Online Appendix: A Model of Safe Asset Determination

By 7Zu1Guo HE, ARVIND KRISHNAMURTHY, AND KONSTANTIN MILBRADT

This note contains three Appendices: Appendix A is the Main
Appendiz to the paper providing proofs of the main results, Ap-
pendix B provides additional results pertaining to the uniqueness
of the proposed equilibria, and Appendix C provides proofs in
the common bond scenario to the simultaneous three assets global
game considered as the robustness check for the sequential game
presented in the paper.

APPENDIX A: MAIN APPENDIX

Al. Joint-safety Equilibrium with non-monotone strategies and zero recovery

We now construct a joint safety equilibrium with non-monotone strategies and joint safety on the
endogenously determined interval [0r,,dz]. Given this equilibrium, we will compute the minimum value
of z = z for which this equilibrium exists. The possibility of joint safety means that our equilibrium
construction using threshold strategies is no longer possible. In a region where both countries are known
to be safe (recall we consider the limit where o — 0), investors must be indifferent between the two
countries, thus equalizing bond returns. Outside the joint safety interval, i.e., § € [—8,8L) U (6, 8], we
are back to the case where the signal is so strong that only one country is safe.

We conjecture the following non-monotone strategy whereby investment in country 1 and in country
2 alternates on discrete intervals of length ko and (2 — k) o, with k € (0,2). The investor j’s strategy
given his private signal §; is ¢ (d;) € {0,1}:

5j <dr

§j € [JL,(;L+k‘0’]U[5L+20,6L+(2+k)0’]U[5L+40',6L+(4+k)0’]u...

5j € [5L+k0’,5L+20’]U[5L+(2+k2)0',5L+40’]U[5L+(4+k2)0’,5L+60']U...
s 5j >0

(A1) 6(55) =

— O = O

As we will show shortly, the non-monotone oscillation occurs only when both countries are safe, where
the equilibrium requires proportional investment in each safe country to equalize returns across two safe
bonds. Clearly, k determines the fraction of agents in investing in country 1 when oscillation occurs, to
which we turn next.

FRACTION OF AGENTS IN INVESTING IN COUNTRY 1

Consider a region where all investors know that both countries are safe. In this case, the total

investment in country 1 and 2 has to be % and S<117+Sf), respectively, to equalize returns. Take an

agent with signal §; introduce the function p (&), which is the expected proportion of agents investing in
country 1 given (own) signal §. Then, given the assumed strategy for all agents and given that we are in
the region where both countries are safe,

5+20x o
o) = [ W) gy - X

—20(1—x) 20 B %

We choose k so that p(d) = lis — k= % This is because in equilibrium the proportion investing

in country 1 must be constant and equal to 1—; to equalize returns.
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Recall that = denotes the fraction of agents with signal realizations above the agent’s private signal d;
and z follows a uniform distribution on [0, 1]. For any value of § and z,

5420 6 () 0, 6+ 20z < Of,
(A.2) P(@Z):/ ngy: 29008 - § 4 20z € (81,01 + ko)
§—20(1—x) 171LS7 og—2—k)o>d6 > +ko

When we evaluate § at the marginal agent with signal § = d,, we have

0, x=0
(A.3) p(b@)=3z,  x€ (o, +)
1
TFs0 %~ 1+s

where we observe that p (61, z) is less than or equal to ?

LOWER BOUNDARY 047,

In the completely safe region discussed above (for § exceeding 07, sufficiently), investors were indifferent
between both strategies. This is not the case for agent with signals around the threshold signal §1: as
the agent knows investors with signal below are always investing in country 2, country 1 is a perceived
default risk. We now calculate the return of investing in either country, from the perspective of the
boundary agent .

For the boundary agent 1, the return from investing only in country 2 (i.e. ¢ = 0) is given by

1 S
(A4) 2 (6) = /0 1+H0a- P(‘sL,m))dx

where we integrate over all x as country 2 is safe regardless of x. We will show consistency of this
assumption with the derived equilibrium later. Thus, plugging in, we have

1
s 1 1 1 1 1
/1+ dw+/ —dx| = 5 [ln +S+1:|< +s'
0 1—=z 1 1+ f s 1+ f

T+s 1+s

S
1+ f

(A.5) Iy (6L) =

where we used sln 12 < 1. Here, we see that payoff to investing in country 2 is lower than the expected
payoff that would have realized if both countries were safe. This reflects the strategic substitution effect:
because more people (in expectation) invest in the safe country 2, the return in country 2 is lower.

Now we turn to country 1. Since country 1 has default risk, we need to calculate the threshold
T = Zmin SO that country 1 becomes safe if there are * > x,,;, measure of agents receiving better
signals. To derive xy,;n, we first solve for pmm (8), which is the minimum proportion of agents investing
in country 1 that are needed to make country 1 safe given fundamental §. We have

1— 61 ()

01.(8) + (L+ ) p{"" (6) =1 <= p"" (6) = 57

Define & as the solution to p (61, ) = pT**" (61,). Given equation (A.3), we have that,

1—91(5L)
I+f

The expected return of investing in country 1 given one’s own signal d;, and the conjectured strategies
¢ () of everyone else is given by,

(A.G) Tmin =

1 1 1 T+s
Iy (6 = dx = fd
) = [ T T4 /m o }
1
AT = —— |In—— —Inzpmin .
(A7) 1+f|:n1+s nze +s:|

The boundary agent 07, must be indifferent between investing in either country, i.e., I (61.) = II1 (d1).



VOL. VOLUME NO. ISSUE SAFE ASSET DETERMINATION APPENDIX A-3

Plugging in (A.4) and (A.7), we have

S

(1 + S)l+5 :

1 1 1
(A.8) 1—T-f [ln —:S+1:| = m{lnmflnxmers <= Tmin =

We combine our two equations for Zmin, (A.6) and (A.8), and use 1 — 61 (61,) = (1 — ) exp(—dL), to
obtain:

58 (1 =0)exp(—dr)
(148t 1+ f
Recall z = In %; we have
(A.9) 0r(2)=—2+(1+s)ln(l1+s)—slns

UPPER BOUNDARY 0p

The derivation is symmetric to the above. We have

S+20a T §—20(1l—x)<dg—(2—k)o
_ d’(y) _ 6+§ax—5H
(A.10) p(8,z) = Tdy— e 0—20(1—=) € by —(2—k)o,0mH)
§-20(1-z) 27 1, §—20(1l—x)>dp
so that
1 1
1+s? z < 1+s
(A.11) pQu,z)=qz,  z€ (l}rs,l)
1 r=1

which yields
1 1 1+s

1
1, (5H):/O <1+f>p(6H,x)dydx: S+ <

where we integrated over all z as country 1 is always safe in the vicinity of §g.

The default condition for country 2 is

1—02(0m)

02 (0m) + (L4 1) (L= o5 ()] = 5 <= 1= p'™ (o) = s 0

where pJ*** (§) is the maximum amount of agents investing in country 1 so that country 2 does not
default. Assume, but later verify, that at §g we have 1 — pJ*** (6y) < %Jrs, that is, country 2 would

survive even if less than ﬁ of investors invest in country 2. Define Tmqz (65r) as the solution to
P (OH, Tmaz) = p5**" (05 ); (A.11) implies that

1—-6-2(5
(A.12) 1~ Zmas (631) :s%fH).

As a result, the return to country 2 is,

Tmaz(0H) s s H% 1 Cmas(r) 1
/ dr = ~ / — dz+/ dx
0 1+ 1) (A= p(dm,=))dy 1+F|Jo 1- 1 1—2

1+s 1+s

Iy (6gr)

s 1 s
= - +In—— —In(1- 0
1+f |:S+ n1+8 H( xmax( H))i|

Indifference at the boundary agent dy requires Iy (§y) = Il2 (6 ), which yields 1 — Zmaz (6g) =
— 1. Combining this result with (A.12) and 1 — 02 (0i) = (1 — ) exp (65 ), we solve,
(14s) s
1+s
s

(A.13) o (z) = =z-— In(1+s)
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VERIFYING THE EQUILIBRIUM

We now verify the interior agents € (61, ) have the appropriate incentives to play the conjectured
strategy, and that our assumptions of country 1 (2) is always safe at dg (d1) are correct. As an investor
with signal § = ér, is indifferent, it is easy to show that agents with § < 7, find it optimal to invest in
country 2. Consider an investor with signal § = é1, + ko (i.e. let us consider the investors depicted by the
black dot in Figure 3). Regardless of his relative position (as measured by z) in the signal distribution,

this agent knows that a proportion Tlrs of investors invest in country 1, thus making it safe for sure.

S
1+s
this agent knows that (i) both countries are completely safe and that (ii) investment flows give arbitrage
free prices. He is thus indifferent, and so is every investor with 07, + ko < d < dég — (2 —k)o.

Further, he knows that a proportion of investors invest in country 2, also making it safe. Therefore,

Next, we consider an investor with § € (6,0 + ko). We know that country 2 will always survive,
and thus we have
s

1
I () = / — — dz.
0 (L4 1) {50 e dy

6—8p —ko
20

S (O, ﬁ) so that so that 6 = 05, + 20¢. Thus, we have

Note that for any = with x > —

=46
20

we are in the oscillating region; for = below we are in the

increasing part. Let ¢ =

1

5+20x 1— 17€7$, T e 0,7*5 N
(a19)  1-pGo)= [ 120Gy, - T+
)

—20(1—z) 20 s RS 1—; —&1

Then, we have

s(ln(17€)+%5)
1+ f

S

I (6) = 7

=1I2 (61) +

1
T+s © 1 1 1
/ 7dx+/ L dz
0 l—e—=x ﬁ*f Tts

For investment in country 1, we know that, since § > r,, we have pJ*" (§) < pT*" (§,). First, note
that

s g, Jetwm we (0
plo.2) = [ 2W) gy — T+

6—20(1—z) 20 € (5 —el
Let Zmin (§) be the measure of investors with higher signals than § so that country 1 is safe. Since

prvim () = 171‘11;5), ZTmin (8) is the lowest x € [0, 1] such that

1
1+s?

p(8,x) =+ > pi" (5).
Thus, we have

(A.15) Emin (6) = Tmyin (61, + 20) = maX{M—s,o}

1+7f

The expected investment return from country 1 is

1
I, (6) = / _ dx
0z 0) (L 1) [0 Ay
1
= II (6r) + m {InZmin (0r) — In[e + Tmin (0L + 20¢)] + (1 + s) e}

Thus, to show that I1; (61, + 20¢) > 12 (6, + 20¢€), we need to show that the following inequality holds
fore € <0, ﬁ)

(A.16) gr () = (1 + f) (II1 —II2) = In@smin (61) — Infe + Tmin (6L + 20¢)] —sln(l —€) >0

First, by using InZmin (0z) = slns — (1 + s)In (1 + s) and Zmin <5L +2Uﬁ> = 0, we know the

above inequality holds with equality at both end points € =0 and € = ﬁ, ie., gr (0) =gr (ﬁ) =
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1—91(5L+20'6*)
1+f
(A.15) binds at zero. We further note that at ¢ = 0 we have % > 0. Thus, in (A.15) we have

+f
1—601 (6 +20¢) 1
— Iy &> 0, and for € € [5*,m] we have

Tmin (0) = 0. Plugging in and taking derivative with respect to &, we have

Second, it is easy to show that there exists a unique €* such that = €%, at which point

e* > 0 and for € € (0,e*) we have Tpn (§) =

—200/ (51, +20¢) .
Ta 75 ta.o € €(0,¢e
3 In [e + Zmin (0L + 20¢)] = 1-01(61+20¢) ( )
Oe 1 cc [E* L]
€ ) ) Ts

Then, for (A.16), we have gy, (¢) first rises and then drops:

209{(5L+2‘75) s
m+1_5>0 € €(0,e%),

1 s _ (14s)e—1 1
etz =g <0 756[5* }

g1 (&) =

? 14s

Combined with gz, (0) = g1 ( ) = 0 we know that g1, (¢) > 0,Ve € (0, ﬁ), i.e., Thus, on ¢ €

1
1+s

(07 l—is) the investors strictly want to invest in country 1.

