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Proof of Lemma 1. For quadratic utilities, players’ optimal actions are given by the

conditional means, E [ ω̃| s̃ω = sω, s̃η = sη] and E [ η̃| s̃ω = sω, s̃η = sη] , respectively. We de-

note θ ≡ E [ η̃| s̃ω = sω, s̃η = sη] . For the sender E [−(y − η̃)2|s̃ω = sω, s̃η = sη] = −y2 +

2yE [η̃|s̃ω = sω, s̃η = sη] − E
[
η̃2|s̃ω = sω, s̃η = sη

]
, hence the sender’s preferences satisfy the

single crossing condition in y and θ.

We now argue that any equilibrium is either fully separating in θ or involves partial

pooling in θ everywhere. Partial pooling everywhere follows straightforwardly from single

crossing. Suppose there exists an equilibrium where the receiver is fully responsive to θ on

some interval
[
θ, θ

]
and involves pooling around the interval. This implies E

[
ω̃| θ̃ = θ

]
= θ

on
[
θ, θ

]
. Now take some type θ̂ = θ + δ for some δ > 0 that induces the pooling action

yrp strictly above yr(θ) = θ. For δ sufficiently small θ̂ − yr(θ) < yrp − θ̂, implying that

Eus(yr(θ)) > Eus(yrp). Hence sender types close to θ have an incentive to deviate, so the

receiver’s choice of actions does not constitute an equilibrium. Since the same argument

holds for θ, the receiver cannot be fully responsive to θ on a bounded interval. Hence, an

equilibrium that involves separation in θ somewhere must involve separation in θ everywhere.

Clearly, these two classes of equilibria can be characterized by communication about

θ only. Consider now an equilibrium where some sender types with the same conditional

expectation play different strategies. By the single crossing property, types with the same

θ are indifferent between at most two distinct actions. It follows immediately from single

crossing that this corresponds to the second class of equilibria considered above, where
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the strategies are changed on measure zero sets. Since this does not change the receiver’s

equilibrium actions, we can characterize such equilibria – up to the strategies of sender types

on measure zero sets – by communication about θ only.

Proof of Lemma 2. i) The random vector τ̃ = (ω̃, η̃, ε̃ω, ε̃η) follows a joint Laplace

distribution. Since the Laplace distribution is a member of the class of elliptically contoured

distributions, the following well-known properties apply:

The sender’s conditional mean θ can be calculated as E [ η̃| s̃ω = sω, s̃η = sη] = γωsω+γηsη

with γω =
σ2
εη

ρσ2

(σ2+σ2
εω

)(σ2+σ2
εη

)−ρ2σ4 , and γη =
σ2σ2

εω+σ4(1−ρ2)
(σ2+σ2

εω
)(σ2+σ2

εη
)−ρ2σ4 ; the weights γω and γη are

constants, independent of the realized signals. The equation follows from the fact that

conditional expectations are linear functions for elliptically contoured distributions (see,

e.g., Fang et al. (1990) Theorem 2.18).

The random vector
(
ω̃, η̃, θ̃

)
is Laplace, since affine transformations of random vectors

that follows an elliptical distribution with a given characteristic generator follow a distribu-

tion with the same characteristic generator (see, e.g., Fang et al. (1990) Theorem 2.16).

The first moment of θ̃ is zero, because the mean of τ̃ is the zero vector. Plugging in the

weights γω and γη, the second moments of
(
ω̃, η̃, θ̃

)
can straightforwardly be calculated:

σ2
θ = γ2

ωV ar (s̃ω) + γ2
ηV ar (s̃η) + 2γωγηCov (s̃ω, s̃η)

= γ2
ω

(
σ2 + σ2

εω

)
+ γ2

η

(
σ2 + σ2

εη

)
+ 2γωγησωη = σ2

σ2
εω

σ2 +
σ2
εη

σ2 ρ
2 + 1− ρ2(

1 +
σ2
εω

σ2

)(
1 +

σ2
εη

σ2

)
− ρ2

= σηθ,

and

σωθ = γωσ
2 + γησωη = ρσ2

σ2
εω

σ2 +
σ2
εη

σ2 + 1− ρ2(
1 +

σ2
εω

σ2

)(
1 +

σ2
εη

σ2

)
− ρ2

.

ii) Letting a ≡ σ2
εω

σ2 and b ≡ σ2
εη

σ2 , we can rewrite σωθ and σ2
θ as

σωθ = ρσ2 a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
,
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and

σ2
θ = σ2 a+ bρ2 + 1− ρ2

(1 + a) (1 + b)− ρ2
.

Consider first the set of feasible levels of σωθ = C. Note that for a = 0 or b = 0, the

covariance is constant and equal to ρσ2 = σωη. Moreover, the covariance is decreasing in a

for given b and decreasing in b for given a. By l’Hôpital’s rule, we have

lim
b→∞

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
=

1

1 + a
,

and

lim
a→∞

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
=

1

1 + b
.

So, letting both a and b (in whatever order) go to infinity results in a covariance of zero. By

continuity, any C ∈ (0, σωη] can be generated by finite levels a, b. Including the case where

no signal is observed at all, we can generate all C ∈ [0, σωη] .

Consider next the set of feasible σ2
θ for any given level σωθ = C. Distinguish two cases, i)

C = σωη and ii) C ∈ [0, σωη) .

Case i) requires that a = 0 or b = 0. If b = 0, then a+bρ2+1−ρ2
(1+a)(1+b)−ρ2 = 1 and thus σ2

θ = σ2 for

all a. If a = 0, then

σ2
θ = σ2

η

bρ2 + 1− ρ2

(1 + b)− ρ2

is decreasing in b and attains value σ2
θ = σ2 for b = 0. Moreover,

lim
b→∞

bρ2 + 1− ρ2

(1 + b)− ρ2
= ρ2.

Hence, for C = σωη, σ
2
θ ∈ [ρ2σ2, σ2]; the lower limit is included because we allow for the case

where only one signal is observed.

Case ii) C ∈ [0, σωη) requires that a > 0 and b > 0. Let δ ≡ C
σωη

∈ [0, 1) . The

combinations of a and b that generate C satisfy

a+ b+ 1− ρ2

(1 + a) (1 + b)− ρ2
= δ.

Solving for a as a function of b, we obtain

a (b; δ) =
(1− δ) (1 + b− ρ2)

δb− (1− δ)
=

(1 + b− ρ2)
δ

1−δ b− 1
.
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The function a (b; δ) is decreasing in b and has the limit

lim
b→∞

1 + b− ρ2

δ
1−δ b− 1

=
1− δ

δ
.

In the limit as b → 1−δ
δ
, we obtain a → ∞. Hence, C can be generated for b > 1−δ

δ
and

a =
(1+b−ρ2)

δ
1−δ

b−1 . Substituting for
(1+b−ρ2)

δ
1−δ

b−1 into σ2
θ, we obtain

σ2
θ (b, a (b; δ) , δ) = σ2

(1+b−ρ2)
δ

1−δ
b−1 + bρ2 + 1− ρ2(

1 + (1+b−ρ2)
δ

1−δ
b−1

)
(1 + b)− ρ2

= σ2 bδρ
2 + 1− ρ2

1 + b− ρ2
.

The derivative of this expression in b is
(δρ2−1)(1−ρ2)

(1+b−ρ2)2 < 0, so V ar
(
θ̃; b, a (b; δ) , δ

)
is contin-

uous and monotone decreasing in b. In the limit as b tends to infinity, we obtain

lim
b→∞

σ2 bδρ
2 + 1− ρ2

1 + b− ρ2
= σ2δρ2 = σ2 C

σωη

ρ2 = ρC.

In the limit as b→ 1−δ
δ
, we obtain

lim
b→ 1−δ

δ

σ2 bδρ
2 + 1− ρ2

1 + b− ρ2
= σ2

1−δ
δ
δρ2 + 1− ρ2

1 + 1−δ
δ
− ρ2

= δσ2 =
1

ρ
C.

Hence, we have shown that for any given C ∈ [0, σωη) , σ
2
θ ∈

[
ρC, 1

ρ
C
]
. We include the lower

limit, because the case where b→∞ is equivalent to the case with one signal only.

Lemma A1 For the Laplace distribution, for 0 ≤ θ < θ we can write

E

[
θ̃
∣∣∣ θ̃ ∈ [

θ, θ
]]

= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
+ θ − g

(
θ − θ

)
, (17)

where g (q) = q
1−exp(−λq) and 1

λ
= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
. The function g (q) satisfies limq→0 g (q) =

1
λ
and has limits limq→∞ g (q) = ∞, and limq→∞ (q − g (q)) = 0. Moreover, the function

is increasing and convex, with a slope satisfying limq→0 g
′ (q) = 1

2
and attaining the limit

limq→∞ g′ (q) = 1.
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Proof of Lemma A1. Recall that the marginal density of the Laplace distribution is

fθ (θ) = λe−λ|θ|. For the Laplace distribution for 0 ≤ θ < θ, an integration by parts gives

E

[
θ̃
∣∣∣ θ̃ ∈ [

θ, θ
]]

=

θ∫
θ

θλ
exp−λθ

exp−λθ− exp−λθ
dθ = − θ

exp−λθ

exp−λθ− exp−λθ

∣∣∣∣
θ

θ

+

θ∫
θ

exp−λθ

exp−λθ− exp−λθ
dθ.

= θ −
(
θ − θ

)
1− exp−λ(θ−θ)

− 1

λ

exp−λθ

exp−λθ− exp−λθ

∣∣∣∣
θ

θ

=
1

λ
+ θ −

(
θ − θ

)
1− exp−λ(θ−θ)

.

