
A Online Appendix A for “Selling to Advised Buyers”

Andrey Malenko, Anton Tsoy: Omitted Proofs and

Additional Results

A.1 Omitted Proofs

Omitted details for Theorem 3: Proof of (5). We first show that for sufficiently large N , a

strict inequality holds in (5) for all k = 1, . . . ,K − 1. Denote

h(x|N) ≡ NxN−1 − (N − 1)xN . (8)

Let

Hk(v) ≡ h (F (v)|N)− h (F (ωk−1)|N)

h (F (ωk)|N)− h (F (ωk−1)|N)

be the c.d.f. of the distribution of the second-highest order statistic v(2) conditional on v(2) ∈ [ωk−1, ωk),

and let

H∗(v) ≡ h (F (v)|N)− h (F (ωK−1)|N)

h (F (v∗)|N)− h (F (ωK−1)|N)

be the c.d.f. of the distribution of v(2) conditional on v(2) ∈ [ωK−1, v
∗). We start with two auxiliary

claims:

Claim 1. Function h(x|N) is strictly convex on [0, 1− 1
N−1). Further, for any x̃ ∈ [0, 1) and ε > 0, it

holds for all N sufficiently large that h(x̃|N) ≤ h(x|N) + ε(x̃− x) for all x ∈ [0, x̃].

Proof. The first statement follows from

h′′(x|N) = N(N − 1)xN−3((N − 2)− (N − 1)x)

is greater than 0 whenever x ∈ [0, 1− 1
N−1). To prove the second statement, note that since

h′(x|N) = N(N − 1)(xN−2 − xN−1) ≤ N(N − 1)xN−2 for x ∈ [0, 1],

and N (N − 1)xN−2 decreases in N to zero for sufficiently large N , for all N sufficiently large it holds

that h′(x|N) ≤ ε for all x ∈ [0, x̃]. Hence, h(x̃|N) ≤ h(x|N) + ε(x̃− x) for all x ∈ [0, x̃]. q.e.d.

Claim 2. For all sufficiently high N , Hk(v) first-order stochastically dominates F (v|v ∈ [ωk−1, ωk))

for all k = 1, . . . ,K − 1, and H∗(v) first-order stochastically dominates F (v|v ∈ [ωK−1, v
∗)).
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Proof. Fix k = 1, . . . ,K−1. It is sufficient to show that for all v ∈ (ωk−1, ωk), Hk (v) < F (v|v ∈ [ωk−1, ωk)),

or equivalently,

h(F (v)|N) <
F (v)− F (ωk−1)

F (ωk)− F (ωk−1)
h(F (ωk)|N) +

F (ωk)− F (v)

F (ωk)− F (ωk−1)
h(F (ωk−1)|N).

This inequality indeed holds for sufficiently large N , because h(·|N) is strictly convex on [0, F ∗(v)) for

sufficiently large N by Claim 1. The proof of the fact that H∗(v) first-order stochastically dominates

F (v|v ∈ [ωK−1, v
∗)) is analogous. q.e.d.

We proved earlier that ωK−1 < v∗. Hence, by Claim 2, for all sufficiently large N it holds that

E[min{v(2), v
∗}+ b|v(2) ∈ [ωk−1, ωk)] = E[v(2) + b|v(2) ∈ [ωk−1, ωk)]

> E[v(2)|v(2) ∈ [ωk−1, ωk)]

≥ E[v|v ∈ [ωk−1, ωk)] = mk.

for all k = 1, . . . ,K − 1. Thus, we have strict inequality in (5) for all k = 1, . . . ,K − 1. We are left to

show that E[min{v(2), v
∗}+ b|v(2) ≥ ωK−1] ≥ mK . We start with the following auxiliary claim.

Claim 3. For sufficiently large N , P (v ≥ v∗|v ≥ ωK−1) < P
(
v(2) ≥ v∗|v(2) ≥ ωK−1

)
.

Proof. Note that

1− h (F (ωK−1)|N)

1− F (ωK−1)
≥1− h (F (v∗) |N) ,

with limN→∞ h (F (v∗) |N) = 0, and so (1− h (F (ωK−1)|N)) / (1− F (ωK−1)) > 1
2 for sufficiently high

N . Applying Claim 1 with x̃ = F (v∗), x = F (ωK−1), and ε = 1
2 , we obtain that for sufficiently high

N

h (F (v∗)|N) < h (F (ωK−1)|N) + (F (v∗)− F (ωK−1))
1

2

< h (F (ωK−1)|N) + (F (v∗)− F (ωK−1))
1− h (F (ωK−1)|N)

1− F (ωK−1)
.

The last inequality implies that

1− F (v∗)

1− F (ωK−1)
<

1− h(F (v∗)|N)

1− h(F (ωK−1)|N)
,

which proves the desired inequality. q.e.d.
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Combining Claims 2 and 3 implies that for sufficiently high N :

E
[
min{v(2), v

∗}+ b|v(2) ≥ ωK−1

]
=E

[
v(2) + b|v(2) ∈ [ωK−1, v

∗)
]
P
(
v(2) ∈ [ωK−1, v

∗)|v(2) ≥ ωK−1

)
+ (v∗ + b)P

(
v(2) ≥ v∗|v(2) ≥ ωK−1

)
≥E [v|v ∈ [ωK−1, v

∗)]P
(
v(2) ∈ [ωK−1, v

∗)|v(2) ≥ ωK−1

)
+ E [v|v ≥ v∗]P

(
v(2) ≥ v∗|v(2) ≥ ωK−1

)
≥E [v|v ∈ [ωK−1, v

∗)]P (v ∈ [ωK−1, v
∗)|v ≥ ωK−1) + E [v|v ≥ v∗]P (v ≥ v∗|v ≥ ωK−1) = E [v|v ≥ ωK−1]

The first inequality follows from Claim 2 and b > 0; the second inequality follows from Claim 3. Since

expected revenues in the second-price auction cannot exceed E [v|v ≥ ωK−1], the capped delegation

equilibrium in the English auction yields higher expected revenues than any equilibrium of the second-

price auction if N is sufficiently high.

Details of the Proof of Proposition 3. In this proof we assume that y (θ) is strictly increasing

in the range [v + b, v] and show that contract θi (ωi) = b + min {ωi, v∗} strictly dominates any other

contract θi (·). In contrast, if y (θ) is only weakly increasing in the range [v + b, v], then the arguments

in this proof show that bidder i does at least as well with contract θi (ωi) as with any other contract

θi (·), but need not do strictly better. Since y (·) may have mass points, we need to account for the

possibility of winning at ties. Let y (θ−) and y (θ+) denote the left and right limits of y (·) at θ,

respectively, and let ρθ denote the probability of winning conditional on bidding θ and tying. Let

x (θ) ≡ y (θ−) + (y (θ+)− y (θ−)) ρθ denote the probability of winning if bidder i submits bid θ. Let

t (θ) ≡
∫ θ−

0 cdy (c) + (y (θ+)− y (θ−)) ρθθ denote the expected transfer of bidder i to the seller in this

case. Note that we can re-write it as t (θ) =
∫ θ

0 cdx (c). Then, bidder i’s problem is to maximize

E[x(θ(v))v − t(θ(v))] over all contracts θ (v) that satisfy the incentive compatibility condition for the

advisor:

x (θ (v)) (v + b)− t (θ (v)) ≥ x (θ (w)) (v + b)− t (θ (w)) , ∀v, w ∈ [v, v] .

