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Appendix A: Proofs

In this Appendix, we prove the results stated in the main text. For all the proofs that regard the New-
Keynesian model (as opposed to the abstract analysis in Section V), we use a tilde over a variable to denote
the log-deviation of this variable from its steady-state counterpart, and reserve the non-tilde notation for the
original variables. The only exception to this rule is that we let @;; = %, where a;; is consumer 4's initial
asset position at period-t and ¢* is steady-state spending. This takes care of the issue that the log-deviation of
the asset position is not well defined because the steady-state value is «* = 0 and is standard in the literature
(e.g., Woodford, 2011).

Proof of Proposition 1. We proceed in four steps, starting with the behavior of the consumers, proceeding
with the behavior of the firms, and concluding with market clearing and with the derivation of the two beauty

contests shown in the main text.

Step 1: Consumers. Consider an arbitrary consumer ¢ € Z.. Let a;; = R;—15;4—1/7 denote consumer
i’s initial asset position at period-t. By condition (2), the following intertemporal budget constraint holds in

all periods and all states of Nature:'
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'One should think of the state of Nature as a realization of the exogenous payoff relevant shocks along with the cross-sectional
distribution of the exogenous signals (information) received by the agents.



Taking the log-linear approximation of the above around the steady state, we get the following:

+o0 +oo
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k=0 k=0

where Q is the ratio of labor income to total income in steady state. The consumer’s optimality conditions,

on the other hand, can be expressed as follows:
_ 1/(. 1.
Nt = — (wi,t — Ci,t) ; (28)
€ o

Cit = Eiy [5i,t+1 —0 (Rt — ﬁt-&-l)} = Eit[Cipy1 — 0T141], (29)

where E; ; [-] is the expectation of consumer i in period ¢. The first condition describes optimal labor supply;
the second is the individual-level Euler condition, which describes optimal consumption and saving.

At this point, it is worth emphasizing that our analysis preserves the standard Euler condition at the
individual level. This contrasts with McKay, Nakamura and Steinsson (2016, 2017) and Werning (2015),
where liquidity constraints cause this condition to be violated for some agents, as well as with Gabaix
(2016), where a cognitive friction causes this condition to be violated for every agent. We revisit this point
in Appendix C, when we show that our analysis rationalizes a discounted Euler condition at the aggregate
level, in spite of the preservation of the standard condition at the individual level.

Combining conditions (27), (28) and (29), we obtain the optimal expenditure of consumer i in period ¢

as a function of the current and the expected future values of wages, dividends, and real interest rates:

Cit = (150-6#)50 it — O Z BYEi g [Frsr] (30)
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This condition, which is a variant of the consumption function seen in textbook treatments of the Permanent
Income Hypothesis,? contains two elementary insights. First, all future variables—wages, dividends, and
real interest rates—are discounted. Second, the current spending of a consumer depends on the present
value of her income, which in turn depends, in equilibrium, on the future spending of other consumers.
The first property guarantees that the decision-theoretic, or partial-equilibrium, effect of forward guid-
ance diminishes with the horizon at which interest rates are changed; the second represents a dynamic

strategic complementarity, which is the modern reincarnation what was known as the “income multiplier”

To see this more clearly, suppose that initial assets are zero, that the real interest rate is expected to equal the discount rate
at all perlods and that labor supply is fixed (¢ — oo). Condition (30) then reduces to & = (1 — 8) [Qi + (1 — Q) € 4] +
(1= B) 342 B¥ By [ e1n + (1 — Q) &,441] , which means that optimal consumption equals “permanent income” (the annuity
value of current and future income). Relative to this benchmark, condition (30) adjusts for three factors: for the endogeneity of labor
supply, which explains the different weights on wages and dividends; for initial assets, which explains the first term in condition
(30); and for the potential gap between the real interest rate and the subjective discount rate, which explains the second term.



in the IS-LM framework. We elaborate on these two points more in the main text. For the time being, we
aggregate condition (30), and use the facts that assets average to zero and that future idiosyncratic shocks

are unpredictable, to obtain the following condition for aggregate spending:
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where Ef [-] henceforth denotes the average expectation of the consumers in period t.

Step 2: Firms. Consider a firm j € Zy that gets the chance to reset its price during period ¢. The optimal

reset price, denoted by p/*, is given by the following:

P = (1-p0) {(Tﬁ,C’Z +pr) + Z (59)k Ej+ [TﬁCZ+k +15t+k] } + (1 - p0) i, (32)

k=1

where Ejf’t [] denotes the firm’s expectations in period t, mic] = @/ is its real marginal cost in period ¢, and

fi] is the corresponding markup shock. The interpretation of this condition is familiar: the optimal “reset”
price is given by the expected nominal marginal cost over the expected lifespan of the new price, plus the
markup.? Aggregating the above condition, using the fact that the past price level is known and that inflation
is given by 7, = (1 — 0) (p; — pi—1), where pf = fIf p1*dj, we obtain the following condition for the level of

inflation in period ¢:

+oo +oo
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k=1 k=1
where s = w and E/ [] henceforth denotes the average expectation of the firms. The latter may or

may not be the same as the average expectation of the consumers.

Step 3: Market Clearing, Wages, and Profits. Because the final-good sector is competitive and observes
all the relevant prices,* and because the technology satisfies (3) and (4), we have that ; = fIf pldj and §; =
fIf g{dj = fzf ZN{dj. The latter, together with market clearing in the labor market, gives g, = 7, = fIc T ¢di.

Market clearing in the market for the final good, on the other hand, gives

Pl
pt
and aggregating it gives é&; = — 51, + §:. Combining all these facts with (28), the optimality condition for

Finally, note that the real profit of monopolist j at period ¢ is given by ¢/ = ( - w{) y! . Log-linearizing

*Note that future markups are unpredictable.
*Recall that the we have allowed the entire price vector, (p});eo,1], to be common knowledge at period t.



labor supply, we arrive at the following characterization of the aggregate wages and the profits:

. . LY . . Qet2) | ~ . L
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Step 4: Beauty Contests. Condition (31), which follows merely from consumer optimality, pins down
aggregate spending as a function of the average beliefs of wages, profits, interest rates, and inflation. As we
impose REE, a consumer can infer that (34) holds, aggregate spending can then be expressed as a function of
the consumers’ average beliefs of interest rates, of inflation, and of aggregate spending itself. This is condition
(5), the consumption beauty contest. Similarly, combining (33) and (34), we can express aggregate inflation
as a function of the firms” average beliefs of aggregate spending and of inflation itself. This is condition (6),

the inflation beauty contest.

Proof of Proposition 2. Because ©; is zero for all t > T, a; is also zero for all t > T.> Using this fact
along with the fact that ©; is zero also for ¢ < T, and iterating on condition (12), we can obtain a; for all
t < T as a linear function of the average first- and higher-order beliefs about ©r; see, e.g., Lemma 2 below
for an explicit characterization in the case without learning. When information is complete, all agents share
the same first-order beliefs about ©7 with probability one, and this fact is itself common knowledge. It
follows that higher-order beliefs collapse to first-order beliefs and, therefore, a; becomes a linear function
of E[©r], the commonly shared expectation of ©7. Now take any ¢ < 7 < T and any pair of agents 1, j.
Complete information guarantees that F;;[E;[O7]] = E[O©r] = E;;[E-[©7]] with probability one. And
since we already argued that, in equilibrium, a, is a known linear function of E.[©r], it is also the case
Eitla;] = Ejt]a.]. Thatis, complete information (in the sense of Definition 1) rules out imperfect consensus

(in the sense of Definition 2).
Proof of Lemma 1. Lemma 1 directly follows from the argument in main text.

Proof of Lemma 2. We prove the following stronger result: there exists positively-valued coefficients

{Xn.k}k>1,1<h<k, such that, forany t < T — 1,

~

—t

a; = {Xh,T—tEf [@T]}, (35)
h=1

where each x,  is a function of (a,7, h, k) and Ef' [-] is defined recursively by E} [[| = E;[-] and E}' [[] =
E; [Ef‘l []} for every h > 2. We now prove this claim by induction. First, consider t = T'— 1. From

>As mentioned in main text, we assume limy .o Y Ei ¢ [as4x] = 0 and rule out “extrinsic bubbles.”



1 = O7° and condition (16), we have ar_1 = (v + ) Er_1 [O7]. It follows that condition (35) holds for

X1,1 =7+

Now, pick an arbitrary ¢ < T — 2, assume that condition (35) holds for all 7 € {t + 1,...,7 — 1}, and let

us prove that it also holds for ¢. From condition (16), we have

T—t-1
a =" (v+a)E[Or] +a Y 4"
k=1
T—t—1T—t—h B
,YT t— 1(")/—!—@ E, [©7] + Z Z (a k— 1Xh,Tftf/€) Ef-i-l O],
h=1 k=1

T—t—k B
{Xh,T—t—k:EZch [GT] }

h=1

where the second line uses Assumption 1 (no learning). As a result, condition (35) holds for

T—t—h

Tty ta) and o= Y. o Wnroy he{l,T—t—1}.  (37)
k=1

X1,7-t =7
This finishes the proof.

Proof of Theorem 1. This theorem builds on Proposition 3 and Theorem 2, which are proved in the
sequel. We invite the reader to read first the proofs of these two results. Here, we prove Theorem 1 taking
for granted these results.

Part (i) follows directly from projecting ag on Ey[©r] and letting ¢ be the coefficient of this projection
and e the residual.

To prove part (ii), note that from Lemma 2, we have ¢r = Zz::l Xn,1Bnr, Which is condition (20) in the
main text. Together with the expression of ¢7., condition (18), and the fact that 5, < 1 for all h > 2 (from
Proposition 3), we have ¢ /¢% < 1forall T > 2.