By l’Hôpital’s rule, limq→0 g (q) = 1
λ
. The limit limq→∞ 1 − exp (−λq) = 1 implies that

limq→∞ g (q) = ∞. Using q − g (q) = − q exp(−λq)
1−exp(−λq) and limq→∞ q exp (−λq) = 0, we have

limq→∞(q − g (q)) = 0.

The slope of the function is

g′ (q) =

(
1− (1 + λq) e−qλ

)
(1− e−qλ)2

≥ 0.

The inequality is strict for q > 0 since limq→0 (1 + λq) e−qλ = 1 and ∂
∂q
(1− (1 + λq) e−qλ) =

λ2qe−qλ > 0 for q > 0. Applying l’Hôpital’s rule twice, one finds that limq→0 g
′ (q) = 1

2
,

and since limq→∞ λqe−qλ = 0, we have limq→∞ g′(q) = 1.

Differentiating g (q) twice, we obtain

g′′ (q) = λ
e−qλ

(1− e−qλ)3
(
2e−qλ + qλ+ qλe−qλ − 2

)
.

The sign of the second derivative is equal to the sign of the expression in brackets. At q = 0,

the expression is zero. The change of the expression is given by

∂

∂q

(
2e−qλ + qλ+ qλe−qλ − 2

)
= λ

(
1− (1 + λq) e−qλ

) ≥ 0,

by the same argument as given above. Hence, g (q) is convex.

Proof of Lemma 3. i) Equation (3) follows immediately from applying again Fang et al.

(1990) Theorem 2.18.
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ii) By the law of iterated expectations,

E

[
ω̃| θ̃ ∈ [

θ, θ
]]

= E

[
E

[
ω̃|θ̃ = θ

]∣∣∣ θ̃ ∈ [
θ, θ

]]
= E

[
σωθ

σ2
θ

θ̃

∣∣∣∣ θ̃ ∈ [
θ, θ

]]
=

σωθ

σ2
θ

·E
[
θ̃
∣∣∣ θ̃ ∈ [

θ, θ
]]

.

iii) The marginal distribution of θ̃ is a classical Laplace distribution with density of the

form fθ (θ) = λe−λ|θ| by the same argument as given in Lemma 2 i). Since by Lemma A1

E

[
θ̃
∣∣∣ θ ∈ [

θ, θ
]]

= 1
λ
+θ− (θ−θ)

1−exp−λ(θ−θ) =
1
λ
+ θ

1−exp−λ(θ−θ)− exp−λ(θ−θ) θ

1−exp−λ(θ−θ) and limθ→∞ exp−λ(θ−θ) θ =

0, we have

lim
θ→∞

E

[
θ̃
∣∣∣ θ̃ ∈ [

θ, θ
]]

= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
+ θ.

For a discussion of the parameter α see the proof of Proposition 3.

Appendix B

Characterization of partitional equilibria

Partitional equilibria are completely characterized by a sequence of marginal types, ai,

who are indifferent between pooling with types slightly below and with types slightly above

them. In our description here, we focus on symmetric equilibria. This is without loss, since

for the case c ≤ 1 symmetric equilibria are the only ones that exist. We do prove their

existence, and for logconcave densities, equilibria are unique (see Szalay (2012)). For the

case c > 1, we prove our results also allowing for asymmetric equilibria.

Class I: 0

an0
. . . . . . ann−an1 an1

−cμn
2 cμn

2−cμn
1 cμn

1 cμn
n+1

Class II: cμn
1

0. . . . . . ann−an1 an1

−cμn
2 cμn

2 cμn
n+1

Figure 6: Class I equilibrium and Class II equilibrium.
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Symmetric equilibria come in two classes; see Figure 6 for an illustration. Class I has

zero as a threshold, an0 = 0, and in addition n ≥ 0 thresholds an1 , . . . , a
n
n above the prior

mean. By symmetry, types −ann, . . . ,−an1 are the threshold types below the prior mean.

Such an equilibrium induces 2 (n+ 1) actions; superscript n captures the dependence of the

equilibrium threshold types on the number of induced actions. Class II has zero as an action

taken by the receiver instead of a threshold. In this case, we eliminate an0 altogether. Such

an equilibrium induces 2n+ 1 actions. Consider Class I equilibria first.

For n ≥ 1, let

μn
i ≡ E

[
θ̃
∣∣∣ θ̃ ∈ [

ani−1, a
n
i

)]
for i = 1, . . . , n (18)

and μn
n+1 ≡ E

[
θ̃
∣∣∣ θ̃ ≥ ann

]
. By convention, we take all intervals as closed from below and open

from above. Clearly, given quadratic loss functions and Part ii) of Lemma 3, the receiver’s

best reply if sender types in the interval
[
ani−1, a

n
i

)
pool is to choose

y
(
ani−1, a

n
i

)
= c · μn

i for i = 1, . . . , n (19)

and y (ann,∞) = c · μn
n+1 if sender types with θ ≥ ann pool. Hence, a Class I equilibrium

that induces 2 (n+ 1) actions by the receiver is completely characterized by the indifference

conditions of the marginal types an1 , . . . , a
n
n :

ani − c · μn
i = c · μn

i+1 − ani , for i = 1, . . . , n. (20)

By symmetry, this system of equations also characterizes the marginal types below the prior

mean.

A Class II equilibrium is characterized by the same set of indifference conditions, (20) .

However, in this case conditions (18) and (19) apply only for i = 2, . . . , n, while we let

μn
1 ≡ E

[
θ̃
∣∣∣ θ̃ ∈ [

an−1, a
n
1

)]
= 0 and y

(
an−1, a

n
1

)
= c · μn

1 = 0.

Equation (20) defines a nonlinear difference equation for any given n. The qualitative

features of the equilibrium set - in particular, the maximum number n such that a solution

to (20) exists - depend crucially on the magnitude of the regression coefficient, c.

For c ≤ 1, there is no bound on the number of induced actions (see Proposition 1).

One way to understand an equilibrium is as a combination of a “forward solution” and a

“closure condition”. A forward solution starting at zero takes the length of the first interval
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as given, say x, and computes the “next” threshold, a2 (x) , as a function of the preceding

two, and likewise for the following thresholds. The closure condition for an equilibrium with

n positive thresholds requires that x is such that type ann (x) is exactly indifferent between

pooling downwards and upwards. Using this construction, we prove the existence of an

equilibrium for arbitrary n and show that the limit as n goes to infinity is an equilibrium.

As more and more distinct receiver actions are induced, the length of the interval(s) that

are closest to the agreement point, θ = 0, must go to zero. The reason is that the length

of all intervals is increasing in the distance from the agreement point to the first threshold.

Moreover, the level of the last threshold is bounded from above.

The case c > 1 is different in very essential ways, as shown in Proposition 2. Again,

any equilibrium must feature intervals that increase in length the farther they are located

from the agreement point. This is intuitive, since the extent of disagreement increases in

|θ| . However, the forward solution only has this feature if the length of the first interval is

bounded away from zero and n is bounded.

Proof of Proposition 1. Before proving Parts i) to iii) of the proposition by a sequence

of claims, we make the equilibrium conditions for the Laplace in Claim 0) explicit. Recall

the definition of the g function from Lemma A1.

Claim 0) A Class I equilibrium is a set of marginal types that satisfies the conditions

cg
(
ani − ani−1

)
= 2

c

λ
+ c

(
ani+1 − ani

)− cg
(
ani+1 − ani

)
+ 2 (c− 1) ani . (21)

for i = 1, . . . , n− 1 and

cg
(
ann − ann−1

)
= 2

c

λ
+ 2 (c− 1) ann, (22)

where an0 = 0. A Class II equilibrium satisfies

an1 =
c

λ
+ c (an2 − an1 )− cg (an2 − an1 )− (1− c) an1 , (23)

and in addition (21) for i = 2, . . . , n− 1, and (22) .

Proof: Recall the proof of Lemma A1; we write the conditional mean for the Laplace

μi+1 = E

[
θ̃
∣∣∣ θ̃ ∈ [θi, θi+1]

]
= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
+ θi+1 − g (θi+1 − θi), where 0 ≤ θi < θi+1, g (q) =

q
1−exp(−λq) , and

1
λ
= E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
. In combination with the sender’s indifference conditions

(20), ani − c · μn
i = c · μn

i+1 − ani , this implies the claim.
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Part i) We use the combination of forward solution and condition (22) to show equi-

librium existence. Formally, for an initial value x a forward solution a2(x) is defined as the

value of a2 that solves

cg (x)− c

λ
+ cg (a2 − x)− c (a2 − x)− c

λ
− 2 (c− 1) x = 0.

The forward solution for ai(x) for i ≥ 3 is defined recursively by

cg (ai−1 (x)− ai−2 (x))− c

λ
− c

λ
− c (ai − ai−1 (x))+ cg (ai − ai−1 (x))− 2 (c− 1) ai−1 (x) = 0.

We prove existence of Class I equilibria first. The argument is structured as follows. In

Claims i.1) to i.3), we investigate the forward solution, addressing first properties of solutions

(Claims i.1) and i.2)) and then existence (Claim i.3)). In Claim i.4), we address existence

and uniqueness of a fixed point. Finally, in Claim i.5) the extension to the case of Class II

equilibria is presented.

Claim i.1) The forward solution features increasing intervals,

ani+1 − ani > ani − ani−1.

Proof: Consider

Δ (a2 − x, x) ≡ cg (x)− c

λ
+ cg (a2 − x)− c (a2 − x)− c

λ
− 2 (c− 1) x.

The forward solution for a2 given x is the value of a2 that solves Δ (a2 − x, x) = 0. Take

a2 − x = x, then

Δ (x, x) = 2
(
cg (x)− c

λ

)
− cx− 2 (c− 1) x.

