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8.1 Properties of F

Non-empty: If (x0, x1) satisfies (4) (resp., the opposite of (4)) then p (k;x0, x1) is increasing

(resp., decreasing) in k. In either case, p (k;x0, x1) is monotone in k, so there exists k∗ ∈
{0, . . . , K} such that either p (k∗ − 1;x0, x1) ≤ p∗ ≤ p (k∗;x0, x1) or p (k∗;x0, x1) ≥ p∗ ≥
p (k∗ + 1;x0, x1), where in both cases the first (last) inequality is vacuous if k∗ = 0 (k∗ = K).

With this value of k∗, let s = 1 if p (k∗;x0, x1) ≥ p∗ and let s = 0 if p (k∗;x0, x1) < p∗. Next,

with these values of k∗ and s, let (x′0, x
′
1) be computed as in (6) or (8).

Compact-valued: Boundedness is trivial. For closedness, fix (x0, x1) and a sequence

(x′n0 , x
′n
1 ) → (x′0, x

′
1), with (x′n0 , x

′n
1 ) ∈ F (x0, x1), and let (k∗,n, sn) be arbitrarily chosen

corresponding values of k∗ and s. Taking a convergent subsequence (k∗,n, sn) → (k∗,∞, s∞),

continuity of φθ implies that, with k
∗ = k∗,∞ and s = s∞, (x′0, x

′
1) satisfies the conditions for

inclusion in F (x0, x1).

Convex-valued: Recall that there is at most one value of k∗ ∈ {0, . . . , K} such that
p (k∗;x0, x1) = p∗. So, if there are distinct elements of F (x0, x1), (x′0, x

′
1) and (x′′0, x

′′
1),

it must be that (x′0, x
′
1) and (x′′0, x

′′
1) are computed as in (6) or (8) with distinct values

s′, s′′ ∈ [0, 1]. But then, for all β ∈ [0, 1], letting s = βs′ + (1− β) s′′, it follows that

(βx′0 + (1− β)x′′0, βx
′
1 + (1− β)x′′1) ∈ F (x0, x1).

Upper hemi-continuous: Fix sequences (xn0 , x
n
1 ) → (x0, x1) and (x′n0 , x

′n
1 ) → (x′0, x

′
1),

with (x′n0 , x
′n
1 ) ∈ F (xn0 , x

n
1 ), and let (k∗,n, sn) be arbitrarily chosen corresponding values of

k∗ and s. Taking a convergent subsequence (k∗,n, sn)→ (k∗,∞, s∞), continuity of φθ implies

that, with k∗ = k∗,∞ and s = s∞, (x′0, x
′
1) satisfies the conditions for inclusion in F (x0, x1).

�

8.2 Equilibrium Uniqueness when K = 1

Proposition 11 When K = 1, there is a unique equilibrium, and it is aligned. In this equi-

librium, players adopt with probability 1 after observing a success and adopt with probability

less than 1 after observing a failure.

Proof. Fix an equilibrium, and suppose players adopt with probability s1 after observing a

success and adopt with probability s0 after observing a failure. Then, for θ = 0, 1,

xθ = [χ+ xθ (πθ − χ)] s1 + [1− χ− xθ (πθ − χ)] s0,
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or

xθ =
s0 + χ (s1 − s0)

1− (πθ − χ) (s1 − s0)
. (14)

Suppose toward a contradiction that s0 = 1. As s0 = s1 = 1 would lead to x0 = x1 = 1,

which is not an equilibrium by (2), this implies that s0 > s1. But s0 > s1 implies that

x0 > x1, which contradicts Lemma 3. Hence, s0 < 1.

Now, s0 < 1 implies that p (0;x0, x1) ≤ p∗. As p > p∗ and p is a convex combination of

p (0;x0, x1) and p (1;x0, x1) (by the law of total probability), this implies that p (1;x0, x1) >

p∗. Hence, s1 = 1.

Next, using (14) and s1 = 1,

p (0;x0, x1) =

[
1 +

1− π0

1− π1

1− (π1 − χ) (1− s0)

1− (π0 − χ) (1− s0)

1− p
p

]−1

.