To prove part (iii), from condition (20), we have ¢ /¢ = [Zh 1 Sh1 (Bh — Brs1) + ST,T,BT} /sTr and

dri1/ P = [Zh;l shr+1 (Bh = Bre1) + s7141 (Br — Bryr) + 3T+1,T+1/8T+1} /$7+41,7+1. From Proposi-

tion 3 we know S, > Bj,41 for all h. Together with Theorem 2, we have, forall 7' > 1,

-1
¢r1/ P41 < Z shr+1 (Bh — Bry1) + s7+1,741 (Br — Bra) + 8T+1,T+15T+1] /ST41,7+1
Lh—1

-1

= Z Sh,r+1 (B — Br1) + ST+1,T+1ﬂT] /ST4+1,17+1

Lh=1

-1

<UD snr (Br — Bra) + ST,TﬁT] /sT,r = é1/d7-

Lh=1

®As mentioned in main text, we assumelimy_ o v* E; ¢ [as+1] = 0 and rule out “extrinsic bubbles.” Together with the fact © is
zero for all t > T, a; is also zero for all t > T. As a result, ar = O from condition (12).



Proof of Proposition 3. Note that every agent i's signal at period 0 is drawn i.i.d. from the aggregate
state of the Nature (for simplicity, we call this property “symmetry” in the rest of this proof), we have, for all
h>2

Cov (Eg[eT], 7l [@T]) — Cov (Eo [Eg—l[eT]] B} [@T]) — Cov ( 0 [Eh l[eT]] Eio [EL [@T]])
— Cow (ngl[@T], Eig [1%[(%]]) — Cov (ngl[@T], ‘g[@T]) :

where the second and the third equality come from the law of iterated expectations. By the same argument,

we have, forall h > 2and j € {1,2,---h — 1},
Cov (EQ[@T], ‘3[@T}) ~ Cov (Eg*j [©7], EI* [@ﬂ) . (38)
From the previous condition, for k > 1, we have”

Cov (EbO1). E§7101])  Cov (BX(O1), Bip [ELOF)])  Var (B o [Ehfer])
Var (E§[©7]) B Var (E{[©1]) - Var ( [©7])

Bor = >0 Vi, (39)

where the second equation follows from symmetry and the last equation follows from the law of iterated

expectations. Similarly, for £ > 1, we have

Bok—1 =

Cov (Ek[@T], Ek[@T]) Var (Ek[@T])
0 0 = 31 > 0. (40)

Var (E{[©1]) - Var (

Now, note that for any random variable X, and any information I, according to the law of total variance,
we have:
Var (E[X|I]) < Var(X).

Asaresult, Var (E§™(07]) = Var (E [Eio [E§[01]] |s]) < Var (Eio [E§[01]]) and Var (Eio [E§[O1]]) =
Var (E [E§[O7]|w;]) < Var (EE[©r]), where, as a reminder, s is the aggregate state of the Nature and
wj is the information of agent i. Together with conditions (39) and (40), we know that, for all & > 1,

Bok+1 < Bar < PBar—1. This proves that, for all h > 2, 8, € [0,1] and is weakly decreasing in h.
Var(Eio[Eo[©7]])
_ N Var(Eé[@T])
B1=1.1f B = B1 = 1, we have Var (E;j [Eo[O7]]) = Var (Eo[©1]) for all i. This means that

Now we try to prove 3}, is strictly decreasing in h. Note that from condition (39), 82 =

VCLT (Ei,O [E_'()[@T]] — E_'() [@T]) = VCL?” (Eﬁo [EO[@TH) -+ VCL?” (EO[@TD — QCOU (EZ',Q [E()[@T]] ,EQ[@T])
=Var (EO[@T]) Var ( 1,0 [E()[@T]]) = 0, (41)

"Note that under incomplete information, we have Var (E5[©1]) > 0, so all B¢ is well defined. To prove it, note that if
Var (E5[©7]) = 0, together with the fact that the mean of O is zero, we have Eg[©r] = 0 almost surely. As a result, we have
Var (Ei,() [@T]) =Cov (@T7 Ei,() [@T]) = Cov (9T7 Eo [@T]) = 07 and Ei,o [GT] =0= Ejyo [@T] almost surely fOl’ aII ’L,_] This is
inconsistent with the definition about incomplete information in Definition 1.



where the second equality follows from the law of iterated expectations. As a result, for all i, E; o [Eo[@TH =

Ey[©r] almost surely. We henceforth have that

Var (Ey [©1]) = Cov (07, E] [O7]) = Cov (01, Ei o [Eo [O7]])
= Cov (O7, Ey[O7]) = Cov (07, Ei [O7]) = Var (E; [O71]),

where the first equality follows a similar argument as condition (38), the second and fourth equalities follow
from symmetry, the third equality follows from E; o [Eo[©7]] = Eo[©7] almost surely, and the last equality

follows from the law of iterated expectations. This means that

Var (Eio [01] — Eo[O1]) = Var (Eio [0©71]) + Var (B [07]) — Cov (Eio [07], Eo [O7])
=Var (E@O [@T]) —Var (EO [eT]) = 07 (42)

where the second equality follows from symmetry. As a result, E; o [©1] = Eo[O7] almost surely for all
i, and E; o [©7] = Ejo[Or] almost surely for all ¢, j. This is contradictory to the definition of incomplete
information. As a result, 82 < 81 = 1.

Now, suppose it is not the case that 3, is strictly decreasing in h. Then there exists a smallest 2* > 1
such that B« 1 = By

If * = 2k for some k > 1. From conditions (39) and (40), we have Var (E; o [E§[Or]]) = Var (E(')““[@T]) :
Following a similar argument as condition (42), we have E; o [E§[O7]] = EF™ (6] almost surely. We

henceforth have

Cov (E@[@T], E{;H[@T}) — Cov (EO [E{;f—l[@T]} ,E{;“[@T]) — Cov (EO [‘g—l[@Tﬂ  Eig [E&[@T]D

— Cov (EO [Eg—l[@ﬂ]  EE [@T]) = Cov (Eg O], (’f[@ﬂ) :

where the first and the last equalities follow from symmetry, the second equality follows from the fact that
E;o [EE[O7]] = EFT™[O©r] almost surely, and the third equality follows from the law of iterated expectations.
This expression means Sp«_1 = for—1 = Por = B+, which contradicts the fact that h* is the smallest h such
that By« 1 = Bp=.

If »* = 2k — 1 for some k > 2, from conditions (39) and (40), we have Var (E;o [Ef[O7]]) =
Var (E§[©7]) . Following a similar argument as condition (41) for all i, E;o [E§[©7]] = E§[©7] almost

surely. We henceforth have
Var (E{;[@T]) — Cov (Eg—l O], BEH [@T]) = Cov (Eg—l [©1], Eio [E{; [@T]D
= Cou (Ey ™[], E§[01]) = Cov (E§ ™ O1], By | ES 011 )

— Var (Eo [Eg—l[@T]D ,



where the first equality follows a similar argument as condition (38), the second and forth equalities follow
from symmetry, the third equality follows from E; o [E§[©7]] = E§[©1] almost surely, and the last equality
follows from the law of iterated expectations. This expression means that S«—1 = Pok—2 = Bok—1 = B+,
which contradicts the fact that A* is the smallest 4 such that 8«11 = Bpx.

As a result, 8y, is strictly decreasing in h. This implies that 8, < 81 = 1, Vh > 2. It also means that 5;, >
0 Vh. If not, there exists a h* such that 5, = 0. From strict monotonicity, we then have Sy+41 < fp = 0,

which contradicts Sy« > 0. This finishes the proof of Proposition 3.
Proof of Corollary 1. Corollary 1 follows directly from part (ii) of Theorem 1.

Proof of Theorem 2. To simplify notation, we extend the definition of s , = fo:l Xrr forallh > 7. In
the case that h > 7, from Lemma 2, we have 3 - = 0. As a result, s, ; = s, for all h > 7. We also define
sor =0forall 7 > 1.

From condition (16), we have

T—1

Shr = v+ ) + Zavl_lsh_l,T_l Vh>1andT > 1. (43)
=1
Now, for all 7 > 1, as xp» = 0 for h > 7, we can use d, = s, denote the combined effect of beliefs of
all different orders. From condition (43), we have

T7—1

de =7 (y+a)+ > ol VT >, (44)
1=1
where we use the fact that s;, ; = s, for all h > 7. From condition (44), we can easily verify, by induction,
that
dr =(y+a)" Vr>1. (45)

For any h > 1, we now prove that sp, - /s-r = s ./d; strictly decreases with 7 > h. Notice that from
condition (43), we have, forall 7> h > 1,

T—1

sho+1 =7 (Y +a) +asp_1, + Z OwlSh—LT—l
=1

= VSh,r + asp—1, < (Y + &) sp,r- (46)

Also note that from condition (45), we have s; 11,41 = dr41 = (v +a)dr = (v + a) s--. Together, we
have sp, r11/8r41,741 < Shr/Srr forall 7> h > 1.

Finally, we prove that, for any h > 1, s /s, — 0 as T — +oo. Because s;» =71 (y + ) and s, =
(v+ )", lim;—o Sp.r /77 — 0 holds for h = 1. Suppose there is some h such that lim; o sp.+/s7- — 0

does not hold, let * > 1 be the smallest of such h. As sy« /s 7 is strictly decreasing in 7, there exists I' > 0



Sh* 741 __ Y Sh*,r a Sh*—1,7
Sr41,741 Yto srr Ytoo Srr

Let 7 — +oo, we have I" = wial“. This cannot be true as o,y > 0. As a result, lim;_, s5 - /57~ — 0 for all
h>1.

such that lim; o 4+~ /57~ — I'. From conditions (45) and (46), we have

Proof of Proposition 4. By Theorem 1, the ratio if is strictly decreasing in 7" and bounded in (0, 1). It
T

follows that g—; necessarily converges to some ¢ € [0,1) as T' — oo. Similarly, by Proposition 3, gy, is strictly

decreasing in T"and bounded in (0, 1). It follows that 3;, necessarily converges to some 3 € [0,1) as T' — oc.