Since limx→0 g(x) = limx→0
x

1−e−λx = 1
λ
, we have limx→0 Δ(x, x) = 0. Moreover,

∂

∂x
Δ(x, x) = 2cg′ (x)− c− 2 (c− 1) ,

∂2

∂x2
Δ(x, x) = 2cg′′ (x) > 0.

Observe that

lim
x→0

∂

∂x
Δ(x, x) = c− c− 2 (c− 1) = −2 (c− 1) ≥ 0
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with a strict inequality if c < 1. It follows that Δ (x, x) > 0 for all x > 0. Since for all finite

a2
∂

∂a2
Δ(a2 − x, x) = cg′ (a2 − x)− c < 0,

the forward solution for a2 given x, satisfies a2 − x > x.

Consider the forward solution for ai

cg (ai−1 (x)− ai−2 (x))− c

λ
− c

λ
− c (ai − ai−1 (x))+ cg (ai − ai−1 (x))− 2 (c− 1) ai−1 (x) = 0.

Let z = ai (x)− ai−1 (x) = ai−1 (x)− ai−2 (x) . Define

Δ (z, z; ai−1) ≡ 2
(
cg (z)− c

λ

)
− cz − 2 (c− 1) ai−1 (x) .

Then

lim
z→0

Δ(z, z; ai−1) = −2 (c− 1) ai−1 (x) > 0

for any ai−1 (x) > 0. Since 2cg′ (z) − c ≥ 0 with strict inequality for z > 0, we have

Δ (z, z; ai−1) > 0 for all z > 0. Since the left-hand side of the equation defining the forward

solution is decreasing in ai, for any ai−2 (x) , ai−1 (x) > 0 the solution of the forward equation

must satisfy ai (x)− ai−1 (x) > ai−1 (x)− ai−2 (x) .

Claim i.2) The forward solution a2 (x) satisfies limx→0 (a2 (x)− x) = 0 and da2
dx

> 1,

implying that a2 (x)− x is increasing in x. Moreover, the forward solutions ai (x)− ai−1 (x)

for i = 3, . . . , n all satisfy limx→0 (ai (x)− ai−1 (x)) = 0 and dai+1(x)
dx

> dai(x)
dx

, implying that

ai (x)− ai−1 (x) is increasing in x.

Proof: Consider the equation determining the forward solution for a2 (x), that is condition

(21) for i = 1, a0 = 0, and a1 = x; formally, a2 (x) is the value of a2 that solves

cg (x)− c

λ
=

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1) x.

In the limit as x → 0, we obtain limx→0 a2 (x) = 0 from the fact that limq→0 g (q) = 1
λ

(Lemma A1). Totally differentiating, we obtain

(cg′ (x) + c (1− g′ (a2 (x)− x))− 2 (c− 1)) dx− c (1− g′ (a2 (x)− x)) da2 = 0,

so that
da2
dx

=
(cg′ (x) + c (1− g′ (a2 (x)− x))− 2 (c− 1))

c (1− g′ (a2 (x)− x))
> 0.
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Moreover, da2
dx

> 1 by the fact that cg′ (x) − 2 (c− 1) > 0 for c ≤ 1. Hence, we have that

limx→0 (a2 (x)− x) = 0 and d
dx

(a2 (x)− x) > 0.

For i = 2, consider the forward equation for a3 (x) . Formally, a3 (x) is the value of a3

that solves

cg (a2 (x)− x)− c

λ
=

c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x)) + 2 (c− 1) a2 (x) .

Since limx→0 a2 (x) = 0 and limx→0 (a2 (x)− x) = 0, we also have limx→0 a3 (x) = 0 and

limx→0 (a3 (x)− a2 (x)) = 0. Totally differentiating, we obtain

da3 (x)

da2 (x)
=

cg′ (a2 (x)− x)
(

da2(x)
dx

− 1
)
+ (c (1− g′ (a3 (x)− a2 (x)))− 2 (c− 1)) da2(x)

dx

c (1− g′ (a3 (x)− a2 (x)))
da2(x)
dx

.

Since da2(x)
dx

> 1, we have da3(x)
da2(x)

> 0, and moreover da3(x)
da2(x)

> 1. Finally,

da3 (x)

dx
=

da3 (x)

da2 (x)

da2 (x)

dx
>

da2 (x)

dx
.

Hence, we have that limx→0 (a3 (x)− a2 (x)) = 0 and d
dx

(a3 (x)− a2 (x)) > 0.

Suppose as an inductive hypothesis that the forward solutions up to and including ai (x)

have the properties that limx→0(ai (x)− ai−1 (x)) = 0, limx→0 ai (x) = 0, and dai(x)
dai−1(x)

> 1, so

that ai (x)− ai−1 (x) increasing in x. Consider the equation for ai+1 with solution ai+1(x),

cg (ai (x)− ai−1 (x))− c

λ
=

c

λ
+ c (ai+1 − ai (x))− cg (ai+1 − ai (x)) + 2 (c− 1) ai (x) .

The inductive assumptions for ai (x) and ai−1 (x) imply that limx→0(ai+1 (x) − ai (x)) = 0,

so that limx→0 ai+1 (x) = 0. Totally differentiating, we obtain

dai+1 (x)

dai (x)

=
cg′ (ai (x)− ai−1 (x))

(
dai(x)

dai−1(x)
− 1

)
+ (c (1− g′ (ai+1 (x)− ai (x)))− 2 (c− 1)) dai(x)

dai−1(x)

c (1− g′ (ai+1(x)− ai (x)))
dai(x)

dai−1(x)

.

The assumption dai(x)
dai−1(x)

> 1 implies that dai+1(x)
dai(x)

> 1. We can conclude that, ai+1 (x)−ai (x)

is increasing in x for all i = 1, . . . , n.
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Claim i.3) For each i = 2, . . . , n, there is x∗i such that a unique, finite forward solution

for ai (x) exists for all x ∈ [0, x∗i ) . In the limit as x→ x∗i , limx→x∗i ai (x) =∞. Furthermore,

x∗i+1 < x∗i .

Proof: The forward solution a2 (x) solves

cg (x)− c

λ
=

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1) x.

The left-hand side satisfies limx→0 cg (x)− c
λ
= 0 and increases in x. The right-hand side

satisfies

lim
a2→x

{ c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1) x

}
= 2 (c− 1) x ≤ 0,

where the inequality is strict for c < 1 and x > 0. Moreover, the right-hand side is increasing

and concave in a2 with limiting value

lim
a2→∞

{ c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1) x

}
=

c

λ
+ 2 (c− 1) x.

Hence, there exists a finite forward solution a2 (x) if and only if

cg (x)− c

λ
<

c

λ
+ 2 (c− 1) x. (24)

Since cg (x)− c
λ
is nonnegative and increasing in x and c

λ
+2 (c− 1) x is positive for x = 0 and

nonincreasing in x, there exists a unique value x∗2 such that (24) is satisfied with equality.

Hence, a finite forward solution a2 (x) exists for all x ∈ [0, x∗2) . In the limit as x → x∗2, we

have limx→x∗2 a2 (x) =∞.

Consider now the forward solution for ai (x) for i = 3, . . . , n. The forward solution ai

solves

cg (ai−1 (x)− ai−2 (x))− c

λ
=

c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) .

The left-hand side satisfies limx→0 cg (ai−1 (x)− ai−2 (x))− c
λ
= 0 and is increasing in x. The

right-hand side satisfies

lim
ai→ai−1(x)

c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) = 2 (c− 1) ai−1 (x) ≤ 0,

with strict inequality for x > 0 and c < 1. Moreover, the right-hand side is increasing and

concave in ai−1 with limiting value

lim
ai→∞

c

λ
+ c (ai − ai−1 (x))− cg (ai − ai−1 (x)) + 2 (c− 1) ai−1 (x) =

c

λ
+ 2 (c− 1) ai−1 (x) .

12



Therefore, a unique solution for ai exists if and only if

cg (ai−1 (x)− ai−2 (x))− c

λ
<

c

λ
+ 2 (c− 1) ai−1 (x) . (25)

Given the derived properties of the forward solution, we have that cg (ai−1 (x)− ai−2 (x))−
c
λ
is nonnegative and increasing in x and c

λ
+ 2 (c− 1) ai−1 (x) is positive for x = 0 and

nonincreasing in x. Therefore, there exists a unique value x = x∗i such that (25) is satisfied

with equality. Hence a finite forward solution ai (x) exists for all x ∈ [0, x∗i ) . In the limit as

x→ x∗i , we have limx→x∗i ai (x) =∞.

Define

Ai (x) ≡ cg (ai−1 (x)− ai−2 (x))− c

λ
−

( c

λ
+ 2 (c− 1) ai−1 (x)

)
,

and analogously Ai+1 (x). Since ai (x) − ai−1 (x) > ai−1 (x) − ai−2 (x) and ai (x) > ai−1 (x)

for all x, we have Ai+1 (x) > Ai (x) . Moreover, both Ai+1 (x) and Ai (x) are increasing in x.

Letting x∗i and x∗i+1 denote the values of x such that Ai (x
∗
i ) = 0 and Ai+1

(
x∗i+1

)
= 0, we

have x∗i+1 < x∗i .

Claim i.4) For any n there exists a unique value of x̃n such that condition (22) holds

for an−1 and an defined as solutions to the forward equation.

Proof: Take the forward solution for ai (x) for i = 2, . . . , n and consider the difference

between the left-hand and the right-hand side of the condition (22), which we define as

Δn (x) ≡ cg (an (x)− an−1 (x))− c

λ
− c

λ
− 2 (c− 1) an (x) .