We now consider the investors with § € (g — (2 — k) 0,8). We know that country 1 will always
survive, and thus we have

1
1
m - [ L dz.
0 (1 + f) f(gj—;o'(lfa:) %dy

Let e = 6%;6 IS <0, 1is> so that so that 6 = g — 20e. Thus, we have

1 1
/‘”2” ¢@, _ Jms 0 te)
5

W
—20(1-z) 20 r—¢g, TE 1—J1rs+5,1

(A17) p(6,2) =

Plugging in, we have

o
1+ f

L (¢) = T —e€ 1+ f

Hste 1 1 1 1
/1+ wa+/ do| = ——[1+1+s)e+In(l—e)+In(l+s).
1
0 1+s Ts ¢

For investment in country 2, we know that, since § < dg, we have 1 — pl*%® (§) < 1 — pi*®® (§1,) <=
pEeT (61) < p5*@® (§). First, note that

5+20x 1— L7 x € ()7#_’_5 ,
l—p(é,:v):/ ¢(y)dy: I+s T+s
s

—20(1—z) 20 l+e—2z, zx¢€ ﬁ—i—s,l

Let Zmaz (6) be the measure of investors with higher signals than ¢ so that country 2 is safe. Since

1 — ppraz (§) = 51*112;5), Trmaz (8) is the highest o € [0, 1] such that

1—p@,z)=14+e—2<1—p5*"(9).
Thus, we have

(A.18) Tmaz (0) = Tmaa (0g — 20€) = min{l—l—s—sM,l}.

1+ f
The expected investment return from country 2 is
s

dx
/:c:pw,w)sf)a"”(é) U+ ) J25500 o g dy

. s 1+ s 1 S
— 1+f|: . (1+S+s)—1n[1+5—xma$(5)]+ln(714_8)]

112 (9)
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Differencing, we have
gu(e) =1+ HIhi(e)—a(e)l]=In(l—¢e)—slns+ (1+s)In(1+s) +sln[l + & — Tmaz (§)]

with similar properties to gy, (¢).

Finally, we need to pick o appropriately so that there exists some natural number N > 1 so that
2No = §g — 6. For this particular choice of o = &, the limiting case of zero signal noise can be achieved
when we take the sequence of o, = 6/n forn =1,2,.....

EQUILIBRIUM PROPERTIES

First, with joint safety, the probability of survival for country 1 (or the probability of its bonds being
the safe asset) is no longer one minus the probability of survival of country 2. Using 5~T (—S, 3), the
probability of country 1 survival is

6—6, d+z—(1+s)In(1+s)+slns
5 25 ’

(A.19) Pr (country 1 safe) =

and the probability of country 2 survival is
S +96 _ S+2z— %ln(l—i-s)
25 25 '

As a result, the bonds issued by country 1 are more likely to be the safe assets than that issued by
country 2 if the following condition holds:

Pr (country 2 safe) =

1
Jrsln(l—l—s):slns—l—(f—s) In(1+4s)>0.
s s

(A.20) slns—(l—l—s)ln(l—l—s)—l—l

This condition always holds: Define F (s) = s?Ins+ (1 — s2) In (1 + s), then F (s) > 0 holds for s € (0,1).
It is clear that F'(0) = 0 while F' (1) = 0. Simple algebra shows that

1
F’(s):2slns—2$ln(1+s)+1,§F"(s):lns—ln(1+s)+1— 5 —ln(

s n s
14+s 1+s 1+s

Let y = 1i5 € (0,1); then because it is easy to show Iny + 1 — y < 0 (due to concavity of Iny), we
know that F" (s) < 0. As a result, F (s) is concave but F (0) = F (1) = 0. This immediately implies
that F' (s) > 0, which is our desired result. The condition is the same if we focus on sole survivals only
instead of sole and joint survival, i.e., the bonds of country j are the only safe asset, the condition is
exactly the same.

Country 1 has the highest likelihood of survival when s — 0, which immediately follow from — (1 + s) In (1 + s)+
sln s is decreasing in s.

Obviously, the above equilibrium construction requires that §r, (2) < dg (). Since dr, (2) in (A.9) is
decreasing in z while d (z) in (A.13) is increasing in z, this condition dy, (2) < dg () holds if z > z so
that 0z, (z) = dg (2) which gives z:

1 1 1
—z+(1+s)ln(l+s)—slns=z— +sln(1+s):>g:7 |:<2+s+7)1n(1+s)—slns:|
s

s 2
A2.  Eztension for a negative B asset

Suppose that 6, which proxies for the aggregate fundamental for both countries, is subject to shocks.

For convenience, suppose that 6 is drawn from the following uniform distribution ~U [Q, 5] , and recall

z (é) =1In f_’g Also, suppose that

I;=10,i e {1,2}
where | > 0 is a positive constant, so that recovery is increasing in the fundamental shock. Using (16),
we calculate the threshold §* (6) as a function of the realization of 6 = 6, to be

[(1—10) s — (1 —10)] 2 (0) — (s +10) In (s + 10) + (1 + s10) In (1 + 10s) + 10 In (16) — 16 In (10)
(1—10) +s(1—16)

5% (0) =
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Note that d%5* () < 0; that is, a higher 6, by reducing rollover risk, makes country 1 safer.
In this exercise we consider a distribution so that the relative fundamental § is almost surely, § >
6* (E[0]). This implies that ex-ante country 1 bonds are more likely to be safe. Also, define 0 () so that

o* (é) = § holds; this is the critical value of fundamental § = 6 so that country 1’s bonds lose safety.

We choose & so that § > 0, which implies that with strictly positive probability, country 1 defaults given
a sufficiently low fundamental.
‘We are interested in the 8 of the bond price of each country with respect to the 6 shock, i.e.,

9).9) el (0)-0 - [z [n (30)]

(9) Var (8)

(A.21) Gt

From equation (18), we know that

(0;6) = (1;5)910 if 0;0 (8) so country 1 defaults;
PEZOTZ 25 4862 6(5) so country 1 survives;
and )
:Lfg if ;0 () so country 2 survives;
P2 (6:9) = a+nio if€>é(5) so country 2 default
1+10s Z y 2 defaults.

Given these pricing functions, it is straightforward to evaluate 8s in (A.21). We vary country 1’s relative
strength ¢ and plot the s for both bonds as a function of § in Figure 4. We only plot the 3 for country
1’s bonds, because B2 = —B1/s in our model.

A8, Single-survivor equilibrium with common bonds

0, exists on [0, a*], and has §* (a*) = 0.

In this appendix, we proof that §* («) is unique, 6* (o) <
= 0 throughout by a simple symmetry argument.

First, assume s = 1. Then, conjecture that 6* ()
From (26), with 0gcs (6% ()) = 6, we then have

1+s —
A.22 ot = 1-0)=e*(1+s
(A.22) 0=ty
Next, assume s < 1 and e® > (1 + s) so that 6* (0) < 0. Then, let us conjecture 6* () < 0 for « € (0, ™).
Setting ITy (8*) = Iz (6*) from (21) after substituting in for f from (24), 6* (@) is implicitly defined
via

1- =1
(A.23) 0=h(*a) = In {ezs*iz}—sln [e(;ff}
e 1+Se S e —1+36

Then, consider § = &* (oz)+. At this point, country 1 just survives, even though the funding gap

(scaled by size) of country 2 is the best among all defaulting countries. Then, for the monotone cutoff
strategy to be consistent, we need the default condition

1+s . 1+s 5* . 5*
< 1-— = 1- = 1
a_1+f[ 02 (6™)] 1+f( 0)e e *(1+s)e

Suppose that the constraint is binding, which defines a loosest §* () by

N o S «
A.24 Fa)=z+n|——) = (@ = z
( ) () =2+ n(1+s) e 1+se
Assume that a < a* = ii; (1 — 0). Plugging in 6* (a), we see that
o l1-a e* l1-«a
A.25 h(é* «a ,a):ln ef—————— | —sln|—————— | <0
( ) ( ) |: e* IZS - lisez:| s e* lis - lisezj|

1This is because cash-in-the-market-pricing implies that p; + sp2 = 1 + f.
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as the second term explodes, i.e. In[-] = co. Thus, it must be that 0 > §* (a) > 8* (a)—the first part
by our assumption that §* < 0 and the second by the construction. However, we note that 6* (a*) =0
so that §* (a*) = 0. This is possible as (d, ) = (0,a*) is a root of h — both sides are exploding at this
point. The restriction above also implies that 0 < &% (a*) < 8% (a*) = o%* so that 6* («) has a bounded
and positive derivative at a*.

We next show that for a fixed a € [0, a*], there exists unique §* () that solves h (6*, ). Fix a. Then,
consider h (6*, @) as a function of §*. Differentiating w.r.t. §*, we have

Oh (5%, a) e 9" (e‘s* - 1156‘2) + sed” (6*5* — 11562)

96* - —5* _ _« 5 _ o
e T1s e? e T1s e?

Then, given that we have a < a* and 5* (a) < 0* < 0 by assumption, we have
* «@ * o* *
e % — e ) > (e — e)=e? —1>0
1+s 1+s
by assumption on the sign of §*. Next, we have

R S > (8@ _ Y )= L Y 2
1+s 1+s 1+s 1+s

by the assumption on §* € (5* (o), 0). Thus, we have W > 0. Finally, we know that h (5* (o) ,a) <

0 < h (0, ), so that a unique 6* (o) € (5* (a), 0) exists.

What remains to be shown is that §* (a) does not cross 0 before a*. Suppose it does. Then, there
exists an & > 0 but & # a* such that 6* (&) = 0. Then, we have

1—a 2 1-a 1—a
h(0,&) =1In 2 | _sm|& % =(1-s)ln 2
z s 1 & e? 1 o

e 4 — — z
1 T+s¢ 1+s T+s€

+slns

Setting this equal to 0, we have

—slns
1-a —slns 176{ 1+s z} .
In | = I —z = — T = ¢
1*17“6 S [1—11?6[ T+s ]]
Simplifying, we have
(1+s) (1 - sﬁe_z)
&= —
14+s—sT+s
(14s) (175 1_:5 e_z>
Then, notice that & > o* <— ———————% > e * (1 + s), which simplifies to 1 > a*. Thus,
14s—slits

the function 6* («) does not cross 0 before a*.