We first prove ¢ = 3 = limj,_,o B4. We note that for, any ¥ > 0, there exists a h*, such that \Bh — ﬁ\ < g
for all h > h*. From Theorem 2, we can then find T* € N such that, for all 7" > T*, S*L;T% < g. Together
with conditions (18) and (20), we have, for all ' > max {h*, T*},

or 3 = 25:1 Xh,T (Bh _@)

¢T ST T

_ ‘22;_11 xnr (Br = B) + S h_pe xur (Bn — B)

ST, T

h*—1 T )
< D ohe1 Xh,T i 2 heh* Xh,TG
o ST, T ST, T

< + :197

|
|

where the first inequality we use the fact that |3, — 8| < 1 and the second inequality uses the fact that

T
> heh* Xh,T < ST,T

_ —7; ¢ _
- <snr = 1. As aresult, o = limp_ o = B.

Finally, from condition (40), we know a1 = A limyye0 Var (EMO7]) = 0, we have

|4 7“( ELOr )
limp,—00 Bon—1 = 0. As By, is decreasing in h, we also have
8= lim B, =0. 47)
- h—o0

As a result, limTﬁooi—*T =0.
T

Proof of Proposition 5. Under the assumed information structure, we have for any h € {1,...,T} and
0<ti<to< ---<tp<T,
Etl [Et2 [[Eth [@T]H = )\hZ. (48)

Now we prove by induction that, for all ¢t < T —1,
ac = (7+a) {IZL (v + ha) EifOr]} 49)

Since ©; = 0for all t # T, together with condition (16), we have ar = O and ar_1 = (v + a) Er_1[O7].
As a result, condition (49) holds for t = T'— 1. Now, pick a t < T — 2, assume that the claim holds for all
T e {t+1,..,T — 1}, and let us prove that it also holds for t. Using the claim forall 7 € {t +1,...,T — 1},



condition (16), and condition (48), we have, fort < T — 2,

Tt
a; =" "B [O1] + aB [ar] + @Y AT B ag],
h—2

T—t

VE¢ [at1] = M B [O1] + Aa Z’Yk_lEt [at+x] -
k=2

As a result, we have a; = (3 + ) E; [a;11] . Together with condition (49) for ¢ + 1, we have

= (v+a) {12, (v + Aa) EilOr] |

This proves condition (49) for all t < T—1. As a result, g7 = (v + ) IT_;* (v + Aa) . This proves Proposition
5.

Proof of Corollary 2. Note that § — ¢’ = o (1 — \) increases with « for any given A < 1.

Proof of Lemma 3. As firms have complete information, the canonical NKPC in condition (10) holds.
Substituting it into the consumption beauty contest, condition (5), and using the fact that future markup

shocks are unpredictable, we have

ji=—0Ri— 0y BYEf[Rer] + > (1— B+ kor) 5 Ef ).
k=1 k=1

T
Proof of Proposition 6. Let { girer frfrap} . denote the liquidity-trap level of output and inflation (i.e.,
t= .
the one obtained when the period-T" nominal interest rate is fixed at the steady-state value, Ry = 0). From
conditions (9) and (10), we have, forall ¢t <T — 1,

Gt — 0" = 0 B[y — ﬁi:af] + Ei[fi1 — ﬂf:llp] (50)
T — ﬁirap (yt trap) + BE [T — ﬁt:af] (5T)

Now we will prove the following stronger result, which nests the representation in condition (24): there
exists positive scalars {¢7, w?} -, such that, whenever Assumptions 2 hold and z is commonly known, the

equilibrium spending and inflation at any ¢ < T are given by

G — 9, = —dy_, - Ey[Rr), (52)
T — ﬁimp =K (3/ - ytmp) — Wy Et[RT]- (53)

We prove this result by induction, starting with ¢ = T and proceeding backwards. When ¢t = T, under

Assumption 2, we have jr — 7.’ = —o Ry and 7ip — 7 = (QT yéfap> This verifies (52) and (53) for

10



t =T, with
¢o =0 and wy =0. (54)

Now suppose that the result holds for arbitrary ¢t € {1,...,T} and let’s prove that it also holds for ¢t — 1.
By the assumption that (52) and (53) hold at ¢ along with the Law of Iterated Expectations, we have

Et—l[gt - gfmp] = _Qﬁ“—t : Et—l[RT]a

By [ — 7] = = (k67— + @7y) - Eva[Rr).
Using the above together with conditions (50) and (51) verifies that (52) and (53) hold also for ¢t — 1, with

¢§”—t+1 = (1 + U“) ¢*T—t + UW;_t, (55)

wWr_4y1 = By + By (56)

This completes the proof of conditions (50) and (51), and gives a recursive formula that can be used to
compute ¢7.

Now we prove the Proposition. From conditions (55) and (56), we have that, for all 7 > 0,

611 = (L+0R) ¢ + o, (57)
@,y = Brgl + Bt (58)

Together with condition (54), we know, as k > 0, w} > 0, V7 > 1. Then, from condition (57), we have
¢r > o0, V1 > 1, and ¢ is strictly increasing in 7. Moreover, as 1 +ox > 1, we know ¢ explodes to infinity
as 7 — oo from condition (57).

Finally, we prove a few more results useful for the rest of the paper. First, we prove a recursive relationship

about {97},

;;14—5 ;);1:1+5+(m vr> 1. (59)

From condition (57), we have, for all 7 > 1,

Bor =B (1 +0k)d7_1 + ofwr_y.

Together with conditions (57) and (58), we arrive at condition (59).

Second, we prove that, when x > 0,

*
-

*

T—1

is strictly increasing in 7 > 1. (60)

From conditions (57) and (58), we have ¢7 =0 (1 + 0x) and ¢5 =0¢ ((1 +ok)* + O'Iiﬁ) . As a result, when

11



Kk >0,

* *
gb—izl%-cm—l— orh > ¢—i
o8 1+ok ¢
Now we proceed by induction. Suppose that, for 7 > 1, we have qﬁil > ¢ (59) for 7
and 7 4+ 1, we have ii” > (ﬁil. This proves (60).
T4+1 T .
Finally, from condition (59), we know ¢ff is bounded above. Together with (60), ¢>* - must converge
toI'™ > 0, as 7 — oo. From condition (59) again, we know I'* satisfy
. 1
r +5ﬁ=1+5+a/€. (61)

T
Proof of Proposition 7. With { T mep} . defined as in the proof of Proposition 6, along with the

t=
fact that it is common knowledge monetary policy replicates flexible-price allocations from 7'+ 1 and on,

we can rewrite the two beauty contests as follows:

T—t T—t

Yyt — @frap —oBT T Ef [ Ry) + Z o Ef [ﬁt+k Eia;f] +(1-p5) Zﬁk_lﬁtc [@t+k yfiaﬂ (62)
k=1 k=1
T—t T—t

F=w = (5= ) e Y (80" B [ — 1) + 150 Y0 (B0 B[R - RIY) . (63)
k=1 k=1

Consider the following claim, which nests the representation in condition (25): under Assumption 3, there
exists functions ¢, w : (0,1] x (0,1] x N — R4 such that, forany ¢t < T —1,

G=" =~ T — 1) Ef[Rr], (64)
Fp — 7P K (yt ytrap) —w (A, Ap, T = t) _tf[RT] (65)

We now establish this claim by induction.

First, consider ¢t = T, as Ry becomes common known at period T', we have
Jr— = —okr and w77 =k (5 - 07)
Then, consider t = T — 1. From conditions (62) and (63), we have

Jr—1— Gt = —o(1+ or)ES_[Ry),
ap __

Fr_q — Ak =k (Z?T—1 - Q?fzf) - UK/BE%_JRT]-
It follows that the claim holds for t =T — 1 with

d(Aes Af, 1) =0 (14 0k) and wW(Aes Af, 1) = oK. (66)

12



Now, pick an arbitrary ¢ < T'—2, assume that conditions (64) and (65) hold for all 7 € {t+1,...,7—1}, and
~trap __

let us prove that it also holds for ¢. Since the claim holds for 7 € {t4-1,..T—1}, and since jr —§.** = —oRr
and 7 — mfpr“p = —ko Ry, from condition (62), we have
o T—t—1 o )
ge— G " = —oBT T (L4 ok) Ef[Ry] — (1= B+ok) Y B¢ (N, Ap, T — t — k) Bf[Ef, [ Rr]
k=1
T—t—1
0 Y B lw (N Ap T —t — k) Ey [E{+k[RTﬂ :
k=1
As a result, we have
g — 5" = =BT (14 ok) Bf[Rr
T—t—1 )
- Z B = B4 k) Aed My Ap, T —t — k) + oA jw (Ao, Ap, T — t — k)] E€[Ry],
where we have used the fact that, under Assumption 3, for 1 <k <T —t —1,
Ef[Ef 1 [Rr]) = AEf[Rr] and  Ef[E{, [Rr]] = \fEf[Rr). (67)

This proves the part of the claim that regards output, condition (64), with

T—t—1
¢ Aes Ap, T —t) = BT (0 + 0%k) + Z BEL(1 = B+ 0r) A Ny Af, T —t — k) + aXjw (Ao, Ap, T — t — k)]
k=1

(68)
Similarly, the inflation beauty contest in condition (63) gives
T—t-1 )
=7 = (5= 7)o (30T E] [Rrl 5 S0 (86)" 6 (N, Ap. T — £ — k) Bf (B 1l B
k=1
T—t—1
-4t (80)" @ (Aes Ay, T — t — k) EY [E], [ Rr]).
k=1
As a result, we have
77"1‘/ o ﬁ_irap — (y o y:rap)
T—t—l )
_{ —t [m¢ Aes Af, T —t—k:)+(1_g)’\fw()\c,)\f,T—t—k)]} el Ry,
k=1

13



where we have used the fact that, similarly to the consumers’ case, for1 <k <7 —t —1,

El B¢ [R7)) = \Ef[Rr] and EJ/[E/

 W[Rr]] = M\ Bl [Ry). (69)

This proves the part of the claim that regards inflation, condition (65) with
T—t-1

@ (Nes Ap, T — 1) = ag (86)7" + (8) ("“QCgb(/\c, AT —t— k) + DM (A A, T —t — k:)) .
k=1

(70)
We finally provide a recursive formula for computing ¢(Ac, A¢, T —t) and @ (A, A¢, T — t), which will

be useful later. From condition (68), we have, fort < T — 2,

¢()‘Ca)‘faT_t):qu()‘ca)‘f’T_t_l)—i_(l_B+U’{))‘C¢()‘C7)‘faT_t_1)+0)‘fw(>‘ca>‘f>T_t_1)
— B+ =B40R)A) O Ap, T —t— 1)+ 0Afm Ay Ap, T —t — 1) (71)

Similarly, from condition (70), we have, fort <T — 2,

w(A&Af’T_t) :59w()\87)\f7T_t_ 1) +59 <Hg\c¢(A07Af7T_t_ 1)+%w()‘67)\f77‘_t_ 1))

= kBAD A A, T =t — 1)+ B[0+ (1 — ) Aflw (A, Ap, T — £ — 1). (72)

From now on, to simplify notation, we use ¢, and w; as shortcuts for, respectively, ¢ (A, A¢,7) and
@ (Aes Af, 7).

