
Long Run Growth of Financial Data Technology

Maryam Farboodi and Laura Veldkamp

Online Appendix

B Proofs

We start by proving a few preliminary lemmas that are useful in proving the main results. Throughout this appendix,

as we will often treat the signal-to-noise ratio in prices as a single variable, we define

ξt ≡
Ct
Dt

(63)

Lemma 1 If Ωft > 0, then Ct > 0.

Proof. Using equation (58), it suffices to show that 1/(r −G) > 0 and (1− τ0V̂t) > 0. From the setup, we assumed

that r > 1 and G < 1. By transitivity, r > G and r − G > 0. For the second term, we need to prove equivalently

that τ0V̂t < 1 and thus that τ0 < V̂ −1
t . Recall from (35) that V̂ −1 = τ0 + Ωft + Ωpt. Since Ωft and Ωpt are defined as

precisions, they must be non-negative. Furthermore, we supposed that Ωft > 0. Thus, τ0 < V̂ −1
t , which completes

the proof.

Lemma 2 Dt ≤ 0.

Proof. Start from equation (60) and substitute in (35). Moreover, let α ≡ ρr
r−G . Simplify to get:

ξ3
t (Ztτx + ZtΩxt) + ξ2

t (Ωxt) + ξt(α+ Ztτ0 + ZtΩft) + Ωft = 0 (64)

Then, use the budget constraint to express the first-order conditions as (16). One can solve for both Ωxt and Ωft in

terms of ξt:

Ωf =
( Kt(

1 + 1
χx
ξ4
t

)) 1
2

(65)

Ωx =
(Kt

χx

(
1− 1

1 + 1
χx
ξ4
t

)) 1
2

=
( Kt

1
χx

χx
(
1 + 1

χx
ξ4
t

)) 1
2
ξ2
t =

ξ2
t

χx

( Kt(
1 + 1

χx
ξ4
t

)) 1
2

(66)

Substituting these into equation (64) fully determines ξt in terms of exogenous variables.

ξt
(
ξ2
tZtτx + α+ Ztτ0

)
+ ξ2

tΩxt(1 + ξtZt) + Ωft(1 + ξtZt) = 0 (67)

First note that

Ωft + ξ2
tΩxt = −ξt(ξ

2
tZtτx + α+ Ztτ0)

(1 + ξtZt)
(68)

where the left hand side is the objective function. Therefore, we know the maximized value of the objective function

solely as a function of ξt = C
D

. Keep in mind that since we already imposed an optimality condition, this latter

equation holds only at the optimum.
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Substituting in for Ωft and Ωxt from (65) and (66) yields an equation that implicitly defines ξt as a function of

primitives, Kt and future equilibrium objects, embedded in Zt.

ξt
(
ξ2
tZtτx + α+ Ztτ0

)
+ (1 + ξtZt)(1 +

1

χx
ξ4
t )
( Kt(

1 + 1
χx
ξ4
t

)) 1
2

= 0

ξ3
tZtτx + ξt(α+ Ztτ0) + (1 + ξtZt)(Kt)

1
2 (1 +

1

χx
ξ4
t )

1
2 = 0 (69)

The left hand side must equal zero for the economy to be in equilibrium. However, all the coefficients Kt, , χx, τ0,

and τx are assumed to be positive. Furthermore, Zt is a variance. Inspection of (37) reveals that it must be strictly

positive. Thus, the only way that the equilibrium condition can possibly be equal to zero is if ξt < 0. Recall that

ξt = Ct/Dt. The previous lemma proved that Ct > 0. Therefore, it must be that Dt < 0.

The next lemma proves the following: If no one has information about future dividends, then no one’s trade is

based on information about such dividends, and thus the price cannot contain information about them. Since Ct is

the price coefficient on future dividend information, Ct = 0 means that the price is uninformative. In short, the price

cannot reflect information that no one knows.

Lemma 3 When information is scarce, price is uninformative: As Kt → 0, for any future path of prices

(At+j , Bt+j , Ct+j, and Dt+1, ∀j > 0), the unique solution for price coefficient Ct is Ct = 0.

Proof. Step 1: As Ωft → 0, prove Ct = 0 is always a solution.

Start with the equation for Dt (12). Substitute in for Ω using (38) and 1 +B = r/(r −G) and rewrite it as

Dt =
1

r −GV̂t
[
τx
Ct
Dt
− ρr

(r −G)
− ZtV̂ −1

t

]
(70)

Then, express Ct from (58) as Ct = 1/(r − G)V̂t(V̂
−1
t − τ0) and divide Ct by Dt, cancelling the V̂t/(r − G) term in

each to get

Ct
Dt

=
V̂ −1
t − τ0

τx
Ct
Dt
− ρr

(r−G)
− ZtV̂ −1

t

(71)

If we substitute in V̂ −1
t = τ0 + Ωpt + Ωft from (35) and then set Ωft = 0, we get

Ct
Dt

=
Ωpt

τx
Ct
Dt
− ρr

(r−G)
− Zt(τ0 + Ωpt)

(72)

Then, we use the solution for price information precision Ωpt = (C/D)2(τx + Ωxt) and multiply both sides by the

denominator of the fraction to get

Ct
Dt

[
τx
Ct
Dt
− ρr

(r −G)
− Zt(τ0 +

(
Ct
Dt

)2

(τx + Ωxt))

]
=

(
Ct
Dt

)2

(τx + Ωxt) (73)

We can see right away that since both sides are multiplied by C/D, as Ωft → 0, for any given future price coefficients

Ct+1 and Dt+1, C = 0 is always a solution.

Step 2: Prove uniqueness.

Next, we investigate what other solutions are possible by dividing both sides by C/D:

τx
Ct
Dt
− ρr

(r −G)
− Zt(τ0 +

(
Ct
Dt

)2

(τx + Ωxt))−
(
Ct
Dt

)
(τx + Ωxt) = 0 (74)
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This is a quadratic equation in C/D. Using the quadratic formula, we find

Ct
Dt

=
Ωxt ±

√
Ω2
xt − 4Zt(τx + Ωxt)(ρr/(r −G) + τ0Zt)

−2Zt(τx + Ωxt)
(75)

If we now take the limit as Ωxt → 0, the term inside the square root becomes negative, as long as r − G > 0.

Thus, there are no additional real roots when Ωxt = 0.

Similarly, if Ωxt is not sufficiently large, (75) has no real roots, which proves that: as Ωft → 0, if we take Ct+1

and Dt+1 as given and Ωxt is sufficiently small, then the unique solution for price coefficient C is C = 0.

Proof of Result 1. From lemma 3, we know that as Ct = 0. From the first-order condition for information (16),

we see that the marginal utility of demand information relative to fundamental information (the marginal rate of

substitution) is a positive constant times (Ct/Dt)
2. If Ct = 0, then ∂Uit/∂Ωxit is a positive constant times zero,

which is zero.

Proof of Result 2.

(2a)

Part 1: dC/|D|
dK

> 0. In the model where π = 0, a simpler set of equations characterize a solution. In this

environment, we can show exactly how changes in parameters affect information choices and price coefficients. These

static forces are also at play in the dynamic model. But there are additional dynamic forces that govern the model’s

long-run behavior.

Let ξ = C
D

. With π = 0,

C =
1

r
(1− τ0V̂ )

D =
1

r
(τx

C

D
− ρ)V̂

Divide and rearrange to get

τxξ
2 − ρξ = V̂ −1 − τ0

Substitute for V̂ −1 = τ0 + Ωf + ξ2(τx + Ωx) and cancel terms on both sides. The following equations characterize the

equilibrium of the static (π = 0) model:

ξ2Ωx + ξρ+ Ωf = 0 (76)

which has two solutions

ξ =
−ρ±

√
ρ2 − 4ΩfΩx

2Ωx
. (77)

We pick the larger solution (with +), because, when there is no demand information (for instance χx → ∞), the

solution converges to the unique solution in the models where there is only fundamental information acquisition,

−Ωf
ρ

.

Thus,

ξ =
−ρ+

√
ρ2 − 4ΩfΩx

2Ωx
(78)
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Now there are two extra equations to complete the model, budget constraint and investor FOC

Ω2
f + χxΩ2

x = K

Ωx
Ωf

=
1

χx
ξ2

which, using equation (78), implies

Ωf =

√
K(

1 + ξ4

χx

) (79)

Ωx =
ξ2

χx

√
K(

1 + ξ4

χx

) (80)

Put this back into equation (78) to get the signal-to-noise ratio

ξ = − 1√
2

√
ρ2χx
K
±
√
−χx (4K2 − ρ4χx)

K

Again, we pick the solution that is consistent with the limit χx →∞, ξ = −
√
K
ρ

ξ = − 1√
2

√
ρ2χx
K
−
√
−χx (4K2 − ρ4χx)

K
= −ρ

√
χx
2K

√
1−

√
1− 4K2/(ρ4χx)

which implies

d(C
D

)

dK
=

dξ

dK
= −

ρ
√
χx

(2K)3/2

√
1−

√
1− 4K2

ρ4χx√
1− 4K2

ρ4χx

< 0 (81)

which means C
|D| is increasing, i.e, the signal-to-noise ratio improves as more information becomes available.