A4.  Joint safety equilibrium with common bonds

Let us conjecture a non-monotone oscillating strategy as in A.1.

LOWER BOUNDARY 07,.

The definitions of p (§,2) and p (01, ) are as in Appendix A.Al, and most of the result simply have f
instead of f: as country 2 is safe to an agent with é = 1, we have Iz (1) = ﬁf [In iss +1] < Li;
The common bonds change the safety condition for country 1 to

1—61(0) — ape

61(8) + ape + (14 f) 1" (8) =1 <= pI"" (5) = 7
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Define 2., (81,) as the solution to p (51, x) = p*" (61,). Given equation (A.3), we have that,

_ 1—-0; (6L)7C“pc

(A.26) Tmin ((SL) = 1+ f

Again, the expected return of investing in country 1 is given by Iy (6) = ﬁ [ln ﬁ —In@min (61) + s] .
Indifference requires that ITs (61,) = II1 (01 ), which implies that

(A.27) Tmin (0r) = exp[slns— (1+s)In(1+s)]

We combine the expressions for z,,in (61), (A.26) and (A.27), to solve for d:

1 A s°
(A.28) §L:ln{10 <1+f>(1+8)(1+8)+apc}}.

UPPER BOUNDARY 0.

The derivation of p (§,z) and p (85, z) follow Appendix A.A1, , and most of the result simply have f

instead of f. We have II1 (y) = % as country 1 is considered safe at §; = 6.

The default condition for country 2 is
1—62(0) — ape

502 (8) + sape + (14 F) [1 = p§2 (6)] = 5 = [1 - p§’* (8)] = s 7

where p**® () is the maximum amount of people investing in country 1 so that country 2 does not

default. Define Zmaz (05 ) as the solution to p (0m, Tmaz) = p5*** (6 ). Given equation (A.11), we have

that,

1—02(0m) — apc

(A.29) 1 — Tmaz (0g) = s = f

Then the return to investing in country 2 is again given by Il (g ) = 1jf [% +In 5 —In(1 — Tmas (5H))] .

Indifference requires Iy () = 2 (65 ), which implies that

(A.30) L= Tmaz (6m) = %
(1+s)"=

We combine the expressions for Tmaz (61), (A.29) and (A.30), to solve for dp:

|

The remainder of the proof, i.e., the verification argument, is exactly the same as in Appendix A.A1l
and hence omitted here.

1+ f
— 13s T aPc

1=0 (149

(A.31) Su = ln{l

CUTOFF agr, < o*.

First, the assumption e* > (14+s) <= (14 f) > (1 —0)(1+ s) guarantees that there is some
realizations of d that would allow joint safety. Consider the total funding requirement,

(A.32) total (5) —(1—01)+(1—02)s=(1—9) (6*5 ts e5)

This is minimized at & = —% Ins > 0 for a total funding requirement of total (—% Ins) = (1—6)2y/s.
Next, note that 1 + s > 24/s so that e* > (14 s) > 24/s.
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Recall that a* = e~ # (1 + s). Then, assume that z > In (1 + s) so that a* € (0,1). Then, we have
62
Sp(a”) —dr (@) = In

T+ (1;)%(1_0‘*)”* }Hn{lis () 0=+
() ) oml() G ) ]

= S
where we used <1J%S) ® <1 and (TL) < 1 and a% > 1 in the last line. Thus, at a* the oscillating

equilibrium already exists. It is easy to show that the the joint safety region [d1 (a),dy ()] is expanding
uniformly in «, and thus that agp < o*.
Finally, define aupy 1, as the solution to

In

0 = dg(agr)—9r(anr)
1

1y (1 )+
15s agL)+agL

2[z—In(1+s)]+1n +ln[(%+s)s(l—o¢HL)+aHL

Rearranging, we have

(1i5)% (104HL)+aHL:| [(1.7_8)5(17&HL)+QHL} e 2 (1452 =0

which is a quadratic equation in azz. We note that e=2% (14 s)2 <1 <= 2[In(1+s)—2] <0, so
that apr = 1 makes the LHS positive. We also know that the LHS is increasing in agy for agy > 0.
Thus, there exists at most one positive root agy € (0,1) under the assumption z > In (1 + s), and if
not, both roots are negative. Solving for the larger root afr,, and after some algebra, we can show that
0* (apr) =6n (agr) = 6L (amL).
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APPENDIX B: ADDITIONAL RESULTS

B1. Additive Fundamental Structure

We have considered the specification of 1 — 0; = (1 — 0) exp ((71)" 5) for country #’s fundamental.

We now show that results are qualitatively similar with the alternative additive specification
61 =60+6, and 3 =6 — 4.
AS:U:PI'(S"FE]' >6*) :%% = § =6* 4+ (2z — 1) o, we know that

0 = 04+5=04+5+2c—-1)o
O = 0-6=0-6*—(2z—1)c

Given z, the large country 1 survives if and only if

1-0—-90*+o0
—-14+60=(1 —1460+68"+R2x—-1)o>02> —————
p1 +01=01+f)z +O0+0" + (22 -1)o > r= 1+ f+20
which implies the expected return from investing in country 1 is
L 1 1 1 2
Hl:/leé* dr = n ;f;r*a .
I+;+2jd (1+f)x 1+f 1-60-— +o
For country 2, the bond is paid back if
T+fHa' —s+s2 = (1+fla’ —s+s[@—6"—(2z—-1)0]>0
ey > s(1—0+06*—o0)
- 1+ f+2s0
which implies an expected return of
1'[2:/1 S B O e o e .
s0-045*—0) (14 f)a' 1+f s(1—0+6*+0)

T+ 7+2s0

As a result, the equilibrium threshold §* is pinned by by the indifference condition

14 f+20 14 f +2s0
n————=sh——F—«—.
1-0—-0*+o s(1—60+6*+o0)

Letting ¢ — 0 we obtain

1 1
(B.1) lni:sn;f.
1—6-— 6 s(1—6+6%)

We no longer have close-form solution for §* in (B.1), as 6* shows up in both sides. However, the solution
is unique because LHS (RHS) is increasing (decreasing) in 6*. Finally, to ensure 6* < 0 so that the larger
1+f

country 1 is relatively safer, we require the same sufficient condition of z = In =5 > 1 in this alternative

specification.

B2.  Uniqueness of the single-survivor equilibrium with threshold strategies within
monotone strategies

First, let us define a few primitives. Let J; be a generic signal, and § be the true state of the
world. Further, let x denote the amount of pessimism of the investors, so that x = 1 is the most
pessimistic agent (amongst all agents out there) and x = 0 is the least pessimistic agent. We then
have 6 (8;,7) = 0; + 20 (x — %) For most of the proofs, we assume wlog that the investor believes his
signal to be the true signal, and thus all the action comes from movements in his relative position. As
o — 0, fundamental uncertainty (that is movements in § as a function of z) will vanish, whereas strategic
uncertainty (relative ranking of investors as represented by x) remains.



APPENDIX B-2 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

Next, let us define ¢ (;) as the proportion of funds an investor with signal d; invests in country 1.

Then define
1 (5]-+20z
p0 = o [ 6 () dy
T Jéj—20(1—x)

as the aggregate proportion of investors in country 1 an investor with signal J; and level of pessimism x
expects given the conjecture strategies ¢ (-). Note that there is translation invariance

p(d;,) :p<5j +e,x— %) Vo € (i,l)

Finally, define the (scaled by 1+ f) difference in expected returns as

S

1 1 1
A(8;) = /0 1{p<5,z>2pmm<a>}md% /0 1{p(6,z>spmm<s>}m“

Then, for any given conjectured difference function A (y), we must have

1, >0
¢(y)=49€[0,1], A(y)=0
0, <0

A monotone strategy is defined by ¢’ (y) > 0 for all y € [—g, 3} , which implies that ps (9, z) > 0 as
well as pz (6, ) > 0, i.e., p(d,x) is monotone. This implies that we can write

1 s

1 1
A () /0 Ho(55.2)20min (5(552)} 5 5,2y 2~ /0 H0(55.2) <bmas (565N} T p (5,2)

S

1 1 1
Jy 20660260} 5279 J, ) Soman 6} T

: e (57)
/ #dx 7/ ’ #dm
Tmin(85) P (65, ) 0 1—p(6;,x)

Country 1 survives if p(d;,x) is larger than ppin (6 (6;,)). As the agent becomes more pessimistic
relative to the other agents, i.e., = increases, the actual relative fundamental increases, and thus the
threshold decreases:

Dupmin (5(65,2)) = Ope-2e0652) = _~2e~5(52)25 < 0
8§j Pmin (0 (65,)) = e 7 9(85,2) <0

Q

Thus, if p(d,z) is monotone, there exists a unique threshold z,,:n (§) above which country 1 is safe.
Further, by the implicit function theorem, we have

95 (6.2) = Bspmin (56.)

pi (6:2) = O pmin (5 5,) )
¢(0+202)~9(8=20(=2)) 4 o—z,~5(é)

¢(0+20x) — (6 —20(1 —x))+ e—2e—8(5,2)24
1

20
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so that the pessimism threshold falls that makes country 1 safe. Similarly, we have

5 (6:2) = Oppmas (56.2))
Ou (6,2) = O pmaz (5 (6,2))

¢(5+201)*¢2’<5*20(1*T>> + Sefzes((s,z)

fed

e (8) =

max

¢(0+20x) —p (0 —20(1—x))+ se—2e8(5,2) 25
1

20

We can thus approximate

Tmaz (84 ) + — & Tmaz (8) + @pn (0) €+ — = Tmaz (8)  and  Zmin (8 + ) + — & Zmin (6)
20 20 2

g

Finally, suppose a ¢ exists for which the investor expects joint safety, i.e., both countries to be safe
for sure. Then, we must have ¢ (§) = ﬁ by the no arbitrage condition. A single-survivor equilibrium
with threshold strategies is defined by a single-crossing condition on A = II; — II2 and a non-flat part
at 0, where A (6) > 0 implies ¢ = 1 and A (§) < 0 implies ¢ = 0. Consider any other equilibrium. By
dominance regions, we know that for high d, ¢ = 1 will eventually be optimal, and for very low §, ¢ =0
will eventually be optimal.

Thus, any other equilibrium is either characterized by (1) a flat part A (§) = 0, (2) multiple crossings
A(§) = 0 or (3) a combination of the two. In our joint safety equilibrium supported by oscillating
strategy, (3) is the case, with a flat part in the middle.

MONOTONICITY AND UNIQUENESS OF THRESHOLD EQUILIBRIUM

A monotone strategy ¢ (8) requires A (§) to change signs only once. Thus, A () either crosses zero
at a single point, or approaches it from below, stays flat on an interval [01,,df], and then rises above
zero. Thus, at any point § s.t. A (§) = 0 we must have A’ (§) > 0. As we want to show that a threshold
equilibrium is the only equilibrium possible, we now rule out any flat parts of A at zero.