We first prove part (i) of Proposition 7. From condition (68), we know ¢, > ¢3". The fact that ¢, < ¢*
is a direct corollary from the monotonicity of ¢, with respect to A\, and Ay, which will be proved shorty.

We then prove part (ii) of Proposition 7. As £ > 0, from conditions (66), (71) and (72), we know that
¢r, @y > 0forall 7 > 1.

We will first prove, for 7 > 2, ¢ = ¢ (Ac, Ag, 7) is strictly increasing in both A. and A¢. We will proceed
by induction on 7. For 7 = 2, from (66), (71) and (72), we have ¢, and ws is strictly increasing in both A,
and As. Suppose for 7 > 2, ¢, w, is strictly increasing in both A. and As. From conditions (71) and (72),
we know ¢4 and w1 are strictly increasing in both A. and ¢, where we use the fact that ¢, @, > 0.

This proves that, for 7 > 2, ¢, = ¢ (Ae, Af, 7) is strictly increasing in both A, and ;. Because of the strict

monotonicity, we have, for 7 > 2, whenever A, < 1 and/or Ay < 1, ﬁ—: = %’1\1;;) < 1.
We now prove that, whenever A, < 1 and/or A\; < 1, the ratio ﬁ—f = W is strictly decreasing in
7 > 1. We start by noticing, from the proof of Proposition 6, we have, for 7 > 3,
i +B¢I‘2 =1+ B+o0k . (73)
T—1 T—1
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Now we prove that ¢, satisfies an inequality with a similar form as (73):

¢T + ﬁ¢772

<1+ pB4+0crA<14+8+0k V7T > 3. (74)
¢T*1 ¢771

From condition (71), we have, for 7 > 3,

(bT = (5 + (1 - 6) A )¢7’—1 + O'/ﬂ?)\c(ﬁT_l + U)\fwT_l,

oBKrAc oBAf

md% 1= B¢r- 2+W¢T 2t ZFa—am. P2
From the previous two conditions, we have, for 7 > 3,
or + 5¢772 = (/8 + (1 - B) )‘c) ¢771 + Uﬁ)‘cﬁbﬂ'*l + U)\fwal (75)

B 0Bk aBAy
+ FI AN -1 T BN 972 ~ B P2

Note that, for 7 > 3 and A., Ay € (0, 1], we have
|:(,8+(1—5))\)+U/€)\ +ﬁ+(+ﬁ (Z)q— 1<(1+6+U:‘€)\>¢)7—_1,

and, from condition (72),
A A
U)\fwal - B+a(ﬁ/f Ve Qb‘r 2 — B+C(T1ﬂ_é))\c Wr—2

=0Af (KBAhr—2+ B0+ (1 —0) Aflwr—2) — ﬁ:fMEAC Gr—2 — %WT 2
:O'KZB)\C ()\f — m) ¢7-72 + O'B)\f 0 + (1 — 9) )\f — m TWr—9

<0.

Together with condition (75), we arrive at condition (74).

Now we can prove that, whenever A\, < 1 and/or Ay < 1, i: is strictly decreasing in 7. We already

prove % ¢2 <1l= d’l. We proceed by induction on 7. fﬁ < 2221 for r > 2, we have d’; L> %) L. From

T—1

(73) and (74), we have bre1 %11 and thus ¢T+1 < o is strictly decreasing

or foxd o7y or°
in T > 1, whenever A\, < 1 and/or Ay < 1.

This finishes the proof that £

¢T

Now we prove that, whenever ). < 1 and/or \; < 1, & 35 converges to 0 as 7 — oo. Because % >0
is strictly decreasing in 7 > 1, there exists I' € [0,1) such that % — I as 7 — oo. We next prove by
contradiction that I" = 0.

Suppose first that A < 1. If I' > 0, we have ﬁf z:‘l — 1l as 7 — oo. Because q;f: — I'*, we have

¢‘f - = I and ‘bf z F* as 7 — oo. From condition (61), we have ¢T +B¢T = S = 1+f+okasT — oo

However, this is mconsnstent with (74) when )\, < 1. Asaresult, T" = 0.
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Suppose next that A\, = 1 but Ay < 1. We prove a stronger version of (74):

¢r
¢7'71

¢7'72
¢7'71

+(1+ok(1=Xf))B <14pB+ok VY7T2>3. (76)

From conditions (71) and (72), we have, for 7 > 3,

¢’7’ = (1 + UH) (b’r—l + U)\fwT—h
Bpr_1 = Bor_2 + Borpr_2 + BO-)\fw*era
Wr—1 = KPr—2 + B0+ (1 —0) \f] wr_a.

As a result, for 7 > 3,

Or + Bor—o=(1+0k+B)dpr—1 + oXfwr_1 — foRDr_2 — BoA o, _o
<(A+0ok+B)dr—1+0(Af — 1) KBor 2.

This proves (76).

Now, if I' > 0, similarly, we have z—*% — 1 as 7 — oo. Because ‘fil — I'*, we have (;i’il — I'*
and i:l — & as T — oo. From condition (61), we have ¢>?i1 +(1+ok(l— )\f))ﬂ% =1+ B+o0k+

ok (1 — Af) Bg= as T — oco. However, this is inconsistent with equation (76) when Ay < 1. Asaresult, I' = 0
when A. =1, but Ay < 1.
Finally, we prove that, when ). is sufficiently low, ¢(\¢, A¢, 7) converges to zero as 7 — co. The eigen-

values of the dynamic system (¢, w,) based on conditions (71) and (72) are

B—i—(1—ﬁ+am))\c+5[(1—6)/\f—|—0]—\/(ﬁ—l— 1= B+0r) A — B1(1—0)As +6))% +408A Ak

mi =

,8+(1—ﬂ+am))\c+ﬁ[(1—0)/\f+0]+\/(ﬁ+ 1= B+0r) A — B1(1—0)As+6))% +408A Ak

mo =

(
2
(
2

Note that limy,,ome = 8 < 1. As a result, when . is sufficiently low, both eigenvalues are below 1,

which means that ¢(A., A, 7) converges to zero as 7 — oo.

Proof of Proposition 8. We use g; to denote the amount of government spending at period t. As men-
tioned in main text, the government spending g, is financed by lump sum tax at period ¢, t; = g;. Similar
to the analysis for monetary policy, we assume §; becomes commonly known at period ¢ and only allow
higher-order uncertainty about future g.

Similar to the main text, now we start to work with log-linearized representation. Because the introduc-
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tion of lump-sum tax, the individual budget constraint becomes

+00 +00

Z BRE i = iy + Z g {0 (Wi gk + Rigrr) + Q26 ppe — (1 + Qo — )i},

k=0 k=0
where 25 is the ratio of labor income to total income (net of tax) in steady state, {29 is the ratio of dividend
income to total income (net of tax) in steady state, and ;42 —1 is the ratio of lump sum tax to total income
(net of tax) in steady state. On the other hand, the individual optimal labor supply and Euler equation,
conditions (28) and (29), still hold here. Together, this gives rise to the optimal expenditure of consumer

i € Z. in period t,

Gy = Lheog,, az B Eiy [Fean] + (1 - ) [y, + 2%gy, — CVg ] (77)

eoc+1 eo+ eoc+ eoc+
—+o00
k 6+1) 1~ (Ql+92—1) 7
+(1-5) Zﬁ Eiy [760%21 Wi t+k + EU+QI €ittk — Wftj% .
k=1

Using the fact that assets average to zero and that future idiosyncratic shocks are unpredictable, we obtain

the following condition for aggregate spending:

+oo
~ R ~ Doy ~ €O ~ o(Q2 Q 1
G = =0 Y BB (o] + (1 — B) |5t + e, — <y 78)
k=1
k +1)oQy ~ g(Q214+02—1
Zﬁ Ec [(eer?hlwt"‘ +60+Q1€t+k_ (6;+Q? )tﬁ'k}

The firm side, on the other hand, is essentially same as the case without government spending, as a result,
condition (6) still holds, but the formula for marginal cost are different. In particular, from the production

function (3) and the optimal labor supply condition (28), we have
_ ~ A -1 1Y . N
mey =wg =€ | Ngdi+ ;ct = el + ECt = [ Qg + = ¢+ €e(1—Q3) g, (79)

where §; = Q3¢ + (1 — Q3) g, Q3 = g is the steady state consumption to output ratio, and 1 — Q3 =

% is the steady state government spending to output ratio.® As a result, the inflation beauty contest

in condition (6) can be written as

+oo
o=k (el + (1= Q) G) + 5 Y (80)F B [Qebrin + (1 — Qo) Grr] + 52D (B9 Ef [Fesi] + 5jie, (80)
k=1
where 0, = <3tz
c — 6+% .