We prove the proposition in three steps.

Step 1: Deriving Expected Payoffs of the Bidder and the Advisor Let u (θ, v) ≡ x (θ) v−t (θ)

denote the expected utility of a bidder with valuation v who bids θ in the second-price auction (follows

the strategy of bidding up to price θ in the English auction). Then, u (θ, v + b) is the expected payoff

of the advisor of type v if he induces the bidder to bid θ.

The next lemma shows that the advisor’s expected payoff is inverted U-shaped in bid θ with the

maximum at θ = v + b:

Lemma 1. u(θ, v + b) is weakly increasing in θ for θ < v + b (strictly for θ ∈ [v + b, v + b)), and

weakly decreasing in θ for θ > v + b (strictly for θ ∈ (v + b, v]). For any v ∈ (v, v − b), u (θ, v + b)
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reaches a unique maximum at θ = v + b.

Proof. Using the expression for t (θ), we have u (θ, v + b) = x (θ) (v + b)−
∫ θ

0 cdx (c). Thus, for any θ2

and θ1 > θ2,

u (θ1, v + b)− u (θ2, v + b) = (x (θ1)− x (θ2)) (v + b− E [c|c ∈ [θ2, θ1]]) ,

where c is distributed according to x (·). Since x (θ) is weakly increasing, it follows that u (θ, v + b)

is weakly increasing in the range θ < v + b and weakly decreasing in the range θ > v + b. Both

relationships are strict wherever x (θ) is strictly increasing, i.e., for all θ ∈ [v + b, v]. Thus, for any

v ∈ (v, v + b), u (θ, v + b) reaches a unique maximum in θ at θ = v + b.

Since contract θ (v) is incentive compatible for the advisor, u (θ (v) , v + b) = maxv̂ x (θ (v̂)) (v + b)−
t (θ (v̂)) and by the generalized envelope theorem (Milgrom and Segal (2002)) the payoff of the advisor

of type v can be written as

u (θ (v) , v + b) =

∫ v

v
x (θ (u)) du+ u (θ (v) , v + b) , (9)

where the expected payoff of the lowest type of the advisor is u (θ (v) , v + b) = x (θ (v)) (v + b) −
t (θ (v)).

Conditional on the advisor’s type v, the bidder’s expected payoff equals u (θ (v) , v) = u (θ (v) , v + b)−
bx (θ (v)). Using (9) and integrating over the distribution of v by parts, we obtain the bidder’s expected

payoff from contract θ (v):∫ v

v
(u (θ(v), v + b)− bx(θ(v))) dF (v)

=

∫ v

v
(1− F (v)− bf (v))x (θ (v)) dv + u (θ (v) , v + b) . (10)

Step 2: Shape of Incentive Compatible Contracts For any ṽ ∈ [v, v], define θ+(ṽ) ≡ limv→ṽ+ θ (v)

and θ−(ṽ) ≡ limv→ṽ− θ (v). Since the bidder’s valuation cannot exceed v, the optimal contract cannot

have θ (v) > v, so we restrict attention to contracts with θ (v) ≤ v. We next show that any incentive-

compatible contract must have a rather specific form. This result is a counter-part of Proposition 1

in Melumad and Shibano (1991).

Lemma 2 (Melumad and Shibano, 1991). An incentive-compatible θ(v) must satisfy the following:

1. θ(·) is weakly increasing;

2. If θ(·) is strictly increasing and continuous on an open interval (v1, v2), then θ(v) = v+ b on it;
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3. If θ(·) is discontinuous at ṽ, the discontinuity must be a jump discontinuity that satisfies

x
(
θ−(ṽ)

)
(ṽ + b)− t

(
θ−(ṽ)

)
= x

(
θ+(ṽ)

)
(ṽ + b)− t

(
θ+(ṽ)

)
; (11)

θ(v) = θ−(ṽ),∀v ∈ [θ−(ṽ)− b, ṽ);

θ(v) = θ+(ṽ),∀v ∈ (ṽ, θ+(ṽ)− b].
(12)

Proof. The proof follows the argument in Melumad and Shibano (1991) with the adjustment to the

fact that we do not assume differentiability or strict concavity of the advisor’s utility function. Weak

monotonicity of θ(·) follows by the same argument as the weak monotonicity of m(·) in the proof of Part

2 of Proposition 1. Consider the second statement. By contradiction, suppose that θ (v) < v + b for

some v ∈ (v1, v2) (case θ (v) > v+b is analogous). Since θ(·) is continuous and strictly increasing, there

exists ε > 0: θ (v) < θ (v + ε) < v + b. Then, by Lemma 1, u (θ (v + ε) , v + b) > u (θ (v) , v + b), i.e.,

type v is better off deviating to reporting v+ε rather than ε, which is a contradiction. Finally, consider

the last statement. Equality (11) follows from the incentive compatibility. We next show the first line

in (12). The proof of the second line is symmetric. Consider v ∈ [θ− (ṽ)− b, ṽ). By construction,

θ− (ṽ) ≤ v + b. By the first statement of the lemma, θ (v) ≤ θ− (ṽ). If θ (v) < θ− (ṽ) ≤ v + b, then by

Lemma 1 u (θ (ṽ) , v + b) > u (θ (v) , v + b), implying that type v would be better off reporting ṽ than

v, which contradicts incentive compatibility of θ (v). Thus, θ (v) = θ− (ṽ).

Step 3: Optimality of the Capped Delegation We first rule out discontinuous jumps in the

optimal θ(·). By contradiction, suppose that there is a discontinuous jump in θ(·) at some ṽ ∈ (v, v).

Consider new contract θ̃ (v), identical to θ (v) for all types but v ∈ [θ− (ṽ)− b, θ+ (ṽ)− b], where

θ̃ (v) = v + b. Let vj ≡ θj (ṽ)− b and xj ≡ x
(
θj (ṽ)

)
for j ∈ {+,−}. Since contract θ (·) is incentive-

compatible, the advisor with type ṽ is indifferent between inducing bids θ− (ṽ) and θ+ (ṽ). Using

t (θ) =
∫ θ

0 cdx (c), (11) implies

∫ ṽ

v−

(
x (v + b)− x−

)
dv =

∫ v+

ṽ

(
x+ − x (v + b)

)
dv. (13)

Subtracting the bidder’s expected payoff (10) under contract θ (v) from the expected payoff under

contract θ̃ (v):

∫ ṽ

v−
(1− F (v)− bf (v))

(
x (v + b)− x−

)
dv −

∫ v+

ṽ
(1− F (v)− bf (v))

(
x+ − x (v + b)

)
dv > 0,

from (13) and the fact that F (v) + bf (v) is strictly increasing. Therefore, contract θ (·) is dominated

by contract θ̃ (·), which contradicts optimality of θ (·).
By Lemma 2 and continuity of the optimal contract, it is sufficient to consider contracts θ (·)

that are comprised of, at most, one upward sloping part θ (v) = v + b for v ∈ [v1, v2] and two flat
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parts, θ (v) = v1 + b for v ∈ [v, v1] and θ (v) = v2 + b for v ∈ [v2, v]. Any other contract satisfying