Part 2: ∂C/|D|
∂Ωf

and ∂C/|D|
∂Ωx

. Let ξ = C
D

denote the equilibrium signal-to-noise ratio associated with total infor-

mation capacity Kt, and for brevity suppress subscript t. We have

dξ

dK
=

∂ξ

∂Ωf

(
dΩf
dK

+
∂Ωf
∂ξ

dξ

dK

)
+

∂ξ

∂Ωx

(
dΩx
dK

+
∂Ωx
∂ξ

dξ

dK

)
=

∂ξ

∂Ωf

dΩf
dK

+
∂ξ

∂Ωx

dΩx
dK

+

(
∂ξ

∂Ωf

∂Ωf
∂ξ

+
∂ξ

∂Ωx

∂Ωx
∂ξ

)
dξ

dK

The first term is the direct effect of the change in K on ξ through the change in fundamental analysis, the second

term is the direct effect through the change in demand analysis, and the third term (in parentheses) is the indirect

effect. We have

∂ξ

∂Ωf

dΩf
dK

= − Ωf
2K(2ξΩx + ρ)

∂ξ

∂Ωx

dΩx
dK

=
ξρ+ Ωf

2K(2ξΩx + ρ)(
∂ξ

∂Ωf

∂Ωf
∂ξ

+
∂ξ

∂Ωx

∂Ωx
∂ξ

)
dξ

dK
=

Ωf
(
ξ4 + χx

)
+ ξρχx

KΩx(ξ4+χx)(2ξΩx+ρ)(ρ2χx−2Kξ2)
ρ2χx
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Note that

Ωf
(
ξ4 + χx

)
+ ξρχx = ξ4Ωf + χx(ξρ+ Ωf ) = ξ4Ωf − ξ2χxΩx = ξ2 (ξ2Ωf − Ωx

)
= 0

that is, the indirect effect is zero, consistent with what the envelope theorem implies. Thus we have the following

decomposition

dξ

dK
=

∂ξ

∂Ωf

dΩf
dK

+
∂ξ

∂Ωx

dΩx
dK

=
−Ωf

2K(2ξΩx + ρ)
+

ξρ+ Ωf
2K(2ξΩx + ρ)

.

From equation (76), ξρ + Ωf < 0, thus both effects have the same sign. Moreover, we have already proven in

result 2 that dξ
dK

< 0, which in turn implies that both effects must be negative and 2ξΩxt + ρ > 0. Thus the increase

in either type of information acquisition, following an increase in capacity, improves the signal-to-noise ratio (i.e, C
D

increases in absolute value).

(2b)

Recall that with π = 0

C =
1

r

(
1− τ0

τ0 + Ωf + ξ2(τx + Ωx)

)
=

1

r

(
1− τ0V̂

)
Thus to prove dC

dK
> 0, it is sufficient to show that dV̂

dK
< 0. Using the first-order condition, along with definition of

V̂ and that dξ2

dK
> 0, we have that a sufficient condition for dV̂

dK
< 0 is d

√(
1 + ξ4

χx

)
K/dK > 0, which is true. Thus

dC
dK

> 0.

(2c)

Recall that with π = 0,

D =
1

r

τxξ − ρ
τ0 + Ωf + ξ2(τx + Ωx)

=
1

r
(τxξ − ρ)V̂.

Thus,

dD

dK
=

1

r

[
τxV̂

dξ

dK
+ (τxξ − ρ)

dV̂

dK

]
.

The derivative is the sum of two terms. The first term is negative since dξ
dK

< 0, while the second term is positive

since dV̂
dK

< 0, as argued in part (2b), and (τxξ − ρ) < 0. So we have to determine which one is larger.

To do so, substitute the closed form solutions into the above expression, and solve for K̄D = min{K̄,KD} such

that

1

r

[
τxV̂

dξ

dK
+ (τxξ − ρ)

dV̂

dK

]
K=KD

= 0. (82)

The algebra is cumbersome, but it is straightforward to show that 0 < K̄D < K̄ is unique, and that dD
dK

< 0 if and

only if K < K̄D. To observe the latter point, note that when K → 0, ξ → 0, thus

dD

dK
⇔ dξ

dK
+

ρ

2τ0
√
K

< 0.

Substitute for dξ
dK

from equation (81) and use L’Hopital rule to get that as K → 0, the latter inequality holds.

Proof of Result 3. From the individual first-order condition (16), the only channel where aggregate information

choices affect the individual choice is through the signal-to-noise ratio. More specifically for π = 0, one can solve for
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both the signal-to-noise ratio and individual information choices in closed form, as we did in the proof of result 2.

As ξt < 0, from equation (78) it is immediate that ξt
Ωft

< 0. Next, equation (80) implies

dΩxit

dξt
=

2ξt
√

kχx
ξ4t+χx

ξ4
t + χx

< 0,

which together implies dΩxit
dΩft

> 0.

Proof of Result 4.

(4a)

Substitute the closed form for ξ into Ωf and take the derivative to get20

dΩf
dK

=
2
(

8K4 + 3K2ρ4χx
(√

1− 4K2

ρ4χx
− 1
))

ρ8χ2
x

(√
1− 4K2

ρ4χx
− 1
)2
√
K
(√

1− 4K2

ρ4χx
+ 1
)√

2− 8K2

ρ4χx

Each term in the denominator is positive. Thus for dΩx
dK

to be positive, it must be that

8K2 + 3ρ4χx

(√
1− 4K2

ρ4χx
− 1

)
> 0.

Manipulating the latter equation, the necessary and sufficient condition is

K <

√
3

4
ρ2√χx =

√
3

2
K̄,

where K̄ =
ρ2
√
χx

2
, as is defined in the main text.

(4b)

From equation (80)

Ωx =
1

χx

√
K(

1
ξ4

+ 1
χx

)
Therefore, as K ↑, the numerator increases and the denominator falls (part a), thus dΩx

dK
> 0.

Proof of Result 5.

(5a)

Prove:
d(C2

t+1τ
−1
0 +D2

t+1τ
−1
x )

dKt+1
> 0, keeping Kt+j, ∀ j > 1 constant. By differentiating (58) and (128), we can show

that

dCt+1

dKt+1
= − τ0

r −G
dV̂t+1

dKt+1

dDt+1

dKt+1
=

1

r −G

[
τxV̂t+1

dξt+1

dKt+1
+ (τxξt+1 −

rρ

r −G )
dV̂t+1

dKt+1

]
20For brevity, we suppress the t subscripts.
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Also, recall that
dξt+1

dKt+1
< 0 and

d|ξt+1|
dKt+1

> 0.

d
(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
dKt+1

= 2

(
τ−1
0 Ct+1

dCt+1

dKt+1
+ τ−1

x Dt+1
dDt+1

dKt+1

)
= 2

(
−τ−1

0 Ct+1
τ0

r −G
dV̂t+1

dKt+1
+ τ−1

x Dt+1
1

r −G

[
τxV̂t+1

dξt+1

dKt+1
+ (τxξt+1 −

rρ

r −G )
dV̂t+1

dKt+1

])

=
2Dt+1

r −G

(
−ξt+1

dV̂t+1

dKt+1
+ V̂t+1

dξt+1

dKt+1
+ (ξt+1 −

rρτ−1
x

r −G )
dV̂t+1

dKt+1

)

=
2Dt+1

r −G

(
V̂t+1

dξt+1

dKt+1
− rρτ−1

x

r −G
dV̂t+1

dKt+1

)
(83)

The term outside the parentheses is negative. Inside the parentheses, the first term is negative, while the second term

(with the minus sign) is positive. Therefore, we need to show that the first term is larger in magnitude. Next, move

to computing
dV̂t+1

dKt+1
. Rewrite

V̂ −1
t+1 = τ0 + Ωft+1 + ξ2

t+1(τx + Ωxt+1) = τ0 + ξ2
t+1τx + (Ωft+1 + ξ2

t+1Ωxt+1)

= τ0 + ξ2
t+1τx −

ξt+1(ξ2
t+1Zt+1τx + ρr

r−G + Zt+1τ0)

(1 + ξt+1Zt+1)

= τ0 +
ξt+1(ξt+1τx − ρr

r−G − Zt+1τ0)

(1 + ξt+1Zt+1)

where the second line follows from equation (68) in the main text.