®]n steady state, the ratio of government spending to consumption will be equal to ratio of lump sum tax to total income (net of
tax), 21 + Q2 — 1. This explains the formula for Q3.
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Finally, note that the real profit of monopolist j at period ¢ is given by e = (? wt> yl. After log-
2
linearization, we have ¢; = —ﬂwt + 7 = —%wt + 7.2 Together with condition (79), we have, for all
Ql+§22
t,
(e+1)o 2y ~ oy = eoc(Q+Q2-1)7 _ o0y -~ oy ~ eo(Q1+Q2—1) ~
e+ + eo+Qle - eoc+Q ty = e+ + eoc+ Yt — eoc+Q 9t
o GU(Ql+QQ) ~ [ 60(91+QQ—1) ~
- eoc+ Yt + eoc+ Ct — ec+ gt
_ €o(Q1409) 1 = 4 401~ Q= eo(QtQ-1) - -
= ot [91+QQ Gt T, 9t T orar G ot It = G

Substitute it into condition (78), we have

+0o0
Ct = _UZ/BkilEtc[ft—Hc Tﬁ {Zﬁ Ef [Et } 81)
k=1

This is exactly the same form of the consumption beauty contest, as condition (5).
Now let us state Proposition 8 formally here. Similar to Assumption 2, we assume gr = z + 7, where
z and n are random variables, independent of one another and of any other shock in the economy, with
z ~ N(0,02) and n ~ N(0,07). The former is realized at t = 0, and could be interpreted as news about
government spending; the latter is realized at ¢ = T" and is unpredictable prior to that point.
First consider the complete information outcome. Suppose z is commonly known starting at t = 0, we
~trap _

can find a scalar ¢} ;» such that & — ¢ = ¢} 1 Eo[gr], where & denotes the “liquidity trap” level of

consumption (i.e., the one obtained when it is common knowledge that g = 0.) We have, when k > 0,
¢y > 0, is strictly increasing in T', and diverges to infinity as T' — oo. (82)

Now consider the case in which z is not common knowledge. Similar to Section V, we consider the

information structure specified in Assumption 3, in which let each agent receives a private signal about z at

period 0. We can then find a scalar ¢, 7 such that & — & " = ¢, 7E§[gr]. We have, as long as x > 0 and

information is incomplete, that is A, < 1,'°

¢g1 € (0,05 1) , is strictly increasing in Ac and Ay;
the ratio ¢y /¢y 7 is strictly decreasing in 7" and converges to 0 as T' — oo;

finally, when A. is sufficiently low, ¢, 7 also converges to 0 as T" — oc. (83)

We start from the proof of condition (82). Similar to the proof Proposition 6, we can establish that there

This expression is equivalent to Qﬂﬁét + #1% (W + i) = #@ét + % (uit + fz fjdj) = §:. The last equation is

true because - +1Q is steady state labor income to total income ratio (before deducting tax) and & fQ is steady state dividend
income to total income ratio (before deducting tax).
1%For simplicity here, we always remove common knowledge about z among consumer here. We allow Ay € (0,1]. In other

words, we nest the case in which firms have perfect knowledge about z.
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exists non-negative scalars { ¢o* _, w* such that, when z is commonly known, the equilibrium spendin
9,7 Wg,m S >0

and inflation at any ¢ < T are given by

& — & = ¢t 1y - Eifar), (84)

Ty — 7P = g (Q (et - é?"‘”’) +(1-9) ét) + @y s - Eilg7], (85)

where & and 7" denotes the “liquidity trap” level of consumption and inflation (i.e., the one obtained

when it is common knowledge that gr = 0.) Note that the Euler condition and NKPC with government

spending under complete information can be written as:

&t = -0 {Rt - B [@H]} + B¢ [C11], (86)
ﬁ't = K (Qcét + (1 — Qc> gt) + BEt [7~Tt+1] + %ﬂt. (87)

Using the above expressions, similar to the proof of Proposition 6, we can establish that ¢} , = 0, @} ; = 0,

¢p 1 =0k (1—Q), @), = Br(l—Q) andforall 7 > 1,

byrp1 = (1+0KQ) &5 + 0wy, (88)
@y 41 = BEQet, - + Booy .. (89)

From condition (88), we can see when x > 0, ¢7 _ is positive, strictly increasing in 7 and diverges to infinity.
This proves condition (82). Similar to condition (59), one can also prove the following recursive relationship
about ¢7:

97+ | 39T 1§ B4 ok, Vr > 1. (90)
¢97T ¢g77

*
9,7

Moreover, as condition (61), we know d)(f must converge to F; >0,as 7 — o0:
g,7—1

1
Ty+ fr =146+ onl. (91)
g

We now turn to the case of incomplete information and establish the proof of condition (83). Similar to

the proof of Proposition 7, we can find ¢4, @, : (0,1] x (0,1] x N — R>¢ such that, forany ¢t <T —1,

&G =& = g\, A\, T —t) Ef[g7], (92)
T L (Q (et - 5§’"“P) (11— gt) + g e, Ap, T — t) B [31). (93)

Using conditions (80) and (81), we have ¢4 (A¢, Af,1) = ok (1 — ), wg (A, Ar, 1) = Br (1 — Q) and, for
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all 7> 2,

by N, Af,7) = 0BT L1 - Q H—FZBk L = B4 kD) Mg D Ap, T — k) + oA feog (Aes Ap, T — K] ;
(94)

K _ E . _
@y (Aes Ap, 7) = (1= Q) 0 (BH)T f+ Z (50)k (%Qcasg (Aes Ap, 7 — k) + %wy (Acs Ap, T = k)) .
k=1

(95)

Together, we can establish, for all 7 > 2,
bg Ay Af,T) = (B+ (1= B4 06Qc) Ae) bg (Aes Af, T — 1) + oA pmwg (Ao, A, 7 — 1) (96)
@y (Aes AfsT) = KBASeg (Ao, Ap, T — 1) + B0+ (1 — 0) Aflwg (Aes A, 7 — 1) (97)

From the above conditions, we can see that for for all 7 > 2, ¢, - = ¢4 (Ac, A, 7) is strictly increasing in Acand Ay.
As ¢y = dg (1,1,T), we also have ¢, - € (07 @,7) _

Now, we now prove that, whenever \. < 1, the ratio bg.r _ $9heAs,)

G = g s strictly decreasing in 7 > 1 and

converges to 0 as 7 — oo. To this goal, similar to condition (74), we try to establish that

d)g,T + 6¢g,7—2
¢g,771 ¢g,771

<14+ B84+0kQA<14+B+0kQ. VT >3. (98)
From condition (96), we have, for T > 3,

bgr = (B4 (1= B)Ae) g1+ 0kQeAgr—1 + oA fwg 1,

B _ BrQcAe oBAy
A=A Par—1 = B2 + BRIk Yor-2 + Fr i, Por-2:

From the previous two conditions, we have, for 7 > 3,

¢g,fr + ﬁ¢g,¢—2 = (/8 + (1 - 6) )‘c) ¢g,fr—1 + ok /\c¢g,T—1 + U)\fwgﬂ'—l (99)
B _oBEQcA: oBA
+ o o1 T B9 9972 T BRI-AA DaT-2:
Note that, for 7 > 3 and A., Af € (0, 1], we have

|:(B + (1 - ﬂ) )‘C) + O-K’QCAC + m ¢g,771 < (1 + B + O-K/QC)\C) ng,‘rfl,
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and from condition (97), we have

Q )\c BA

o3k c oBA
=0\f (BAQBg,r—2 +5[9+ (1= 0) Af) @y r2) — FHD bgr 2 — G o2

:O'K/BQC)\C ()\f — m) ¢g77_2 + O'/B)\f 0 + (1 - 0) )\f - m Wg,r—2

<0.
Together with condition (99), we reach at condition (98). To prove ii‘ is strictly decreasing in 7, note that
g,T
we already prove that iZQ <1l= ijﬂ L. We proceed by induction on 7. If ﬁi” < ZZ* L for 7 > 2, we have
g,T g,7—1
$ar=1 - Par=1 From (90) and (98), we have 2oL < %ar1 and thus 2271 < %27 This finishes the proof
Qi)g T ¢g,7— d)gﬂ' ¢g,7’ ¢g,-r+l ¢g,‘r
that 29 -~ is strictly decreasing in 7 > 1.
g,T
To prove that ii” converges to 0 as 7 — oo. Because 22’7 > 0is strictly decreasing in 7 > 1, there
9,7 9,7

bgr Pt — 1 as 7 — oo. Because
5.7 Pgr—1

.
(fg’f — T'*, we have d’g” — Ty and %T 2 L 357 — 0o. From condition (91), we have _bar
1 g bg,r—1 r—1 ry bg,r—1

exists I'y € [0, 1) such that (b‘” — I'yas 7 — oo. If 'y > 0, we have

ﬁigz:f =1+ B8+ 0kQcas T — . However, this is inconsistent with (98) as \. < 1 and k > 0. As a result,
ry,=0.
Finally, we prove that, when X is sufficiently low, ¢4(A¢, Af,7) converges to zero as 7 — oo. The

eigenvalues of the dynamic system (¢g4 -, @, ~) based on conditions (96) and (97) are

B+ (1—=B+0kQ) A+ B[(1—0)Af+ 6]

my =
2
B+ (1= 840800 A — BI(1— 0) Ag + ) + 40BA A Qe )
— >
2 )
B+ (1—F+0rQ) A+ B[(1—0)Af+ 6]
me = 5
B+ (1= B+ 0800) Ao — BI(1—0) Ay +0])° + 40BAALen
5 > mj.

Note that limy,_,o ma2 = < 1. As a result, when \. is sufficiently low, both eigenvalues are below 1, which

means that ¢4(A¢, A¢, 7) converges to zero as 7 — oo.
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Appendix B. Rational Inattention and Learning

In this appendix, we first sketch how the friction we consider can be recast as the product of rational inat-
tention. We next extend Theorem 1 to two leading forms of learning studied in the literature. We finally

prove an asymptotic version of our horizon effect for arbitrary forms of learning.