Lemma 2 exhibits a discontinuous jump in θ (v) at some v, which is inconsistent with the optimality

of θ (·) by the previous paragraph. For any pair of v1 ≥ v and v2 ∈ [v1, v], letting x1 ≡ x (v1 + b) and

x2 ≡ x (v2 + b) and using (10), the expected payoff of the bidder can be written as:

x1

∫ v1

v
(1− F (v)− bf (v)) dv +

∫ v2

v1

(1− F (v)− bf (v))x (v + b) dv

+ x2

∫ v

v2

(1− F (v)− bf (v)) dv + x1 (v + b)−
∫ v1+b

0
vdx (v) (14)

Integrating by parts,
∫ v1+b

0 vdx (v) = x1 (v1 + b) −
∫ v1+b

0 x (v) dv . Taking the difference of (14) for

v′1 ∈ (v1, v2) and v1 and simplifying the expression, we obtain:

−
(
x′1 − x1

) ∫ v1

v
(F (v) + bf (v)) dv −

∫ v′1

v1

(
x′1 − x (v + b)

)
(F (v) + bf (v)) dv,

where we denote x′1 ≡ x (v′1 + b). This expression is strictly negative, because x (·) is strictly increasing

on [v + b, v]. herefore, for any v1 > v, contract θ (v) is dominated by contract θ̃ (v) that coincides with

θ (v) but lowers v1 by an infinitesimal amount. Hence, the optimal contract has no flat region at the

bottom: v1 = v.

Step 4: Optimal Pooling Region at the Top The previous steps imply that the optimal contract

θ(v) take form of capped delegation: θ (v) = b+ min {v, v2} for some v2. We next show that v2 = v∗.

Taking the difference of the bidder’s expected payoff (14) for v2 + ε and v2, we obtain:∫ v2+ε

v2

(1− F (v)− bf (v)) (x (v + b)− x2) dv +
(
x′2 − x2

) ∫ v

v2+ε
(1− F (v)− bf (v)) dv,

where we denote x′2 ≡ x (v2 + b+ ε). Taking the limit as ε → 0 and using the fact that x (·) is

strictly increasing, we obtain that the difference has the same sign as
∫ v
v2

(1− F (v)− bf (v)) dv. Since

F (v) + bf (v) is strictly increasing in v, the bidder’s expected payoff (14) is inverted U-shaped in v2

with the maximum at v2 = v̂2, which is the unique solution to
∫ v
v̂2

(1− F (v)− bf (v)) dv = 0. Note

that this equation can be re-written as MRL (v̂2) = b, and thus v̂2 = v∗. Therefore, the unique optimal

cap is v∗ + b.

A.2 Additional Results for Subsection 4.1

Here, we derive several additional results. First, Proposition 4 provides explicit formulas for the cut-off

advisor types in any equilibrium communication partition.
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Proposition 4. In any standard auction with continuous payments, in any equilibrium with K par-

tition intervals, thresholds (ωk)
K
k=0 satisfy ω0 = v, ωK = v, and

G(ωk−1, ωk)(1− Λk)(ωk + b−mk) = −G(ωk, ωk+1)Λk+1(ωk + b−mk+1), (15)

where

mk ≡ E [v|v ∈ [ωk−1, ωk)] , (16)

and

Λk ≡
1

G(ωk−1, ωk)

(
N−1∑
n=1

(
N − 1

n

)
F (ωk−1, ωk)

nF (ωk−1)N−1−n

n+ 1

)
(17)

is the probability of winning conditional on a tie at bid mk. Further if (ωk)
K
k=0 satisfy ω0 = v, ωK = v,

and (15), then they are part of equilibrium communication partition.

Proof. By Proposition 1 it is without loss to restrict attention to communication in equilibria of the

second-price auction. By the interval partition form of communication, we need to determine incentives

of threshold types of the advisor ωk. Consider any such type ωk. In the second-price auction, a message

is simply an expected value of the bidder mk given by (16).

As an auxiliary step, let us derive the probability that a bidder with bid mk = E[v|v ∈ [ωk−1, ωk)]

wins a tie, conditional on the tie taking place at bid mk = E[v|v ∈ [ωk−1, ωk)]. Without loss of

generality, we refer to this bidder as bidder N and to her rivals as bidders i ∈ {1, 2, ..., N − 1}. Denote

such a probability by Λk. Since ties are broken randomly,

Λk = E
[

1

ñk + 1
|v̂ ∈ [ωk−1, ωk)

]
,

where ñk =
∑N−1

i=1 1 {vi ∈ [ωk−1, ωk)} is a random variable, denoting the number of rival bidders with

the same bid mk. Re-writing,

Λk =
N−1∑
n=1

1

n+ 1

Pr [ñk = n, v̂ ∈ [ωk−1, ωk)]

G (ωk−1, ωk)

=

N−1∑
n=1

1

n+ 1

Pr
[
ñk = n,

∑N−1
i=1 1 {vi < ωk−1} = N − 1− n

]
G (ωk−1, ωk)

=

N−1∑
n=1

1

n+ 1

(
N−1
n

)
F (ωk−1, ωk)

n F (ωk−1)N−1−n

G (ωk−1, ωk)
,

which coincides with expression (17).

Now, we can show (15). Let m̂ be the message of the highest bidder among N − 1 opponents of
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the bidder. From submitting a message mk, type ωk gets utility

G(ωk−1)E[ωk + b− m̂|v̂ < ωk−1] +G(ωk−1, ωk)Λk(ωk + b−mk),

where the expected utility from bidding mk when the other bidders submit bids below mk and when

some bidders tie with the bidder is captured by the first and second terms, respectively. Analogously,

from submitting a message mk+1, type ωk gets utility

G(ωk−1)E[ωk + b− m̂|v̂ < ωk−1] +G(ωk−1, ωk)(ωk + b−mk) +G(ωk, ωk+1)Λk+1(ωk + b−mk+1).

Type ωk should be indifferent between the two which gives the eq. (15). Thus, any PBE communication

strategy can be described by a solution (ωk)
K
k=0 to recursion (15) where ω0 = v and ωK = v.

The last statement of the proposition is immediate from the specification of mk in (16) and the

fact that cut-off types ωk are indifferent between the two adjacent equilibrium bids mk and mk+1, and

the single-crossing property of advisor’s payoffs.

The next proposition verifies that there indeed exist equilibria that satisfy NITS.

Proposition 5. In any static auction, there is an equilibrium that satisfies the NITS condition.

We first show the following auxiliary lemma:

Lemma 3. If ωk+1 = ωk, then k = 0. Furthermore, there exists ε > 0 such that ωk+1 − ωk > ε for

k = 1, . . . ,K.

Proof. To prove the first statement, suppose by contradiction that ωk+1 = ωk for some 0 < k ≤ K.