This also implies

V̂t+1 =
(1 + ξt+1Zt+1)

τ0(1 + ξt+1Zt+1) + ξt+1(ξt+1τx − ρr
r−G − Zt+1τ0)

=
(1 + ξt+1Zt+1)

τ0 − ξt+1
ρr
r−G + ξ2

t+1τx
(84)

Thus, we have

dV̂t+1

dKt+1
=
dV̂t+1

dξt+1

dξt+1

dKt+1

which reduces equation (83) to

d
(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
dKt+1

=
2Dt+1

(r −G)

dξt+1

dKt+1

(
V̂t+1 −

rρτ−1
x

r −G
dV̂t+1

dξt+1

)
(85)

Next, we compute
dV̂t+1

dξt+1
:

dV̂t+1

dξt+1
= − dV̂t+1

d|ξt+1|
= V̂ 2

t+1

−τxξt+1(2 + ξt+1Zt+1) + ρr
r−G + Zt+1τ0

(1 + ξt+1Zt+1)2
> 0 (86)

We use that to rewrite equation (85) as

d
(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
dKt+1

=
2V̂t+1Dt+1

(r −G)

dξt+1

dKt+1

(
1 +

rρτ−1
x

r −G V̂t+1

τxξt+1(2 + ξt+1Zt+1)− ρr
r−G − Zt+1τ0

(1 + ξt+1Zt+1)2

)
The term outside the parentheses on the rhs is positive, so for the lhs to be positive, we need the term inside the

parentheses to also be positive.
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Since Dt+1 < 0 and r −G > 0, it is sufficient that

d
(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
dKt+1

> 0 ⇐⇒ dξt+1

dKt+1

(
V̂t+1 −

rρτ−1
x

r −G
dV̂t+1

dξt+1

)
< 0

⇐⇒ dξt+1

dKt+1
V̂t+1 <

rρτ−1
x

r −G
dV̂t+1

dξt+1

dξt+1

dKt+1

dξt+1
dKt+1

<0,
dV̂t+1
dξt+1

>0

⇐⇒ V̂t+1|
dξt+1

dKt+1
| > rρτ−1

x

r −G |
dV̂t+1

dξt+1

dξt+1

dKt+1
| = rρτ−1

x

r −G |
dV̂t+1

dKt+1
|.

Therefore, for the future information risk to be increasing in Kt+1, we need

V̂t+1τx(r −G)

rρ
| dξt+1

dKt+1
| > | dV̂t+1

dKt+1
|. (87)

Notice that
dV̂t+1

dKt+1
=

dV̂t+1

dξt+1

dξt+1

dKt+1
, with

dV̂t+1

dξt+1
> 0 and

dξt+1

dKt+1
< 0. Plug them into equation (87) and the

dξt+1

dKt+1
terms

cancel, thus

V̂t+1τx(r −G)

rρ
>
dV̂t+1

dξt+1
= V̂ 2

t+1

−τxξt+1(2 + ξt+1Zt+1) + ρr
r−G + Zt+1τ0

(1 + ξt+1Zt+1)2
.

Cancelling V̂t+1 and rearranging, we have

τx(r −G)(1 + ξt+1Zt+1)2 > V̂t+1rρ
(
− τxξt+1(2 + ξt+1Zt+1) +

ρr

r −G + Zt+1τ0
)

(88)

We showed that V̂t+1 =
1+ξt+1Zt+1

τ0−ξt+1
ρr
r−G+ξ2t+1τx

. Substituting it in equation (88) leads to

τx(r−G)(1+ξt+1Zt+1)2(τ0−ξt+1
ρr

r −G+ξ2
t+1τx) > (1+ξt+1Zt+1)rρ

(
−τxξt+1(2+ξt+1Zt+1)+

ρr

r −G+Zt+1τ0
)
. (89)

From equation (80) in the online appendix, we can write Ωf + ξ2Ωx = − ξ(ξ
2Zt+1τx+α+Zt+1τ0)

1+ξZt+1
. The LHS is positive.

For the RHS, we know that ξ < 0, and thus −ξ is positive. The remaining term in the parentheses must be positive

because it is a sum of variances, precisions, and squares. To make the signs of the LHS and the RHS match, we must

have 1 + ξt+1Zt+1 > 0. This helps reduce inequality (89):

τx(r −G)(1 + ξt+1Zt+1)(τ0 − ξt+1
ρr

r −G + ξ2
t+1τx) > rρ

(
− τxξt+1(2 + ξt+1Zt+1) +

ρr

r −G + Zt+1τ0
)

⇐⇒ τx(1 + ξt+1Zt+1)((τ0 + ξ2
t+1τx)(r −G)− ξt+1ρr) > rρ

(
− τxξt+1(2 + ξt+1Zt+1) +

ρr

r −G + Zt+1τ0
)
(90)

⇐⇒ τx(1 + ξt+1Zt+1)(τ0 + ξ2
t+1τx)(r −G) > rρ

(
− τxξt+1 +

ρr

r −G + Zt+1τ0
)
. (91)

Both the LHS and RHS are positive. For a sufficiently small ρ, this inequality will hold.

There are other ways to arrive at this result. From equation (90), we can find a sufficient condition, that is

τx(1 + ξt+1Zt+1)(τ0 + ξ2
t+1τx)(r −G) > rρ

(
− τxξt+1(1 + ξt+1Zt+1)− τxξt+1 +

ρr

r −G + Zt+1τ0
)

= rρZt+1

(
− τxξ2

t+1 + τ0
)

︸ ︷︷ ︸
≷0

+ rρ
(
− 2τxξt+1 +

ρr

r −G

)
︸ ︷︷ ︸

>0

.

A sufficient condition for the above inequality to hold is

τx(1 + ξt+1Zt+1)(τ0 + ξ2
t+1τx)(r −G) > rρ

(
− τxξt+1(1 + ξt+1Zt+1)− τxξt+1 + ρr

r−G + Zt+1τ0
)

⇐⇒ τx(1 + ξt+1Zt+1)
[

(τ0 + ξ2
t+1τx)(r −G)︸ ︷︷ ︸
>0

+ rρξt+1︸ ︷︷ ︸
<0

]
> rρ

(
− τxξt+1 +

ρr

r −G + Zt+1τ0
)

︸ ︷︷ ︸
>0

.
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For a sufficiently small ρ, the right side will be small and the negative term on the left will also be small, ensuring

that the inequality will hold.

The conclusion is that, if the risk aversion is not too high (ρ < ρ̄), then future information risk is increasing in

Kt+1. The economic force is this: As Kt+1 increases, V ar[yt+2 | It+1] decreases, but Ct+1 increases. The effect of

decreasing V ar[yt+2 | It+1] is mediated by risk aversion. If that’s not too large, then the future information risk also

increases.

(5b)

Prove that ∂(Ct/|D|t)/∂Kt+1 < 0.

Future information Kt+1 shows up through the variance term Zt. Therefore, we begin by differentiating equation

(69) with respect to Zt.

∂ξt
∂Zt

= −

(√
Kt

(
ξ3
t (3ξtZt + 2) + χxZt

)
+ χx

√
ξ4t+χx
χx

(
α+ Zt

(
3ξ2
t τx + τ0

)))
ξtχx

√
ξ4t+χx
χx

(√
Kt

√
ξ4t+χx
χx

+ ξ2
t τx + τ0

) (92)

First, we argue that the numerator is positive. Consider the first term,

√
Kt

(
ξ3
t (3ξtZt + 2) + χxZt

)
.

We will argue that this term is also always positive. As Kt → 0 from above, this term converges to zero since

ξt, Ct+1 and Dt+1 are all bounded. As KT →∞, we have already shown that ξt → − 1
Zt

, thus this term converges to
√
Kt

(
−ξ3

t − χx
ξt

)
> 0. Next, take the derivative of the above expression with respect to Kt (keeping Zt constant):

∂
(√
Kt

(
ξ3
t (3ξtZt + 2) + χxZt

))
∂Kt

=
1

2
√
Kt

(
ξ3
t (3ξtZt + 2) + χxZt

)
Thus this expression and its derivative always have the same sign. Now assume this expression is negative for some

Kt. The derivative then has to be negative as well, which means that as Kt grows, the expression can never become

positive again. However, we showed that as Kt →∞, this expression is positive, a contradiction.

Next, the denominator is negative, because all terms are positive, except ξ, which is negative. Thus ∂ξt
∂Zt

> 0. In

other words, price informativeness (signal-to-noise ratio Ct
|Dt| falls) C2

t+1τ
−1
0 +D2

t+1τ
−1
x increases. Moreover, result 5

proves that C2
t+1τ

−1
0 +D2

t+1τ
−1
x is increasing in Kt+1 if ρ is not too high, which completes the proof.

Re-proving ∂(Ct/|D|t)/∂Kt > 0 with long-lived assets. We begin by differentiating equation (69) with

respect to Kt.