Differentiating Δn (x) with respect to x we get

dΔn (x)

dx
= cg′ (an (x)− an−1 (x))

(
dan (x)

dx
− dan−1 (x)

dx

)
− 2 (c− 1)

dan (x)

dx

= cg′ (an (x)− an−1 (x))
(

dan (x)

dan−1 (x)
− 1

)
dan−1 (x)

dx
− 2 (c− 1)

dan (x)

dx
.

Since dan(x)
dan−1(x)

> 1, Δn (x) is strictly monotonic in x. This implies that there is at most one

value of x that solves the fixed point equation

Δn (x) = 0.
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Let x̃n denote the value of x that satisfies Δn (x̃n) = 0 for given n, if it exists. To show that

a fixed point exists, we need to show that x̃n is such that the forward solution for an (x̃n)

exists. To see this is true, note simply that Δn (x̃n) = 0 for x̃n = x∗n+1. That is, x̃n is the

value of x, such that forward solutions for ai (x) for i = 2, . . . , n + 1 exist and are finite for

all x ∈ [0, x̃n) . Since x∗n+1 < x∗n, the forward solutions for i = 2, . . . , n exist and are finite at

x = x̃n. Hence, this completes the proof that there exists exactly one fixed point, x̃n. So in

equilibrium an1 = x̃n.

Claim i.5) For all n, there exists a unique Class II equilibrium.

Proof: A Class II equilibrium is characterized by

a1 =
c

λ
+ c (a2 − a1)− cg (a2 − a1)− (1− c) a1

in addition to condition (21) for i = 2, . . . , n− 1 and condition (22) .

To construct a forward solution, take an arbitrary initial value x for the first threshold

as given and compute a2 (x) as the solution to

x =
c

λ
+ c (a2 (x)− x)− cg (a2 (x)− x)− (1− c) x.

We have lima2→x

(
c
λ
+ c (a2 − x)− cg (a2 − x)− (1− c) x

)
= − (1− c) x and

lima2→∞
(
c
λ
+ c (a2 − x)− cg (a2 − x)− (1− c) x

)
= c

λ
− (1− c) x. Hence, there is a unique

finite forward solution a2 (x) if and only if x < c
λ
− (1− c) x, or equivalently (2− c) x < c

λ
.

Since c ≤ 1, this is equivalent to x < c
λ(2−c) . We have limx→ c

λ(2−c)
a2 (x) = ∞. Likewise, for

x = 0 we have a2 (x)|x=0 = 0.

Differentiating totally, we find

0 = (c (1− g′ (a2 (x)− x))) da2 − (c (1− g′ (a2 (x)− x)) + (2− c)) dx,

and so
da2
dx

=
(c (1− g′ (a2 (x)− x)) + (2− c))

(c (1− g′ (a2 (x)− x)))
> 1.

Since the forward equations for ai (x) for i = 3, . . . , n as well as the fixed point condition

(22) are unchanged, all the remaining arguments are unchanged.

Part ii) Before analyzing the limits of equilibrium thresholds as n → ∞ in Claims

ii.2) and ii.3), claim ii.1) establishes some important monotonicity properties of equilibrium

thresholds.
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Claim ii.1) The sequence (an1 )n is monotone decreasing, while the sequence (ann)n is

monotone increasing. Moreover, equilibrium thresholds are nested,

an+1
1 < an1 < an+1

2 < · · · an+1
n < ann < an+1

n+1 ∀n. (26)

Proof: Using the notation from Part i), since an1 = x̃n = x∗n+1 and an+1
1 = x̃n+1 = x∗n+2 it

follows immediately from Part i) that an+1
i < ani for i = 1, . . . , n. In particular, the argument

follows from the fact that the solution of the forward equation is monotonic in the initial

condition, x. Hence, it suffices to prove that an+1
i+1 > ani for i = 1, . . . , n.

We start with two preliminary observations. Firstly, the “next” solution of the forward

equation, aki+1 (x) for i = 1, . . . , k− 1, k = n, n+ 1 is monotonic in aki (x) , and the length of

the previous interval, aki (x) − aki−1 (x) . To see this, note that the forward equations for ak2,

ak3, and aki+1, for i = 3, . . . , k − 1 and k = n, n+ 1, satisfy:

cg (x)− c

λ
=

c

λ
+ c

(
ak2 − x

)− cg
(
ak2 − x

)
+ 2 (c− 1) x,

cg
(
ak2 (x)− x

)− c

λ
=

c

λ
+ c

(
ak3 − ak2 (x)

)− cg
(
ak3 − ak2 (x)

)
+ 2 (c− 1) ak2 (x) ,

and

cg
(
aki (x)− aki−1 (x)

)− c

λ
=

c

λ
+ c

(
aki+1 − aki (x)

)− cg
(
aki+1 − aki (x)

)
+ 2 (c− 1) aki (x) .

The conclusion follows from the fact that aki (x) decreases the value of the right-hand side

and increases the value of the left-hand side. Moreover, the left-hand side is increasing in

aki (x)− aki−1 (x) .

Secondly, it is impossible that an+1
n+1 (x̃n+1) < ann (x̃n) and an+1

n+1 (x̃n+1) − an+1
n (x̃n+1) <

ann (x̃n)− ann−1 (x̃n) . If these conditions would hold, then one of the fixed point conditions,

0 = cg
(
ann (x̃n)− ann−1 (x̃n)

)− c

λ
− c

λ
− 2 (c− 1) ann (x̃n)

and

0 = cg
(
an+1
n+1 (x̃n+1)− an+1

n (x̃n+1)
)− c

λ
− c

λ
− 2 (c− 1) an+1

n+1 (x̃n+1)

would necessarily be violated.

We now show that an+1
j+1 > anj for all j ≤ n. Suppose that this were not true and let the

property be violated for the first time at j = l.
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Suppose an+1
j+1 (x̃n+1) > anj (x̃n) for all j = 1, . . . , l − 1 and an+1

l+1 (x̃n+1) < anl (x̃n) . Taken

together, these inequalities immediately imply that an+1
l+1 (x̃n+1) − an+1

l (x̃n+1) < anl (x̃n) −
anl−1 (x̃n). In turn, the monotonicity property of the next forward solution implies then that

an+1
l+2 (x̃n+1) < anl+1 (x̃n) .

It also follows then that an+1
l+2 (x̃n+1) − an+1

l+1 (x̃n+1) < anl+1 (x̃n) − anl (x̃n) . To see this,

suppose instead that an+1
l+2 (x̃n+1) − an+1

l+1 (x̃n+1) ≥ anl+1 (x̃n) − anl (x̃n) or equivalently that

an+1
l+2 (x̃n+1) ≥ anl+1 (x̃n) +

(
an+1
l+1 (x̃n+1)− anl (x̃n)

)
. However, this is impossible since both

an+1
l+2 (x̃n+1) < anl+1 (x̃n) and an+1

l+1 (x̃n+1) < anl (x̃n) . Hence, the claim follows.

However, if an+1
l+2 (x̃n+1) < anl+1 (x̃n) and an+1

l+2 (x̃n+1) − an+1
l+1 (x̃n+1) < anl+1 (x̃n) − anl (x̃n) ,

then an+1
l+3 (x̃n+1) < anl+2 (x̃n) and so forth. Hence, we would have an+1

j+1 (x̃n+1) < anj (x̃n) and

an+1
j+1 (x̃n+1) − an+1

j (x̃n+1) < anj (x̃n) − anj−1 (x̃n) for all j ≥ l and in particular for j = n,

leading to a violation of one of the fixed point conditions.

The same argument can be given for a Class II equilibrium. This is omitted.

Claim ii.2) Equilibrium thresholds converge for n→∞.

Proof: We know from Part i) that (an1 )n is monotone decreasing in n. Since the sequence

is bounded by zero it must converge. Similarly, by Claim ii.1) the sequence (ann)n is monotone

increasing in n. The fixed point condition, (22), implies that it is bounded by c
1−c

1
2λ
, hence

it converges. Since equilibrium thresholds are nested (cf. (26)) all sequences of thresholds

must converge for n→∞.

Claim ii.3) The limit of the sequences of thresholds and actions is an equilibrium.

Proof: The limit is an equilibrium if limn→∞ cμn
i ≤ limn→∞ ani ≤ limn→∞ cμn

i+1. There-

fore, we have to show that equilibrium thresholds remain ordered in the limit, limn→∞ ani <

limn→∞ ani+1. For all finite n, thresholds are ordered in equilibrium, ani < ani+1, since they are

ordered for any forward equation. By Claim ii.2) equilibrium thresholds converge; denote

the limits by ai = limn→∞ ani for all i. By convergence, for any ε there is a N such that for

all n > N : ani ≥ ai− ε
2
and ani+1 ≤ ai+1 +

ε
2
. Suppose for contradiction that ai ≥ ai+1 + δ for

some δ > 0; this implies

ani ≥ ai − ε

2
≥ ai+1 + δ − ε

2
≥ ani+1 −

ε

2
+ δ − ε

2
> ani+1,

for all ε < δ. Hence thresholds remain ordered in the limit and the limit is an equilibrium.

Part iii) In the limit as n→∞, we have limn→∞ x̃n = 0.
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Proof: The fixed point argument in the proof of Part i) implies that the sequence (x̃n)n
is monotone decreasing. Since it is bounded from below by zero it converges. As before, we

use the notation an1 = x̃n = x∗n+1.

Recall that x∗n+1 < x∗n and that the forward solution for an (x) exists for x ≤ x∗n, where

x∗n satisfies

cg (an−1 (x∗n)− an−2 (x∗n))−
c

λ
=

c

λ
+ 2 (c− 1) an−1 (x∗n) .