To this end, suppose an interval [§r,,dp] exists on which A (§) = 0. Interior Tmin,Tmaz. Suppose
now that Tmin (0), Zmaa (§) € (0,1). This means that both countries are at risk of default, so there is no
possibility of joint safety across all possible z € [0,1] (it might exists for some z if Zpin (8) < Zmaz (9)).
Take € € (0,0 — dz). Then, we write

1
1
I1; (6 —d
1(0+¢) /zmin(5+s)P(5+€:$) T

I+5, 1
= / ————~dz
min G+t P (I +E2— 57)

/1 1 - 1
_ __dx +/ — _dz
anwin(6+5)+% p(5+€,1‘7 %) 1 p(6+57x7 i)

Q

1 1 1 1
/ d5’3+/ ———dz
Tmin () P(6,2) 1-2 p(6+e )

! 1
= IL (0 +/ ———dzx
1(9) s P0TED)

new pessimists
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Similarly, we have
Tmaz (d+€)
;da:
- (6 +e, :D)
zmaz<5+e)+2(, s

/
A e )
A
/

2(0+e) =

dz

e 3

acmam(‘;) S s, +/% S d /ﬂ S d
X —— - _ar — - _axr
1-p(5,2) o 1-p( ) o 1-p(2)

M- s = s

Q

dx

———dx — _
1—p(3,x) o 1-p@2)

2(7 S
II5 () — —_—d
20 [ 7 e
—_——

old optimists

so that

A +e) = I (0p+¢e)—1II2(6r +¢)

1 25 s

1
- moos [ e [0~ [ ]

/1 LI +/ﬁ S dz>0
= —dzx ————dx
1-55 p(éL +87$) 0 1_:0(6L7x)

But this implies that
$(0r+e)=1

By monotonicity then, ¢z, is the only point at which A (§) = 0 and no flat parts can exist for Zy,in, Tmaz €
(0,1). Cornered Zimin, Tmaz- Next, suppose that at least one of the countries is going to survive regardless
of z because of the assumed strategies. Wlog, let us focus on . First, let us rule out that zmin (6z) = 0.
Note that for any € > 0, we have by the dominance boundaries A (67, —¢) < 0 and A (dg +¢€) > 0, the
highest and lowest point of the all flat parts. Further note that mn (61,) = 0 implies that country 1
always survives in the eyes of an investor with signal ;. By construction we have p (§,0) = 0— when
the agent with signal §r, is the most optimistic agent, he must believe by the conjecture on A () that
everyone below him investors fully into country 2. But then this agent cannot believe that country 1 is
safe regardless of x, as by assumption no country can survive without a minimum amount of investment.

Thus, at 7, we must have Zmaz (01,) = 1 and pipn (0gr) = 0—-country 2 always survives given the
strategies of the different agents. Then, we have the survival boundary of country 2 not changing, and
thus again for € € (0,0 — d1,) we have

1
S
11> (& = —d
2(0+e) /0 1-pGtea)

B /1+2a s i
N 1—p(6+a,x—%) v

/ ;) +/1 > d
————ax — Y ax
5= 1—p(5,$) 1-55 1—p(5+6,1‘)

20

)

Il
|
)

o

=

/1 s d +/'1 s d /Z s d
—dx ——dx — ——dx
0 17p(5,$) 1,%17P(5+€,$) 0 lfp(évx)

I (5)+/1 ° d /% * 4

= 2 ——dx — ——dx
1—% 1—p((5+87$) 0 1—p(5,£L‘)

— —

new pessimists old optimists
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Then, we have
0=A+e) = ILi(6d+e)—1I2(0+¢)

1 1 1 S i S
II (5+/ ——dx — H25+/ 7dz—/ —dx
1) 1-£ p(6+e) { ©®) 1-2 1=p(d+¢,2) o 1=p( )

Y
= r — —dz ———dx
17ip(5+5737) 1,%1—[)(5—‘,—6,1) 0 1_p(§’z)

/1 [ 1 s }d +/£ s 4
— T ———dzx

1— £ p(6+5,x) 1*p(6+6,$) 0 17p(5,2?)
— —

20

new pessimists old optimists
and there is now a possibility of a flat part. The intuition here is that we are balancing the returns that

arise to the new most pessimistic investor (i.e. for high z) against the previous expected returns of the
most optimistic investors (i.e. low z).

Taking derivatives around & = 0, we have

A@f+e) ~ AGB)+A (e

L ! - 2 e
20 p(6+el-5) 1-p(Btel-5) £=0

. /1W {_95(54-6,1) s(—m(ﬂm))}dxlog

p(6+e2)? [L—p@+ea)?

20

)
e=0

L R
20 17,0(6,%)

1 [ 1 s n s }
= — — €
20 p(lsvl) lfp((svl) 17/)(670)
When § = §;, we must have p (61,,0) = 0 by definition of §;,. Then, the derivative A’ () = 0 if

—14++v1+44s S 1
2s 1+s

p(6L71) =

1

which implies that least for some points on (dz,dr, + 20) we must have ¢ (6) > -

min

Byz/ . (6) <0andzx),,, (§) <0, asd increases either we (i) move to a segment where Zy,in (8) , Tmaz () €
(0,1), an interior situation, or (ii) to a segment with Zmin (6) = 0, Zmaz (§) = 1, a completely safe part.

But we know from the previous section that (i) immediately has A’ (§) > 0, a violation of the premise
that we are on a flat part for § € [0, dg]. Next, consider for (ii) any completely safe subset J C (61,x)

and ¢ € J. Then, we require p (d,x) = ﬁ,Vm € [0,1] by no arbitrage, which implies ¢ (§) = ﬁ But
1

then we have a violation of monotonicity as p (6r,1) > s
A (§) at zero and the only equilibrium that survives is of the threshold form. By the construction in
the paper, this threshold equilibrium is unique. Existence of threshold equilibrium. Consider our unique

candidate equilibrium

Thus, there cannot be any flat parts of

1—s slns
_ 2 —

1+s 1+s
derived in the main text. Consider now J; < 6*. Then, we have

5 =

1 1
A(6;;0%) = ———————dz—s _——
(93:97) /p(m)>pmn(5(z;5,-)) 1+ f)p(x) ¢ /p<z)<p,m(5(z;aj)) A+ QA=p=)

We know that A (6*;6*) = 0. But by our setup, we know that moving §; < 6* lowers both pyin (9)
and pmaz (9). Thus, we need to look at the difference between the parts we are adding (region in which

dx

|



APPENDIX B-6 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

country 1 survives) and parts we are subtracting (region in which country 2 survives):

1 / . !
+ SPmax (6J) (1 + f) (1 — Pmazx (6]))

As; (85;0%) —Pin (0) m
7 A+ L) pmin (65)
1 1 1-s

a+n "0+pn 1+7

>0

where we used

and p"maz (51') =~ (1~ pmac (63'))

This is intuitive: as we increase §;, we are adding the most valuable states for country 1 (fixing p (z))
by evaluating at points set on which it will just survive, i.e., close to ppmin (J;), and we are taking away
the most valuable states for country 2 by evaluating at points set on which it will just default, i.e., close
to pmax (5])

Prin (85) = —pmin (85)

B3.  Single-survivor equilibrium with oscillating strategies because of positive recovery

Let us say that s; = 1, s2 = s and l;s; to be the recovery given default of country i, so that it returns
ﬁ per unit of dollar invested, where y; is total investment in country . Then if country 1 survives, to

i

equalize return, we need

las 1 1
2 S =it L
Y2 Y1 Y2 las
This gives prices equal to
pr = 1= /)
1+1ss
y2 _ (L+ )l
p2 = —=-—"F
s 1+1ss
Similarly, if country 2 survives, then
s l l
et I B e
Y2 1 Y2 s
which results in prices
o= = 1+l
1 1 hts
_y2 (4
p2 = — =
s Ih+s
Let 14
=1 >0
z=1In o

and fiscal surplus is given by
0 = 1-(1—-0)e%=1—(1+f)e e?®
sy = s[l—(l—@)e‘s]:s[l—(l-‘,-f)e*ze&]

Define two constants k1 > 1 and k2 > 1 (which only occurs if s < I1) so that

o _ 1 — k= 2 >1
2—k1_l2$ 1_1+l28
k 2
2 _ 8 =2 o
27]62 l1 S+ll

Then in the country-1-default region, k2o measure of agents invest in country 2, i.e. play ¢ = 0, while
(2 — k2) 0 measure of agents play ¢ = 1. Similarly in the country-2-default region, , kjo measure of
agents play ¢ = 1 while (2 — k1) o measure of agents play ¢ = 0.
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Conjecture the following equilibrium strategy with cutoff §*

y € [6* —20,6" — kao]

y € [6* — koo, 6%]

y € [6%,0* + kio]

y € [6* + kio,6* + 20]

y € [6* 4+ 20,8* + 20 + ki0]

©-

—~

<

=

Il
o = o=

In other words, two types of equilibria collide at 6*. We conjecture that marginal investor at §* is
indifferent, while the agents between [6* — koo, §*] strictly prefer ¢ = 0, and symmetrically the agents
between [0*,0* + kqo] strictly prefer ¢ = 1. Other agents in this economy are indifferent.

Let x denote the fraction of agents with signal realization above the agent’s private signal J;, so that
given z, the true fundamental is
0(x)=0;—(1—-2z)0
Further, let p (d;,2) be the expected proportion agents investing in country 1 given x. Then, we have

71%2’ 0420z <6*+(2—ko)o

p(j,x) = x+cst, else
LS §—20(1—2)>8" —(2—Fki)o

where cst is picked so that p (J;, ) is continuous in x. We note that the slope is generically = as we are
replacing ¢ = 0 with ¢ = 1 marginally. At §; = *, we have

ko ko
1-— DR Tz < - 5
p(0*,z) =< =z, else
k1 k1
Fl r>5
and we need
ko k1
1—- =< —
2

Note that if we assume that pmin (§),1 — pmaz (§) € [1 — %’, %] we have a 1-to-1 function between

z and p that yields
1—61(5%) 1—-60 _s«

e — 1 o= —z —
Tmin 1+ f 1 fe N Tmin z
1—02(6%) 1—-0 5«
1- = = <~ In(l- =Ins—z+ 6"
Tmax Tt/ 1 fe n( wmaw) ns—=z

Note here that we are ignoring fundamental uncertainty. Otherwise, we need to take account of the fact
that in the mind of the agent,
Pmin (6 (1_)) _ 672675(1) — 67267[6j7(172z)o']

is the minimum investment in country 1 needed for it to survive conditional on z. For everything else
below, we assume that pmin (6 ()) = pmin (;). Next, note that

x = Fraction of people with signal above agent

so that z = 1 is the most pessimistic agent, and z = 0 is the most optimistic. As p (§, z) is increasing in
x, we have

T < Tmin <=  Country 1 fails
T > XTmin <=  Country 1 survives
xr < Tmaz = Country 2 survives
T > Tmaz <=  Country 2 fails
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Then, for the boundary agent, the expected return of investing in country 2 is given by