Therefore, (s0 = 0, s1 = 1) corresponds to an equilibrium if and only if

1− π0

1− π1

1− π1 + χ

1− π0 + χ
≥ p

1− p
1− p∗
p∗

. (15)

On the other hand, (s0 = s, s1 = 1) with s > 0 corresponds to an equilibrium if and only if

1− π0

1− π1

1− (π1 − χ) (1− s)
1− (π0 − χ) (1− s) =

p

1− p
1− p∗
p∗

. (16)

The left-hand side of (16) is increasing in s, and by (2) it exceeds the right-hand side when

s = 1. Hence, by the intermediate value theorem, either there is a unique equilibrium given

by (s0 = 0, s1 = 1) and (14), or there exists a unique value s > 0 such that the unique

equilibrium is given by (s0 = s, s1 = 1), (16), and (14).

8.3 Examples of Misaligned Equilibria

Example 1: An Unstable Misaligned Equilibrium
Let K = 2, χ = 1, π0 = 0, π1 = 1

3
, p = 1

2
, and c = −8

9
. I claim that the misaligned

point
(
x0 = 0, x1 = 3

4

)
, together with the strategy of adopting if and only if at least one

observation is a failure, is an equilibrium. (This point is misaligned because the success rate

is 1 in state 0 and 1− x1 (1− π1) = 1
2
in state 1.)

This follows because p∗ = χ+c−π0
π1−π0 = 1

3
, while the posterior probability that θ = 1 after

observing at least one failure is 1 > p∗, and the posterior probability that θ = 1 after
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observing zero failures is [
1 +

1− p
p

1(
1
2

)2

]−1

=
1

5
< p∗.

The stated strategy is therefore optimal. In addition, (x0, x1) is an stationary point because

the probability of observing at least one failure is 0 in state 0 and 1−
(

1
2

)2
= 3

4
in state 1.

The equilibrium is however unstable, as the probability of observing at least one failure

in state 0 when fraction x0 adopts equals 1 − (1− x0)2, which is greater than x0 for all

x0 ∈ (0, 1).

Example 2: A Stable Misaligned Equilibrium (and Two Stable Aligned Equi-
libria)
Let K = 3, χ = 9

10
, π0 = 0, π1 = 1

10
, p = 1

2
, and c = −1701

2000
.27 Under the strategy of

adopting if and only if at least two observations are failures, the equation for xθ to be a

stationary point is

xθ = (1− χ+ xθ (χ− πθ))3 + 3 (1− χ+ xθ (χ− πθ))2 (χ− xθ (χ− πθ)) .

Consider the point (x0, x1) given by taking the smallest solution to this cubic equation for

θ = 0 and the largest solution for θ = 1: (x0, x1) ≈ (.07407, .9419). This point is misaligned

because the success rate is χ− x1 (χ− π1) ≈ 0.1465 in state 1 and χ− x0 (χ− π0) ≈ 0.8333

in state 0. It is straightforward to check that this point is stable: for θ = 0, 1, the above

cubic equation has three roots, of which the middle one is unstable. Finally, to see that the

proposed strategy is optimal, note that p∗ = χ+c−π0
π1−π0 = 0.495, while the posterior probability

that θ = 1 after observing two failures is[
1 +

1− p
p

(1− χ+ x0 (χ− π0))2 (χ− x0 (χ− π0))

(1− χ+ x1 (χ− π1))2 (χ− x1 (χ− π1))

]−1

≈ 0.8217 > p∗,

while the posterior probability that θ = 1 after observing one failure is[
1 +

1− p
p

(1− χ+ x0 (χ− π0)) (χ− x0 (χ− π0))2

(1− χ+ x1 (χ− π1)) (χ− x1 (χ− π1))2

]−1

≈ 0.1366 < p∗.

In fact, it is not hard to see that a stable misaligned equilibrium cannot exist whenK = 2,

so K = 3 is the minimum sample size for which a stable misaligned equilibrium can exist.

27The explanation for this oddly precise choice of c is that, if c = − 1720 , the analysis of the example would
be exactly the same except that one would have p∗ = p, which violates (1). As the only role of c in the
model is to determine p∗, it suffi ces to let c = − 1720 − ε for any suffi ciently small ε > 0.
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The reason is that, when K = 2, the fraction of players observing at least k failures in state

θ is at most quadratic in xθ, so there is a unique stable misaligned stationary point (x0, x1).