Monotonicity of the forward solutions, ak (x) > ak−1 (x), and increasing length of the inter-

vals, ak (x) − ak−1 (x) > ak−1 (x) − ak−2 (x), imply for c ≤ 1 the following. For any x > 0

there is a k such that

cg (ak−1 (x)− ak−2 (x))− c

λ
≤ c

λ
+ 2 (c− 1) ak−1 (x)

and

cg (ak (x)− ak−1 (x))− c

λ
>

c

λ
+ 2 (c− 1) ak (x) .

Therefore, for a fixed length x of the first interval, the forward equation has a solution only

for a finite number of steps. Hence, in an infinite equilibrium we have limn→∞ x∗n = 0,

implying that the length of the first interval goes to zero, limn→∞ x̃n = 0.

The proof for the case of a Class II equilibrium is virtually the same and hence omitted.

Proof of Proposition 2. Before proving that actions are bounded away from zero

for Class I equilibria in Claim 1) and for Class II equilibria in Claim 2), Claim 0) shows a

monotonicity condition. Finally, Claim 3) proves finiteness of equilibria. Recall the definition

of the g function from Lemma A1.

Claim 0) If a Class I equilibrium exists, it features increasing intervals for all i =

1, . . . , n− 1,

ani+1 − ani > ani − ani−1; (27)

If a Class II equilibrium exists, it always shares this feature for i = 2, . . . , n− 1.

Proof: Consider first Class I equilibria for given n ≥ 2. For n < 2, the question is

meaningless. Define

zni ≡ ani − ani−1 for i = 1, . . . , n.
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For c ≥ 2, no equilibrium of the considered kind exists this is shown in Claim 1) below.

Now take c ∈ (1, 2). For n = 2, the indifference condition of type an2 and an1 are, in that

order,

cg (zn2 ) = 2
c

λ
+ 2 (c− 1) (zn1 + zn2 ) ,

and

cg (zn1 ) = 2
c

λ
+ c (zn2 − g (zn2 )) + 2 (c− 1) zn1 .

Substituting the former condition into the latter and simplifying, we have

zn2 =
c

2− c
g (zn1 ) .

Since g (z) > z and c
2−c > 1, we have zn2 > zn1 .

For n ≥ 3, the indifference conditions of types ann and ann−1, respectively, can be written

as

cg (znn) = 2
c

λ
+ 2 (c− 1)

n∑
j=1

znj , and

cg
(
znn−1

)
= 2

c

λ
+ c (znn − g (znn)) + 2 (c− 1)

n−1∑
j=1

znj .

Adding −2 c
λ
− 2 (c− 1)

n∑
j=1

znj + cg (znn) = 0 to the indifference condition of type ann−1, we get

cg
(
znn−1

)
= (2− c) znn ,

and hence

znn =
c

2− c
g
(
znn−1

)
.

Since c
2−c > 1 for c > 1 and g (z) > z, this implies that znn > znn−1. By Lemma A1, we

therefore have g (znn)− znn < g
(
znn−1

)− znn−1. Hence, we also have

cg
(
znn−1

)
= 2

c

λ
+ c (znn − g (znn)) + 2 (c− 1)

n−2∑
j=1

znj + 2 (c− 1) znn−1

> 2
c

λ
+ c

(
znn−1 − g

(
znn−1

))
+ 2 (c− 1)

n−2∑
j=1

znj = cg
(
znn−2

)
,
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where the first equality is the indifference condition of type ann−1 and the second equality the

one for type ann−2. Hence, we can conclude that znn−2 < znn−1.

Likewise, suppose as an inductive hypothesis that zni < zni+1. Consider the indifference

conditions of types ani and ani−1, respectively,

cg (zni ) = 2
c

λ
+ c

(
zni+1 − g

(
zni+1

))
+ 2 (c− 1)

i−1∑
j=1

znj + 2 (c− 1) zni

and

cg
(
zni−1

)
= 2

c

λ
+ c (zni − g (zni )) + 2 (c− 1)

i−1∑
j=1

znj .

By Lemma A1, the value of the right-hand side of the former equation exceeds the value of

the right-hand side of the latter equation, and hence we have shown that zni−1 < zni .

Class II equilibria have the same indifference conditions for the marginal types ani for

i = 2, . . . , n− 1. Hence, the same argument applies.

Note that we do not invoke symmetry of the equilibrium in any way. Therefore, except

for notation, the same argument applies also to asymmetric equilibria.

Claim 1) In any Class I equilibrium the receiver’s induced actions are bounded away

from zero.

Proof: Any equilibrium must be a solution to the forward equation. This requires that

the solution of the forward equation exists and features increasing intervals. This is possible

only if the length of the first interval is bounded away from zero.

The forward equation for a2 is given by

cg (x)− c

λ
=

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1) x. (28)

The left-hand side satisfies limx→0 cg (x) − c
λ
= 0 and is increasing and convex in x, with

slope between c
2
and c. The right-hand side satisfies

lim
a2→x

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1) x = 2 (c− 1) x ≥ 0,

where the inequality is strict for x > 0. Moreover, the right-hand side is increasing and

concave in a2 with limit

lim
a2→∞

c

λ
+ c (a2 − x)− cg (a2 − x) + 2 (c− 1) x =

c

λ
+ 2 (c− 1) x.
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Hence, there exists a forward solution a2 (x) if and only if

2 (c− 1) x < cg (x)− c

λ
<

c

λ
+ 2 (c− 1) x.

There are three cases to distinguish: i) c ∈ (
1, 4

3

]
, ii) c ∈ (

4
3
, 2

)
, and iii) c ≥ 2.

i) For c ∈ (
1, 4

3

]
, there exists a solution a2 (x) for x < x where x is the unique value of

x that satisfies cg (x)− c
λ
= c

λ
+ 2 (c− 1) x. To see this, note that we have 2 (c− 1) ≤ c

2
and

thus 2 (c− 1) ≤ cg′ (x) for all x, since g′ (x) ≥ 1
2
for all x. Therefore, 2 (c− 1) x < cg (x)− c

λ

is satisfied for all x > 0. cg (x)− c
λ
< c

λ
+2 (c− 1) x holds for x small since limx→0 cg (x)− c

λ
=

0 < c
λ
. As x increases, the latter inequality eventually ceases to hold, since c > 2 (c− 1) and

thus cg′ (x) > 2 (c− 1) for x sufficiently large, as g′ (x) tends to one as x→∞.

ii) For c ∈ (
4
3
, 2

)
, there exists a solution a2 (x) for x ∈ (x, x) where x is the uniqe value

of x that satisfies 2 (c− 1) x < cg (x)− c
λ
. Note that for c ∈ (

4
3
, 2

)
we have c

2
< 2 (c− 1) < c.

Since limx→0 g
′ (x) = 1

2
, we have 2 (c− 1) x ≥ cg (x)− c

λ
for x positive and small, so that the

former inequality is violated for x small. Thus, no solution for a2 (x) exists if x is close to

zero.

iii) For c ≥ 2 we have 2 (c− 1) ≥ c and therefore 2 (c− 1) ≥ cg′ (x) for all x. Hence,

2 (c− 1) x ≥ cg (x) − c
λ
for all x so that no solution exists for a2 (x) . This implies that at

most two actions can be induced in equilibrium.

Hence, it follows immediately that x is bounded away from zero for c > 4
3
. Consider

therefore the case where c ∈ (
1, 4

3

]
. Since equilibrium thresholds have to satisfy the increasing

interval property (27), the solution must satisfy a2 (x)−x > x for any equilibrium. We show

that this condition is violated for small x. Suppose that a2−x = x. We define the difference

between the right-hand side and the left-hand side of condition (28) at a2 − x = x as

D (x) ≡ c

λ
+ cx− cg (x) + 2 (c− 1) x+

c

λ
− cg (x) .

If D (x) is positive (negative), then a2 needs to decrease (increase) to satisfy the forward

equation, since the right-hand side of (28) is increasing in a2. We have limx→0 D(x) = 0.

Moreover, the slope of D(x) at x = 0 is D′(x)|x=0 = 2 (c− 1) > 0. Hence, for x small, we

would get a2 (x)−x < x, violating the increasing interval property (27). However, since any

equilibrium needs to have this property, x is bounded away from zero.

Note that this argument extends to any equilibrium with zero as a threshold, not just

symmetric equilibria.
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Claim 2) In any Class II equilibrium all but at most one of the receiver’s induced actions

are bounded away from zero.

Proof: Given x, a2 (x) is the value of a2 that solves

cg (a2 − x)− c

λ
= c (a2 − x) + (c− 2) x. (29)

Note first that no solution a2 (x) exists for c ≥ 2. To see this, note that

lim
a2→x

c

λ
+ c (a2 (x)− x)− cg (a2 (x)− x)− (2− c) x = − (2− c) x ≥ 0

for any c ≥ 2 and any x ≥ 0. Therefore, we consider 1 < c < 2 from now on. Equation (29)

has a solution for x < c
λ(2−c) , which satisfies limx→0 a2 (x) = 0 and moreover,

da2
dx

=
c (1− g′ (a2 − x)) + (2− c)

c (1− g′ (a2 − x))
> 1.

Rearranging (29) we can write

−2(c− 1)

(c− 2)

(
cg (a2 (x)− x)− c

λ
− c (a2 (x)− x)

)
= −2 (c− 1) x.

Given x and a2 (x) , a3 (x) is the value of a3 that solves

cg (a2 (x)− x)− c

λ
=

c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x)) + 2 (c− 1) a2 (x) . (30)

Adding up both equations and rearranging, we can conclude that a3 (x) is the value of a3

that solves

0 =
c

λ
+ c (a3 − a2 (x))− cg (a3 − a2 (x))+4

c− 1

2− c
(a2 (x)− x)− c

2− c

(
cg (a2 (x)− x)− c

λ

)
.