The Friction as the Product of Rational Inattention. We now briefly sketch how the friction we consider
can be recast as the product of rational inattention and, in this sense, a form of bounded rationality.!

We let ©7 be Normally distributed and, to sharpen the exposition, we assume that O is realized at
t = 0 (think of ©7 as being itself the news). The typical agent is nevertheless unable to observe ©r perfectly.
Instead, for every ¢, the action a; ; must be measurable in w! = {w; - }-<¢, where w; ; is a noisy signal obtained
in period 7. The noise is assumed to be independent across the agent.'? This guarantees that all aggregate
outcomes are functions of O and, therefore, we can reduce the rational-inattention problem faced by each
agent to the choice of a sequence of signals about ©7. We finally let these signals be chosen optimally, that

is, so as to maximize the agent’s ex ante payoff, subject to the following constraint:
T (wig, Or |wi™") <&M, (100)

where 7 (w@t, 6T|wf_1) is the (entropy-based) information flow between the period-t signal and O, condi-
tional on the agent’s past information, and ! > 0 is an exogenous scalar.

The usual interpretation of constraint (100) is that it captures the agent’s limited cognitive capacity in
tracking ©. But since beliefs about ©7 map, in equilibrium, to beliefs of future outcomes, one can also think
of (100) as a constraint on the agent’s ability to figure out the likely effects of the underlying variation in O7.
This echoes Tirole (2015), who interprets rational inattention in games as a form of “costly contemplation.”

As long as the prior about ©r is Gaussian and the objective function is quadratic, which is the case
here by assumption, the optimal signal is also Gaussian. Furthermore, the noise in the signal has to be
independent across periods, or else the agent could economize on cognitive costs, that is, relax the constraint
in (100). These arguments are standard; see, e.g., Mackowiak, Matejka and Wiederholt (2017). The case
studied here is actually far simpler than the one studied in the literature, because the relevant fundamental
(O7) does not vary as time passes. We infer that the optimal signal at every t < T' — 1 is given by w;; =
©r + v+, where the noise v; ; is orthogonal to both ©7 and {v; -} -<;. Letting 7, denotes the precision (i.e.,

the reciprocal of the variance) of this noise, we have that the period-t information flow is given by

_ T
I (wis, Or | wf 1):§'08’2(1+:>’
t

"For the rational inattention problem to be well-defined, we need to specify a payoff structure behind condition (11). For
example, we can think player i's payoff is U; = Y, 8'U(ai,t, ai,e+1; Or, ar), where U is a reverse-engineered quadratic utility
function so that the player’s best-response condition is given by (11).

"2 Although this assumption is separate the information-flow constraint (100), it is standard in the literature (e.g., Woodford, 2003,
Mackowiak and Wiederholt, 2009, Luo et al., 2017) and seems appealing if one interprets the noise as the product of cognitive
limitations. It is also broadly consistent with experimental evidence (e.g., Khaw, Stevens and Woodford, 2016).
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where ¢; denotes the precision of the agent’s prior in the beginning of period t; the latter is defined recursively
by ¢ = 09_2 and g1 = g +m7 fort € {0,...,T—1}. It follows that the information constraint (100) pins down
the sequence {7} ' as a function of k! and o7 alone. All in all, the setting we have considered here is
therefore nested in the cases with learning studied in the next part of this appendix, for which Theorem 1

applies. This completes the rational-inattention interpretation of our results.'?

The Horizon Effect with Sticky Information or Noisy Private Learning. We now extend Theorem 1 to
two leading forms of learning studied in the literature. Let ©p ~ N (0,03) and consider the following two
cases of learning.

Case 1. Agents become gradually aware of ©7, as in Mankiw and Reis (2002) and Wiederholt (2015).
In particular, at each ¢t € {0,...,T" — 1}, a fraction Ag;ck, Of agents who have not become aware about O
become aware about ©7. ©1 becomes commonly known at period 7.

Case 2. Agents receive a new private signal each period, as in Woodford (2003), Nimark (2008), and

Mackowiak and Wiederholt (2009). In particular, at at each ¢ € {0,...,T — 1}, agent i’s new information

2

about ©7 is summarized in the private signal s;; = O + v; ¢, where v;; ~ N (O, Tt

) is i.i.d across i and ¢,
and independent of ©7. ©7 becomes commonly known at period T..

In both cases, there exists {\;};_," such that, for all ¢, A, € (0,1) and, for any h € {1,...,T} and
0<t1 <ta< - <ty <T,

Ey [Ey . [Ety [O7]]] = Ay -+ Mt O, (101)
Zt —0 0’;3—

PO ;;%0972-
Now we prove by induction that, forall t <T —1,

Incase 1, Ay =1 — (1 — Agticky)' ™. Incase 2, \, =

ar = (v +a) {24, (v + Ara) EifOr]} (102)

Since ©; = 0 for all t # T, together with condition (16), we have ar = O7 and ar_1 = (y + a) Er—_1[O7].
As a result, condition (102) holds for t = T — 1. Now, pick a ¢t < T — 2, assume that the claim holds for all
Te{t+1,..,T —1}, and let us prove that it also holds for t. Using the claim for all 7 € {¢t + 1,...,T — 1},

3Two remarks are worth making. First, suppose that the agents have a limited cognitive capacity to allocate, not per period, but
across the entire horizon. In this case, the series of per-period constraints seen in condition (100) are replaced by a single constraint
over the entire horizon, namely Z ( {wid ot or ) < k™. It then becomes optimal to allocate all capacity to the period-0 signal,
which means that this case can justify to our baseline analysis, which assumes away learning. Second, suppose that the news
about the fundamental of interest (say, monetary policy) come at the same time with news about another fundamental (say, TFP)
and that the agents can economize on cognitive effort by obtaining a joint signal of all the news. In this case, rational inattention
can contribute to confounding of one kind of news with another, a scenario not considered here.
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condition (16), and condition (101), we have, fort < T — 2,

Tt
ar =" E (O] + aB [ag] + a Y VT B lags];
k=2
Tt
YE¢ [ar11] = Aeyry" B [O1] + ade1 > VT By [agg]
k=2

As a result, we have a; = (/\:H + a) Ey [a11] - Together with condition (102) for ¢ + 1, we have

ar = (v + ) {24 (7 Aca) BilOr] |

This proves condition (102) for all t < T — 1. As a result, ¢7 = (v + a) II* (v + M\;a) . Together with the

fact that Ay € (0,1) and ¢ = (v + )T, we prove Theorem 1 for the case with learning.

The Limit Property with Arbitrary Learning. As noted in the main text, it is possible to prove, under quite
general conditions, an asymptotic version of our horizon effect: as long as the higher-order uncertainty is
bounded away from zero (in a sense we make precise now), the scalar ¢7 becomes vanishingly small relative
to ¢ as T — 0.

Foranyt < T—1andanyk € {1,...,T —t}, we henceforth let Bf collect all the relevant k-order beliefs,

as of period ¢ :
By ={x : At1,ta, -+ ,tg), witht =t; <ty <--- <t <T —1, suchthatz = Ey [Ey,[- - B, [O7]---]]} .

We next introduce the following assumption.

Assumption 4 (Non-Vanishing Higher-Order Uncertainty) There exists an € > 0 such that:

(i) For all t € {0, ....,T — 1}, there exists at least a mass e of agents such that
Var (Eifz]lw}) > eVar (B¢ [z]),

forallz € B¥U{Or}, 7 € {t+1,...,T—1},and k € {1, ..., T—7}, where w! summarizes agent i's information
at period t and E; [z] denotes the rational expectation of variable = conditional on the union of information
of all agents in the economy available at period t.

(i) Var (Eo[O7]) > e

To interpret this assumption, note that complete information imposes that E; [x] is known to every
agent, and therefore that Var (E; [z]]|w!) = 0, regardless of how volatile E; [z] itself is. By contrast, let-
ting Var (E [z] |w!) > 0 whenever Var (E; [z]) > 0 is essentially tautological to assuming that agents have
incomplete information or, equivalently, that they face higher-order uncertainty. Relative to this tautology,

part (i) introduces an arbitrarily small bound on the level of higher-order uncertainty. This bound guarantees
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that the higher-order uncertainty does not vanish as we let T" go to infinity. Part (ii), on the other hand, means
simply that there is non-trivial variation in first-order beliefs in the first place. The next result then formalizes

our point that our horizon effect, at least in its limit form, holds for arbitrary forms of learning.

Proposition 9 (Limit) Under Assumption 4, the ratio i—f converges to zero as T — oc.
T

Proof of Proposition 9. We first prove that, under Assumption (4),
Var (y) < (1 — eQ)k Var (©7). (103)

foranyt <T —1andy = E.Ey,...E;, [Or] € BF.
To simplify notation, let z = Ey,...E;, [O7] for k > 2, and 2 = O for k = 1. From Assumption 4, we

have, there is at least a mass e of agents such that
Var (Ey[z] |w}) > eVar (B [z]).

As a result,
E [Var (E; [z] |w]) [Q] > Var (Ey [z]),

where () is the cross-sectional distribution of information w! at period t. Using the law of total variance,

we have
Var (E;[z]) = E [Var (E; [2] |w}) Q4] + Var (E [E; [2] |w!]) = E [Var (E; [2] |w}) Q4] + Var (E [z|w!]) .
As a result, we have'*

Var (y) = Var (EiEy,...Ey, [O7]) = Var (E; [z]) < Var (E [z|w!]) < (1 - €%) Var (E; [z])
< (1- 62) Var (z) = (1—¢*) Var (Ety...Ep, [O7]) .