∂ξt
∂Kt

= − 2
√
Kt

(ξ4
t + χx) (1 + ξtZt)

(
√
Kt

(
ξ3
t (3ξtZt + 2) + χxZt

)
+ χx

√
ξ4
t + χx
χx

(
α+ Zt

(
3ξ2
t τx + τ0

)))
(93)

Consider the first term, in front of the large parentheses. From Lemma 4, we know that 1 + ξtZt > 0. Thus

the ratio outside these parentheses is positive. Inside the parentheses, this is the same term as in the ∂ξt
∂Zt

expression

above. We signed that positive. If the term in parentheses in (93) is positive and the term in front is also positive,

then ∂ξt
∂Kt

< 0. In other words, price informativeness (the signal-to-noise ratio, Ct
|Dt| ) rises as information becomes

more abundant.

Lemma 4 Balanced data processing growth depends on future information risk and long-lived assets.

|Dt| ≥ ρ(r−G)
r

(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
Ct, with strict inequality if Kt > 0.
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Proof. Use equation (69) to write

(1 + ξZt)(1 +
1

χx
ξ4)

1
2 = −(

1

Kt
)
1
2 ξ(ξ2Ztτx + α+ Ztτ0), (94)

since we’ve proven that ξ ≤ 0 (lemma 2). And we know from the structure of the optimization problem (linear

objective subject to convex cost) that for any Kt > 0, Ωft > 0, which implies that Ct > 0, and thus ξ < 0 with strict

inequality. The other terms on the right side are strictly positive squares or positive constants, with a negative sign

in front. Thus, the right hand side of equation (94) is positive. On the left, since (1 + 1
χx
ξ4)

1
2 is a square root, and

therefore positive, (1 + ξZt) must be also positive for the equality to hold. (1 + ξZt) > 0 implies that Zt < −1/ξ.

Substitute for Zt to get the result. This result puts a bound on how liquid the price can be. The liquidity is bounded

by the product of price informativeness and un-learnable, future risk.

Proof of Result 6.

(6a) Ωft/Ωxt does not converge to 0.

If Ωft/Ωxt converges to 0, then by the first-order condition, it must be that ξt →∞. It is sufficient to show that

ξt →∞ violates equation (69). Rearrange (69) to get[
ξtZt

(
ξ2
t τx + (Kt)

1
2 (1 +

1

χx
ξ4
t )

1
2 + τ0

)
+ ξtα

]
+ (Kt)

1
2 (1 +

1

χx
ξ4
t )

1
2 = 0 (95)

The term in square brackets is negative and the term outside is positive. Assume ξt →∞. If Zt does not go to zero,

then the negative term grows faster and the equality cannot hold. So it must be that Zt → 0. That requires that

both Ct+1 → 0 and Dt+1 → 0 (see (37)). In order for Ct+1 to go to zero, V̂ → τ−1
0 . But since ξt →∞, from equation

(35), V̂ → 0, which is a contradiction.

(6b) As Kt →∞, Ωft/Ωxt does not converge to ∞.

If Ωft/Ωxt did converge to ∞ as Kt → ∞, then by first-order condition (16), it would have to be that ξt → 0.

So it suffices to show that Ωft/Ωxt =∞ is inconsistent with ξt = 0, in equilibrium.

Start from the equilibrium condition (67), which must be zero in equilibrium. If ξt → 0, then the first term goes

to zero. The proof of lemma 4 proves, along the way, that (1 + ξtZt) > 0. (Otherwise, (67) can never be zero because

it is always negative.) Thus the second term Ωxtξ
2
t (1 + ξtZt) must be non-negative.

The third term Ωft(1 + ξtZt) also converges to ∞ because Ωft →∞ and (1 + ξtZt) > 0. How do we know that

Ωft → ∞? In principle, Ωft/Ωxt could become infinite either because Ωft became infinite or because Ωxt goes to

zero. But if Ωxt goes to zero and Ωft is finite, then information processing constraint (3), which requires that the

weighted sum of Ωft and Ωxt be Kt, cannot be satisfied as Kt →∞.

Since one term of (67) becomes large and positive and the other two are non-negative in the limit, the sum of

these three terms cannot equal zero. Therefore, Ωft/Ωxt →∞ cannot be an equilibrium.

(6c) there exists an equilibrium where Ωft/Ωxt converges to a constant.

By first-order condition (16), we know that Ωft/Ωxt converges to a constant, if and only if ξt also converges to a

constant. Thus, it suffices to show that there exists a constant ξt that is consistent with equilibrium, in the high-K

limit.

Suppose ξt and Zt are constant in the high-K limit. In equation (69) as Kt →∞, the last term goes to infinity,

unless ξt → − 1
Zt

. If the last term goes to infinity and the others remain finite, this cannot be an equilibrium because

equilibrium requires the left side of (69) to be zero. Therefore, for a constant solution to ξt, and thus for Ωft/Ωxt

and Zt to exist, it must be that ξt → −1
Zt

, at the correct rate

ξ3
tZtτx + ξt(α+ Ztτ0) + (1 + ξtZt)(Kt)

1
2 (1 +

1

χx
ξ4
t )

1
2 = 0
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lim
Kt→∞

[
ξt − (− 1

Zt
)

]
=

α
Z2
t
τx + α

Zt
+ τ0

Zt(
1 )

1
2 (1 + 1

χx

1
Z4
t

)
1
2

1√
Kt

→ 0

The question that remains is whether ξt and Zt are finite constants in the high-K limit, or whether one explodes

and the other converges to zero.

Suppose ξt = − 1
Zt

, which is constant (ξt = ξ̄). Zt = Z̄ is then also constant. The rest of the proof checks to see if

such a proposed constant- ξ̄ solution is consistent with equilibrium. We do this by showing that ξt does not explode

or contract as Kt increases. In other words, for ξt = −1
Zt

to be stable and thus the ratio of fundamental to technical

analyses to be stable, we need it to be that ∂ξt/∂Kt → 0, in other words, ξt and therefore Ωft/Ωxt converges to a

constant as Kt →∞.

Step 1: Derive dξt/dKt: Start from the equilibrium condition for ξt (69) and apply the implicit function theorem:(
3Ztτxξ

2
t +A+ Ztτ0

)
dξt +

1

2
(

1

Kt
)
1
2 (1 + ξtZt)(1 +

1

χx
ξ4
t )

1
2 dKt

+

[
1

2
(
Kt

χf
)
1
2 (1 + ξtZt)(1 +

1

χx
ξ4
t )−

1
2 (4

1

χx
ξ3
t ) + Zt(Kt)

1
2 (1 +

1

χx
ξ4
t )

1
2

]
dξt = 0

So we have

dξt
dKt

=
1

2
(

1

Kt
)
1
2

−(1 + ξtZt)(1 + 1
χx
ξ4
t )

1
2

3Ztτxξ2
t +A+ Ztτ0 + 2 1

χx
K

1
2
t (1 + ξtZt)(1 + 1

χx
ξ4
t )−

1
2 ξ3
t + ZtK

1
2
t (1 + 1

χx
ξ4
t )

1
2

Use equation (69) to write the numerator as

(1 + ξtZt)(1 +
1

χx
ξ4
t )

1
2 = −(

1

Kt
)
1
2 ξt(ξ

2
tZtτx +A+ Ztτ0) (96)

Now use this to rewrite dξt
dKt

as

dξt
dKt

=
1

2Kt

1
3Ztτxξ

2
t+A+Ztτ0

ξt(ξ
2
tZtτx+A+Ztτ0)

− 2 1
χx

(1 + 1
χx
ξ4
t )−1ξ3

t − Zt
(1+ξtZt)

(97)

Step 2: Show that dξt/dKt → 0 as Kt →∞, as long as X(·) 6 →0

As Kt →∞, it is clear that 1/2Kt → 0. As long as the term that multiplies 1/2Kt stays finite, the product will

converge to zero. Since the numerator is just 1, the second term will be finite, as long as the denominator does not

go to zero. Define

X(ξt, Zt) =
3Ztτxξ

2
t +A+ Ztτ0

ξt(ξ2
tZtτx +A+ Ztτ0)

− 2
1

χx
(1 +

1

χx
ξ4
t )−1ξ3

t −
Zt

(1 + ξtZt)
(98)

which is the denominator of the second fraction on the rhs of equation (97). Then if X 6→ 0, 1/X is finite, then

1/2Kt ∗ 1/X goes to zero as Kt gets large. Thus, we get that ∂ξt/∂Kt → 0 as Kt →∞.

Step 3: X(·) 6→ 0.

To complete the proof, we need to show that ξ̄ = − 1
Z̄

, which satisfies equilibrium condition (103) as Kt → ∞, does

not cause X(·) = 0. We can check this directly: in equation (98), if ξt = − 1
Zt

, the denominator of the last term

becomes zero; so the last term becomes infinite. The only term in (98) with the opposite sign is the middle term,

which is finite if ξ = C
D

is finite (the running assumption). If the last term of X tends to infinity and the only term

of the opposite sign is finite, the sum cannot be 0. Thus, for ξ̄ = − 1
Z̄

, which is the limit attained in the limit as

Kt →∞, we have that X(ξ̄) 6= 0.
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Step 4: As Kt →∞, if (104) holds, a real-valued, finite-ξ solution exists.