I (6*) = Returnsg (survival) + Returns (default)

s 1 los

= /o G na—r@an™ o Grna—peEan®™

- /0 (1+f)(1—(1_’;2))dx+/1’“22 1+ /)1 —=)

k1

3 los los

1
e TRy )

o ko s s ILQ _ _
- (l 2)(1+f)72+1+f[ln(2> m( x’”‘”)}
los

+ dx

= (H—Sf){< ;;22> + {ln (%2) —ln(l—xmaz)] +la+lo {ln(l—xmaz)_ln(

and the expected return of investing in country 1 is given by

Tmin ll 1 1
————dx + — dx
/0 I+ f)p(6*,2) emin (1+ )P (6%, 2)

1-%22 ! Cmin ]
= /0 —(1+f)(1 _>dx—i-/1k22 7(1+1f)mdx

ky

5 1 1 1
+ 7dm+/ ———dx
tmin L+ )T ki (1+f)71

— (1 kz) (1+f)l(11—’“22) + 1$f [ln(xmm)—ln (1—%2)]
ety ) ] )

Iy (6%)

o
- ﬁ h+h {ln(xmm)—ln(l—%)] [ ( ) MM)} <1klkg1

Note that

14+ slo—1=sls

I
—
~
Il

1
kL
2
1 s+ 1 S 15
=-1] = —/—-===
£2 S S S
2

Setting these equal, we have

l k: k
s{—l + |:ln (72) fln(lfxmaz):| + o+ 1o |:ln(lfxmaz)fln (17 ety

S

- {11 +4 [m (Zmin) — In (1 - %)] + {m (’“21) —In (:vmm)] + slz}

Sk



VOL. VOLUME NO. ISSUE SAFE ASSET DETERMINATION

Plugging in for ki, k2 and

1
1+ 1ss

k

2

k s
E s+ 1
k1 los
2

ko

2

1—

1+12s
51
s+ 1
In(zmin) = —2z-—206°
In(1—2maz) = —2z+06"+1ns

1—

Setting these equal, we have

s { {m (%2) —In(1- zmw)] + 12 {111(1 — Tmaz) —In (1 3 %1

=0 {m (Tmin) — In (1 - k—;)} + {m (%) In (Zmin
2}

=— (1= 11)In (ZTmin) + {m (%) —iin (1 - %2)}

|

— 5{7(1 — o) (1 — Zmas) + [m (%2) I In (1 R

s los
< 1—-1 — 6 —1 1 — 151
S{( 2) (= “H[n(sm) ”(1+z2s

:(1—11)(z+5*)+[ln(1+1lzs)7 (

Finally, solving for §*, we have

i
}

~

)
o))

APPENDIX B-9

oo AU E e ¢ fin () i ()]} - (-2 - fin () e (i)

(1711)4»5(17[2)

s{1—-1l)z— (1 —1Il2)lIns+Ins—In(s+11) —lalnly —lolns+l2In(1+l25)}

1—-l)+s(1—12)
—(1-l)z+In(Q+ls)+hln(li)—lLin(s+11)
1-lL)+s(1—12)

+

so that finally

(1—l2)s—(1—-Nl)]z—(s+l)In(s+ 1)+ (1 +sl2)In(1+128) +l11nly — slaInls

(B.2) 5 = -1 +s0—h)

Plugging in {1 = l2 = 0, we have
—(1—=s)z—sln(s)
1+s

5=

our benchmark result absent recovery. This is the only single-survivor equilibrium supported by threshold

strategies.

We want to show that from the perspective of §*, for an  small enough so that p (6*,2) =1 — =2

k2
27
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does country 1 default? We know that pmin (6*) = e_ze_‘s*, so that
Prmin (5*) > 11— =

= M @) > w(1-72)

— —(6"42) > ln( h )

which gives

—20—-1)sz—(s+l)In(s+11)+ (1 +sl2)In(1+128)+111Inly — slz2Inls]
> [(1711)+8(1712)] [1nl1 71n(8+l1)]

and ultimately yields

Ff (li,l2,9)]=-2(1—12)sz—[1+s(1 —I2)]Inli+sloInla+[1+s(2—12)]In(s+ 11)—(1 + l2s) In (1 + I25)

and the default condition is given by F}* (I1,l2,s) > 0. Assume I3 = Iz =I. Then, we have
Ff(l,s)=—2(1-sz—[1—-—(1-=-2D)s]lnl4+[1+s2—-0)]In(s+1)—(1+1s)In(1+1s)

We can show that F}* (1,1, s) is always positive for small enough recovery I as the term — [1 — (1 — 21) s]Inl
explodes, swamping any negative z effect.?

Next, we want to show that from the perspective of §*, for an = large enough so that p (6*,2) = %1,
does country 2 default? We know that 1 — ppmae (6%) = se’ze‘s*, so that
* k1
1— pmaz (6%) > 1-— 5
- k1
< In(l—pmaz (6*)) > In 175

l
<«— lns—2z4+d6* > In 28
1+1ss

so that
[(1—11)+s(1—12)]Ins—2(1—l1)z— (s+11)In(s+11) + (1+sla)In (L +1las) + 1 Inly — sloInls
> [1=1)+s1—1)][Inly+1Ins—In(1+Izs)]
Define
Fy(lile,s) =21 -l)z—(s+l)n(s+h)+ @ -l +s)In(l1+l2s) +lilnly —[s+ (1 —l1)]Inls
and the default condition is given by FJ (I, ls,s) > 0. Assuming equal recovery l; = Iy = I, we have
Fy(,lL,s)=-21-0z—(s+)In(s+1)+2—-1+s)In(1+1s)—[s+ (1 —20)]Inl

We can show that F (1,1, s) is always positive for small enough recovery I as the term — [s 4+ (1 — 2[)] In!
explodes, swamping any negative z effect.

Let us consider an interior agent, i.e., § € [6* — koo, 6* + k10]. Let

§(e) =6* + 20

2Taking derivatives w.r.t. [ and s, we have

(1+s)+1+(27l)

. o s+231nl—sln(s+l)—sln(1+ls)

OFy (I,l,s) = 2sz+s—

OuFF (Il,s) = #{ll)s (1 41s)+ (2= In(s41) —2(1— 1)z — 1 — (1—20)Inl
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with € € [f%’, %] Let us first consider investment in country 1. We have ppin () as the default

boundary, and actual investment is given by

—%, 0* +e20+20x <8+ (2—ka)o 1—’%2, 2e0 4+ 20z < (2—k2)o
p(0,xz) = ¢ z+cst, else =qx+cst, else
% 0*+e20—20(l—xz)>8" —(2—ki)o % 2¢0—20c(1—xz)>—(2—ki1)o

which gives
k k.
-, etz<1l-3F
p(b,z)y=<xz+e, else
k k
Y s>y
Note that we have cst = € by imposing continuity (which has to follow from p (4, x) being an integral

over strategies ¢).

Let Tpin (8) be the lowest x € [0, 1] such that

and we therefore have
Tmin (§) = max {Pmin (6) — ¢, 0}
Similarly, let Zmaqs (§) be the highest € [0, 1] such that
1fp(5,:c):1757332 1*pmaz(6)

and thus
1 — Tmaz (6) = max {1 — pmaaz (§) +¢,0}
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The expected return of investing in country 1 is then given by

11 (8) dz

I 1
. /Y - -
/$ZP(5’r)<Pvnnn($) (14 f)p(6,2) @:p(8,0)2pmin(z) (1 +F)p(5,2)

/‘z'm1n(§> I p /1 1 4
—————dxr + —————dx

kg

1_7_5 ll Tmin (9) ll
e,
0 a+n(-%) ke G+DGE+e)

[ )

R s e L Ml e
emin(6) L+ ) (z+e€) (1+f)71
no[1-k - ks

= 14+ f ﬁ"‘ln(xmin((s)'i‘&)—ln 1—?
1 k1 1—%14-6

tiiy [ (5) im0 40+ —i
A ks

1+f 1,%4”1(93 (8) +e) n( 2)]

1 [ -k,
1L f mi 5 —_
+1+f ( ) (Tmin (6) +€) + 71 '|-k?1
l1
= TII (6* — 1 min (6 —In&pin (5%
1(6%) 11/ 1_%2+n(x (8)+¢)—Inzx ( )]

b [ (5~ 10 i ) 49) +
T 7 | Tmin — In (Tmin e —
1+f L %

= I, (5%) + ﬁ {a <k11 -1 ll,@) — (1= 11) [In (Tmin (8) + &) — In Tpmin (5*)}}
2 2

= @)+ {6 (T—=h)=s(T=i2)] = (1= h) [In(@min (6) + &) = Inzmin (67)]}

Similarly, investing in country 2 gives

M2(0) = /0“"”“5) (1+f)(187p(57 w))dx+/acj,Laz<a) (1+f)(l12ip(5v "
T
B
Lo <+f><l—>d ' /;e R
- = 1‘:22:‘5+1n(k;) —1n<1—xm(6>—a)]
+1Sff In (1 = Tmaz (3) =€) — In (1 - %) + 1;?,@;1

1+f

- ML)+ { <z21kl - ,i) + (1= 1) [0 (1 = Zmaz (6%)) — 0 (1 = Zmas (6) —a)]}
2

= I (6%) + 1if {5 [(1 —h) _55(1 - 12)] T (1= 1) [In(1 = Zmaz (6%)) — In (1 — Tmas (8) —a)]}
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Let us define

g(e) (1+ /) [T (6) — T2 ()]

= el(1-l)—s(Q—-1)]—0Q-U)[In(@min (8) +&) — InTpmin (6%)]
s {5 [w] (1= 19) [In (1 — Zrmaz (5°)) — In (1 — Zmas (8) — a)}}
= —(1—1U)[In(zmin (6" 4+ 20e) +€) — InTpin (67)]
+s(1—12)[In(1 — Tmaz (6" + 202) — &) — In (1 — Tmaz (67))]

+e{[(1fl1)*5(1*12)] - [w]}

= — (@A —=Uh)[n(zmin (8" +20¢) + &) = InTpin (67)]
+s(1—12)[In(1 — maz (6" +20¢) —e) —In (1 — Tmaz (67))]

Taking the derivative w.r.t. €, we have many different cases. The issue is if Zy,in OF Tmaez start binding
first. Regardless, close to € = 0 we have neither x,,in Or maz cornered, so that

In (Zpmin (6" +20e) +¢e) = In(pmin (6(e))) =—2—36(g) = —z — (6™ + 20¢)
In(1— Zmaex (6" +20e) —e) = In(1— pmaz (6(€))) =slns—2z+5(e) =slns—z+ (6" + 20¢)
and thus for £ small we have
gE)=—1-l)(=)20+s(1—12)20=20[(1—11)+s(1—12)] >0
and indeed we have the incentives of the agents aligned with the conjectured strategies, at least around

0*.

Next, we have to account for all the different cases — that is, we know that at some distance € that
Tmin, Tmaz Start binding at 0, 1, respectively.
Let €,in be the point at which x,,;, becomes cornered, that is

—z 7(6*+205)

pmin (0) =€ <= e “e =¢ <= 20e+Ilne=—2-45"

Note that pmqn () > 0 so that there is no solution for € < 0.