This implies that G(ωk, ωk+1) = 0 and so, from (15), G(ωk−1, ωk)(1− Λk−1)(ωk + b−mk) = 0 which

in turn implies that ωk + b = mk or ωk−1 = ωk. If ωk−1 < ωk, then mk < ωk < ωk + b which is a

contradiction. If ωk−1 = ωk, then choose j so that ωk−j−1 < ωk−j = · · · = ωk−1 = ωk = ωk+1 and the

argument proceeds as in the case ωk−1 < ωk.

To prove the second statement, suppose ωk+1 − ωk > 0 for some k. By the first statement of the

lemma, k > 0. Since ωk + b−mk > ωk + b−mk+1, it follows from (15) and ωk+1 − ωk > 0 that

ωk + b ≤ E[v|v ∈ [ωk, ωk+1)]. (18)

If to contradiction for any ε > 0, there were an equilibrium such that ωk+1 − ωk < ε, then for such

equilibrium E[v|v ∈ [ωk, ωk+1)] ≤ ωk + ε < ωk + b which would contradict (18) for ε < b. Thus, there

is ε > 0 such that ωk+1 − ωk > ε for 0 < k ≤ K.

We can now proceed to the proof of Proposition 5.
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Proof of Proposition 5. We consider separately cases v <∞ and v =∞.

Case 1: v <∞
Lemma 3 implies that there is an upper bound K̄ on the number of intervals in the communication

strategy. To prove there is an equilibrium that satisfies NITS, we adapt the proof of Proposition 1

from Chen et al. (2008) for our problem. It is useful to introduce the following notations:

Ψ(ωk−1, ωk) = G(ωk−1, ωk)(1− Λk) =

N−1∑
n=1

(
N − 1

n

)
F (ωk−1, ωk)

nF (ωk−1)N−1−n n

n+ 1
,

Φ(ωk, ωk+1) = G(ωk, ωk+1)Λk+1 =

N−1∑
n=1

(
N − 1

n

)
F (ωk, ωk+1)nF (ωk)

N−1−n 1

n+ 1
.

Denote m(ωk−1, ωk) = E[v|v ∈ (ωk−1, ωk)] and

H(ωk−1, ωk, ωk+1) ≡ Ψ(ωk−1, ωk)(ωk + b−m(ωk−1, ωk)) + Φ(ωk, ωk+1)(ωk + b−m(ωk, ωk+1)). (19)

Note that an equilibrium with K intervals is given by recursion H (ωk−1, ωk, ωk+1) = 0, with ω0 = v

and ωK = v. To prove the statement, we will show that if an equilibrium with K intervals ω =

(ω0, ω1, ..., ωK), violates the NITS condition, then for all k = 1, ...,K, there exists a solution to

recursion H (ωk−1, ωk, ωk+1) = 0, with k + 1 intervals, ωk, that satisfies ωk0 = v, ωkk > ωk−1, and

ωkk+1 = ωk. After this result is established, the statement of the proposition follows from the following

argument. By contradiction, suppose that the most informative equilibrium (i.e., one with K̄ intervals)

violates the NITS condition. Applying the result above for k = K̄, there must be a solution to

H (ωk−1, ωk, ωk+1) = 0 with K̄+1 intervals satisfying boundary conditions ωK̄0 = v and ωK̄
K̄+1

= ωK̄ =

v̄. By Propositions 1 and 4, this is an equilibrium, which contradicts the statement that K̄ is the

highest number of equilibrium intervals.

We show the result by induction on k. As an induction base, consider k = 1. If the equilibrium

with K intervals ω = (ω0, ω1, ..., ωK) violates the NITS, it must be that v + b < m (v, ω1), and

hence, H (v, v, ω1) < 0. At the same time, H (v, ω1, ω1) > 0, since ω1 > m (v, ω1) and b > 0. By

continuity, there exists x ∈ (v, ω1) at which H (v, x, ω1) = 0. Hence, the claim holds for k = 1:

ω1 =
(
ω1

0, ω
1
1, ω

1
2

)
= (v, x, ω1) solves H (ωk−1, ωk, ωk+1) = 0 with ω1

0 = v, ω1
1 > ω0 = v, and ω1

2 = ω1.

Consider the difference H
(
ωkk , ωk, ωk+1

)
−H (ωk−1, ωk, ωk+1):

Ψ
(
ωkk , ωk

)(
ωk + b−m

(
ωkk , ωk

))
−Ψ (ωk−1, ωk) (ωk + b−m (ωk−1, ωk))

=F (ωk)
N−1

N−1∑
n=1

(
N − 1

n

)(
F
(
ωkk , ωk

)
F (ωk)

)n(
F
(
ωkk
)

F (ωk)

)N−1−n
n

n+ 1

(ωk + b−m
(
ωkk , ωk

))

− F (ωk)
N−1

(
N−1∑
n=1

(
N − 1

n

)(
F (ωk−1, ωk)

F (ωk)

)n(F (ωk−1)

F (ωk)

)N−1−n n

n+ 1

)
(ωk + b−m (ωk−1, ωk)) .
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Since ωkk > ωk−1, we have two implications. First, m
(
ωkk , ωk

)
> m (ωk−1, ωk), implying ωk + b −

m
(
ωkk , ωk

)
< ωk + b−m (ωk−1, ωk). Second, binomial distribution with success probability

F (ωk−1,ωk)
F (ωk)

dominates binomial distribution with success probability
F(ωk

k ,ωk)
F (ωk) in the sense of first-order stochastic

dominance, implying Ψ
(
ωkk , ωk

)
< Ψ (ωk−1, ωk). Therefore, H

(
ωkk , ωk, ωk+1

)
−H (ωk−1, ωk, ωk+1) < 0.

Since H (ωk−1, ωk, ωk+1) = 0, we conclude that H
(
ωkk , ωk, ωk+1

)
< 0.

On the other hand, since ωk > m
(
ωkk , ωk

)
and b > 0, we have ωk + b > m

(
ωkk , ωk

)
, implying

H
(
ωkk , ωk, ωk

)
> 0. This, H

(
ωkk , ωk, ωk+1

)
< 0, and continuity imply that there exists x ∈ (ωk, ωk+1)

at which H
(
ωkk , ωk, x

)
= 0. Since ωkk+1 = ωk, the same x satisfies H

(
ωkk , ω

k
k+1, x

)
= 0. That is, there

exists a solution in which the (k+ 1)st intervals ends at ωkk+1 = ωk and the (k+ 2)nd interval ends at

x < ωk+1. By continuity, there exists a solution to the recursion in which the (k + 2)nd interval ends

at any ω ∈
(
ωkk+1, ωk+1

)
. By continuity, for one such ω, denoted ωk+1

k+1, the (k + 2)nd interval ends

exactly at ωk+1, i.e., ωk+1
k+2 = ωk+1. Hence, there exists a solution to recursion H (ωk−1, ωk, ωk+1) = 0,

with k + 2 intervals, ωk+1, that satisfies ωk+1
0 = v, ωk+1

k+1 > ωk, and ωk+1
k+2 = ωk+1. This completes the

proof of the inductive step.