Iterating the previous condition proves (103).
Condition (103) provides an upper bound for the variance of all k-th order belief. Together with the fact

that ¢% = sz 1 and, for any random variables X, Y and scalars a,b > 0,

Var(aX +bY) = a*Var(X)+ 2abCov (X,Y) + b*Var (Y)

< a*Var(X) + 2ab\/Var (X)Var (Y) + b*Var (Y)
= (a\/Var (X) + b/ Var (Y)>2, (104)

B We use the fact that for any random variable X, and any information I, Var (E [X|I]) < Var (X). We also use the fact that
E.[] = E[E[-|wf|] 2], where Q, is the cross sectional distribution of w} at time ¢,
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we have

<¢T>2 _ Cov (ao,Eo [@T]) ? < Var (ag)
¢f? (ZS;-‘VCLT (EO [@T]) - [QZ)/?} 2V ar (EO[C—)T])

T
1 Xk, T o E )
- 1-— 2V ©
Var (EO[GT]) kzl STT ( € ) CLT( T)
T 2

Xk T o\ £ Var (@T)

_ E 11— 2)2 _ 105

— <5T,T ( ¢ ) ) Var (Eg[@T]) (105)

h
_e2)2
Further note that, for any ¥ > 0, there exists h € N such that (1(6)2) < g. From Theorem 2, there
1—(1—e

1
2
exists T* € N such that, for all T > T*, ZZ;% f;; < g. As a result, for all T > max {T*, h},

[SIES

T
Z Xk, T (1 - 62)
k=1

h—1 T 2\ %
Xk, T N, (1—€?)2
<E ! g 1— 2 < — — 7 <.
ST.T _k:1 T+ ( E) _2+

5T, k=h I—(1- 62)%

This proves

NES

> (e

) —0asT — +oo.
k=1 \OTT

Together with (105) and the fact that Vaar (Ey[©7]) > ¢, the proof of Proposition 9 is completed.
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Appendix C. Additional Results for the New Keynesian Model

In this Appendix, we provide a few additional results regarding the application of our insights in the context
of a liquidity trap. We first explain how our results regarding the forward-guidance puzzle can be understood
under the lenses of a discounted Euler condition and a discounted NKPC, and draw certain connections to
the literature. We next show how our insights help lessen the paradox of flexibility. We finally show that all

the results of Section IV extend to the new type of beauty contest seen in condition (22).

Discounted Euler Condition and Discounted NKPC. Proposition 5 has already indicated how the lack
of common knowledge is akin to introducing additional discounting in the forward-looking equations of a
macroeconomic model. We now illustrate how this helps recast our results regarding forward guidance and
fiscal multipliers under the lenses of a discounted Euler condition and a discounted NKPC.

For the present purposes, we make a minor modification to the setting used in Section V: for t < T', we
let the firms lack knowledge of the concurrent level of marginal cost. For simplicity, we also let the firms
and the consumers face the same level of friction, that is, we set \. = Ay = A. These modifications are not

strictly needed but sharpen the representation offered below.'

Proposition 10 The power of forward guidance in the absence of common knowledge, ¢, is the same as
that in a representative-agent variant in which the Euler condition and the NKPC are modified as follows, for

allt<T —1:

g = —0o {Rt — A\Ey [7~Tt+1]} + McEy [§e41] (106)
Tt = KU+ BME; [Fi1] + i, (107)

where Mc =B+ (1—-B)A € (B,1], Mg =0+ (1—0) A € (0,1], and ' = kA."°

This result, which is analogous to Proposition 5 in our abstract setting, maps the incomplete-information
o7 of the economy under consideration to the complete-information ¢%. of a variant economy, in which the
Euler condition and the NKPC have been “discounted” in the manner described above. When we remove
common knowledge, it is as if the representative consumer discounts her expectations of next period’s
aggregate income and inflation by a factor equal to, respectively, M. and X; and it is as if the representative
firm discounts the future inflation by a factor equal to M;."”

Consider first the Euler condition. When 3 is close to 1, the discount on future consumption, M., is
close to 1, even if A is close to zero. This underscores that the multiplier inside the demand block—which

gets attenuated by the absence of common knowledge—is weak in the textbook version of the New Key-

1*Without these modifications, the obtained representation is a bit less elegant, but the essence remains the same; see Proposition
10 in the first NBER version of our paper, Angeletos and Lian (2016).

%To be precise, condition (106) holds with M. =1fort =T — 1.

"The change in the slope of the NKPC, from & to ', is of relative little interest to us, because the effect of the informational
friction through this slope cannot be identified separately from that of a higher Frisch elasticity or less steep marginal costs.
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nesian model. As mentioned in the main text, short horizons, counter-cyclical precautionary savings, and
feedback effects between housing prices and consumer spending tend to reinforce this multiplier, thereby
also increasing the discounting caused by the absence of common knowledge. Also note that, while future
consumption is discounted by M., future inflation is discounted by A. Clearly, this can have a significant
effect on the joint dynamics of spending and inflation even when M, is close to 1.

Consider next the NKPC. For the textbook parameterization of the degree of price stickiness (meaning a
price revision rate, 1 — 6, equal to 1/3), the effective discount factor, M, falls from 1 to .9 as we move from
common knowledge (A = 1) to the level of imperfection assumed in our numerical example (A = .75). The
magnitude of this discount helps explain the sizable effects seen in Figure 1. Under the parameterization
we consider, the actual response of inflation to news about future demand is greatly reduced relative the
common-knowledge benchmark. The fact that the average consumer underestimates the inflation response,
as well as the spending of other consumers, reinforces this effect and helps further attenuate the feedback

loop between inflation and spending.

Relation to Gabaix (2016) and McKay, Nakamura and Steinsson (2017). Related forms of discounting
appear in McKay, Nakamura and Steinsson (2017), for the Euler condition, and in Gabaix (2016), for both
the Euler condition and the NKPC. In this regards, these papers and ours are complementary to one another.
However, the underlying theory and its empirical manifestations are different.

McKay, Nakamura and Steinsson (2017) obtain a discounted Euler condition at the aggregate level by
introducing a specific combination of heterogeneity and market incompleteness that forces some agents to
hit their borrowing constraints and breaks the individual-level Euler condition. This theory therefore ties the
resolution of forward guidance to microeconomic evidence about the response of individual consumption
to idiosyncratic shocks. By contrast, our theory ties the resolution of forward guidance to survey evidence
about the response of average forecast errors to the underlying policy news. The two theories can therefore
be quantified independently from one another—and it's an open question which is one is more relevant in
the context of forward guidance.

Gabaix (2016) on the other hand, assumes two kinds of friction. The first is that agents are less responsive
to any variation in interest rates and incomes due to “sparsity” (a form of adjustment cost). The second is
that agents underestimate the response of future aggregate outcomes to exogenous shocks. The first is of
purely decision-theoretic nature and, as the one in McKay, Nakamura and Steinsson (2017), amounts to a
distortion of the individual-level Euler condition. The second is more closely related to the one we have
obtained here: by anchoring expectations of aggregate outcomes, it gives rise to discounting only at the
aggregate level. In this regard, Gabaix’s theory and ours have a similar empirical implication: they both
let the average forecast of future inflation and income respond less than the complete-information, rational-
expectations, benchmark. Yet, our theory makes the following distinct prediction, which is consistent with
the evidence in Coibion and Gorodnichenko (2012): the forecast errors, and the associated discounting,

ought to decrease as time passes, agents accumulate more information, and higher-order beliefs converge
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to first-order beliefs.

Proof of Proposition 10. Let us first focus on the incomplete-information ¢r. When firms lack common
knowledge of the concurrent level of marginal cost, condition (62) continues to hold but condition (63)

becomes, forany ¢t < T,

S

T—t
=7 =k Y (89) B [den — 57| + 52 Y (90)" B [Fern — 57
0 k=1

i

Slightly different from conditions (64) and (65),'® we can find functions ¢,w : (0,1] x N — R> such that,
foranyt <T —1,

J—9 " = —¢\T —1t)E{[Ry], (108)
Fo— 7P = (N T —t) El[Ry), (109)

where ¢ (A\,1) =0 (1+0Xk), w(A\, 1) =rAo (1 +0A) + kB (0 + (1 —0)N)o,andfort < T —2,

ST —t)=B+1-BNdNT —t—1)+cdw(\T —t—1), (110)
wLT ) =B0O+1—0ONwO\NT—t—1)+rA¢N\T —1). 111)

We now derive the complete-information ¢%. and w?. of a variant economy, where they denote how the
output and inflation at ¢ = 0 responds to shocks to the representative agent’s belief about Rz at t = 0. From
conditions (106), (107) and footnote 16 in the appendix, we have ¢7 = o (1 4+ 0Ak), wi = kAo (1 + oAk) +
kB(O+(1—0)N)o,and, fort <T —2,

¢r_t =B+ 1 =B)A) o1 + oA 41, (112)
w;—t =p (9 + (1 - 9) )‘) w;—t_l + Kv)\(ﬁ“_t (113)

The previous conditions coincide with conditions (110) and (111), and prove Proposition 10.

On the Paradox of Flexibility. We now consider the implications of our insights for the paradox of
flexibility. In the standard model, the power of forward guidance and the fiscal multiplier vis-a-vis future
government spending increase with the degree of price flexibility: ¢7 increases with .9 This property is

directly related to the “paradox of flexibility” (Eggertsson and Krugman, 2012). The next result proves, in

"8There are two differences compared to conditions (64) and (65). First, as we impose A. = Ay = X here, ¢ and w are functions
of A\, the common parameter characterizing the degree of information friction. Second, as firms lack common knowledge of the
concurrent level of marginal cost, it is easier to let w measure how inflation as a whole responds to the average firm’s belief about
Rr.

""Whenever we vary &, we vary 6 while keeping the Frisch elasticity constant, which means that variation in x maps one-to-one
to variation in the degree of price flexibility.
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Figure 2: Varying the degree of price flexibility.

effect, that the mechanism identified in our paper helps diminish this paradox as well.

