate around α ≈ 0 to get some more analytical
insights into the behavior of δ∗ and h. To this end, we conjecture

h (α) = h0 + h1α+
h2

2
α2

δ∗ (α) = δ0 + δ1α

As α→ 0, to converge to the known solution of the two asset simultaneous game, we need

h0 = 0

δ0 = δ∗ =
− (1− s) z − s ln s

(1 + s)

Next, we take limits for each of the cases (except case CT2, which requires α ≥ 1
2

, so is not applicable),

and impose h0 = 0. First, note that limα→0 Π0 (δL) = limα→0 Π0 (δH). Thus, we are looking for h1, h2
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and δ0, δ1 that satisfy

lim
α→0

Π2 (δL) = lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) = lim
α→0

Π1 (δL)

Next, note that a local equilibrium requires h (α) ≥ α, and thus for small α we require parameters such
that h1 ≥ 1.

C3a We have

lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) =
1 + s− e−δ0−z − eδ0−zs2

h1

lim
α→0

Π1 (δL) = lim
α→0

Π1 (δH) = − ln
[
e−δ0−z

]
lim
α→0

Π2 (δL) = −s ln
[
1− (1 + s)

(
1− eδ0−zs

)]
6= 0 = lim

α→0
Π2 (δH)

For consistency limα→0 Π1 (δL) = limα→0 Π1 (δH), we require

1− (1 + s)
(

1− eδ0−zs
)

= 1 ⇐⇒ eδ0−zs = 1 ⇐⇒ ez = eδ0s

The indifference condition is

−s ln
[
1− (1 + s)

(
1− eδ0−zs

)]
=

1− e−δ0−z

h1
= − ln

[
e−δ0−z

]
and equating the first and third term requires ez = e−δ0 . These conditions can only hold for
z = − 1

2
ln s, and are violated for general parameters. Thus, case C3a is not possible in equilibrium

for small α.4

C3b We have

lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) =
1 + s− e−δ0−z − eδ0−zs2

h1

lim
α→0

Π1 (δL) = lim
α→0

Π1 (δH) = − ln
[
e−δ0−z

]
lim
α→0

Π2 (δL) = lim
α→0

Π2 (δH) = −s ln
[
eδ0−zs

]
and the indifference condition is

−s ln
[
eδ0−zs

]
=

1 + s− e−δ0−z − eδ0−zs2

h1 (1 + s)
= − ln

[
e−δ0−z

]
⇐⇒ δ0 =

− (1− s) z − s ln s

1 + s
= δ∗

4A more direct proof: C3a requires 0 < α < h < 1 < h+ 1−α and xmax (δL) ∈ (α, h) (which implies
xmax (δH) = 0) and xmin (δH) ∈ (0, 1− h) (which implies xmin (δL) ∈ (h, 1))

1

1 + s
h+ xmin (δL)− h = e−ze−δL ⇐⇒ xmin (δL) = e−ze−δL +

s

1 + s
h

s

1 + s
xmax (δL) + 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = (1 + s)

(
1− s · e−zeδL

)
1

1 + s
h+ xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) = e−ze−δH −

1

1 + s
h

xmax (δH) = 0

Note that xmax (δL) → (1 + s)
(

1− s · e−zeδ∗
)

= 0, so that eδ
∗

= s−1ez ; further, note that xmin →

e−ze−δ
∗ ∈ (0, 1); plugging in, we have e−2z ·s ∈ (0, 1), which is not a contradiction, but when inspecting

the indifference condition for investment yields a contradiction.
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Next, we have

h1 =
1 + s− e−δ0−z − eδ0−zs2

(δ0 + z)
=

1 + s− e−
(

2s·z−s ln s
1+s

)
− e

−2z−s ln s
1+s s2(

2s·z−s ln s
1+s

)
where we used δ0 + z = 2s·z−s ln s

1+s
and δ0 − z = −2z−s ln s

1+s
. The insulated equilibrium as

constructed exists around α ≈ 0 if h1 > 1.

C3c We have

lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) = 0

lim
α→0

Π1 (δL) = 0 6= − ln

[
(1 + s) e−δ0−z − 1

s

]
= lim
α→0

Π1 (δH)

lim
α→0

Π2 (δL) = −s ln
[
1− (1 + s)

(
1− eδ0−zs

)]
6= 0 = lim

α→0
Π2 (δH)

For consistency limα→0 Π1 (δL) = limα→0 Π1 (δH), we require

(1 + s) e−δ0−z − 1 = s ⇐⇒ ez = e−δ0

and for consistency limα→0 Π1 (δL) = limα→0 Π1 (δH), we require

1− (1 + s)
(

1− eδ0−zs
)

= 1 ⇐⇒ eδ0−zs = 1 ⇐⇒ ez = eδ0s

These two conditions can only hold for z = − 1
2

ln s, and are violated for general parameters.