Case 2: v =∞
Consider a sequence of vj = j, j = 1, 2, . . . .. By case 1, there exists an equilibrium partition

(ωk(j))
Kj

k=0 in the game with distribution of types truncated from above at vj that satisfies the NITS

condition, i.e.,

v + b ≥ E[v|v ≤ ω1(j)]. (20)

Let us construct partition (ω∗k)
K
k=0 as follows. Consider a sequence (ω1(j))j=1,2,.... If there is a divergent

subsequence in (ω1(j))j=1,2,..., then set K = 1 and ω∗1 = ∞. If there is no divergent subsequence in

(ω1(j))j=1,2,..., then consider an arbitrary convergent subsequence (ω1(j(i)))i=1,2,... of (ω1(j))j=1,2,...

and set ω∗1 = limi→∞ ω1 (j(i)). We next move to k = 2. Again, if there is a divergent subsequence

in (ω1(j(i)))i=1,2,..., then set K = 2 and ω∗2 = ∞. Otherwise, consider a convergent subsequence of

(ω1(j(i)))i=1,2,... and set ω∗2 to its limits. We proceed this way to construct (ω∗k)
K
k=0.

For any k, ωk(j) satisfies

H (ωk−1(j), ωk(j), ωk+1(j)|vj) = 0, (21)

where function H(·|vj) is defined as in (19) with F replaced by F (·|v ≤ vj). By taking the limit of

(21) over the subsequence used to obtain ω∗k+1, we get that each ω∗k satisfies (19) or equivalently (15).

By Proposition 4, (ω∗k)
K
k=0 are part of the equilibrium communication partition.

Finally, by construction, ω∗1 = limi→∞ ω1 (j(i)) and it holds (20). By taking the limit (20) as

i → ∞ we get that v + b ≥ E[v|v ≤ ω∗1]. Thus, the constructed partition satisfies NITS, which

completes the proof.
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A.3 Additional Result for Section 4.2

In the somewhat unnatural case when neither Assumption A nor B are satisfied, the English auction

can have multiple capped delegation equilibria. However, for the case of two bidders, we can generalize

our comparison results:

Proposition 6. Suppose that b > 0 and N = 2. Then, the pooling region (if it is not empty) in any

capped delegation equilibrium in the English auction is finer than the top interval in any equilibrium

of the second-price auction: v∗ ≥ ωK−1. If, in addition, ϕ (·) is strictly increasing, then any capped

delegation equilibrium in the English auction brings higher expected revenues than any equilibrium

satisfying NITS in the second-price auction. Both comparisons are strict if v∗ > v.

Proof. We prove the first statement by contradiction. Suppose there exists a capped delegation equilib-

rium in the English auction and an equilibrium in the second-price auction satisfying v∗ < ωK−1. Then,

in the set of intervals in equilibrium of the second-price auction, there exists an interval (ωk−1, ωk)

satisfying ωk−1 ≤ v∗ < ωk. Consider the indifference condition of type ωk in the second-price auction.

When N = 2, G (ωk, ωk+1) = F (ωk, ωk+1) and Λk = Λk+1 = 1
2 . Therefore, (15) can be simplified to

ωk + b =
F (ωk−1, ωk)

F (ωk−1, ωk+1)
mk +

F (ωk, ωk+1)

F (ωk−1, ωk+1)
mk+1 = E [v|v ∈ (ωk−1, ωk+1)] . (22)

Since ωk+1 ≤ v̄ and ωk−1 ≤ v∗, the right-hand side of (22) satisfies:

E [v|v ∈ (ωk−1, ωk+1)] ≤ E [v|v ≥ ωk−1] ≤ E [v|v ≥ v∗] .

On the other hand, since v∗ < ωk, the left-hand side of (22) satisfies ωk + b > v∗ + b. Hence,

v∗ + b < E [v|v ≥ v∗]. On the other hand, by the argument in Theorem 3, whenever v∗ < v it is

necessary that E [v|v ≥ v∗] = v∗ + b, which gives us the contradiction. Therefore, v∗ ≥ ωK−1. If

v∗ > v, then v∗ > ωK−1, since v∗ = ωK−1 cannot be by contradiction. Indeed, in this case, equation

(22) implies v∗+ b = E [v|v ≥ ωK−2] < E [v|v ≥ v∗], which again contradicts E [v|v ≥ v∗] = v∗+ b. The

second statement of the theorem follows from the same argument as Theorem 1, since it relies only

on higher efficiency of an equilibrium of the English auction than an equilibrium of the second-price

auction and on the NITS condition.
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B Online Appendix B for “Selling to Advised Buyers”

Andrey Malenko, Anton Tsoy: Selection of the Capped

Delegation Equilibria

In this appendix, we introduce the dynamic version of NITS and show that it selects capped delegation

equilibria.

B.1 Dynamic Version of NITS

We require that the NITS condition holds in every round of the game. For any history h, let µ(h) be

the bidder’s posterior after history h in the beginning of the current round (before the advisor sends

a message in the current round). Let

vw(h) ≡ min{v|v ∈ supp(µ(h))} (23)

be the weakest remaining (according to the bidder’s beliefs) type of the advisor after history h. Simi-

larly to Chen et al. (2008), an equilibrium violates the dynamic version of NITS condition if after some

history h, the advisor of type vw(h) is better off claiming that he is the weakest remaining type than

playing his equilibrium strategy. To capture this condition, we require that any unexpected message

is interpreted as a signal of the weakest type (then the advisor’s sequential rationality implies that

after any history, the equilibrium strategy is weakly preferred to signaling that you are the weakest

type). Formally, the dynamic version of NITS that we impose is stated as follows:

Definition 3. An equilibrium of the English auction (m, a, µ̃) satisfies the NITS condition if the

following holds. Consider any p-round history h, in which the advisor deviates in round p′ for the first

time and sends m̃ /∈
⋃

v∈supp(µ(h′))

m(v, p′, µ(h′)), where h′ is a truncation at round p′ of history h. Then

µ(h) assigns probability one to vw(h′).17

Several observations are in order. First, Definition 3 states that after the first unexpected message,

the bidder assigns probability one to the weakest type in the round when the deviation happened and

never updates her belief after that. Second, in dynamic auctions the weakest type can (and will) change

as the auction progresses. Third, the condition in Definition 3 requires that any unsent message is

perceived as a signal of the weakest type which is slightly stronger than assuming that the lowest type

of advisor does not want to reveal itself in equilibrium.

17We implicitly assume that the set of messages is rich enough so that there is always an “unused” message
in any equilibrium.
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B.2 Online Strategies

We first show that it is sufficient to look for equilibria of the English auction in which the advisor

gives a real-time recommendation of the action (“quit” or “stay”) to the bidder, both advisors’ and

bidders’ strategies are of the threshold form, and bidders follow the recommendations of their advisors

on equilibrium path. We refer to these equilibria as equilibria in online threshold strategies.

Definition 4. An equilibrium in the English auction is in online threshold strategies if the strategies

of each advisor and bidder satisfy:

m (v, p, µ) =

1, if p ≥ p̂ (v, µ) ,

0, if p < p̂ (v, µ) ,
a (p, µ̃) =

1, if p ≥ p̄ (µ̃) ,

0, if p < p̄ (µ̃) ,
(24)

for some p̂ (·) and p̄ (·), where µ̃ denotes the posterior belief of the bidder at price p, having observed

her advisor’s message in this round. Functions p̂ (·) and p̄ (·) are such that on equilibrium path the

bidder exits the auction the first time her advisor sends message m̃ = 1.