Similarly, let €maqe be the point at which zmqee becomes cornered, that is
1= pmaz (8) = —¢ <> se %> 129° = _¢ «= 20(—¢)+In(—c)=Ins—z+6*

Note that 1 — pmaz () > 0 so that there is no solution for ¢ > 0. Positive . Consider positive €. Thus,
we only have to worry about x,,;, cornered. When x,,;, becomes cornered, then

0 1
—In (xmzn (6* + 20'5) + 8) = -
Oe €
Then, we have
1
g (e) = 7(17l1)g +5(1—12)20

ky

5 at a value of

The derivative is increasing in ¢, and is largest at € =
/ k1
g > :—(1—l1)(1+l28)+8(1—l2)20’

For small enough o, this is always negative. Negative €. Consider negative . Thus, we only have to
worry about Zpqz cornered. When xy,qz becomes cornered, then

1
2 In(1— Zmaz (6" +20e) —¢) = ——
Oe €

Then, we have

g (e)=(1—11)20+s(1—12) (_é)
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The derivative is again increasing in €, and is largest at ¢ = 71%2 at a value of

g (—%2) =—(1—=l)(s+h)+(1—-l)20

For small enough o, this is always negative.
For s =1 and l; = la = [, we have symmetric conditions.
The last thing we need to do is to check that

9(7%2) =g(0)=g(%> =0

To this end, we can also proof that as ¢ — 0, indeed one country (which one depending on on which
side of §* the realization of § falls) will always default. This is equivalent to the interior assumption for
Tmaz, Tmin We made. For this to hold, we need the following restrictions

k‘l k2
(B.3) 1—— <1-pmaz(0*) < —
2 2
k‘g kl
(B.4) 1——= < pmin (0%) < —
2 2
The first line says that as o — 0, if § < §* then a proportion %2 of investors invests in country 2, and
it survives. However, if § > §*, then only a proportion 1 — %1 of investors invests in country 2, and it

defaults. Similar arguments hold for country 1, which is summarized by the second line.
This can be rewritten as

n (1 - k—;) <In(1- pmaz (5) < In (’g)

In (1 - "“—;) <Wpmin ()< In (%1)

l
In 25 <lns—2z+46*< In 5
1+12s s+

111( h ) < —z-—-6*< ln( ! )

s+ 1 1+1ss

n( 2 )—i—z <6 < ln( ! )+z
1+12s s+ 11

ln( h )—l—z < =6 < ln( ! )-l—z
s+ 1 1+1ss

In(la) —In(14+1l2s)+2z <6< —In(s+l)+=z

1 l
7ln( >fz <6< fln( ! )fz
1+ 1lss s+ 11

In(l2) —In(1+4+1l2s) +2z <6*
In(1+4128)—2z <0o*

which gives

equivalent to

equivalent to

equivalent to

—In(s+11)+ =
In(s+11)—In(l1) — =z

ININ

so that finally
(B.5)
max [ln(l2) —In(1+1l28) +2,In(1+1l2s) — 2] <6* <min[—In(s+11)+ z,In(s+11) —In(l1) — 2]

The first term is binding on the RHS for z > In (1 + la2s) — % In (I2), and the first term is binding on the
left hand side for z < In(s + 1) — %ln ().
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APPENDIX C: ROBUSTNESS COMMON BONDS

Notational Convention: We will refer to Common Bonds (aka Eurobonds) as asset 0, their price per
unit of face-value as pg, and the proportion of investors investing in common bonds as pg.

‘We maintain the main assumptions of the sequential setup: (i) there is an amount (face-value) a (1 + s)
of common bonds and an amount (1 — «) s; of individual bonds of country 4 available, (ii) each unit of
common bonds (that is, per unit of face-value) is made up of ﬁ units of country 1 bonds and 1-7—5

1
1+s

units of country 2 bonds, and (iii) issuance proceeds of the common bonds accrue in proportions
S
1+s
We are looking for a simultaneous three asset equilibrium between assets 0,1, and 2 that has the single-
survivor property, i.e., only one country survives. We will analyze the following oscillation strategy:

and

to country 1 and 2, respectively.

investment...|0] 2 |0] 2 0] 1 |0] 1 |O]..
proportion a(l—a) @ (l—a) h (1—a) @ (1—a) @«

We will sometimes refer to the central interval O as the central region, the changeover region or loosely
the survival cutoff. The intuition of the strategy is as follows: when one country defaults for sure,
the no arbitrage condition between the surviving country and the common bond requires investors to
invests in proportions (1 — «) and « into the surviving country’s bonds and common bonds, respectively.
Next, let us consider fundamentals close to the changeover region in which default risk of both countries
appears. As the fundamental § increases, country 2 becomes riskier and country 1 becomes safer. As a
consequence, with common bonds being a portfolio of individual bonds, common bonds’ value moves less
than the individual country bonds. Thus, to achieve indifference, we would have to increase investment
in common bonds to decrease common bond returns to a level on par with individual bonds around the
central region when default risk starts affecting both countries. In particular, for any o > 0, in such a
region our strategy requires endogenous investment in the common bond on an interval [d1, ] of length
20 - h, i.e., we have two degrees of freedom in the two points d;, and df, as described in more detail
below. Importantly, for such a construction to be an equilibrium and still be tractable, we require that
any such construction does not necessitate any further endogenous adjustment of the strategies away
from the interval [§1,,dp]. We term such a property insulated — an insulated equilibrium only depends
on endogenous variables around the survival cutoff and does not require any further endogenous variables
away from it.

Formally, let the (endogenous) width of the interval 0 be given by 20 - h, while the intervals 1 and 2
have width (1 — «) 20, and the intervals 0 have width « - 20. Further, let 61, and dg denote the lower
and upper end of interval 0, so that h = @ Second, we note that when we take o — 0, we have
0r, — 0% < ép as long as h remains finite. Thus, in the limit, we transform the two degrees of freedom
from (61,,85) to (6%, h). For any strategy to yield an insulated equilibrium we require h > «.? Lastly,
we note that in the limit o — 0, we have

Tmazx ((SL) = Tmaz (6H) +h
Suppose that country ¢ is safe almost surely, and country —i defaults almost surely. Then, no arbitrage
between country i’s bond (paying of 1 per unit of face-value) and the common bond 0 requires

Si

1 1+s
pi Po

3In case h < a, we can still solve for §* and h, but realize that some of the payoffs IT; (§) away from &7,
and dz do not converge to indifference: at least for some d < Jr,, we do not have indifference at oscillation
widths 1 —a and « — this is easiest to see when we consider § = §;, — (1 — «) 20; at this point there is still
some influence of h as the no-arbitrage proportions, if indeed we assume play according to 1 — a and «
away from d1,, do not actually yield no arbitrage because of h+ (1 — ) < 1 and so the proportions are off.
Instead, we would need to build a sequence of intervals of endogenous width (similar to how we derived
h) to make sure indifference holds at all §’s away from §;. But this any such equilibrium is not insulated
anymore, as we now need to solve for an infinite number of endogenous intervals. Consequently, we are
not succeeding at reducing the dimensionality of the problem significantly, and it remains intractable.
If, however, the equilibrium fulfills h > «, it is insulated, and the dimensionality reduces significantly
to just (6*, h), making the model tractable. Some generalization of single-survivor equilibria can still be
achieved in insulated form, but joint-safety equilibria immediately violate the insulated character of the
equilibrium.
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The supply of each bond is (1 —a)s; and «a(1+ s), respectively. Let p; be the proportion of money
flowing to bond i. Then, we must have

(I—a)sipi=pi (1 + f)
a(l+s)po=po(l+f)=(1—pi)(1+])
where pg = (1 — p;) and p_; = 0. Plugging these into the no arbitrage condition, we have

(I=p)A+F) _pi(A+])
« 11—«

(14 s)po = sip; <= = pi=1-«a
and po = (1 — p;) = a. Thus, regardless which country is considered “safe”, as long as investors are
certain of the safety of i they should invest their money in aggregate proportions 1 — « and « in the safe
individual and common bonds, respectively. These no arbitrage investment proportions are incorporate
via oscillation outside of the central interval 0 in proportions p; =1 — « and pg = a.
Finally, the default condition for country i is given by

S; 1-— ei
1—p1—p2) + i > 8
1+5( p1 — p2) L 2 STy
—_— Individual bond revenue

Common bond revenue

i
= s Ze(-1)'0

Because the no-arbitrage proportions around the outside the central region are symmetric, we do not
have separate cases for 07, and dz. For dr,, the cutoffs are h,h + 1 — a, «, 1, whereas for §z7, the cutoffs
are 0,1 — a,a — h,1 — h. This abstractly leads to 5 different cases:

Cl 0<h<a<h+1l—a<1lequivalentto0 <a—h<1—a<1—h. We will ignore this case as

we are concentrating on an insulated equilibrium with A > a.
C2 0<h<h+l—-—a<a<lequivalentto0<1l—a <a—h<1—h We will ignore this case as
we are concentrating on an insulated equilibrium with A > a.

C3 0<a<h<l<h+1—aequivalent toa—h <0< 1—h<1—a Thisis a case consistent

with an insulated equilibrium.

C4 0<a<h<h+4+1l—a<1equivalent toa—h <0< 1—a<1—h. But this cases is impossible

ash+1—a<1 <= h < «a which contradicts o < h.
Cs 0<h<a<l<h+1—aequivalent to0 <a—h<1—h<1—a. But this case is impossible
as 1 <h+1—a <= « < h which contradicts h < a.
Thus, our analysis will focus solely on case C3. Lower boundary §y,

C3 0<a<h<l<h+l-a

mwb@_{Z—hE%g
S I
l1—a (0,a)
P1 (5va)+p2(6lnw): 11—z (avh)
1—h (h1)

For interior equilibria, we need Tmin (61) € (h,1) and Tmaz (61.) € (a, 1).
Upper boundary ép
C3 0<a<h<l<h+1l—aequivalenttoa—h<0<1l—-h<1l-—a«

mom={7_, 009

_J1—xz—-h (0,1—-h)
p2 0m,z) = {0 (1—h1)
1—h (0,1—h)
p1 (0, x) 4+ p2 (0m,x) =qx 1-h,1—-a)

l-a (1-a,1)
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For interior equilibria, we need Ty,in (6g) € (0,1 — a) and Tmaz (6g) € (0,1 — h).
Simultaneous equations when o — 0

C3 0<a<h<l<h+1l—aequivalenttoa—h<0<1l—-h<1l-—«a

1 1
I (0r) =(1 - a) {/mm,m(ém /Wuff?)dx]

1 1
=1-a) / dx
Cmin(6r) T—H

=1 —a)In(l—h) —In(Tmin (61,) — h)]

Tmax(dL) 1
My (52) = (1—a) s / 1
/o p2 (0L, )
[ e 1 Tmaz(6L) 1
=(1-a)s / dw-‘,—/ dac:|
0 11—« a 11—z
=1-a)s| -2 +In(l—a)—In(l - Tmaes (5L))]
Ll —«
- ,
I (6g) =(1 — ) / ———dx
Cmin(rr) P1(0H,T)

[ r1—a 1 1 1
=(1-a) / —dz +/ dx
Tomin(0m) T 1—a 1l —a

—(1—a) [In(1 = a) = In (@min (61)) + : fa}

Tmaz(SH)