Thus, case C3c is not possible in equilibrium for small α.5

C3d We have

lim
α→0

Π0 (δL) = lim
α→0

Π0 (δH) =
s− eδ0−zs2

h1

lim
α→0

Π1 (δL) = 0 6= − ln

[
(1 + s) e−δ0−z − 1

s

]
= lim
α→0

Π1 (δH)

lim
α→0

Π2 (δL) = lim
α→0

Π2 (δH) = −s ln
[
eδ0−zs

]
For consistency limα→0 Π1 (δL) = limα→0 Π1 (δH), we require

(1 + s) e−δ0−z − 1 = s ⇐⇒ ez = e−δ0

But then for indifference we require

−s ln
[
eδ0−zs

]
=
s− e−δ0−zs2

h1
= − ln

[
(1 + s) e−δ0−z − 1

s

]

5A more direct proof: C3c requires 0 < α < h < 1 < h+ 1−α and xmax (δL) ∈ (α, h) (which implies
xmax (δH) = 0) and xmin (δH) ∈ (1− h, 1− α) (which implies xmin (δL) = 1)

xmin (δL) = 1

s

1 + s
xmax (δL) + 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = (1 + s)

(
1− s · e−zeδL

)
1

1 + s
(1− xmin (δH)) + xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) =

(1 + s) e−ze−δH − 1

s

xmax (δH) = 0

Thus, we have xmax (δL) → (1 + s)
(
1− s · e−zeδL

)
= 0 and xmin (δH) =

(1+s)e−ze−δH−1
s

= 1. But

as δL → δ∗ ← δH , so we require eδ
∗

= s−1ez = e−z , which in turn requires the specific parameter
restriction z = − 1

2
ln s.
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But we know the third term is equal to 0, so the first term requires eδ0−zs = 1 ⇐⇒ eδ0s = ez

which can only hold for z = − 1
2

ln s, and are violated for general parameters. Thus, case C3d is

not possible in equilibrium for small α.6

Thus, we are left with only case C3b for small α, which fulfills the insulated equilibrium criterion for
points (s, z) such that(s, z) : h1 (s, z) =

1 + s− e−
(

2s·z−s ln s
1+s

)
− e

−2z−s ln s
1+s s2(

2s·z−s ln s
1+s

) ≥ 1


Figure C.1 maps the set of points (s, z) for which the insulated criterion is fulfilled.

0.0 0.2 0.4 0.6 0.8 1.0
s0.0

0.5

1.0

1.5

2.0
z

Figure C.1. Existence of insulated simultaneous single-survivor common bond equilibrium

for small α: Set of points (s, z) for which an insulated single-survivor equilibrium exists in

the common bonds case for α ≈ 0, i.e., {(s, z) : h1 (s, z) ≥ 1}.

Verifying the equilibrium. Note that, away from α = 0, we have the expected returns at either
end-point not equal, even as σ → 0, because strategic uncertainty does not vanish:

lim
σ→0

Πi (δL) 6= lim
σ→0

Πi (δH)

6A more direct proof: C3d requires 0 < α < h < 1 < h+ 1−α and xmax (δL) ∈ (h, 1) (which implies
xmax (δH) ∈ (0, 1− h)) and xmin (δH) ∈ (1− h, 1− α) (which implies xmin (δL) = 1)

xmin (δL) = 1

s

1 + s
h+ 1− xmax (δL) = s · e−zeδL ⇐⇒ xmax (δL) = 1 +

s

1 + s
h− s · e−zeδL

1

1 + s
(1− xmin (δH)) + xmin (δH) = e−ze−δH ⇐⇒ xmin (δH) =

(1 + s) e−ze−δH − 1

s
s

1 + s
h+ 1− xmax (δH)− h = s · e−zeδH ⇐⇒ xmax (δH) = 1−

1

1 + s
h− s · e−zeδH

Thus, we have xmin (δH)→ (1+s)e−ze−δH−1
s

= 1, which requires eδ
∗

= e−z ; similarly, we have xmax =

1− s · e−zeδ∗ ∈ (0, 1); plugging in, we have 1− s · e−2z ∈ (0, 1) which does not give a contradiction, but
when inspecting the indifference condition for investment yields a contradiction.
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To verify the equilibrium, we need to check that for any δ ∈ [δL, δH ], indeed common bonds are the most
attractive asset, for δ < δL, bond 2 is the most attractive asset, and for δ > δH , bond 1 is the most
attractive asset. For a given δL, δH , let