But, since failure is more likely for a given fraction of adopters in state 0, this unique stable

point always has x0 > x1, so by Lemma 3 it cannot be an equilibrium.

This same example also admits two stable aligned equilibria. Thus, there can be multiple

stable aligned equilibria, and they can coexist with a stable misaligned equilibrium.

Specifically, I claim that a point (x′0, x
′
1) ≈ (0.4681, 0.5), together with the strategy of

adopting if and only if at least two successes are observed, is an equilibrium; and that so is

a point (x′′0, x
′′
1) ≈ (0.6625, 0.7061), together with the strategy of adopting if and only if at

least one success is observed. The intuition for this multiplicity is that, when the “bar”for

adopting is raised from one observed success to two, this reduces the steady-state adoption

rate, which makes failure less likely in both states (as χ > π0, π1), and thus makes failure

more informative. This in turn justifies the greater number of observed successes required

for adoption.

For the formal construction, note that, under the strategy of adopting if and only if at

least two successes are observed, the equation for xθ to be a stationary point is

xθ = (χ− xθ (χ− πθ))3 + 3 (χ− xθ (χ− πθ))2 (1− χ+ xθ (χ− πθ)) .

Let (x′0, x
′
1) be the unique solutions to this equation for θ = 0, 1, given by (x′0, x

′
1) ≈

(0.4681, 0.5). Then the posterior probability that θ = 1 after observing two successes is[
1 +

1− p
p

(1− χ+ x′0 (χ− π0)) (χ− x′0 (χ− π0))2

(1− χ+ x′1 (χ− π1)) (χ− x′1 (χ− π1))2

]−1

≈ 0.5113 > p∗,

while the posterior probability that θ = 1 after observing one success is[
1 +

1− p
p

(1− χ+ x′0 (χ− π0))2 (χ− x′0 (χ− π0))

(1− χ+ x′1 (χ− π1))2 (χ− x′1 (χ− π1))

]−1

≈ 0.4900 < p∗.

So this is an equilibrium. It is also easily seen to be stable, as the curve (χ− xθ (χ− πθ))3 +

3 (χ− xθ (χ− πθ))2 (1− χ+ xθ (χ− πθ)) crosses xθ from above, for θ = 0, 1.

Similarly, under the strategy of adopting if and only if at least one successes is observed,

the equation for xθ to be a stationary point is given by

xθ = 1− (1− χ+ xθ (χ− πθ))3 .

Let (x′′0, x
′′
1) be the unique solutions, given by (x′′0, x

′′
1) ≈ (0.6625, 0.7061). Then the posterior
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probability that θ = 1 after observing one successes is[
1 +

1− p
p

(1− χ+ x′′0 (χ− π0))2 (χ− x′′0 (χ− π0))

(1− χ+ x′′1 (χ− π1))2 (χ− x′′1 (χ− π1))

]−1

≈ 0.5015 > p∗,

while the posterior probability that θ = 1 after observing zero successes is[
1 +

1− p
p

(1− χ+ x′′0 (χ− π0))3

(1− χ+ x′′1 (χ− π1))3

]−1

≈ 0.4655 < p∗.

So this is also an equilibrium, and it is also easily seen to be stable.

Finally if one considers this example with K = 2 rather than K = 3, one finds that

there is a unique stable aligned equilibrium (x0, x1) ≈ (0.5955, 0.6327) (corresponding to the

strategy of adopting if and only if at least one success if observed), and welfare in this steady

state lies in between that in the two stable aligned steady states that arise when K = 3.

This shows that welfare does not always unambiguously increase when players observe larger

samples, even within the class of stable aligned equilibria.

8.4 Proof of Proposition 3

1. If χ = 0, then (15) is violated (as p
1−p

1−p∗
p∗ > 1), so the unique equilibrium is given by (16)

and (14). Solving for x0, x1, and s gives

x0 =
(p− p∗) (1− π1)

p∗ (1− p) (π1 − π0)
,

x1 =
(p− p∗) (1− π0)

p (1− p∗) (π1 − π0)
, and

s =
(p− p∗) (1− π0) (1− π1)

p∗ (1− p) (1− π0) π1 − p (1− p∗) π0 (1− π1)
.