From equations (35-38), as Kt →∞ at least one of the two information choices goes to∞, so with finite, non-zero
C
D

:

lim
Kt→∞

V̂t = 0 (99)

lim
Kt→∞

Ω−1
t =

r

ρ(r −G)
Zt = D2

t+1(ξ2
t+1τ

−1
0 + τ−1

x ) (100)

lim
Kt→∞

Dt = −ρ
r

Ω−1
t = − 1

(r −G)
Zt (101)

A word of interpretation here: Equation (38), which defines Ω−1, is the total future payoff risk. As V̂ → 0,

it means that the predictable part of this variance vanishes as information capacity gets large. Zt, which is the

unpredictable part, remains and governs liquidity, Dt.

Next, we solve (100) for Dt+1, then backdate the solution 1 period to get an expression for Dt. And we equate

it to the expression for Dt in (101). This implies that limKt→∞D = D̄ is constant and equal to both of the following

expressions

D̄2 =
−rZt

ρ(r −G)ξ̄(ξ̄2τ−1
0 + τ−1

x )
=

Zt

(r −G)2ξ̄2
(102)

We can cancel Zt on both sides, which delivers a quadratic equation in one unknown in ξ̄:

ξ̄2τ−1
0 +

r(r −G)

ρ
ξ̄ + τ−1

x = 0. (103)

In order for ξ̄ to exist, equation (103) requires the expression inside the square root term of the quadratic formula

(often written as (b2 − 4ac)) to not be negative. This imposes the parametric restriction(
r(r −G)

ρ

)2

− 4τ−1
0 τ−1

x ≥ 0,

or equivalently,

τ0τx ≥
(

4ρ

r(r −G)

)2

. (104)

Rearranging this to put τ0 on the left delivers τ0 ≥ τ , where τ = 4τ−1
x ρ2(r(r−G))−2. If we instead rearrange this to

put τx on the left, we get τx ≥ τ , where τ = 4τ−1
0 ρ2(r(r −G))−2.

Thus if (104) holds, we have

ξ̄ = (r −G)
−r ±

√
r2 − 4( ρ

r−G )2τ−1
0 τ−1

x

2ρτ−1
0

(105)

C̄ =
1

r −G (106)

D̄ = −
r ±

√
r2 − 4( ρ

r−G )2τ−1
0 τ−1

x

2ρτ−1
x

(107)

Step 5: Balanced growth. Finally, use lemma 4 to prove the existence of balanced growth. The lemma shows

that Ct/|Dt| <
(
ρ ((r −G)/r) (C2

t+1τ
−1
0 +D2

t+1τ
−1
x )
)−1

. The first term is just fixed parameters. The second term,

(C2
t+1τ

−1
0 +D2

t+1τ
−1
x ), is the variance of the part of tomorrow’s price that depends on future shocks, xt+1 and yt+1.

This is the future information risk. It converges to a large, positive number as Kt grows. When information is
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abundant, high future information risk pushes Ct/|Dt| down toward a constant.

In contrast, if demand analysis were to keep growing faster than fundamental analysis (Ωft/Ωxt were to fall to

zero), by first-order condition (16), (Ct/Dt)
2 would keep rising to infinity. But if (Ct/Dt)

2 is converging to infinity,

then at some point, it must violate the inequality above because the right side of the inequality is decreasing over

time. Thus, demand analysis cannot grow faster than fundamental analysis forever.

The only solution that reconciles the first-order condition with the equilibrium price coefficients is one where

(Ωft/Ωxt) stabilizes and converges to a constant. If fundamental analysis grows proportionately with demand analysis,

then the rise in the amount of fundamental analysis makes prices more informative about dividends: Ct increases.

Proportional growth in fundamental and demand analyses allows Ct to keep up with the rise in Dt, described above.

Therefore, as information technology grows (Kt → ∞), a stable Ct/Dt rationalizes information choices (Ωxt, Ωft)

that grow proportionately, so that Ωxt/Ωft converges to a constant.

(6d) No perfect liquidity equilibrium, Dt 6= 0, ∀ t.
Lemmas 1 and 2 prove that for any Ωft,Ωxt ≥ 0, C ≥ 0, and Dt ≤ 0. Moreover, from the structure of the

optimization problem (the linear objective subject to convex cost), for any Kt > 0, Ωft > 0, which implies Ct > 0.

Since Ct > 0, if Dt → 0, the first-order condition implies that Ωft/Ωxt has to converge to zero. This directly violates

equation (95) for any finite Kt, and part (6a) of the result shows that the same contradiction happens in the limit as

Kt →∞. Thus there is no level of technological progress for which the market becomes perfectly liquid, Dt = 0.

Proof of Result 7.

For the static model, we want to evaluate the effect on price informativeness of reallocating attention from the

supply shock to fundamental. Because we have to respect the budget constraint on attention allocation, we have that

Ωf =
√
K − χxΩ2

x.

Thus
dΩf
dΩx

= −χx
Ωx
Ωf

using, the F.O.C Ωx
Ωf

= ξ2

χx
, we get that in equilibrium

dΩf
dΩx

= −ξ2.

We are going to calculate the effect of increasing one unit of Ωx on ξ ≡ C/D, but while considering the decrease

in Ωf needed to achieve the increase. Again, our starting point is

ξ2Ωx + ξρ+ Ωf = 0

Differentiating with respect to Ωx, we have

2ξ
dξ

dΩx
Ωx + ξ2 +

dξ

dΩx
ρ+

dΩf
dΩx

= 0

Replacing
dΩf
dΩx

= −ξ2, we finally obtain

dξ

dΩx
[2ξΩx + ρ] = 0

The term in brackets is 0 only if ξ = −ρ
2Ωx

. In fact, we know that ξ > −ρ
2Ωx

because the solution of ξ2Ωx + ξρ+ Ωf = 0

that behaves as expected when χx →∞ is

ξ =
−ρ
2Ωx

+

√
ρ2 − 4ΩfΩx

2Ωx

Thus, the only solution to the equation dξ
dΩx

[2ξΩx + ρ] = 0 is dξ
dΩx

= 0.
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Second order condition: Of course, it could be that the equilibrium allocation minimizes the price informativeness.

To show that this is a maximum, we also need to show that the second-order condition is negative.

Thus starting from

2ξ
dξ

dΩx
Ωx + ξ2 +

dξ

dΩx
ρ+

dΩf
dΩx

= 0,

we group the terms, use
dΩf
dΩx

= −χx Ωx
Ωf

, and then differentiate a second time to get

dξ

dΩx
(2ξΩx + ρ) = −ξ2 + χx

Ωx
Ωf

d2ξ

dΩ2
x

(2ξΩx + ρ) +
dξ

dΩx

d(2ξΩx + ρ)

dΩx
= −2ξ

dξ

dΩx
+ χx

[
1

Ωf
− Ωx

Ω2
f

dΩf
dΩx

]

Now we use dξ
dΩx

= 0, and Ωx
Ωf

= ξ2

χx
to get

d2ξ

dΩ2
x

(2ξΩx + ρ) =
χx
Ωf

[
1 + χx

(
Ωx
Ωf

)2
]

d2ξ

dΩ2
x

=
χx

Ωf (2ξΩx + ρ)

(
1 +

1

χx
ξ4

)
> 0

While this is positive, it is positive in ξ, which is (C/D). Since D < 0, this implies that the second derivative

with respect to C/|D| is positive. In other words, the efficient allocation minimizes (C/D), the negative signal-to-

noise ratio. Since C/D is a negative number, minimizing it is maximizing the absolute value. Thus, the equilibrium

information processing allocation maximizes the measure of price informativeness C/|D|.

Result 8 Information response to technological growth (dynamic). For π = 1,

(a) If Ωx < τ0 + Ωf and V ar[pt+1 + dt+1|Īt] < max{
√

3, 1
2
|Ct/Dt|} , then ∂C/D

∂Ωf
< 0 and ∂C/D

∂Ωx
≤ 0.

(b) Both fundamental and demand analyses increase the price information sensitivity. If r − G > 0 and (τx + Ωxt)

is sufficiently small, then ∂Ct/∂Ωft > 0 and ∂Ct/∂Ωxt > 0.

(c) If demand is not too volatile, then both fundamental and demand analyses improve concurrent liquidity. If

τx > ρr/(r −G) and Dt < 0, then ∂Dt/∂Ωft > 0 and ∂Dt/∂Ωxt > 0.

Proof.