δ ≡ δL + 2σε

with ε ∈ (0, h), so that ε = 0 yields δL and ε = h yields δH . Then, for ε ∈ [0, h], we have

ρ1 (δ, x) =


0 (0, h− ε)
x+ ε− h (h− ε, h− ε+ 1− α)

1− α (h− ε+ 1− α, 1)

ρ2 (δ, x) =


1− α (0, α− ε)
1− (x+ ε) (α− ε, 1− ε)
0 (1− ε, 1)

where of course if for example as in C3 we have α < h, then some intervals are empty (i.e., (0, α− ε) =
∅ for ε ∈ (α, h)). For interior equilibria, we need xmin (δ) ∈ (h− ε, h− ε+ 1− α) and xmax (δ) ∈
(α− ε, 1− ε).

C3 0 < α < h < 1 < h+ 1− α

ρ1 (δ, x) + ρ2 (δ, x) =



1− α (0, α− ε)
1− (x+ ε) (α− ε, h− ε)
1− h (h− ε, 1− ε)
x+ ε− h (1− ε, h− ε+ 1− α)

1− α (h− ε+ 1− α, 1)

Let us calculate expected returns as a function of ε.7 To calculate expected returns, we have to conjecture
a position of xmin (δ) and xmax (δ). For α ≈ 0, we can only be in case C3b, and our numerical results
for our benchmark cases show that this case is applicable even when α increases. Thus, we only show
the expected returns for this case:

C3b 0 < α < h < 1 < h+ 1− α
xmin ∈ (h− ε, 1− ε) and xmax (δ) ∈ (h− ε, 1− ε). Now the position of ε in relation to α and h−
α matters, i.e., three intervals matter: ε < min {h− α, α}, ε ∈ (min {h− α, α} ,max {h− α, α}),
and ε > max {h− α, α}. Two sub-cases arise, which essentially define the relation of h− α to α:

a) min {h− α, α} = h − α ⇐⇒ α < h < 2α (this is the applicable case for our benchmark

cases (s, z) =
(
1
4
, 1
)

and (s, z) =
(
1
2
, 1
)
, as numerically h is very close to α). Thus, the

three intervals are ε < h−α, ε ∈ (h− α, α), and ε > α. Note that ε = h
2

gives the midpoint

δM , and the midpoint is part of interval h
2
∈ (h− α, α).8

7Note that ε = 1
2
h gives the central interval 0 midpoint

δM =
δH + δL

2
=
δH − δL + 2δL

2
= δL + σ · h.

8Consider h
2
< h − α ⇐⇒ α < h

2
⇐⇒ 2α < h, which violates the assumptions. Next, consider

h
2
> α ⇐⇒ h > 2α, which also violates the assumptions. Thus, only h

2
∈ (h− α, α) is consistent with

α < h < 2α.
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For ε < h− α = min {h− α, α} so that h− ε+ 1− α > 1 as well as α− ε > 0, we have

Π0 (δ) = α

[∫ 1

xmin(δ)

1

ρ0 (δ, x)
dx+ s

∫ xmax(δ)

0

1

ρ0 (δ, x)
dx

]

= α

[∫ 1−ε

xmin(δ)

1

1− (1− h)
dx+

∫ 1

1−ε

1

1− (x+ ε− h)
dx

]

+ α · s
[∫ α−ε

0

1

1− (1− α)
dx+

∫ h−ε

α−ε

1

1− [1− (x+ ε)]
dx+

∫ xmax(δ)

h−ε

1

1− (1− h)
dx

]

= α

[
1− ε− xmin (δ)

h
+ ln (h)− ln (h− ε)

]
+ α · s

[
α− ε
α

+ ln (h)− ln (α) +
xmax (δ) + ε− h

h

]

Π1 (δ) = (1− α)

[∫ 1

xmin(δ)

1

ρ1 (δ, x)
dx

]

= (1− α)

[∫ 1

xmin(δ)

1

x+ ε− h
dx

]
= (1− α) [ln (1 + ε− h)− ln (xmin (δ) + ε− h)]

Π2 (δ) = (1− α) s

[∫ xmax(δ)

0

1

ρ2 (δ, x)
dx

]

= (1− α) s

[∫ α−ε

0

1

1− α
dx+

∫ xmax(δ)

α−ε

1

1− (x+ ε)
dx

]

= (1− α) s

[
α− ε
1− α

+ ln (1− α)− ln (1− (xmax (δ) + ε))

]
For ε ∈ (h− α, α) so that h− ε+ 1− α < 1 and α− ε > 0, we have

Π0 (δ) = α

[∫ 1

xmin(δ)

1

ρ0 (δ, x)
dx+ s

∫ xmax(δ)