Noting that p∗ → p̂ as π1 → 1, it follows that x0 → 0 and x1 → p−p̂
p(1−p̂) as π1 → 1.

2. If χ > 0, then (15) holds when π1 is close enough to 1. In this case, (14) gives

xθ = χ
1−πθ+χ

for θ = 0, 1. Hence, x0 = χ
1−π0+χ

and x1 → 1 as π1 → 1. �

8.5 Proof of Proposition 4

1. Fix a sequence of parameters (πn0 , π
n
1 ) → (π0, π1) = (0, 1) and fix a corresponding se-

quence of equilibria (xn0 , x
n
1 , k

∗,n, sn) → (x0, x1, k
∗, s). Note that (x0, x1, k

∗, s) must be an

equilibrium. Suppose toward a contradiction that x1 < 1. By Lemma 3, x1 ≥ p−p∗
1−p∗ , so
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x1π1 ∈ (0, 1). On the other hand, x0π0 = 0. Therefore, p (k;x0, x1) > p∗ for all k ≥ 1, and

hence k∗ = 0. The steady state equation then implies that

x1 = 1− (1− x1)K (1− s) ≥ 1− (1− x1)2 = x1 (2− x1) .

But this implies that x1 = 1, a contradiction.

To show that x0 = 0, let ŝ be the probability with which players adopt after observing K

failures in the equilibrium (x0, x1, k
∗, s). (Thus, ŝ = 0 if k∗ > 0, and ŝ = s if k∗ = 0.) Then

the steady state equation implies that x0 = ŝ. Next, note that p (0;x0, 1) = p (0; 1, 1) < p∗

(by π0 = 0 and (2)). Hence, ŝ = 0.

2. Fix a sequence of parameters (πn0 , π
n
1 )→ (π0, π1) = (0, 1) and a corresponding sequence

of aligned equilibria (xn0 , x
n
1 , k

∗,n, sn) → (x0, x1, k
∗, s). Note that (x0, x1, k

∗, s) must be an

aligned equilibrium. I claim that x0 > 0. To see this, note that, in any aligned equilibrium

p (K;x0, x1) > p > p∗, and therefore players adopt with probability 1 after observing K

successes. Thus, if x0 = 0 and χ = 1, then in state 0 players would observe all successes

with probability 1; and therefore x0 would equal 1, a contradiction.

Next, as x0 > 0, π0 = 0, and χ + x1 (π1 − χ) = 1, p (k;x0, x1) = 0 for all k < K, so

players adopt with probability 0 after observing even a single failure. On the other hand, I

have shown that players adopt with probability 1 after observing all successes, so

xθ = (1− xθ (1− πθ))K for θ = 0, 1.

As π0 = 0 and π1 = 1, this implies that x0 = (1− x0)K and x1 = 1.

The last part of the proposition follows as the solution to the equation x0 = (1− x0)K

converges to 0 as K →∞. �

8.6 Proof of Proposition 5

Given adoption rates (x0, x1), the posterior belief that θ = 1 after observing failure equals[
1 +

1− p
p

1− χ− x0 (π0 − χ)

1− χ− x1 (π1 − χ)

]−1

.

This posterior equals p∗ if and only if

1− χ− x0 (π0 − χ)

1− χ− x1 (π1 − χ)
=

p

1− p
1− p∗
p∗

.
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This equation defines a line L̂ in (x0, x1) space. Let H be half-space where the posterior

exceeds p∗ and let Hc be the half-space where the posterior is less than p∗; thus L̂ marks

the boundary between H and Hc. Recall from the proof of Proposition 11 that there are

two possible cases: either the equilibrium is
(
x0 = χ

1−π0+χ
, x1 = χ

1−π1+χ

)
and this point lies

in the half-space Hc, or the equilibrium lies on the line L̂.

At any point (x0, x1) ∈ H, it follows that ẋθ = 1− xθ for θ = 0, 1, so the vector (ẋ0, ẋ1)

points from (x0, x1) toward the point (1, 1). By (2), the point (1, 1) lies in the complementary

half-space Hc. Hence, if the initial point (x0 (0) , x1 (0)) lies in H, the distance between

(x0 (t) , x1 (t)) and the line L̂ is decreasing in t and reaches 0 in finite time.