(8a)

The strategy for proving this result is to apply the implicit function theorem to the price coefficients that come

from coefficient matching in the market-clearing equation. After equating supply and demand and matching all the

coefficients on xt+1, we arrive at (12). Rearranging that equation gives us the expression for Ct/Dt in (71). If we

subtract the right side of (71) from the left, we are left with an expression that is equal to zero in equilibrium. We

will name this expression F :

F =
Ct
Dt
− V̂ −1

t − τ0
τx

Ct
Dt
− ρr

(r−G)
− ZtV̂ −1

t

We compute ∂C/D
∂Ωx

= −
(

∂F
∂C/D

)−1
∂F
∂Ωx

and ∂C/D
∂Ωf

= −
(

∂F
∂C/D

)−1
∂F
∂Ωf

. In particular, we have:
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∂F

∂C/D
= 1−

(
2
Ct
Dt

(τx + Ωx)

)(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

+(V̂ −1 − τ0)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))
= 1−

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2

[(
2
Ct
Dt

(τx + Ωx)

)(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
− (V̂ −1 − τ0)

(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))]

∂F

∂Ωf
= −(1)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

+ (V̂ −1 − τ0)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2

(−Zt)

= −
(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2 [(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
+ Zt(V̂

−1 − τ0)

]

We notice that ∂F
∂Ωx

=
(
Ct
Dt

)2
∂F
∂Ωf

since

∂F

∂Ωx
=

∂F

∂V̂ −1

∂V̂ −1

∂Ωx
=

∂F

∂V̂ −1

(
Ct
Dt

)2
∂V̂ −1

∂Ωf
=

(
Ct
Dt

)2
∂F

∂Ωf

.

then:

∂C/D

∂Ωf
=

(
τx

Ct
Dt
− ρr

r−G − ZtV̂
−1
)

+ Zt(V̂
−1 − τ0)(

τx
Ct
Dt
− ρr

r−G − ZtV̂ −1
)2

−
[(

2Ct
Dt

(τx + Ωx)
)(

τx
Ct
Dt
− ρr

r−G − ZtV̂ −1
)
− (V̂ −1 − τ0)

(
τx − Zt

(
2Ct
Dt

(τx + Ωx)
))]

(108)

Part 1: If Ωx < τ0 + Ωf and C/D > −Zt/2 , then ∂C/D
∂Ωf

< 0 and ∂C/D
∂Ωx

≤ 0.

The numerator of (108) is(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
+ Zt(V̂

−1 − τ0) = τx
Ct
Dt
− ρr

r −G − Ztτ0 < 0

The inequality holds since we have proven that Ct/Dt < 0 and r > G.

In the denominator, however, not all the terms are negative. The denominator of (108), divided by
(
τx

Ct
Dt
− ρr

r−G − ZtV̂
−1
)

+

Zt(V̂
−1 − τ0) is:(

τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
−
(

2
Ct
Dt

(τx + Ωx)

)
+ (V̂ −1 − τ0)

(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

(109)

The only positive term is −2Ct
Dt

Ωx. As a result, it is easy to see that if C/D is sufficiently close to zero, then

−2Ct
Dt

Ωx <
ρr
r−G + Zt(τ0 + Ωf ), so (109) is negative.

The numerator is thus negative. And if C/D is sufficiently close to zero, the denominator is positive, so ∂C/D
∂Ωf

< 0

and ∂C/D
∂Ωx

=
(
Ct
Dt

)2
∂C/D
∂Ωf

< 0 if C/D < 0 and ∂C/D
∂Ωx

= 0 if C/D = 0.

Part 2: If C/D < − 2Z−1
t
3

, then ∂C/D
∂Ωf

< 0 and ∂C/D
∂Ωx

≤ 0.

To see this, we analyze whether, under these new conditions, inequality (109) holds. We have:
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− ρr

r −G − Zt(τ0 + Ωf )− 2
Ct
Dt

Ωx − 3Zt

(
Ct
Dt

)2

(τx + Ωx)

= − ρr

r −G − Zt(Ωx)− Ct
Dt

Ωx

(
2− 3Zt

Ct
Dt

)
− 3Zt

(
Ct
Dt

)2

τx

So if C/D < − 2Z−1
t
3

, we can prove the above claim:

= − ρr

r −G − Zt(Ωx)− Ct
Dt

Ωx

(
2− 3Zt

Ct
Dt

)
− 3Zt

(
Ct
Dt

)2

τx

< − ρr

r −G − Zt(Ωx)− 3Zt

(
Ct
Dt

)2

τx

< 0

Now, by combining the two previous claims, if Ωx < τ0 + Ωf and Zt >
1√
3
, then ∂C/D

∂Ωf
< 0 and ∂C/D

∂Ωx
≤ 0. The

condition Zt >
1√
3

implies that −Zt
2

< − 2Z−1
t
3

, which in turn implies the result for the entire support of C/D.

(8b)

From (58), Ct = 1
r−G (1− τ0V̂t).

From (35), V̂t is defined as

V̂ = [τ0 + Ωft +

(
Ct
Dt

)2

(τx + Ωxt)]
−1 (110)

Notice that Ct shows up twice, once on the left side and once in V̂ . Therefore, we use the implicit function

theorem to differentiate. If we define F ≡ Ct − 1
r−G (1 − τ0V̂ ), then ∂F/∂Ct = 1 + 1

r−Gτ0∂V̂/∂Ct. Since τx and

Ωxt are both precisions, both are positive. Therefore, ∂V̂ −1/∂Ct = 2Ct/D
2
t (τx + Ωxt). This is positive, since we

know that Ct > 0. That implies that the derivative of the inverse is ∂V̂/∂Ct = −V̂ 22Ct/D
2
t (τx + Ωxt), which is

negative. The ∂F/∂Ct term is therefore one plus a negative term. The result is positive, as long as the negative

term is sufficiently small: 2
r−Gτ0V̂

2Ct/D
2
t (τx + Ωxt) < 1. We can express this as an upper bound on τx + Ωxt by

rearranging the inequality to read: (τx + Ωxt) < 1/2(r −G)τ−2
0 V̂ −2D2

t /Ct.

Next, we see that ∂V̂ −1/∂Ωft = 1. Thus, ∂V̂/∂Ωft < 0. Since ∂F/∂V̂ > 0, this guarantees that ∂F/∂Ωft < 0.

Likewise, ∂V̂ −1/∂Ωxt = (Ct/Dt)
2. Since the square is always positive, ∂V̂/∂Ωxt < 0. Since ∂F/∂V̂ > 0, this

guarantees that ∂F/∂Ωxt < 0.

Finally, the implicit function theorem states that ∂Ct/∂Ωft = −(∂F/∂Ωft)/(∂F/∂Ct). Since the numerator

is positive, the denominator is negative and there is a minus sign in front, ∂Ct/∂Ωft > 0. Likewise, ∂Ct/∂Ωxt =

−(∂F/∂Ωxt)/(∂F/∂Ct). Since the numerator is positive, the denominator is negative and there is a minus sign in

front, ∂Ct/∂Ωxt > 0.

(8c)

Part 1: ∂Dt/∂Ωft > 0.

From market clearing:

Dt = [r − (1 +B)V̂ + Ωp
1

C
]−1[−ρΩ−1

t − (1 +B)
C

D
V̂ Ωx] (111)

Use Ωp = (C
D

)2(Ωx + τx) to get Dtr − (1 + B)V̂t
C
D

(τx) = −ρΩ−1
t . Then, use the stationary solution for B :
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1 +B = r
r−G :

Dt −
1

r −GV̂t
C

D
τx = −ρ

r
Ω−1
t (112)

Then use (38) to substitute in for Ω−1
t :

Dt = − 1

r −GZt −
rρ

(r −G)2
V̂ +

1

r −GV̂t
Ct
Dt

τx (113)

In the above, the RHS, less the last term, is the loading on Xt+1. The last term represents price feedback. We then

define F ≡ lhs of (113)− rhs of (113). So that we can apply the implicit function theorem as ∂Dt/∂Ωf = − ∂F
∂Ωf

/ ∂F
∂Dt

.

We begin by working out the denominator.