0

1

ρ0 (δ, x)
dx

]

= α

[∫ 1−ε

xmin(δ)

1

1− (1− h)
dx+

∫ h−ε+1−α

1−ε

1

1− (x+ ε− h)
dx+

∫ 1

h−ε+1−α

1

1− (1− α)
dx

]

+ α · s
[∫ α−ε

0

1

1− (1− α)
dx+

∫ h−ε

α−ε

1

1− [1− (x+ ε)]
dx+

∫ xmax(δ)

h−ε

1

1− (1− h)
dx

]

= α

[
1− ε− xmin (δ)

h
+ ln (h)− ln (α) +

ε+ α− h
α

]
+ α · s

[
α− ε
α

+ ln (h)− ln (α) +
xmax (δ) + ε− h

h

]
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Π1 (δ) = (1− α)

[∫ 1

xmin(δ)

1

ρ1 (δ, x)
dx

]

= (1− α)

[∫ h−ε+1−α

xmin(δ)

1

x+ ε− h
dx+

∫ 1

h−ε+1−α

1

1− α
dx

]

= (1− α)

[
ln (1− α)− ln (xmin (δ) + ε− h) +

ε+ α− h
1− α

]
Π2 (δ) = (1− α) s

[∫ xmax(δ)

0

1

ρ2 (δ, x)
dx

]

= (1− α) s

[∫ α−ε

0

1

1− α
dx+

∫ xmax(δ)

α−ε

1

1− (x+ ε)
dx

]

= (1− α) s

[
α− ε
1− α

+ ln (1− α)− ln (1− (xmax (δ) + ε))

]
For ε > α = max {h− α, α} so that h− ε+ 1− α < 1 as well as α− ε < 0, we have

Π0 (δ) = α

[∫ 1

xmin(δ)

1

ρ0 (δ, x)
dx+ s

∫ xmax(δ)

0

1

ρ0 (δ, x)
dx

]

= α

[∫ 1−ε

xmin(δ)

1

1− (1− h)
dx+

∫ h−ε+1−α

1−ε

1

1− (x+ ε− h)
dx+

∫ 1

h−ε+1−α

1

1− (1− α)
dx

]

+ α · s
[∫ h−ε

0

1

1− [1− (x+ ε)]
dx+

∫ xmax(δ)

h−ε

1

1− (1− h)
dx

]

= α

[
1− ε− xmin (δ)

h
+ ln (h)− ln (α) +

ε+ α− h
α

]
+ α · s

[
ln (h)− ln (ε) +

xmax (δ) + ε− h
h

]

Π1 (δ) = (1− α)

[∫ 1

xmin(δ)

1

ρ1 (δ, x)
dx

]

= (1− α)

[∫ h−ε+1−α

xmin(δ)

1

x+ ε− h
dx+

∫ 1

h−ε+1−α

1

1− α
dx

]

= (1− α)

[
ln (1− α)− ln (xmin (δ) + ε− h) +

ε+ α− h
1− α

]
Π2 (δ) = (1− α) s

[∫ xmax(δ)

0

1

ρ2 (δ, x)
dx

]

= (1− α) s

[∫ xmax(δ)

0

1

1− (x+ ε)
dx

]
= (1− α) s [ln (1− ε)− ln (1− (xmax (δ) + ε))]

Next, we numerically check Π0 (δ∗; ε) > max {Π1 (δ∗; ε) ,Π2 (δ∗; ε)} for candidate equilibria
(h, δ∗) for any ε ∈ [0, h]. This holds for all numerically solved for candidate equilibria.

b) h− α > α ⇐⇒ h > 2α > α would be the other case, but we do not observe numerically
any h that are twice the size of α. Calculations for this case, as well as for cases C3a C3c
and C3d are available upon request.

The numerical results
(
h, δ∗sim

)
as well as the comparison δ∗seq for cases (s = .25, z = 1) and (s = .5, z = 1)

are presented in Figure C.2. The left Panels show the equilibrium h as the solid blue line in comparison to
the 45 degree line as the dashed yellow line, thus visualizing the insulated requirement h > α. We restrict
the graph to levels of α for which this condition holds. The right Panels then show the equilibrium δ∗sim
as the solid blue line in comparison to their sequential counterpart δ∗seq as the dashed yellow line.
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Figure C.2. Robustness of single-survivor common bond equilibrium to sequential timing

assumption: Simultaneous equilibrium central interval width h (solid blue line) in comparison

to 45 degree line (dashed yellow line) (left Panels); simultaneous equilibrium threshold δ∗sim

(solid blue line) in comparison to the sequential equilibrium threshold δ∗seq (dashed yellow

line) (right Panels).