Similarly, if (x0, x1) ∈ Hc, then ẋθ = χ−xθ (1− πθ + χ) for θ = 0, 1. Hence, (x0 (t) , x1 (t))

converges monotonically toward the point
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
, so long as (x0 (t) , x1 (t)) re-

mains in Hc. Thus, if the equilibrium is
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
then the population dynamic

converges monotonically to the equilibrium starting from any point in Hc, and otherwise the

population dynamic converges monotonically toward the point
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
until it hits

the line L̂ (which again occurs in finite time).

Next, if (x0 (t) , x1 (t)) ∈ L̂ then ẋθ ≥ χ − xθ (1− πθ + χ) for θ = 0, 1. Hence, if the

equilibrium is
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
, then the population dynamic converges toward this point

from any point in L̂. Combining the observations made so far, it follows that when the

equilibrium is
(

χ
1+χ−π0 ,

χ
1+χ−π1

)
, it is globally attracting.

Finally, if (x0 (t) , x1 (t)) ∈ L̂ and (x∗0, x
∗
1) ∈ L̂, then the population dynamic remains

in L̂ forever: this follows because, as I have shown, the gradient (ẋ0, ẋ1) points toward L̂

whenever (x0, x1) /∈ L̂. Next, for any point (x0, x1) ∈ L̂, there is a unique mixing probability
conditional on observing failure, s ((x0, x1)), such that the gradient (ẋ0, ẋ1) is parallel to L̂,

and in addition the mixing probability s ((x0, x1)) is itself continuous in (x0, x1).28 As the

vector (ẋ0, ẋ1) is continuous in (x0, x1) and the mixing probability s, it may therefore also

be viewed as a continuous function of (x0, x1). Furthermore, as any stationary point in L̂

is an equilibrium, (x∗0, x
∗
1) is the unique point in L̂ such that (ẋ0, ẋ1) = (0, 0). Hence, as

(ẋ0, ẋ1) is continuous in (x0, x1), it must be that (ẋ0, ẋ1) points toward the steady state,

and in addition (ẋ0 (t) , ẋ1 (t)) can converge to 0 only if (x0 (t) , x1 (t)) converges to (x∗0, x
∗
1).

Therefore, (x0 (t) , x1 (t)) must converge to (x∗0, x
∗
1) starting from any initial point in L̂. As

28To see this, note that if s = 0, then (ẋ0, ẋ1) = (χ− x0 (1− π0 + χ) , χ− x1 (1− π1 + χ)), which points
into H (when

(
χ

1+χ−π0 ,
χ

1+χ−π1

)
∈ H, or equivalently when the equilibrium is in L̂), and if s = 1 then

(ẋ0, ẋ1) = (1− x0, 1− x1), which points into Hc. Denote these vectors by
(
ẋ00, ẋ

0
1

)
and

(
ẋ10, ẋ

1
1

)
, and let

ẋsθ = (1− s) ẋ0θ + sẋ1θ for θ = 0, 1. By the intermediate value theorem, there is a unique mixing probability
s ((x0, x1)) such that ẋs((x0,x1)) is parallel to L̂, and s ((x0, x1)) is continuous in (x0, x1) because

(
ẋ00, ẋ

0
1

)
and

(
ẋ10, ẋ

1
1

)
are continuous in (x0, x1).

54



I have shown that (x0 (t) , x1 (t)) reaches L̂ in finite time starting from any initial point in

[0, 1]2, it follows that (x∗0, x
∗
1) is globally attracting. �

8.7 Proof of Proposition 6

As (x0 (0) , x1 (0)) is aligned, Theorem 1 implies that (x0 (t) , x1 (t)) is aligned for all t. Hence,

players adopt with probability 1 after observing a success. On the other hand, a player’s

posterior after observing a failure at time t is given by

p (0;x0 (t) , x1 (t)) =

[
1 +

1− p
p

1

1− x1 (t) π1

]−1

.

This posterior is less than p∗ at time 0 by (2), and it remains less than p∗ until x1 (t) reaches

the value

x∗1 =
1

π1

(
1− 1− p

p

p∗

1− p∗

)
< 1.