Tmax (0H) 1
=1-a)s / ——dz
0 l—x—h

=1—-a)s[ln(l—h)—In(1 —zmaz (0g) — h)]

4 Possible cases: pin (61) € (h,1) and xmaz (6) € (o, h) U (h, 1), Zpmin (6g) € (0,1 —h) U
(1 —=h,1—a) and Tmaz (6m) € (0,1 — h).

a) ZTmae (0L) € (a,h) (which implies Tmaz (6g) = 0) and Zpmin (6g) € (0,1 — h) (which
implies Zpmin (61,) € (h,1))

1
mh + Tmin (0L) —h = e %e L = zpmin (6r) = e %e 0L 4 %—&-sh

Lxmw (6r) + 1 — Tmaa (6) = s - e %L = Tpae br)=>0+s) (1 —s- efze‘sL)
1+s

1
mh-‘r.’l?mln (§H) = e_ze_éH < Tmin (6H) = B_ZG_SH — 17—{-3

Tmax ((SH) =0
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I (6 ) -/1 1 d /x'maz(‘sL) 1 d
=« ———dr +s ———dx
oo |/ pmin (1) PO (0L, @) 0 po (Or, )

[ 1 1 aq Tmax(0L) 1
=« / —dx | +s / 7dx+/ —dzx
L Tmin(0L) h 0o « o r

1-%min(dr)
=« h
( +s [1 + In (wmaz (6L)) —In (a)] >

0 =« —_— x—i—s/ —dx
" |/ @ min (5:) PO (OH, ) 0 po (Om,x)

[ 1-h 1 1-a 1
=« / fdac—ﬁ—/ dx + —dz | +s-0
L \/Zmin(dH) h 1-nh 1—z l—a @

:a([M—Hn(h)—ln(a)-&-l})

b) Zmaz (0r) € (h,1) (which implies Tmaz (6) € (0,1 —h)) and Tpmin (6g) € (0,1 —h)
(which implies Zmin (61) € (h,1))

rh-‘,—zmm (6) —h=e"%e7 %0 <= wpn (60) = e %e 00 4 lj—s
1+Sh+1—xmaz (6p) = s-e % = e (bp)=1+ 1i8h—s'67266L
?h—l-xmm (6g) =e Pe %0 = wpin On) =e e 0H — 1Jlrs
T+ —xmaz(JH)—h:&ez‘sH <:>:cmaz(6H)—1—$h—s e %elH

1 1 Tmaz(dL) 1
=« / —dzx +5/ —dzx
Crmin(65) PO (0L, ) 0 po (6L, x)
1 @ h E?YLQ:IJ((SL)
« / 7d:c + s / lclcz:—‘,—/ ldac—l—/ ldx
Tmin(OL) h 0 @ a T h h

[1 Im;Ln(‘SL)]
( -‘rs 1+1n (h) —In(« )+7zm”(,fL)7h] >

! 1 Tmaz(Om)
0(0ny) =a / ——dz + s/ - iz
Gmin(8r) PO (OH,T) 0 po (0m,x)

1-a 11 Tmax(OH) 1
=« / d +/ dx + —dx | +s / —dx
Comin(65r) P 1-n 1—2 l—a @ 0 h
. ( [hmepmOm 41 (h) — In (a) +1] )

+s [xma:z(éH)

¢) Tmaz (61) € (a,h) (which implies Tmaz (511) = 0) and Zmin (61) € (1= h,1—a) (which
implies Tyin (61) = 1)

Tmin ((SL) =1
S

——Zmaz (0L) + 1 — Tmaz (6L) = s+ e %'l = ZTmas (b)y=>0+ys) (1 —s- efze‘SL)
1+s

1 . 14+ s)e Ze 00 — 1
r(l_xmzn (5H))+73m1n (51{)*6 € Om <~ Tmin (6H) ( ) s

Tmazx (6H) =0
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I (6 ) /1 1 d Zmax(dL) 1 d
0(01) = _ x—i—s/ —dx
|/ @ min(51) PO (OL,T) 0 po (Or,x)

[ Tmax(5L) 1
=a |0+ s / 7d1‘+/

=a (s [l +In(Tmaz (61)) — In (a)])
1t 6 =a | [/ Y
= ———dx +s - dx
o |/ Zmin(6m) PO (0m, ) 0 po (0m, )

[ - 1 1 1
=« / dr + / —dx | +s-0
L \/Zmin(dH) 1—z l—a O

=a(In (1 — zmin (6g)) —In(a) + 1))

d) @mas (31) € (h,1) (which implies @maz (357) € (0,1 = h)) and @ymin (611) € (1= hy1 — @)
(which implies Tyin (61) = 1)

Tmin (01) =1
T+s —xmaz(éL):&e*Ze‘;L <= Tmaz (5L):l+%+sh—s'efze‘h
1j-s in (01)) + Tmin (5m) = e 7€ ™1 = @min (On) = (1"1‘5)67:676}1 -
T+ (b)) —h=s-e ?eH — mmagc(éH)fl—ﬁh—s e *edH

o (52) _/1 1 p Trmaz (L) 1 J
o0L) =& — :E+s/ —  dx
|/ & min(51) PO (OL,T) 0 po (Or,x)

[ Tmaz(0L) 1
=a |0+s / 7dz+/ 7dz+/

—a (s {1+ln(h)—1ﬂ(°‘)+MD

Mo (3s1) -/1 L mesn) 1
00H) =« ———dr + 8/ —  dx
LY Tmin (6g) PO (6H7 Z‘) 0 PO ((5]—[7 I)

- 11—« 1 1 1 Tomax (OF) 1
=« / dr + / —dx | +s / —dx
\Vemin6m) 1 =2 l—a @ 0 h

Y < In (1 = zpmin (0)) — In(a) + 1] >

+s {zmarx};((sH)

Closed-form Approximations for a =~ 0 Next, we approximate around o ~ 0 to get some more analytical
insights into the behavior of §* and h. To this end, we conjecture

h(a) =ho + hia+ %QQ
0" () = 8o + b1
As o — 0, to converge to the known solution of the two asset simultaneous game, we need
ho =0

—(1—8)z—slns

6o =0* =
0 1+

Next, we take limits for each of the cases (except case CT2, which requires « > 1 5, S0 is not applicable),
and impose hg = 0. First, note that limq—0 g (61) = lima—0 o (0z7). Thus, we are looking for hi, ha
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and dp, 01 that satisfy
Jim, T2 (91 ) = lim, o (92) = lim, o (9p7) = lim, Ty (92)

Next, note that a local equilibrium requires h (@) > «, and thus for small o we require parameters such
that hy > 1.

C3a We have
1+4+s—e%0—2 _ gdo—z42
h1

. T _ —dp—=
Jim, Ty (0r) = Jim, (Om) = —In [e ]

Jim, Mo (92) = lim, o (9n1) =

lim Iy (6,) = —sln [1 —(1+3s) (1 - 650—%)] #£0 = lim Il (3p7)
a—0 a—0
For consistency limg—0 IT1 (61) = lima—0 11 (), we require
1-(1+s) (1 7660728) =1 < 0775 =1 <= % =¢%s

The indifference condition is

1— 6—50—2

e e

and equating the first and third term requires e* = €% . These conditions can only hold for
z = —% In s, and are violated for general parameters. Thus, case C3a is not possible in equilibrium

for small a.*

C3b We have

1+s—e%0—2 _ glo—zg2

lim IIp (6z) = lim Il (8y) =
a—0 a—0

h1
lim Iy (62) = lim IT; (6z) = —In [e—%—Z]
a—0 a—0
. —_ _ So—z ]
(11310 T2 (61) C{lino II> (6g) sln [e s
and the indifference condition is
_sln [eéo—zs] _ 1+4+s—e %02 glo—zg2 - I [6_50_2] o = — (1-s)z—slns — 5
h1 (14 s) 1+s

4 A more direct proof: C3a requires 0 < @ < h <1 < h+1—a and Zmaz (61) € (@, h) (which implies
Tmaz (0g) = 0) and Tymin (0g) € (0,1 — k) (which implies Tmin (61) € (h, 1))

1 . .
71+Sh+zmm(6,;)—h:e el = zpmin (0) = e %e 6L+1+sh
Tmaz (0L) + 1 — Tmaz (5L):s~efze‘sL <> Tmaz (0L) =1+ ) (1—s~efzeéL>
1+s
1 1

Tt Bmin (Bar) = €77 i (B4) = e —

Imazx (61-1) =0

Note that zmaz (62) — (1 + ) (1 —5- e’ze‘s*) =0, so that 9" = s~1e?; further, note that ,,ip —

e=?e=%" € (0,1); plugging in, we have e~ 2% .5 € (0,1), which is not a contradiction, but when inspecting
the indifference condition for investment yields a contradiction.
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Next, we have

_(2s-z—slns) —2z—slns
14+s—e %072 _¢glo—252 1 4g5_¢ I+s —e

N e
e (60 + 2) B 2s:z—slns
1+s
where we used §g + z = 222=3I0s 54 §5 — 2 = _2%531“ The insulated equilibrium as

constructed exists around a =~ 0 if hp > 1.
C3c We have
lim IIp (6) = lim IIg () =0
agnO 0( L) alE)HO O( H)

(1+s)e%0—2_1

lim IT; (6) =0 # —ln|:
a—0 S

= lim IT; ()

a—0

. _ _ _ So—=z )] _ 1

ignong (6r) sln [1 (14 s) (1 e s)| #0 ahl;n()HQ (6m)

For consistency lima—0 IT1 (61) = lima—0 II1 (0f7), we require
(A+s)e P72 1=5 = e*=e"%
and for consistency limq—0II1 (01) = lima—0 IT1 (677 ), we require
1-(1+s) (1 - eéo_zs) =1 < 0775 =1 <= e =¢%s

These two conditions can only hold for z = —% Ins, and are violated for general parameters.
Thus, case C3c is not possible in equilibrium for small o.®
C3d We have
s —edo—zg2
h1

1 —bo—z _ ]
lim Iy (67) =0 # —In [( +s)e
a—0 S

a—0 a—0
] = Jim, 1 (9nr)
i =l = do—z ]
olzll»no 12 (61) gll)no Iy (6mr) sln [e s
For consistency lima—0 IT1 (61) = lima—0 I11 (0f7), we require
(A+s)e P2 _1=5 = e*=e"%

But then for indifference we require

—0—z 2 —80—
_Sln[e%,zs}:s—e 0—2g — —n (1+s)e %21
h1 s

5A more direct proof: C3c requires 0 < a < h <1< h+1—a and Zmaz (61.) € (o, h) (which implies
Tmaz (0) = 0) and Tpin (0f7) € (1 — h,1 — o) (which implies Zmin (dr) = 1)

immaz (62) + 1 — Tynaz (61) = s- € 7’ = Tmax (61) = (1+ 5) (1 —s- e_ze‘sL)
1+s
1 1 —2e= 0 1
L (1 i (510)) + Tmin () = €76 =5 i (831) = T EC
1+s s
Tmazx (6H) =0

-
Thus, we have Tmaz (5r) = (14s) (1 —s- e_ze‘sL) = 0 and zmin (0m) = (ds)e”"e TH-1 _ 9 Byt

S
. * — —
as 85, — 0% < Oy, so we require e = s le? = e 7

, which in turn requires the specific parameter
restriction z = —% Ins.
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But we know the third term is equal to 0, so the first term requires ef0=%s =1 <= %05 = ¢*
which can only hold for z = —% Ins, and are violated for general parameters. Thus, case C3d is

not possible in equilibrium for small «.%

Thus, we are left with only case C3b for small «, which fulfills the insulated equilibrium criterion for
points (s, z) such that
2s.z—slns
) _e

()

Figure C.1 maps the set of points (s, z) for which the insulated criterion is fulfilled.