∂F

∂Dt
= 1 + 0 +

rρ

(r −G)2

∂V̂

∂Dt
− 1

r −G
∂V̂ + Ct

Dt

∂Dt
τx (114)

∂V̂

∂Dt
=

∂V̂

∂V̂ −1

∂V̂ −1

∂Dt
= −V̂ 2[−2C2

t

D3
t

(τx + Ωx)] = 2
C2

D3
V̂ 3
t (τx + Ωx) (115)

∂V̂ Ct
Dt

∂Dt
=
Ct
Dt

∂V̂t
∂Dt

+ V̂ (− C

D2
) (116)

=
C

D2
V̂ [2

Ct
Dt

(τx + Ωx)− 1] (117)

∂F

∂Dt
= 1 +

rρ

(r −G)2
· 2C

2

D3
V̂ 3
t (τx + Ωx)− τx

r −G
C

D2
V̂t[2

Ct
Dt

(τx + Ωx)− 1] (118)

∂F

∂Ωf
= 0− 0 +

rρ

(r −G)2

∂V̂

∂Ωt
− 1

r −G
Ct
Dt

τx
∂V̂

∂Ωt
(119)

Recall the definition V̂t ≡ [τ0 + Ωft + Ct
Dt

2
(τx + Ωx)]−1. Differentiating V̂ , we get

∂V̂

∂Ωf
=

∂V̂t

∂V̂ −1
t

· ∂V̂
−1
t

∂Ωf
= −V̂ 2

t
∂V̂ −1

t

∂Ωf
= −V̂ 2

t (120)

Substituting this in to (119) yields

∂F

∂Ωf
=

1

r −GV̂
2
t [
Ct
Dt

τx −
rρ

r −G ] (121)

Substituting in the derivative of V̂ , we get

∂Dt
∂Ωf

= −
1

r−G V̂
2
t [Ct

Dt
τx − rρ

r−G ]

1 2rρ
(r−G)2

C2

D3 V̂
2
t (τx + Ωx)− τx

r−G
C
D2 V̂t[2

C
ρ

(τx + Ωx)− 1]
(122)

We observe that if Ct
Dt

< 0 and r > G, then the numerator is positive (including the leading negative sign).
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The denominator is also positive if the following expression is positive:

r −G
C
D2 V̂

+ 2ρ
r

r −G
Ct
Dt

V̂t(τx + Ωx)− τxV̂t[
2C

D
(τx + Ωx − 1)] > 0 (123)

This is equivalent to

r −G
V̂t

D2

C
+ 2V̂t

Ct
Dt

(τx + Ωx)[
rρ

r −G − τx] + τxV̂t > 0. (124)

Lemma 2 proves that D < 0. That makes the middle term potentially negative. However, if [ rρ
r−G − τx] < 0 as

well, the product of this and D is positive, which means that the middle term is positive. That inequality can be

rearranged as τx >
rρ
r−G . Since the rest of the terms are squares and precisions, the rest of the expression is positive

as well.

Thus if τx >
rρ
r−G , then ∂Dt

∂Ωt
> 0.

Part 2: ∂Dt/∂Ωxt > 0.

Begin with the implicit function theorem: ∂Dt/∂Ωx = − ∂F
∂Ωx

/ ∂F
∂Dt

. The previous proof already proved that if

τx >
rρ
r−G , the denominator is positive. All that remains is to sign the numerator.

∂F

∂Ωx
= 0 + 0 +

rρ

(r −G)2

∂V̂

∂Ωx
− 1

r −G
Ct
Dt

τx
∂V̂

∂Ωx

where ∂V̂/∂Ωx = −V̂ 2(C2)/(D2). Substituting the partial of V̂ into the partial of F yields

∂F

∂Ωx
= V̂ 2 C

2

D2
(− rρ

(r −G)2
+

1

r −G
Ct
Dt

τx).

Combining terms,

∂Dt
∂Ωx

= −
V̂ 2 C2

D2 (− rρ
(r−G)2

+ 1
r−G

Ct
Dt
τx)

∂F
∂Dt

We know from lemmas 1 and 2 that Ct
Dt

< 0. Since r > G, by assumption, ∂F/∂Ωx is negative (i.e., the C2

D2 factor

does not change the sign). Applying the implicit function theorem tells us that ∂Dt/∂Ωxt > 0.

Corollary 1 Complementarity in demand analysis (dynamic). For π = 1, if Ωxt < τ0 + Ωft, then ∂Ωxit
∂Ωxt

≥ 0.

Proof. With the exact same argument that we use in our proof of result 1, complementarity follows from the

individual first condition whenever |C
D
| is increasing.

C Additional Results and Features of the Model

C.1 Comparative Statics: Risk Aversion and Demand Data Relative Cost

To explore the role of risk aversion and the possibility of unbalanced technological change, we take the comparative

statics of the static (π = 0) version of the model with respect to absolute risk aversion ρ and the relative cost of
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demand data χx. We begin with risk aversion.

d(C
D

)

dρ
=

ρ4χx
(

1−
√

1− 4K2

ρ4χx

)
− 2K2

2K2ρ3
(
χx
L

)3/2√
2(1−

√
1− 4K2

ρ4χx
)
√

1− 4K2

ρ4χx

The sign is the same as the sign of the numerator. Manipulate the numerator to get

ρ4χx

(
1−

√
1− 4K2

ρ4χx

)
− 2K2 > 0

1− 2K2

ρ4χx
>

√
1− 4K2

ρ4χx

1 +
4K4

ρ8χ2
x

− 4K2

ρ4χx
> 1− 4K2

ρ4χx

4K4

ρ8χ2
x

> 0

The interpretation is that, as agents become more risk averse, the signal-to-noise ratio of prices deteriorates.

Next, we explore changes in the shadow cost of demand data, without changing the ability to process fundamental

data.

d(C
D

)

dχx
=

√
χx
K

(
1−

√
1− 4K2

ρ4χx

)
√

2(1−
√

1− 4K2

ρ4χx
)
√

1− 4K2

ρ4χx

> 0

which means the signal-to-noise ratio of prices deteriorates (falls in absolute value) as the marginal cost of demand

data increases.

C.2 Extension: Informed and Uninformed Investors

C.2.1 Bayesian Updating

Throughout this section, we denote informed investors by i and uninformed investors by i′. We use the same notation

for any relevant aggregates. The analysis of an informed individual investor is identical to the baseline model. For

uninformed investor i′, the optimal quantity of asset demand has the same form, except Ωfi′t = Ωxi′t = 0.

Next, we turn to the aggregation.

Average expectations and precisions: The price information content for an informed investor i is Ωpit ≡ (Ct/Dt)
2(τx+

Ωxit), and for an uninformed investor i′ is Ωpi′t ≡ (Ct/Dt)
2τx. Since all investors within the same group are ex-ante

identical, they make identical information decisions. Thus, Ωpit = Ωpt

(Ωpi′t = Ω′pt) for all informed (uninformed) investors i (i′). The realized price signal still differs because the

signal realizations are heterogeneous. Thus for informed investors∫
ηpitdi =

1

Ct
(pt −At −B(dt − µ))− Ct

Dt
Ω−1
pt Ωxtxt+1

And for uninformed investors ∫
ηpi′tdi =

1

Ct
(pt −At −B(dt − µ))

Next, we add equivalent definitions of the conditional variance / precision terms that simplify notation for
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uninformed investors.

V̂ ′t = (τ0 + (Ct/Dt)
2τx)−1

Ω
′−1
t = πC2

t+1τ
−1
0 + πD2

t+1τ
−1
x + (1 + πBt+1)2V̂ ′t

Z′t =
πρ

r
(r − πG)(C2

t+1τ
−1
0 +D2

t+1τ
−1
x ) = Zt

Ω
′−1
t =

r

ρ(r − πG)
Z′t + (

r

r − πG )2V̂ ′t

Note that future information risk is the same for the two types of investors, since it is by definition unlearnable today.

Next, we can compute the average expectations∫
E[yt+1|Īi′t] di′ = V̂ ′t Ω′pt

1

Ct
(pt −At −B(dt − µ)) = (1− τ0V̂ ′t )

1

Ct
(pt −At −B(dt − µ))∫

E[πpt+1 + dt+1|Īi′t] di′ = At + (1 + πB)E[dt+1|Ī′t] = At + (1 + πB)
(
µ+G(dt − µ) + E[yt+1|Ī′t]

)
.

C.2.2 Solving for Equilibrium Prices

The price conjecture is again

pt = At +Bt(dt − µ) + Ctyt+1 +Dtxt+1 (125)

We will solve for the prices for general supply of asset, x̄, although in the main text it is normalized to one unit.

The average price signal in the economy is

λ

∫
ηpidi+ (1− λ)

∫
ηpi′di =

1

Ct
(pt −At −Bt(dt − µ))− λCt

Dt
Ω−1
pt Ωxtxt+1

where Ω−1
pt = (Dt/Ct)

2V ar(xt+1|Īt).
Solving for non-stationary equilibrium prices. To solve for equilibrium prices, we start from the portfolio

first-order condition for investors (7) and equate total demand with total supply. The total risky asset demand

(excluding noisy demand) is

λ

∫
qitdi+ (1− λ)

∫
qi′tdi

′

=
λ

ρ
Ωt

[
πAt+1 + (1 + πBt+1)

(
µ+G(dt − µ) + V̂t

[
Ωftyt+1 + Ωpt

1

Ct
(pt −At −Bt(dt − µ))− Ct

Dt
Ωxtxt+1

])
− πBt+1µ− ptr

]
+

1− λ
ρ

Ω′t

[
πAt+1 + (1 + πBt+1)

(
µ+G(dt − µ) + V̂ ′t Ω′pt

1

Ct
(pt −At −Bt(dt − µ))

)
− πBt+1µ− ptr

]
.