(Note that this equation defines the line L̂ introduced in the proof of Proposition 5.) Letting

T be the first time when x1 (t) reaches x∗1, it follows that ẋθ (t) = −xθ (t) (1− πθ) for all
t < T and θ = 0, 1. Combined with the initial condition (x0 (0) , x1 (0)) = (1, 1), this gives

xθ (t) = exp (− (1− πθ) t) for θ = 0, 1.

Next, as shown in the proof of Proposition 5, (x0 (t) , x1 (t)) remains on the line L̂ for all

t > T : that is, x1 (t) = x∗1 for all t > T . It follows that s (t) = s for all t > T , where s is

given by x∗1 = x∗1π1 + (1− x∗1π1) s, or

s =
1− π1

π1

(
p

1− p
1− p∗
p∗

− 1

)
.

In addition, for t > T , ẋ0 (t) = s−x0 (t), so x0 (t) converges monotonically to its steady-state

value of s.

Finally, the time T satisfies

T =
1

1− π1

[
log π1 − log

(
1− 1− p

p

p∗

1− p∗

)]
.

Hence,

x0 (T ) = exp (−T ) =

(
1

π1

(
1− 1− p

p

p∗

1− p∗

)) 1
1−π1

.
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In particular, x0 (T ) < s if and only if

1− 1− p
p

p∗

1− p∗ < π1

(
1− π1

π1

)1−π1 ( p

1− p
1− p∗
p∗

− 1

)1−π1
.

The right-hand side of this inequality goes to 1 as π1 → 1, so x0 (T ) < s whenever π1 is close

enough to 1. �

8.8 Proof of Proposition 7

Fix ε ∈ (0, (χ− πmax Θ∗) / (1 + χ− πmax Θ∗)). Suppose an asymptotically effi cient path ex-

ists. Then there exists K̄ > 0 such that if K > K̄ then
(
XK

0 (0) , . . . , XK
n (0)

)
= (1, . . . , 1)

and limt→0X
K
θ (t) < ε (resp., > 1− ε) for all θ ≤ θ∗ (resp., > θ∗). For such a K, the success

rate at t = 0 conditional on the event θ ≤ θ∗ equals (1/a)
∑θ∗

θ=0 pθπθ and the success rate at

t = 0 conditional on the event θ ∈ Θ∗ equals (1/b)
∑

θ∈Θ∗ pθπθ, which is larger. On the other

hand, as t → ∞ the success rate conditional on the event θ ≤ θ∗ converges to a number

greater than (1− ε)χ, while the success rate conditional on the event θ ∈ Θ∗ converges to

a number less than ε + (1− ε) πmax Θ∗ , which is smaller. Hence, there must exist a time t∗

such that (i) at t = t∗, the success rate conditional on the event θ ≤ θ∗ equals the success

rate conditional on the event θ ∈ Θ∗, and (ii) for all t > t∗, the success rate conditional on

the event θ ≤ θ∗ is larger than the success rate conditional on the event θ ∈ Θ∗.

Now, at t = t∗, after observing any sample a player’s relative assessment of the probability

of the events θ ≤ θ∗ and θ ∈ Θ∗ equals the prior probability a/ (a+ b). Thus, (13) implies

that (after observing any sample at t = t∗) action 1 is optimal conditional on the event

θ ∈ {1, . . . , θ∗} ∪ Θ∗. In addition, action 1 is optimal at any state θ /∈ ({1, . . . , θ∗} ∪Θ∗).

Hence, Ẋθ (t∗) = 1−Xθ (t∗) for all θ. Therefore,

1

a

θ∗∑
θ=0

pθẊθ (t∗) (πθ − χ) =

[
1

a

θ∗∑
θ=0

pθ (πθ − χ)

]
−
[

1

a

θ∗∑
θ=0

pθXθ (t∗) (πθ − χ)

]

=

[
1

a

θ∗∑
θ=0

pθ (πθ − χ)

]
−
[

1

b

∑
θ∈Θ∗

pθXθ (t∗) (πθ − χ)

]

<

[
1

b

∑
θ∈Θ∗

pθ (πθ − χ)

]
−
[

1

b

∑
θ∈Θ∗

pθXθ (t∗) (πθ − χ)

]

=
1

b

∑
θ∈Θ∗

pθẊθ (t∗) (πθ − χ) .