Intuitively, at any price p, the advisor sends a binary message to his bidder recommending to

quit the auction immediately or stay in it, and on equilibrium path, the bidder follows the advisor’s

recommendation. The next lemma shows that the restriction to equilibria in online threshold strategies

is without loss of generality:

Lemma 4. For any equilibrium there is also an equilibrium in online threshold strategies that results

in the same bidding behavior on equilibrium path. For any equilibrium that satisfies NITS there is an

equilibrium in online threshold strategies that satisfies NITS and results in the same bidding behavior

on equilibrium path.

The first statement is that any equilibrium with a general communication strategy has an equivalent

in online threshold strategies. The proof is the manifestation of the sure-thing principle (Savage

(1972)), stating that if an action is optimal for a decision-maker in every state, then it must be

optimal if she does not know the state. Intuitively, since the advisor’s information is only relevant for

determining the price level at which the bidder quits the auction, any equilibrium quitting strategy can

be achieved by the advisor delaying communication as much as possible, which occurs when she sends

a recommendation to quit immediately when the price hits the level at which the bidder is supposed

to quit. The second statement implies that the NITS condition is not stronger for equilibria in online

threshold strategies than in general: If an equilibrium with a general communication strategy satisfies

NITS, then an equivalent in online threshold strategies also satisfies NITS.

Proof of Lemma 4. The proof of the first statement follows the argument of the proof of Lemma IA.2

in Grenadier et al. (2016). Specifically, for any pure-strategy PBEM we construct an equilibrium in

online threshold strategies that results in the same bidding behavior on equilibrium path.
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Consider any pure-strategy equilibrium E with some strategies m̄ (v, p, µ) and ā (p, µ̃). It implies

an equilibrium exit price τ̄ (v), which is the price at which the bidder exits the auction, if the valuation

is v, provided that the bidder and her advisor play the equilibrium strategies m̄ (·) and ā (·). Note

that τ̄ (v) must be weakly increasing in v. To see this, suppose by contradiction that τ̄ (v1) > τ̄ (v2)

for some v1 ∈ [v, v̄) and v2 ∈ (v1, v̄]. Since the advisor’s payoff from acquiring the asset at any price

p is higher for type v2 than for type v1 (v2 + b − p > v1 + b − p), the advisor’s continuation value

from not exiting the auction at any price p cannot be lower for type v2 than for type v1. The payoff

from exiting the auction at any current price p does not depend on the type and equals zero. Thus,

τ̄ (v2) ≥ τ̄ (v1). Let % ≡ {p : ∃v ∈ [v, v̄] such that τ̄ (v) = p} be the set of prices at which the bidder

exits the auction for some realization of v. It will be convenient to define vl (p) ≡ inf {v : τ̄ (v) = p}
and vh (p) ≡ sup {v : τ̄ (v) = p} for any p ∈ %. We extend the definition of vl (p) for any p /∈ % by

setting vl (p) ≡ inf {v : τ (v) ≥ p}.
Consider an online threshold strategy of the advisor, m (v, p, µ), with p̂ (v, µ) = τ̄ (v) and the

following belief updating rule of the bidder. For any belief µ, price p, and message m̃ such that there

is v ∈ supp (µ (h)) with m (v, p, µ) = m̃, belief µ is updated via the Bayes rule. Any other message

m̃ (i.e., a message for which there is no v ∈ supp (µ (h)) with m (v, p, µ) = m̃) is treated as some

message m̃′ for which there is some v ∈ supp (µ (h)) with m (v, p, µ) = m̃′, and belief µ is updated

following message m̃ in the same way as following message m̃′.18 Given this, the posterior belief of

the bidder for any history h is as follows. A sequence of messages m = 0 for all prices p′ ≤ p up

to price p implies that the bidder’s posterior belief is given by the prior distribution of valuations

truncated from below at vl (p). A sequence of messages m = 0 for all prices p′ < p′′ ∈ % and message

m = 1 at price p′′ ∈ % and any history of messages after that results in the bidder’s posterior belief

given by the prior distribution of valuations truncated at vl (p
′′) from below and at vh (p′′) from above.

Any history involving off-equilibrium messages leads to the posterior belief equivalent to one of these

two posterior beliefs by construction of the updating rule. Given this, consider an online threshold

strategy of the bidder, a (p, µ̃), with p̄ (µ̃) = E [v|v ≥ vl (p)] for the posterior belief µ̃ in the history of

the first kind (i.e., when the advisor never recommended quitting at one of prices p ∈ % in the past),

and with p̄ (µ̃) = E [v|v ∈ [vl (p
′′) , vh (p′′)]] for the posterior belief µ̃ in the history of the second type

(i.e., when the advisor recommended to quit the auction at price p′′ ∈ %). Let E′ denote a combination

of these online threshold strategies of the advisor and the bidder and the belief updating rule. Below

we show that E′ is indeed an equilibrium and that it results in the same equilibrium exit price τ̄ (v)

as equilibrium E.

For the collection of strategies and beliefs E′ to be an equilibrium, we need to verify the incentive

compatibility (IC) conditions of the advisor and the bidder.

18Intuitively, according to this updating rule, the bidder effectively ignores unexpected messages. As a
consequence, it is sufficient to consider only deviations to on-path (expected) messages. Because no deviation
to an off-path message can be beneficial, we do not lose any equilibria by focusing on this belief updating rule.
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1 - IC of the advisor. First, we verify that the advisor is not better off deviating from (24)

with p̂ (v, µ) = τ̄ (v). Because of the above definition of the off-path beliefs, it is sufficient to consider

only deviations to m ∈ {0, 1} at p ∈ %. First, consider a deviation of type v to m = 1 at p ∈ %

at which p < τ̄ (v). This deviation is equivalent to mimicking the communication strategy of type

v′ : τ̄ (v′) = p. Since mimicking the communication strategy of type v′ is not profitable for type v

in equilibrium E (otherwise, it would not be an equilibrium), it is also not profitable here. Second,

consider a deviation of type v to m = 0 at p = τ̄ (v). Depending on her communication strategy at

later prices, this deviation will result in exit at price τ̄ (v′) for some v′ ≥ vh (τ̄ (v)). Hence, any such

deviation is equivalent to mimicking the communication strategy of type v′. Since it is not profitable

for type v in equilibrium E, it is also not profitable here.

2 - IC of the bidder after observing m = 1 at p ∈ % and m = 0 before. We argue

that p̄ (µ̃) ≤ p in this case, so the bidder’s best response is to quit the auction immediately. Given

this history, the bidder’s posterior belief is that v ∈ [vl (p) , vh (p)]. Because the bidder expects the

advisor to follow (24) with p̂ (v, µ) = τ̄ (v), she expects the advisor to send m = 1 at any later price.