Proposition 11 (Price Flexibility) Let ¢1 be the scalar characterized in either Proposition 7 or Proposition 8
and set \y = 1. We have ag% > 0 and % <‘98%T> > 0. That is, the power of forward guidance and the fiscal
multiplier vis-a-vis future government spending increase with the degree of price flexibility, but at a rate that

is slower the greater the departure from common knowledge.

This finding is an example of how lack of common knowledge reduces the paradox of flexibility more
generally. In the standard model, a higher degree of price flexibility raises the GE effects of all kinds
of demand shocks—whether these come in the form of forward guidance, discount rates, or borrowing
constraints—because it intensifies the feedback loop between aggregate spending and inflation. By intensi-
fying this kind of macroeconomic complementarity, however, a higher degree of price flexibility also raises
the relative importance of higher-order beliefs, which in turn contributes to stronger attenuation effects of
the type we have documented in this paper. In a nutshell, the very same mechanism that creates the para-
dox of flexibility within the New Keynesian framework also helps contain that paradox once we relax the
common-knowledge assumption of that framework.

Note that we have proved the above result only under the restriction Ay = 1, which means that only the
consumers lack common knowledge. Whenever A¢ < 1, there is a conflicting effect, which is that higher
price flexibility reduces the strategic complementarity that operates within the supply block, thereby also
reducing the role of Ay itself. For the numerical example considered earlier, however, the overall effect of
higher price flexibility is qualitatively the same whether A\ =1 or Ay = A..

We illustrate this in Figure 2. We let Ay = A, = 0.75, use the same parameter values as those used in
Figure 1, and plot the relation between the ratio ¢7/¢7. and the horizon T" under two values for 6. The solid
red line corresponds to a higher value for 6, while the dashed blue line corresponds to a lower value for 0,
that is, to more price flexibility. As evident in the figure, more price flexibility maps, not only to a lower
ratio ¢ /¢ (i.e., stronger attenuation) for any given T, but also to a more rapid decay in that ratio as we

raise 7.
Proof of Proposition 11. Consider first the environment studied in Section V and let us study the cross-

partial derivative of the power of forward guidance with respect to x and A.. To simplify notation, we use ¢

and w, as shortcuts for, respectively, ¢ (A, Af, 7) and @ (A¢, Af, 7), where the functions ¢ and @ are defined
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as in the proof of Proposition 7. From conditions (66), we have

0p1  09(Ae,1,1) 4 Owy  dw(A,1,1)
o B =0 >0 and o B =008 > 0. (114)

For any 7 > 2, when Ay = 1, conditions (71) and (72) become
¢T = (B + (1 - /8 + Uﬁ?) )\c) ¢T—1 +owr_q and Wr = H6A0¢T—l + Bw’r—l-

As a result, for all 7 > 2, we have

8¢T ¢T 1 Owr_1
P =(B+(1—-8+0kK)\) +oApr—1+o0 P (115)
égm KB ‘%T Ly BActr1 + ﬁawT ! (116)

From conditions (114), (115) and (116), 85’?; and %= are strictly positive for any 7 > 1 by induction.
Moreover, from conditions (66), (114), (115) and (116), we have that ‘%2 and 8w2 are strictly increasing in
Ae. Then, from conditions (115), (116) and the fact that ¢, itself is strlctly increasing in A, for all 7 > 2, we

have 8(?* and 8"_‘“'7 are strictly increasing in A for all 7 > 2 by induction.

Consider now the environment studied in Section VI and let us study the cross-partial derivative of the
relevant fiscal multiplier with respect to x and A. when Ay = 1. From the proof of Proposition 8, similarly
to conditions (114), (115) and (116), we have

P07 _ (54 (1 B+ o2 ) 8%’;_1 F oAby +"8w§}§_1’
8@977' :K,,BACQ a¢gr 1 +/B)\ chbgﬂ_ 1+B g,‘r 1.
Ok Ok or

The result then follows from the same argument as before.

Extension of Lemma 2 and Theorems 1 and 2. Here we show that Lemma 2, Theorem 2 and, by impli-
cation, Theorem 1 extend to the kind of multi-layer beauty contest seen in condition (22) of Lemma 3.
Similar to Section IV, we impose Assumption 1. Similar to the proof of Lemma 2, we can find positively-

valued coefficients {xp r }r>1,1<n<r, such that, forany t <7 —1,

~

—t

G =0 = > {xna-eEl | Rr)} (117)
1

>
Il
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with 77" defined as in the proof of Proposition 6 and

X1 =0(1+70k) 371 Vr>1, (118)
T—k+1
Xk = >, (L=B+lok) ' ap_1,— Vk>2and 7 > k. (119)

=1
We can then characterize the combined effect of beliefs of order up to k on spending, sy -, as*°
T—1
Skr =0 (14 ToK) BT 4 Z (1—-B+lok) ﬁl_lsk_lj_l Vk>1land T >1. (120)
=1
Let d; = s, . denote the combined effect of beliefs of all different orders on spending. Similar to condi-

tion (18), d; = ¢%. Following the proof of Proposition 6, we have

do=0 and dy=0(1+0k),

i P

d- dr_
y 2 -1+B+ok Vr>2. (121)
T—1

Now we prove sy, ;- satisfies an inequality with a similar form as condition (121):

Skt L M2 1 L B4k Vr>3andk > 1. (122)
Sk,r—1 Sk,m—1
From condition (120), we have
T—1

Bsgr1=0(1+(T—1)or) T+ Z (1-B+(1—-1V) oK) sp 1, VE>T1andT > 2.
1=2

As a result, we have
T—1
Skr = B8kr—1+ (1= B) sp_1,,-1 + 0 kB7 1 + UIiZ,BlilSk—l,T—l Vk>1land T > 2,

=1
T—1

Bskro1 = Bskr—2+ B (1 —B) sp—1,r—2 + 0°kBT ' + oK Z B sk1,-1 Vk>1landT > 3.
1=2

Using the previous two conditions, we have, forall £ > 1 and 7 > 3,
Sk + B2skr—2 + B (1= B) sk—1,7—2 = 2Bk r—1 + (1 — B+ 0K) Sk—1,r—1,

Sk + Bskr—2=(1+B+0k)skr—1+B(1—B)Xkr—2— (1= B+0K)Xkr-1- (123)

2°Similar to the proof of Theorem 2, for notation simplicity, we extend the definition of s5,» = 3-"_, x,.- for all h > 7. As for
h > 7, xn- =0, we have sp,,» = s. - forall h > 7. We also define so,» = 0 forall 7 > 1.
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To prove (122), we only need to prove:
BA=B)xkr—2<(1—-pF+0K)xkpr—1 VYk>1landT > 3. (124)
In fact, we prove the following stronger result:
BXkr—2 < Tpr—1 Vk>1and Tt > 3. (125)

From condition (118), we know that (125) is true for k = 1 and 7 > 3. From condition (119), we know that

T—k

Xkl = Z (1-B+o0lw) B ap 1,10 VE>2and T >k+1, (126)
=1
T—k

BXkr—2 = Z 1-B+0c(l—-1)k) ﬁlilxk,lﬁ,l,l Vk>2and T > k+2.
1=2
This proves Bxi r—2 < 2 r—1 for k > 2 and 7 > k 4 2. Together with the fact that, x5, o =0Vk > 7 -1,
we prove (125) and thus (124). This finishes the proof of (122).

Based on (121) and (122), we can then establish a result akin to Theorem 2. That is, for any given k& > 1

and 7 > k, the relative contribution of the first k orders, 22 = 2k
First, note that, for any given k > 1,1 = S’“—’“ > Sc’l“k’““ because T+1k+1 > 0. Then, we can proceed by
induction on 7 > k, for any fixed k > 1. If we have = > “p-"*L for some 7 > k, we have ;7 > gt

Using (121) and (122), we have 2572 < d*f and thus > Sg:“ This completes the proof that, for

Finally, we prove that, for any k& > 1,

Sk,r

—0, asT— . (127)
Sr.r
In other words, we want to prove the relative contribution of the first k& orders of beliefs to aggregate spending
converges to zero when the horizon 7 goes to infinity.
First note that, from condition (120), we have s; » = o (1 + o7k) 371 — 0, as T — +oo. From the proof
of Proposition 6, we know s, . = d; = ¢X > 0. As aresult, (127) is true for k = 1.

If there exists k > 2 such that (127) does not hold, we let k* > 2 denote the smallest of such k. Then,

(127) holds for 1 < k < k* — 1. Because we already prove that 22 > 0 is decreasmg with the horizon

7, there exists 0 < I' < 1 such that 2257 = 2k o Pro
,T ¢r ¢ Sk, r—1

Because we already prove that, in the proof of Proposition 6, ¢* — I'*, we have

—>FaST—>oo Asaresult —las7T — oo.

Sk*, Sk*,7—2 1
BT T and 7T—>—* as T — 00. (128)
81{5*7771 Sk’*,‘l’*l F
Note that since sg+ ; = Sg+_1 7+ Xg* - and g — 0asT — 0o, we have X" T — X’(;;’T —Tast — 00.
7 7— T
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As a result,
Xk*,T . Xk*,”r ¢;k—

” —1 as7— 0. (129)
Sk*,f ¢—r Sk*,T
Now we prove a stronger version of (122)
Sk, Sk,7—2 Xk,7—1
+ 5 +or=———<1+B+0k Vr>3andk > 1. (130)
Sk,r—1 Sk,r—1 Sk,7—1
This comes from the fact that (125) can be written as
B =B)Xkr—2+0kXkr—1 < (1 =B+ oK) T sy YT >3andk > 1. (131)

Using (61), (128) and (129), we have

Sk*,r Sk* 12 Xk*,7—1
+0 + ok
Sk*,r—1 Sk* r—1 Sk* r—1

1
—>F*+Bﬁ+am:1+ﬂ+2am as T — 0o.

This contradicts (130) when x > 0 and proves (127). This finishes the proof of the result akin to Theorem 2.
Together with Proposition 3, we then establish the “horizon effect” akin to Theorem 1. Similarly, Proposition

4 also holds here.
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