(31)

Note that the right-hand side of this equation is increasing in a3 and that a3 (x) is the unique

value that sets the expression equal to zero. We show that the expression is strictly positive

for a3 − a2 (x) = a2 (x) − x, to get a3 (x) − a2 (x) < a2 (x) − x, in contradiction to the

increasing interval property (27).

Note that the right-hand side of (31) depends only on the differences a2 (x) − x and

a3− a2 (x) . Moreover, note that a2 (x)− x goes to zero as x goes to zero. Let z = a2 (x)− x

and evaluate the rhs of (31) at a3 − a2 (x) = z. We obtain

F (z) ≡ cz + 4
c− 1

2− c
z +

2

2− c

( c

λ
− cg (z)

)
.
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F (z) is concave in z. In the limit as x and hence z tends to zero, we find

F ′ (z)|z=0 =
5c− c2 − 4

2− c
,

where we use that g′ (z)|z=0 = 1
2
. For c ∈ (1, 2), we have 5c − c2 − 4 > 0 and we know

that F (z) > 0 for z small. Since, the right-hand side of (31) is increasing in a3, to restore

equality with zero, a3 needs to decrease, which would imply that a3 (x)−a2 (x) < a2 (x)−x.

However, this contradicts the the increasing interval property (27) of any equilibrium. This

implies that x must be bounded away from zero.

Consider now an asymmetric interval around zero. Fix an arbitrary point a−1 = −y < 0

and an arbitrary point a1 = x > 0. We have Pr
(
θ̃ ∈ (0, x]

)
= 1

2

(
1− e−λx

)
and Pr

(
θ̃ ∈ (−y, 0]

)
=

Pr
(
θ̃ ∈ [0, y)

)
= 1

2

(
1− e−λy

)
. Let δ (x, y) ≡ (1−e−λx)

(1−e−λx)+(1−e−λy)
, then the conditional expec-

tation over the interval [−y, x] is

w (x, y) ≡ δ (x, y)

(
1

λ
+ x− g (x)

)
− (1− δ (x, y))

(
1

λ
+ y − g (y)

)
.

Clearly, w (x, y) � 0 for x � y. The forward solution a2 (x, y) is the value of a2 that solves

−cw (x, y) =
c

λ
+ c (a2 − x)− cg (a2 − x) + (c− 2) x. (32)

Note first that for c ≥ 2 necessarily x < y. However, we need to have y < x to get a solution

for the isomorphic problem on the negative orthant. Hence for c ≥ 2 the forward solution

does not exist in both directions.

Now consider 1 < c < 2. A solution a2 (x, y) exists if and only if

(c− 2) x < −cw (x, y) <
c

λ
+ (c− 2) x.

Note that this is always satisfied for x = y, and hence by continuity also for x close to y.

The condition determining a3 is unchanged,

cg (a2 (x, y)− x)− c

λ
=

c

λ
+ c (a3 − a2 (x, y))− cg (a3 − a2 (x, y)) + 2 (c− 1) a2 (x, y) . (33)

Rearranging (32), we can write

2 (c− 1)

(c− 2)
cw (x, y)− 2 (c− 1)

(c− 2)

(
cg (a2 − x)− c

λ
− c (a2 − x)

)
= −2 (c− 1) x.

22



Adding up with (33) ,

2 (c− 1)

(c− 2)
cw (x, y)

=
c

λ
+ c (a3 (x, y)− a2 (x, y))− cg (a3 (x, y)− a2 (x, y)) + 4

c− 1

2− c
(a2 (x, y)− x)

− c

2− c

(
cg (a2 (x, y)− x)− c

λ

)
.

For x > y, the left-hand side is strictly negative. On the other hand, the right-hand side is

strictly positive at a3 (x, y)− a2 (x, y) = a2 (x, y)− x = z for z small. Hence, the argument

extends to this case. Note that by symmetry of the distribution, the case x < y causes the

isomorphic problem on the negative orthant. Hence, the size of the interval around zero

must be bounded away from zero.

To conclude, we have shown that in a Class I equilibrium, μn
1 > 0, in a Class II equi-

librium, μn
2 > 0 (by definition, we have μn

1 = 0). Finally, in any asymmetric equilibrium,

the lengths of the intervals that are adjacent to the interval containing the prior mean are

bounded away from zero.

Claim 3) Only a finite number of distinct receiver actions are induced in equilibrium.

Proof: Consider a Class I equilibrium first. We show that the solution of the forward

equation violates the increasing interval property (27) for n large enough.

Consider the forward equation for an with length x of the first interval,

an−1 (x)−c
(
1

λ
+ an−1 (x)− g (an−1 (x)− an−2 (x))

)
= c

(
1

λ
+ an − g (an − an−1 (x))

)
−an−1 (x) .

There is a unique value an (x) of an that solves this equation. Let an be such that an −
an−1 (x) = an−1 (x) − an−2 (x) ≡ z, for some z > 0. Let D (z; x) denote the difference

between the right-hand side and the left-hand side of the forward equation evaluated at z,

D (z; x) = 2 (c− 1) an−1 (x) + c

(
2

λ
+ z − 2g (z)

)
.

If D (z; x) > 0, then an needs to decrease to satisfy the forward equation. Note that 2
λ
+

z − 2g (z) is strictly negative for z > 0 and 2 (c− 1) an−1 (x) is strictly positive. From the

first part of the proposition, we know that x is bounded away from zero. Moreover, x has to
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satisfy the increasing interval property (27) for a2 (x)− x > x. Suppose that the increasing

interval property is satisfied up to the interval an−1 (x)− an−2 (x) . (If not, then we are done

already.) If all intervals up to an−1 (x) − an−2 (x) satisfy the increasing interval property,

then an−1 (x) ≥ (n− 1) x. Note that x does not depend on n. Hence, for any finite z, there

is a n (z, x) such that D (z; x) > 0 for all n ≥ n (z, x) , implying that the increasing interval

property is violated.

For the Class II equilibrium, note that the forward equation for an (for n ≥ 3) is the same

as above. The only difference is the value of an−1 (x) and the lower bound on x. However,

an−1 (x) ≥ x+ (n− 2) (a2 (x)− x) . Note again that x and a2 (x) do not depend on n.

The same argument can be given for the asymmetric case. Hence, the same conclusions

obtain.

Appendix C

Proof of Lemma 4. We have

Eμ̃ω̃u
r (cμ̃, ω̃) = −Eμ̃ω̃

[
(cμ̃− ω̃)2

]
= −Eμ̃ω̃

[
c2μ̃2 − 2cω̃μ̃− ω̃2

]
= c2Eμ̃ [μ̃]

2 − σ2.

The last equality follows from the fact that Eμ̃ω̃ [ω̃μ̃] = cEμ̃

[
μ̃2

]
, which we now demonstrate.

Let j = 1, . . . , J label the partition intervals in the natural order. Let Θj denote a generic

interval, μj the mean over that interval, and define Pr (Θj) ≡ Pr
(
θ̃ ∈ Θj

)
. Moreover, let

fω̃θ̃ (ω, θ) denote the joint density of ω̃ and θ̃. We can write

Eμ̃ω̃ [ω̃μ̃] = Eμ̃

[
E ω̃|μ̃=μ [ ω̃μ̃| μ̃ = μ]

]
=

∑
j

Pr (Θj)
[
E ω̃|μ̃=μj

[
ω̃μ̃| μ̃ = μj

]]

=
∑
j

Pr (Θj)μj

∫
ωf ω̃|Θj

(
ω| θ̃ ∈ Θj

)
dω,

where

f ω̃|Θj

(
ω| θ̃ ∈ Θj

)
=

∫
Θj

fω̃θ̃ (ω, θ)

Pr (Θj)
dθ.

Interchanging the order of integration (Fubini’s theorem) gives us,∑
j

Pr (Θj)μj

∫
ω

∫
Θj

fω̃θ̃ (ω, θ)

Pr (Θj)
dθdω =

∑
j

Pr (Θj)μj

∫
Θj

∫
ω
fω̃θ̃ (ω, θ)

Pr (Θj)
dωdθ.
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Dividing and multiplying by f (θ) , recognizing that
fω̃θ̃(ω,θ)

f(θ)
= f ω̃|θ̃=θ

(
ω| θ̃ = θ

)
, and apply-

ing (4) (Lemma 3 ii)), we have

∑
j

Pr (Θj)μj

∫
Θj

∫
ω
fω̃θ̃ (ω, θ)

Pr (Θj)
dωdθ =

∑
j

Pr (Θj)μj

∫
Θj

∫
ωfω|θ̃=θ

(
ω̃| θ̃ = θ

)
dω

f (θ)

Pr (Θj)
dθ

=
∑
j

Pr (Θj)μj

∫
Θj

cθ
f (θ)

Pr (Θj)
dθ

= c
∑
j

Pr (Θj)μ
2
j .

Substituting back and simplifying delivers the result.

Proof of Proposition 3. Preliminaries on Probabilities

Recall that f (θ) and F (θ) denote the pdf and cdf of θ̃. For k = 2, . . . , n, define p̂k−1 as the

probability that θ̃ ∈ [ak−2, ak−1] conditional on θ̃ ≥ ak−2,

p̂k−1 ≡ F (ak−1)− F (ak−2)
1− F (ak−2)

.

Accordingly, 1− p̂k−1 =
1−F (ak−1)

1−F (ak−2)
is the probability that θ̃ ≥ ak−1, conditional on θ̃ ≥ ak−2.