—2z—slns

1+s

_1+5767( 2

>1

(8,2) t hi(s,2) =

2s-z—slns

1+s

0.0 I I I 1 I I I 1 I I I 1 I I I 1 I I I )
0.2 0.4 0.6 0.8 1.0

S

Ficure C.1. Existence of insulated simultaneous single-survivor common bond equilibrium
for small a: SET OF POINTS (s,2) FOR WHICH AN INSULATED SINGLE-SURVIVOR EQUILIBRIUM EXISTS IN

THE COMMON BONDS CASE FOR a = 0, L.E., {(s,2) : h1 (s,2) > 1}.

Verifying the equilibrium. Note that, away from o« = 0, we have the expected returns at either
end-point not equal, even as o — 0, because strategic uncertainty does not vanish:

lim TI; (61) # lim IT; (85)
c—0 oc—0

6 A more direct proof: C3d requires 0 < o < h <1< h+1—a and Tmas (62) € (h, 1) (which implies
Tmaz (0) € (0,1 —h)) and Tmin (6g) € (1 — h,1 — @) (which implies @min (61,) = 1)

s s
1+Sh+1—azm(w ((SL):s-efze‘sL <— xmax((SL)zl—&-mh—&e*zeéL
1 . 14s)e Ze 00 — 1
(1_$min (6H))+xmzn ((SH):e € Om <~ Tmin (5H):( )
1+s s
5 h+1f:rmaz(6H)7h:s-e_ze5H < wmaz(SH)zlthfs-e_ze‘sH
1+s 1+s

(1+s)e *e %H 1 5* 2

s

Thus, we have Tmin (dg) — = 1, which requires ¢° = e ?; similarly, we have maqz =

1—s-e %e" € (0,1); plugging in, we have 1 — s - e~ 2% € (0, 1) which does not give a contradiction, but
when inspecting the indifference condition for investment yields a contradiction.
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To verify the equilibrium, we need to check that for any § € [0r,, ], indeed common bonds are the most
attractive asset, for 6 < dr, bond 2 is the most attractive asset, and for § > dz7, bond 1 is the most
attractive asset. For a given dr,d0, let

556L+20'E
with € € (0, h), so that € = 0 yields §1, and € = h yields dg. Then, for € € [0, h], we have
0 (0,h —¢)
pr(0,z)=<z+e—h (h—eh—ec+1—0q)

l1-a (h—e+1—a,1)

1-a (0,0 —¢)
p2(6,z)=31—(z+e) (a—e,1—¢)

0 (1—e1)

where of course if for example as in C3 we have a < h, then some intervals are empty (i.e., (0,a —¢) =
0 for € € (a,h)). For interior equilibria, we need pin (§) € (h—e,h —e+1—a) and @mas (§) €
(a—e,1—¢).

C3 0<a<h<l<h+l—-a

l1—«a (0,0 —¢)
1—(x+e) (a—e,h—¢)
p1(0,z)+p2(d,x)=q1—h (h—e,1—¢)
z4+e—h (l—eh—e+1—0q)
l1—« (h—e+1—a,l)

Let us calculate expected returns as a function of £.” To calculate expected returns, we have to conjecture
a position of Zmin (6) and Tmaz (§). For a = 0, we can only be in case C3b, and our numerical results
for our benchmark cases show that this case is applicable even when « increases. Thus, we only show
the expected returns for this case:

C3b 0<a<h<l<h+l-a
Tmin € (h—¢€,1 —¢) and Tmaz (§) € (h —€,1 — €). Now the position of ¢ in relation to & and h—
« matters, i.e., three intervals matter: ¢ < min{h — o, a}, € € (min{h — o, a} ,max{h — a, a}),
and € > max {h — a, a}. Two sub-cases arise, which essentially define the relation of h — « to a:

a) min{h—a,a} =h—a <= «o < h < 2a (this is the applicable case for our benchmark
cases (s,z) = (i, 1) and (s,z) = (%,1), as numerically h is very close to «). Thus, the
three intervals are ¢ < h—a, € € (h — o, ), and € > a. Note that e = % gives the midpoint

4, and the midpoint is part of interval % €(h—a,)8

"Note that e = %h gives the central interval 0 midpoint

_ g +d6r 6 —6L+20L

=4 - h.
B B L+to

3

8Consider % <h—a < a< % <= 2a < h, which violates the assumptions. Next, consider

% > a <= h > 2a, which also violates the assumptions. Thus, only % € (h — a, a) is consistent with
a < h<2a.
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Fore <h—a=min{h —o,a} sothat h—e+1—a >1as well as « —e > 0, we have

I (5) /1 1 d Tmaz (6) 1 J
0 = x + s/ E—
@min(8) PO (6,T) 0 00 (8, )

[ rl1—¢ 1 1 1
P Ny L N—
Emin(8) 1= (1= h) 1el—(x4+e—h)

Il
Q

Tmaz (6) 1

a—e 1 h—e 1
+‘”[/o e ) A v oy e Ll AN e o

—a 1_%“’"%@) +ln(h)—1n(h_a)]
fars[ U ) (e ¢ e DR

1 1
M (9)=(1-a) [/xmm(a) p1 (6, ) dgﬁ}

1 1
=(1-a) / ——dx
Tmin(8) THE—h

=1-a)[In(l+e—h)—In(Tmin (§) +& — h)]

e (8)
My (6) = (1—a)s /0 mé x)dx:|

a—e 1 J Tmaz (9) 1 d
=(1— [
( @)s /0 11—« z+/a,a 1—(z+e)x

_a—

—(1—a)s 1_2+h’1(1—a)—ln(l—(acmaz(5)+£))}

Fore € (h—a,a)sothat h—e+1—a<1and o —e > 0, we have

@) = | [ AR
=a ———dx +s —  dx
’ Tmin(8) PO (67 2?) 0 PO (5, I)

/1—5 1 h—e+l—a 1 1 1 J
7dx+/ 7dm+/ ——dx
(1—h) 1—e I—(z+e—h) h—etl—a 1 — (1 —a)

=«
/2 min(s) 1 —
a—¢ 1 h—e 1 Tmax (6) 1
: —d —_ —d
s /0 1= (1-a) ”/H 11— (o +2) ”/;H —a-m"
1 —¢e¢— B —
W wm(h)_m(mw}
I h o
— max 7h
+CM.S|:Oz €+ln(h)*ln(a)+%:|
o
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1 1
I (6) = (1 - o) _/Imm(é) pl(wdm]

[ fh—etl—a 1 1 1
=l-o _/xmm(a) v n® Tt /h—e+1—a 1= adx}
—(1—0) |01~ a) ~ In (@i (5)“*’1)*%}

Tmawz(0)
I3 (8) = (1 — a) /O p2(6 z) ]
a—e xmam(é) 1
=(1-a)s A dx-i-/a_E 1—(z+6)dx:|
=(1-a)s ? 4+In(l—a)— 1n(1—($maw(6)+‘5)):|

For e > a =max{h—a,a} sothat h—e+1—a <1 as well as a — e < 0, we have

APPENDIX C-

mo =l A [ L
=a ———dx +s —  dx
’ Tmin(8) PO (5,T) 0 o (6, )
1-e h—e4+l—a 1 1
~a e S -
/Imin(5) 1-(1-h) 1—¢ 1—(x+e—h) heeti—a 1—(
h—e 1 Tmaz (9) 1
ta-s / T oot —dzx
o 1-[-(z+2)] he 1—(1-h)
=a [1_%96"”"(5) +1n(h),1n(a)+w}
ta-s {m(h)f n(e) + %}l*s*h]
. 1
I 0) = (1 — « / - dx
o=t : L @ min () P1(6;2)
[ ph—etl—a 1
—a-a |/ S L e
Jamin(s) TH+e—h heetla l—a
—(1-a 1n(1_a)_ln(xmm(a)ﬂ_hpr%]
I (5) = (1 - a) /mm(é) L g
2 = a)s g D) i
zmaz(é) 1
—(-a)s| [ ! 4
0 —(x+¢)
=(1-a)s[n(l—e)—In(l = (zmaz (6) +¢))]

Next, we numerically check ITg (6*;

*

€) > max {II; (6*;¢),II2 (6*;

(h,6*) for any € € [0, h]. This holds for all numerically solved for candidate equilibria.

11

1
1—a)

€)} for candidate equilibria

b) h—a>a <= h > 2a > a would be the other case, but we do not observe numerically
any h that are twice the size of a. Calculations for this case, as well as for cases C3a C3c
and C3d are available upon request.

The numerical results (h, 0k im

) as well as the comparison 8%

seq

for cases (s = .25,z =1) and (s = .5,z = 1)

are presented in Figure C.2. The left Panels show the equilibrium h as the solid blue line in comparison to
the 45 degree line as the dashed yellow line, thus visualizing the insulated requirement h > . We restrict

the graph to levels of « for which this condltlon holds. The right Panels then show the equilibrium 6%,
as the dashed yellow line.

as the solid blue line in comparison to their se

quential counterpart 03,

stm

dx
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Simultaneous Common Bond: s=0.25, z=1. Simultaneous Common Bond: s=0.25, z=1.
h [
L L L L L L M.
014k 0.02 0.04 0.06 0.08 0.10 0.12 014
- -0.3225
012
-0.3230
0.101
-0.3235
0.08 -
0.06 - -0.3240
0.04
-0.3245
0.02
-0.3250 -
L L L L L L M.
0.02 0.04 0.06 0.08 0.10 0.12 0.14
Simultaneous Common Bond: s=0.5, z=1. Simultaneous Common Bond: s=0.5, z=1.
h 5
- L L L L g
025[ 0.05 0.10 0.15 0.20 0.25
-0.104
020
-0.106
0.15
-0.108
010 -0.110
-0.112
005+ 0.
-0.114
L L L L L oq
0.05 0.10 0.15 0.20 0.25

FicUrRE C.2. Robustness of single-survivor common bond equilibrium to sequential timing
assumption: SIMULTANEOUS EQUILIBRIUM CENTRAL INTERVAL WIDTH h (SOLID BLUE LINE) IN COMPARISON

TO 45 DEGREE LINE (DASHED YELLOW LINE) (LEFT PANELS); SIMULTANEOUS EQUILIBRIUM THRESHOLD 5:im
(SOLID BLUE LINE) IN COMPARISON TO THE SEQUENTIAL EQUILIBRIUM THRESHOLD J:eq (DASHED YELLOW

LINE) (RIGHT PANELS).