But this implies that, just after time t∗, the success rate conditional on the event θ ≤ θ∗ is
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smaller than the success rate conditional on the event θ ∈ Θ∗, a contradiction. �

8.9 Proof of Proposition 8

Suppose πθ < χ for some innovation-optimal state θ, and suppose a simple asymptotically

effi cient path exists. As in the proof of Proposition 7, for large enough K, at t = 0 the

success rate in each innovation-optimal state is greater than the success rate in each status-

quo optimal state, and the situation is reversed for large enough t. Hence, there must

exist a time t∗ at which the success rates in a status-quo optimal state and an innovation-

optimal state cross for the first time: that is, a time t∗ such that (i) Xθ (t∗) (πθ − χ) ≤
Xθ′ (t

∗) (πθ′ − χ) for all θ ≤ θ∗ < θ′, and (ii) there exists ε > 0 and θ ≤ θ∗ < θ′ such that

Xθ (t) (πθ − χ) > Xθ′ (t) (πθ′ − χ) for all t ∈ (t∗, t∗ + ε).

The proof is completed by considering separately the case where Xθ (t∗) (πθ − χ) =

Xθ′ (t
∗) (πθ′ − χ) for all θ, θ′ and the case where Xθ (t∗) (πθ − χ) < Xθ′ (t

∗) (πθ′ − χ) for

some θ, θ′, and deriving a contradiction in each.

In the first case, the success rate is equal in all states at time t∗, and hence Ẋθ (t∗) =

1 − Xθ (t∗) for all θ. But, as in the proofs of Theorem 1 and Proposition 7, this implies

that there cannot be a pair of states θ < θ′ with Xθ (t∗) (πθ − χ) = Xθ′ (t
∗) (πθ′ − χ) and

Xθ (t) (πθ − χ) > Xθ′ (t) (πθ′ − χ) for all t ∈ (t∗, t∗ + ε), a contradiction.

In the second case, there are three states with either (i) θ0 < θ ≤ θ∗ < θ′ and

Xθ0 (t∗) (πθ0 − χ) < Xθ (t∗) (πθ − χ) = Xθ′ (t
∗) (πθ′ − χ)

or (ii) θ ≤ θ∗ < θ′ < θ0 and

Xθ (t∗) (πθ − χ) = Xθ′ (t
∗) (πθ′ − χ) < Xθ0 (t∗) (πθ0 − χ) .

Consider the first case (the second is symmetric). Then, as Xθ (t) is continuous for all θ, for

suffi ciently small ε > 0,

Xθ0 (t∗ + ε) (πθ0 − χ) < Xθ′ (t
∗ + ε) (πθ′ − χ) < Xθ (t∗ + ε) (πθ − χ) .

But then the path is not simple. �

8.10 Proof of Proposition 9

By assumption, X0 (0) (π0 − χ) ≤ X1 (0) (π1 − χ). As X0 and X1 are continuous, if there ex-

ists a time t′ with X0 (t′) (π0 − χ) > X1 (t′) (π1 − χ), then there must exist another time
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t where X0 (t) (π0 − χ) = X1 (t) (π1 − χ) but it is not the case that Ẋ0 (t) (π0 − χ) <

Ẋ1 (t) (π1 − χ). By Theorem 2, a misaligned equilibrium cannot exist in the outcome-

improving case, so π1 < χ. Hence, X0 (t) (π0 − χ) = X1 (t) (π1 − χ) implies X0 (t) < X1 (t).

But, by definition of Ẋθ (t), if X0 (t) (π0 − χ) = X1 (t) (π1 − χ) and X0 (t) < X1 (t), then

Ẋ0 (t) > Ẋ1 (t), and hence Ẋ0 (t) (π0 − χ) < Ẋ1 (t) (π1 − χ). So there can be no such time

t′. �

8.11 Proof of Proposition 10

It follows immediately from the definition of Ẋθ (t) and stability from above that Ẋθ (t) is

bounded below 0 for all t such that Xθ (t) is bounded above x∗θ. It is also straightforward to

argue by contradiction that Xθ (t) can never cross x∗θ, completing the proof. �
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