Since the bidder expects to not learn anything new about v, her optimal exit strategy is given by

the expected valuation, i.e., E [v|v ∈ [vl (p) , vh (p)]]. It follows that the bidder exits immediately if

p ≥ E [v|v ∈ [vl (p) , vh (p)]]. Next, we show that τ̄ (p) in equilibrium E must satisfy this condition at

any p ∈ %. Since exiting at price p is optimal for the bidder for any realization v ∈ [vl (p) , vh (p)] of the

valuation, it must be that p ≥ E
[
v|HEp

]
for any history HEp induced by equilibrium communication of

the advisor with type v ∈ [vl (p) , vh (p)]. It follows that p ≥ maxHE
p ∈HE

p
E
[
v|HEp

]
, where HE

p denotes

the set of such histories. Using the law of iterated expectations and fact that the maximum of a

random variable cannot be below its mean,

p ≥ max
HE

p ∈HE
p

E
[
v|HEp

]
≥ E

[
E
[
v|HEp

]
|HEp ∈ HE

p

]
= E

[
v|HEp ∈ HE

p

]
= E [v|v ∈ [vl (p) , vh (p)]] .

Therefore, when the bidder observes message m = 1 at p ∈ % for the first time, she finds it optimal to

quit the auction immediately.

3 - IC of the bidder after observing a sequence of messages m = 0 up to price p < τ̄ (v̄).

We argue that p̄ (µ̃) > p for any such history, i.e., it is optimal for the bidder to wait. Given this

history, the bidder’s posterior is that v ∈ [vh (p′) , v̄] for highest p′ ∈ % satisfying p′ < p. Consider

equilibrium E and any history H̃Ep induced by equilibrium communication of the advisor with type

v ∈ [vh (p′) , v̄]. Denote the set of such histories by H̃E
p . Since the bidder finds it optimal to wait, the

payoff from waiting is weakly above the payoff from quitting the auction immediately (i.e., zero) for

any such history H̃Ep . In strategy profile E′ the bidder learns no less between price p and the exit price

than in strategy profile E. Hence, the fact that waiting is optimal for any history H̃Ep ∈ H̃E
p implies
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that waiting is also optimal when the bidder expects the advisor to follow (24) with p̂ (v, µ) = τ̄ (v).

Therefore, the collection of strategies and beliefs E′ is an equilibrium. Furthermore, on equilibrium

path, the advisor with type v recommends to quit the auction when the price reaches τ̄ (v), and the

bidder exits the auction immediately. Therefore, E′ results in the same bidding behavior as E.

The second statement of the lemma can be proved by contradiction. Consider equilibrium E that

satisfies NITS, and suppose that an equilibrium in online threshold strategies with the same bidding

behavior violates NITS. Hence, there exists price p such that the advisor with type vl (p) is better off

credibly revealing itself at price p than getting the expected (as of information at price p) payoff in

equilibrium E′. Hence, the time-0 expected payoff of the advisor of type vl (p) from sending message

m = 0 until price p and credibly revealing itself then exceeds the time-0 expected payoff of the advisor

of type vl (p) in equilibrium E′. Now, consider equilibrium E, and the strategy of the advisor of type

vl (p) to send equilibrium message m̄ (v, p′, µ) for all p′ < p and to credibly reveal itself at price p

(by definition of vl (p), type vl (p) = inf {v|v ∈ supp (µ (h))} for any history induced by this message

strategy up to price p). In equilibrium E, bidding behavior of other bidders is the same and the

bidder’s reaction to the advisor credibly revealing itself at price p is the same as in equilibrium E′.

Hence, the time-0 expected payoff of the advisor of type vl (p) from this strategy is the same as the

time-0 expected payoff of the advisor of type vl (p) from sending message m = 0 until price p and

credibly revealing itself at price p in equilibrium E′, which is strictly higher than the time-0 equilibrium

expected payoff of the advisor of type vl (p). Hence, equilibrium E also violates the NITS condition,

which is a contradiction.

B.3 Selection Result

Lemma 4 implies that any equilibrium of the second-price auction has an equivalent equilibrium in

online threshold strategies in the English auction. Indeed, suppose that there is a single round of infor-

mative communication in the English auction, followed by babbling at any other round, where bidders

believe that any message has no information content. Since there is no informative communication

in later rounds, bidding in the English auction is equivalent to bidding in the second-price auction

for the same distribution of bidder types induced by communication at the initial round. Thus, any

equilibrium from Proposition 1 has an equivalent equilibrium in the English auction. By Lemma 4,

the English auction has also an equivalent equilibrium in online threshold strategies.19 Thus, the set of

equilibria in the English auction is potentially very large. Nevertheless, it turns out that all equilibria

19Specifically, consider any equilibrium in the second-price auction with partition {ωk}Kk=0. An equivalent
equilibrium in online threshold strategies in the English auction has the following form. Type v ∈ (ωk−1, ωk)
plays the strategy of sending message m = 0, if p < E [v|v ∈ (ωk−1, ωk)], and message m = 1, otherwise. Let
P ≡ {p : E [v|v ∈ (ωk−1, ωk)] = p for some p} denote the set of informative prices – prices at which some type
switches from m = 0 to m = 1 with some probability. Let the bidder’s belief updating rule for any p /∈ P be
such that any message is interpreted the same way (i.e., belief is unchanged for any message sent at such price).
Finally, the bidder’s strategy is to exit at the first informative price p ∈ P, at which she gets message m = 1.
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of the English auction satisfying NITS take a simple form of capped delegation strategies:

Proposition 7. Any equilibrium in the English auction that satisfies the NITS condition is in capped

delegation strategies with cutoff v∗ satisfying:

if v∗ ∈ (v, v), then b = E[v|v ≥ v∗]− v∗;

if v∗ = v, then b ≥ E[v|v ≥ v∗]− v∗;

if v∗ = v, then v =∞ and b ≤ lim
s→∞

E[v|v ≥ s]− s.

(25)

Proof of Proposition 7. By Lemma 4, it is without loss of generality to focus on equilibria in online

threshold strategies. In the proof of Lemma 4, we introduced function τ̄(v), which denotes the equilib-

rium exit price of the bidder if the advisor’s type is v. In an equilibrium in online threshold strategies,

τ̄ (v) is also the first price at which the advisor with type v sends message “quit” to the bidder.

Any equilibrium generates partition Π of [v, v] satisfying τ̄ (v) = τ̄ (v′) for any v, v′ ∈ π for any

element π ∈ Π. As shown in Lemma 4, τ̄ (v) is weakly increasing, so any π ∈ Π is an interval (possibly

consisting of one element). We say that types in π ∈ Π pool if τ̄(v) is constant on v ∈ π, i.e., these

types start sending message “quit” at the same price. We say that types in [v′, v′′] separate, if τ̄(v)

is strictly increasing on [v′, v′′], i.e., these types start sending message “quit” at different prices. Let

ΠP and ΠS ≡ [v, v]\ΠP be the sets of all types that pool with some other type and that separate,

respectively. Denote by ∂ΠP the boundary of ΠP .

Babbling (τ̄ (v) = E [v] ∀v) is an equilibrium of the English auction, and it satisfies NITS if and

only if E[v] ≤ v + b. This proves case v∗ = v of the proposition. Hence, we can consider the case in

which there is a non-trivial information transmission in equilibrium.

Claim 4. For any π, π′ ∈ ΠP , π and π′ are not adjacent.