We can write these probabilities as

p̂k−1 =
E

[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− E

[
θ̃
∣∣∣ θ̃ ≥ ak−2

]
E

[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− μk−1

(34)

and

1− p̂k−1 =
E

[
θ̃
∣∣∣ θ̃ ≥ ak−2

]
− μk−1

E

[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− μk−1

.

To see this, note that

(F (ak−1)− F (ak−2))μk−1 =

ak−1∫
ak−2

θf (θ) dθ =

∞∫
ak−2

θf (θ) dθ −
∞∫

ak−1

θf (θ) dθ

= (1− F (ak−2))E
[
θ̃
∣∣∣ θ̃ ≥ ak−2

]
− (1− F (ak−1))E

[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
.
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Hence

p̂k−1μk−1 = E

[
θ̃
∣∣∣ θ̃ ≥ ak−2

]
− (1− p̂k−1)E

[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
.

Solving for p̂k−1 delivers the desired conclusion.

Observe that (1− p̂k−2) · p̂k−1 is the probability of the event θ̃ ∈ [ak−2, ak−1] conditional

on θ̃ ≥ ak−3, and (1− p̂k−2) · (1− p̂k−1) is the probability of the event θ̃ ≥ ak−1 conditional

on θ̃ ≥ ak−3. To see this, note that 1− p̂k−2 = Pr
[
θ̃ ≥ ak−2

∣∣∣ θ̃ ≥ ak−3
]
= 1−F (ak−2)

1−F (ak−3)
and recall

that p̂k−1 =
F (ak−1)−F (ak−2)

1−F (ak−2)
.

Induction

Induction Basis:

Recall that μ+ ≡ E

[
θ̃
∣∣∣ θ̃ ≥ 0

]
. Let the distribution satisfy E

[
θ̃
∣∣∣ θ̃ ≥ θ

]
= μ+ + α · θ for

all θ ≥ 0 and for some constant α. Note that for the Laplace distribution, α = 1. Finally,

define

ĉ ≡ αc.

Assume that ĉ ∈ (0, 2). Let

Xn
n

(
ann−1

) ≡ p̂nn
(
ĉμn

n − ĉμ+

)2
+ (1− p̂nn)

(
ĉμn

n+1 − ĉμ+

)2
.

Xn
n

(
ann−1

)
is equal to ĉ2 times the expected squared deviation of the truncated means from

μ+, conditional on θ̃ ≥ ann−1. Substituting for p̂nn from (34) , and multiplying and dividing by

ĉ for convenience, we can write

Xn
n

(
ann−1

)
=

ĉμn
n+1 − ĉE

[
θ̃
∣∣∣ θ̃ ≥ ann−1

]
ĉμn

n+1 − ĉμn
n

(
ĉμn

n − ĉμ+

)2

+
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ann−1

]
− ĉμn

n

ĉμn
n+1 − ĉμn

n

(
ĉμn

n+1 − ĉμ+

)2
.

Expanding the numerators of the probabilities by ±ĉμ+, reorganizing according to common

factors, and simplifying (using lengthy but straightforward computations), we can write

Xn
n

(
ann−1

)
= An

n +Bn
n ,

where

An
n ≡

(
ĉμn

n+1 − ĉμ+

) (
ĉμ+ − ĉμn

n

)
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and

Bn
n ≡

(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ann−1

]
− ĉμ+

) ((
ĉμn

n + ĉμn
n+1

)− 2ĉμ+

)
.

We can further simplify the terms An
n and Bn

n , using the indifference condition of the marginal

type ann (multiplied by α), ĉμn
n + ĉμn

n+1 = 2αann and the linearity of the tail conditional

expectation, αann = μn
n+1 − μ+. Substituting the latter condition into the former one, and

solving for μn
n+1, we obtain

ĉμn
n + 2μ+

2− ĉ
= μn

n+1.

Substituting back into An
n and Bn

n , and simplifying, we have shown that

Xn
n

(
ann−1

)
=

ĉ

2− ĉ

(
ĉμn

n + ĉμ+

) (
ĉμ+ − ĉμn

n

)
+2

(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ann−1

]
− ĉμ+

)(
ĉ

2− ĉ

(
μn
n + μ+

)− ĉμ+

)
.

Induction hypothesis:

Xn
k

(
ank−1

)
=

ĉ

2− ĉ

(
ĉμ+ + ĉμn

k

) (
ĉμ+ − ĉμn

k

)
+2

(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμ+

)(
ĉ

2− ĉ

(
μ+ + μn

k

)− ĉμ+

)
.

Inductive step:

By definition

Xn
k−1

(
ank−2

)
= p̂nk−1

(
ĉμn

k−1 − ĉμ+

)2
+

(
1− p̂nk−1

)
Xn

k

(
ank−1

)
.

Substituting for the probability distribution from (34) and using the inductive hypothesis,

we have

Xn
k−1

(
ank−2

)
=

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

(
ĉμn

k−1 − ĉμ+

)2

+
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
− ĉμn

k−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

(
ĉ

2−ĉ
(
ĉμ+ + ĉμn

k

) (
ĉμ+ − ĉμn

k

)
+2

(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμ+

) (
ĉ

2−ĉ
(
μ+ + μn

k

)− ĉμ+

)
)
.

Expanding the numerators of the probabilities by ±ĉμ+ and reorganizing according to com-

mon factors, we can write

Xn
k−1

(
ank−2

)
= An

k−1 +Bn
k−1

27



with

An
k−1 ≡

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμ+

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

(
ĉμn

k−1 − ĉμ+

)2
+

ĉμ+ − ĉμn
k−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

·
(

ĉ

2− ĉ

(
ĉμ+ + ĉμn

k

) (
ĉμ+ − ĉμn

k

)
+ 2

(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμ+

)(
ĉ

2− ĉ

(
μ+ + μn

k

)− ĉμ+

))

and

Bn
k−1 ≡

ĉμ+ − ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

(
ĉμn

k−1 − ĉμ+

)2
+

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
− ĉμ+

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

·
(

ĉ

2− ĉ

(
ĉμ+ + ĉμn

k

) (
ĉμ+ − ĉμn

k

)
+ 2

(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμ+

)(
ĉ

2− ĉ

(
μ+ + μn

k

)− ĉμ+

))
.

We consider each term in sequence. We first show that

An
k−1 =

ĉ

2− ĉ

(
ĉμ− ĉμn

k−1
) (

ĉμ+ ĉμn
k−1

)
.

The indifference condition of type ank−1,ĉμ
n
k = 2αank−1 − ĉμn

k−1, allows us to substitute for

ĉμn
k . Hence,

An
k−1 =

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμ+

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

(
ĉμn

k−1 − ĉμ+

)2
+

ĉμ+ − ĉμn
k−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

·
(

ĉ

2− ĉ

(
ĉμ+ + 2αank−1 − ĉμn

k−1
) (

ĉμ+ −
(
2αank−1 − ĉμn

k−1
))

+2
(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− ĉμ+

)(
1

2− ĉ

(
ĉμ+ 2αak−1 − ĉμn

k−1
)− ĉμ+

))
.

Collecting terms with the common factor
ĉE[ θ̃|θ̃≥ank−1]−ĉμ+

ĉE[ θ̃|θ̃≥ank−1]−ĉμn
k−1

(
ĉμn

k−1 − ĉμ+

)
and simplifying,

we get

An
k−1 =

ĉμ+ − ĉμn
k−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

(
ĉ

2− ĉ

((
ĉμ+ − ĉμn

k−1
) (

ĉμ+ + ĉμn
k−1

)
+

(
−4 (αank−1)2 + 4αank−1ĉμ

n
k−1

))

+
(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμ+

)(
ĉ

2− ĉ

(
ĉμn

k−1 + ĉμ+

)
+

4

2− ĉ

(
αank−1 − ĉμn

k−1
)))

.
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It is easy to see that

ĉμ+ − ĉμn
k−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

ĉ

2− ĉ

(
ĉμ+ − ĉμn

k−1
) (

ĉμ+ + ĉμn
k−1

)

+
ĉμ+ − ĉμn

k−1

ĉE
[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμn

k−1

(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−1

]
− ĉμ+

) ĉ

2− ĉ

(
ĉμn

k−1 + ĉμ+

)

=
ĉ

2− ĉ

(
ĉμ+ − ĉμn

k−1
) (

ĉμ+ + ĉμn
k−1

)
.

Moreover, since ĉE
[
θ̃
∣∣∣ θ̃ ≥ ak−1

]
− ĉμ+ = αĉank−1, all the terms involving ank−1 exactly cancel

out. Hence, the desired conclusion follows.

The term Bn
k−1 is simplified using the same essential steps: the indifference condition

of the marginal type to substitute for ĉμn
k , collecting terms with common factors and terms

that add up conveniently, and the linear tail conditional expectation. Hence we can conclude

that

Bn
k−1 = 2

(
ĉE

[
θ̃
∣∣∣ θ̃ ≥ ank−2

]
− ĉμ+

)(
ĉ

2− ĉ

(
μ+ + μn

k−1
)− ĉμ+

)
.

This completes the induction.

Building on the characterization, we can compute E
[
μ̃2

]
in any equilibrium.

Finite Class I: In a Class I equilibrium, an0 = 0. Hence,

Xn
1 (an0 ) =

ĉ

2− ĉ

(
ĉμ+ − ĉμn

1

) (
ĉμ+ + ĉμn

1

)
.