Proof: By contradiction, suppose that there are two adjacent intervals of types, π and π′, such

that τ̄ (v) = p ∀v ∈ π and τ̄ (v) = p′ ∀v ∈ π′. Without loss of generality, p′ > p. Consider the advisor

with type ṽ on the boundary of π and π′. By continuity, the advisor with type ṽ is indifferent between

his bidder quitting the auction at prices p and p′. The benefit of the latter is winning against types in

π, while the cost is risking to win against types in π′ and paying p′. The indifference of type ṽ implies

that p′ > ṽ + b. Consider running price p′+p
2 . Type ṽ is the weakest remaining type at this price.

Since p′ > ṽ + b, following his equilibrium strategy of waiting to send recommendation m = 1 until

price p′ generates negative expected payoff to the advisor at this point. In contrast, claiming that he

is the weakest remaining type at the current price of p′+p
2 will lead to the bidder quitting immediately,

yielding the payoff of zero to the advisor. This contradicts the NITS condition. q.e.d.

We next show that whenever types within an interval separate, they start recommending to quit

the auction at their most preferred time.

Claim 5. If τ̄(v) is strictly increasing on (v′, v′′), then τ̄(v) = v + b for any v ∈ (v′, v′′).
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Proof: By contradiction, suppose there is v ∈ (v′, v′′) with τ̄ (v) 6= v+ b. Then, either τ̄ (v) > v+ b

or τ̄ (v) < v + b. First, consider the former case. Since v is interior, there exists a subset of (v′, v′′) of

types v+ ε > v with positive measure with τ̄ (v) > v+ ε+ b. Since τ̄ (·) is strictly increasing, we have

τ̄ (v + ε) > τ̄ (v) > v+ε+b. Therefore, any such type v+ε is better off mimicking the communication

strategy of type v to ensure exit at price τ̄ (v) instead of τ̄ (v + ε): by doing this, the advisor ensures

that the bidder does not win when the valuation of the strongest rival is in (v, v + ε), in which case

the bidder overpays relative to the advisor’s maximum willingness to pay of v+ε+b. Hence, it cannot

be that τ̄ (v) > v + b. Second, consider the case τ̄ (v) < v + b. Now, there exists a subset of (v′, v′′)

of types v − ε < v with positive measure with τ̄ (v) < v − ε + b. Since τ̄ (·) is strictly increasing,

we have τ̄ (v − ε) < τ̄ (v) < v − ε + b. Therefore, any such type v − ε is better off mimicking the

communication strategy of type v to ensure exit at price τ̄ (v) instead of τ̄ (v − ε): by doing this, the

advisor ensures that the bidder wins when the valuation of the strongest rival is in (v − ε, v), in which

case the advisor gets a positive payoff, since the bidder pays below the advisor’s maximum willingness

to pay. Therefore, it cannot be that τ̄ (v) < v + b. We conclude that τ̄ (v) = v + b. q.e.d.

Claim 6. If ΠP 6= ∅ and ΠS 6= ∅, then ΠP contains a single interval πP = [v∗, v], where v∗ > v.

Proof: By contradiction, suppose that ΠP contains more than one interval or that it contains one

interval that is to the left of ΠS . In the former case, Claim 4 implies that the intervals are not adjacent.

Therefore, there is an interval π ∈ ΠP that lies to the left of an interval in ΠS . Let v ∈ π be the highest

type in this interval. Since it must be indifferent between separation and pooling and τ̄ (v) = v + b in

the separation region by Claim 2, we have v+b = τ̄ (w) for any w ∈ π. Therefore, τ̄ (w) > w+b for any

w ∈ π, w 6= v. In particular, it holds for the lowest type in the interval w′ = minw∈π w. However, this

violates the NITS condition. Indeed, consider running price p = τ̄(w)+w′+b
2 . Type w′ is the weakest

remaining type of the advisor at this price. Since p > w′ + b, following his equilibrium strategy of

waiting until price τ̄ (w), w ∈ π to send recommendation m = 1 generates negative expected payoff to

the advisor at the current point. In contrast, claiming that he is the weakest remaining type at the

current price will lead to the bidder quitting immediately, yielding the payoff of zero. Therefore, ΠP

contains only one interval that lies to the right of ΠS , i.e., the interval is of the form πP = [v∗, v] for

some v∗ > v. q.e.d.

Claim 7. Cut-off v∗ satisfies (25).

Proof: Case v∗ = v (the babbling equilibrium) was covered above (before Claim 4). Consider case

v∗ = v, i.e., ΠP = ∅. By Claim 5, τ̄ (v) = v + b for any v ∈ (v, v̄). If v̄ <∞, the upper bound on the

bidder’s utility in round p = v+b is v−(v+b)
v→v→ −b, which contradicts the optimality of the bidder to

follow the advisor’s recommendation. Hence, it must be that v̄ =∞. Next, by contradiction, suppose

that b > lims→∞ E[v|v ≥ s] − s. By continuity, there is s < ∞ such that b > E[v|v ≥ s] − s for any

s > s. If the bidder wins in any round p ≥ s+ b, then her expected utility equals E[v|v ≥ s]−s− b < 0

and so, the value of following the advisor’s recommendations is negative, which is a contradiction.
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Therefore, it must be that b ≤ lims→∞ E[v|v ≥ s]− s.
Finally, consider case v∗ ∈ (v, v̄). By contradiction, suppose that v∗ + b 6= E [v|v ≥ v∗]. By

indifference of type v∗, it must be that τ̄ (v) = v∗ + b for any v ∈ [v∗, v̄]. If v∗ + b < E [v|v ≥ v∗],
then τ̄ (v), v > v∗ violates the incentive compatibility condition of the bidder. To see this, consider

running price just below v∗ + b. The equilibrium behavior prescribes the bidder to exit the auction

in the next instant, which is below her maximum willingness to pay of E [v|v ≥ v∗]. By waiting a

little beyond price τ̄ (v) = v∗ + b, the bidder ensures that she wins the auction with probability one

and pays below her estimated valuation of E [v|v ≥ v∗]. Since this strategy results in a discontinuous

upward jump in the expected utility of the bidder, she is better off deviating. Hence, it cannot be

that v∗ + b < E [v|v ≥ v∗]. If v∗ + b > E [v|v ≥ v∗], then τ̄ (v) = v∗ + b, v ≥ v∗ violates the incentive

compatibility condition of the bidder, because she would prefer to exit the auction slightly earlier.

Consider the running price p = v∗ + b− ε for an infinitesimal positive ε and suppose that the bidder

has got a sequence of recommendations m̃ = 0. Her posterior belief is that the valuation is in the

range (v∗ − ε, v]. Suppose that the bidder follows her equilibrium play. If v ∈ (v∗ − ε, v∗) and the

bidder wins, she pays v + b above her valuation v. If v ∈ (v∗, v̄] and the bidder wins, she pays

τ̄ (v) = v∗ + b, which is, on average, above her valuation v (E [v|v ≥ v∗]). Since the bidder wins with

positive probability, her expected payoff from following the equilibrium play is negative. In contrast,

immediate exit yields zero expected payoff. Hence, the bidder is better off deviating and exiting the

auction immediately. Therefore, v∗ + b = E [v|v ≥ v∗]. q.e.d.

The proof of Proposition 7 follows from Claims 5, 6, and 7.

50