Recalling the definition of Xn
k−1

(
ank−2

)
, we also have

Xn
1 (an0 ) = ĉ2

n+1∑
i=1

p̂ni
(
μn
i − μ+

)2
= ĉ2

n+1∑
i=1

p̂ni (μ
n
i )

2 − ĉ2μ2
+,

where the second equality follows from the fact that
n+1∑
i=1

p̂ni
(
μn
i − μ+

)
= 0. Solving for

n+1∑
i=1

p̂ni (μ
n
i )

2 between these equations, we get

n+1∑
i=1

p̂ni (μ
n
i )

2 =
Xn

1 (an0 )

ĉ2
+ μ2

+ =
2

2− ĉ
μ2
+ −

ĉ

2− ĉ
(μn

1 )
2 .
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For the uni-dimensional Laplace distribution with density

f (θ) =
1

2
λe (−λ |θ|) ,

the scale parameter λ determines all the relevant moments of the distribution. In par-

ticular, μ+ = 1
λ
and σ2

θ = 2
λ2 = 2μ2

+. Moreover, α = 1. Hence, we have
n+1∑
i=1

p̂i (μ
n
i )

2 =

1
2−cσ

2
θ − c

2−c (μ
n
1 )

2 . By the symmetry of the distribution, Pr
[
θ̃ ≥ 0

]
= Pr

[
θ̃ ≤ 0

]
= 1

2
and

E

[
μ̃2

∣∣ θ̃ ≥ 0
]
= E

[
μ̃2

∣∣ θ̃ ≤ 0
]
, so that

E
[
μ̃2

]
=

E

[
μ̃2

∣∣ θ̃ ≥ 0
]
+ E

[
μ̃2

∣∣ θ̃ ≤ 0
]

2
= E

[
μ̃2

∣∣ θ̃ ≥ 0
]
.

Hence, we have shown that in a Class I equilibrium

E
[
μ̃2

]
=

1

2− c
σ2
θ −

c

2− c
(μn

1 )
2 .

Finite Class II: In a Class II equilibrium, a0 is eliminated. We have

Xn
2 (an1 ) =

ĉ

2− ĉ

(
ĉμ+ − ĉμn

2

) (
ĉμ+ + ĉμn

2

)
+ 2

(
ĉE [θ| θ ≥ an1 ]− ĉμ+

)( ĉ

2− ĉ

(
μ+ + μn

2

)− ĉμ+

)

=
ĉ

2− ĉ

(
ĉμ+ − ĉμn

2

) (
ĉμ+ + ĉμn

2

)
+ 2αĉan1

(
ĉ

2− ĉ

(
μ+ + μn

2

)− ĉμ+

)
.

Using the definition of Xn
2 and then the fact that

n+1∑
i=2

p̂ni μ
n
i = μ+ + αan1 for a distribution

with an linear tail conditional expectation, we get

Xn
2 (an1 )

ĉ2
=

n+1∑
i=2

p̂ni (μ
n
i )

2 − 2μ+

n+1∑
i=2

p̂ni μ
n
i + μ2

+

=
n+1∑
i=2

p̂ni (μ
n
i )

2 − μ2
+ − 2αan1μ+.

Hence
n+1∑
i=2

p̂ni (μ
n
i )

2 =
Xn

2 (an1 )

ĉ2
+ μ2

+ + 2αan1μ+

=
2

2− ĉ
μ2
+ −

ĉ

2− ĉ
(μn

2 )
2 +

2αan1
2− ĉ

(
μ+ + μn

2

)
.
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Now, we may write

E
[
μ̃2

]
= Pr

[
θ̃ ≥ an1

]
· E

[
μ̃2

∣∣ θ̃ ≥ an1

]
+ Pr

[
θ̃ ≤ −an1

]
· E

[
μ̃2

∣∣ θ̃ ≤ −an1]
= 2Pr

[
θ̃ ≥ an1

]
· E

[
μ̃2

∣∣ θ̃ ≥ an1

]
=

(
1− Pr

[
θ̃ ∈ [−an1 , an1 )

])
· E

[
μ̃2

∣∣ θ̃ ≥ an1

]
.

The first equality uses the fact that μn
1 = 0 in a Class II equilibrium, and the other

two equalities use the symmetry of the distribution, which implies that E

[
μ̃2

∣∣ θ̃ ≥ an1

]
=

E

[
μ̃2

∣∣ θ̃ ≤ −an1] and Pr
[
θ̃ ≥ an1

]
= Pr

[
θ̃ ≤ −an1

]
. Hence, we have shown that

E
[
μ̃2

]
=

(
1− Pr

[
θ̃ ∈ [−an1 , an1 )

]) [
2

2− ĉ
μ2
+ −

ĉ

2− ĉ
(μn

2 )
2 +

2αan1
2− ĉ

(
μ+ + μn

2

)]
.

The indifference condition of the marginal type an1 requires that cμn
2 − an1 = an1 . Substituting

for 2an1 = cμn
2 , noting that ĉ = αc, and simplifying, we obtain

E
[
μ̃2

]
=

(
1− Pr

[
θ̃ ∈

[
−cμn

2

2
,
cμn

2

2

)])[
2

2− ĉ
μ2
+ +

ĉ

2− ĉ
μn
2μ+

]
,

which coincides with expression (9) for α = 1 and σ2
θ = 2μ2

+, the Laplace case.

Limit: In a limit equilibrium resulting from the limit of a Class I equilibrium, the

sequence (μn
1 )n satisfies limn→∞ μn

1 = 0. In a limit equilibrium resulting from the limit of a

Class II equilibrium, the sequences (an1 )n and (μn
2 )n satisfy limn→∞ an1 = 0 and limn→∞ μn

2 =

0. Hence, in the limit

E
[
μ̃2

]
=

2

2− ĉ
μ2
+.

Substituting for the Laplace case, α = 1 and σ2
θ = 2μ2

+, gives expression (10) .

In the limit equilibrium resulting from the limit of finite Class I and Class II equilibria, if

it exists, E
[
μ̃2

]
is maximized. The right-hand side of (10) exceeds the right-hand side of (8)

for all finite n, since μn
1 > 0 for finite n. We now show that the right-hand side of (10) also

exceeds the right-hand side of (9) for all finite n. Noting that
(
1− Pr

[
θ̃ ∈

[
− cμn

2

2
,
cμn

2

2

)])
=

exp
(
−λ cμn

2

2

)
= exp

(
− cμn

2

2μ+

)
,

2

2− ĉ
μ2
+ >

(
1− Pr

[
θ̃ ∈

[
−cμn

2

2
,
cμn

2

2

)])[
2

2− ĉ
μ2
+ +

ĉ

2− ĉ
μn
2μ+

]
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is equivalent to

1− exp

(
− cμn

2

2μ+

)
> exp

(
− cμn

2

2μ+

)
cμn

2

2μ+

.

This is true for all μn
2 > 0 since the function exp (−x) (1 + x) satisfies exp (−x) (1 + x) < 1

for all x > 0.

Proof of Lemma 5. We derive here the density of the marginal distribution of θ̃. Let

f̂ (θ;α) and F̂ (θ;α) denote the density and cdf of the distribution, conditional on θ̃ ≥ 0.

After an integration by parts, (5) is equivalent to

μ+ + αθ = θ +

θ∫
θ

(
1− F̂ (t;α)

)
dt

1− F̂ (θ;α)
. (35)

Define q (θ) =
θ∫
θ

(
1− F̂ (t;α)

)
dt and note that q̇ ≡ ∂q(θ)

∂θ
= −

(
1− F̂ (θ;α)

)
. In terms of

these functions, we can write (35) as the ordinary differential equation

q̇

q
=

1

(1− α) θ − μ+

with initial condition q (0) = μ+. The solution is

q (θ) =
(
μ+

)− α
1−α

(
μ+ − θ (1− α)

) 1
1−α .

To satisfy limθ→θ F̂ (θ;α) = 1, we have θ =
μ+

1−α for α < 1. For α ≥ 1, the support is R
+.

Differentiating twice, we obtain the density

f̂ (θ;α) = α
(
μ+

)− α
1−α

(
μ+ − θ (1− α)

) 2α−1
1−α . (36)

For future reference, the cdf is

F̂ (θ;α) = 1− (
μ+

)− α
1−α

(
μ+ − θ (1− α)

) α
1−α .

The density is square integrable since α < 2. Straightforward integration reveals that the

variance v2+ of the distribution is v2+ = α
2−αμ

2
+.
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Consider now the density on the whole support. By symmetry and the variance decom-

position, σ2
θ = v2+ + μ2

+, so

σ2
θ =

2

2− α
μ2
+.

Hence, we get expression (14).

Proof of Proposition 4. Note that the first part is a corollary to Proposition 3. So,

we only need to verify the upper bound on E
[
μ̃2

]
in any symmetric equilibrium. For Class

I equilibria this is obvious, so consider Class II equilibria. Note that Pr
[
θ̃ ∈ [−an1 , an1 )

]
=

F̂ (an1 ;α) . Moreover,

F̂ (θ;α) = 1− (
μ+

)− α
1−α

(
μ+ − θ (1− α)

) α
1−α .

Hence,
2

2− ĉ
μ2
+ >

(
1− Pr

[
θ̃ ∈

[
−cμn

2

2
,
cμn

2

2

)])[
2

2− ĉ
μ2
+ +

ĉ

2− ĉ
μn
2μ+

]
is equivalent to(
1− (

μ+

)− α
1−α

(
μ+ −

cμn
2

2
(1− α)

) α
1−α

)
2

2− ĉ
μ2
+ >

(
μ+

)− α
1−α

(
μ+ −

cμn
2

2
(1− α)

) α
1−α ĉ

2− ĉ
μn
2μ+.

Simplifying, we obtain

1 >

(
1− cμn

2

2μ+

(1− α)

) α
1−α

(
1 + α

cμn
2

2μ+

)
.

To see this is always satisfied, consider the function h (x) ≡ (1− x (1− α))
α

1−α (1 + αx) .

Note that h (0) = 1. Moreover, h′ (x) < 0 for x > 0.
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