The market clearing condition equates the expression above to the residual asset supply x̄ + xt+1. To simplify

notation, let

Ω̄t = λΩt + (1− λ)Ω′t

λIt =
λΩt

Ω̄t
, λUt =

(1− λ)Ω′t
Ω̄t

= 1− λIt.

Matching the coefficients on (dt − µ) yields:

Bt =

[
r − (1 + πBt+1)

(
λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt

) 1

Ct

]−1 [
(1 + πBt+1)G− (1 + πBt+1)

(
λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt

) Bt
Ct

]
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Multiplying on both sides by the inverse term

rBt − (1 + πBt+1)(λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt)
1

Ct
Bt = (1 + πBt+1)G− (1 + πBt+1)

(
λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt

) Bt
Ct

and canceling the last term on both sides yields

Bt =
1

r
(1 + πBt+1)G (126)

As long as r and G do not vary over time, a stationary solution for B exists. That stationary solution would be (10).

Next, collecting all the terms in yt+1

λ

ρ
Ωt
[
(1 + πBt+1)

(
V̂t [Ωftyt+1 + Ωptyt+1]

)
− Ctyt+1r

]
+

1− λ
ρ

Ω′t

[
(1 + πBt+1)

(
V̂ ′t Ω′ptyt+1

)
− Ctyt+1r

]
= 0

λΩt(1 + πBt+1)V̂t [Ωft + Ωpt] + (1− λ)Ω′t(1 + πBt+1)V̂ ′t Ω′pt = rCtΩ̄t

λItΩ̄t(1 + πBt+1)(1− τ0V̂t) + λUtΩ̄t(1 + πBt+1)(1− τ0V̂ ′t ) = rCtΩ̄t.

Thus, Ct simplifies to

Ct =
1

r − πG

(
1− τ0(λItV̂t + (1− λIt)V̂ ′t )

)
.

Similar to Ω̄t, let

¯̂
Vt = (λItV̂t + (1− λIt)V̂ ′t ),

which in turn implies that

Ct =
1

r − πG

(
1− τ0 ¯̂

Vt
)
. (127)

Finally, we collect the terms in xt+1.

Dt = [r − (1 + πBt+1)
(
λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt

) 1

Ct
]−1[−ρΩ−1

t − (1 + πBt+1)λIt
Ct
Dt

V̂tΩxt]

We multiply by the inverse term, and then use Ωpt = (Ct/Dt)
2(τx + Ωxt) and Ω′pt = (Ct/Dt)

2τx to get

rDt − (1 + πBt+1)

(
λItV̂t

Ct
Dt

(τx + Ωxt) + (1− λIt)V̂ ′t
Ct
Dt

τx

)
= −ρΩ−1

t − (1 + πBt+1)λIt
Ct
Dt

V̂tΩxt

By substituting in B in the stationary solution and using the
¯̂
Vt, we get

Dt =
1

r − πG
¯̂
Vtτx

Ct
Dt
− ρ

r
Ω̄−1
t

Dt =
1

r − πG

[(
τx
Ct
Dt
− rρ

r − πG

)
¯̂
Vt − Zt

]
(128)

Next we compute the expression for informed trader demand, qt. Since At+1, B, Ct+1 and Dt+1 are non-random

(conditional on Īt), yt+2 and xt+2 are independent of the elements of Īt (and so E[zt+2|Īt] = E[zt+2] = 0 for
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z ∈ {x, y}) it follows that:

E[πpt+1 + dt+1|Iit] = πAt+1 + (1 + πB)E[dt+1|Iit]− πBµ+ πCt+1E[yt+2|Iit] + πDt+1E[xt+2|Iit]

= πAt+1 + (1 + πB)E[µ+G(dt − µ) + yt+1|Iit]− πBµ

= πAt+1 + µ+ πBµ+ (1 + πB)G(dt − µ) + (1 + πB)E[yt+1|Iit]− πBµ

= πAt+1 + µ+ (1 + πB)G(dt − µ) + (1 + πB)E[yt+1|Iit].

which implies that

E[πpt+1 + dt+1|Iit]− rpt = E[πpt+1 + dt+1|Iit]− r (At +B(dt − µ) + Ctyt+1 +Dtxt+1)

=
(
πAt+1 + µ− rAt

)
+
(
(1 + πB)G− rB

)
(dt − µ) +

(
1 + πB

)
E[yt+1|Iit]− rCtyt+1 − rDtxt+1

As a result, we obtain

E[πpt+1 + dt+1|Iit] = πAt+1 + µ+ (1 + πB)G(dt − µ) + (1 + πB)
Ωpitηpt + Ωfitηft
τ0 + Ωpit + Ωfit

= πAt+1 + µ+
rG

r − πG (dt − µ) +
r

r − πG
Ωptηpit + Ωftηfit
τ0 + Ωpt + Ωft

where the second line uses symmetry in information choices. Since by Bayes’ rule,

E[xt+1|ηxit] =
Ωxtηxt
τx + Ωxt

.

And

Ω−1
t := Var[πpt+1 + dt+1|Īt] = π(C2

t+1τ
−1
0 +D2

t+1τ
−1
x ) + (1 + πB)2 (τ0 + Ωft + Ωpt)

−1

= π(C2
t+1τ

−1
0 +D2

t+1τ
−1
x ) + (1 + πB)2 (τ0 + Ωft + (C/D)2(τx + Ωxt)

)−1
.

Next, we substitute the above expressions in qt to obtain:

qt =
Ωt
ρ

[(
πAt+1 + µ− rAt

)
+
(
(1 + πB)G− rB

)
(dt − µ) +

(
1 + πB

)
E[yt+1|Iit]− rCtyt+1 − rDtxt+1

]
=

Ωt
ρ

[(
πAt+1 + µ− rAt

)
+

r

r − πG
Ωft(yt+1 + ε̃fit) + Ωpt (yt+1 + (Dt/Ct)(xt+1 − E[xt+1|ηxit]))

τ0 + Ωpt + Ωft
− rCtyt+1 − rDtxt+1

]
=

Ωt
ρ

[(
πAt+1 + µ− rAt

)]
+
rΩt
ρ

[
1

r − πG
Ωft + Ωpt

τ0 + Ωpt + Ωft
− Ct

]
yt+1 +

Ωt
ρ

r

r − πG

[
Ωft

τ0 + Ωpt + Ωft

]
ε̃fit

+
rΩt
ρ

[
1

(r − πG)

Dt
Ct

Ωpt
τ0 + Ωpt + Ωft

τxxt+1 − Ωxε̃xit
τx + Ωxt

−Dtxt+1

]
=

Ωt
ρ

[(
πAt+1 + µ− rAt

)]
+
rΩt
ρ

[
1

r − πG
Ωft + Ωpt

τ0 + Ωpt + Ωft
− Ct

]
yt+1 +

Ωt
ρ

r

r − πG

[
Ωft

τ0 + Ωpt + Ωft

]
ε̃fit

+
rΩt
ρ

[
1

(r − πG)

Ct
Dt

τx
τ0 + Ωpt + Ωft

−Dt
]
xt+1 −

rΩt
ρ

[
1

(r − πG)

Ct
Dt

Ωxt
τ0 + Ωpt + Ωft

]
ε̃xit

where the last equality substitutes Ωpt = (Ct/Dt)
2(τx + Ωxt).

Covariance between qt and xt+1. Note that the first term in qt is a constant and does not appear in any

covariance. Moreover, yt+1 ∼ N (0, τ−1
0 ) and iid, and |G| < 1, thus dt+1 is a (weakly) stationary AR(1) process and

so E[dt+1] = µ < ∞. Thus with xt+1 ∼ N (0, τ−1
x ), we have E[xt+1] = 0 and so Cov(qt, xt+1) = E[qtxt+1]. Lastly,

because yt+1, ε̃xit and ε̃fit are iid, they are independent of xt+1, thus E[xt+1yt+1] = E[xt+1ε̃xit] = E[xt+1ε̃fit] = 0.
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Therefore,

Cov(qt, xt+1) = E[qtxt+1] =
rΩt
ρ

[
1

(r − πG)

Ct
Dt

τxV̂t −Dt
]
τ−1
x

=
rΩt
ρ

[
1

(r − πG)

Ct
Dt

τxV̂t −
1

r − πG
¯̂
Vtτx

Ct
Dt

+
ρ

r
Ω̄−1
t

]
τ−1
x

=
rΩt
ρ

[
ρ

r
Ω̄−1
t −

1

(r − πG)

Ct
Dt

τx(1− λIt)(V̂ ′t − V̂t)
]
τ−1
x

=
Ωt

λΩt + (1− λ)Ω′t
τ−1
x − rΩt

ρ(r − πG)

Ct
Dt

(1− λIt)(V̂ ′t − V̂t),

which is equation (138) in the main text.

Covariance between qt and yt+1. Since E[yt+1] = 0, Cov(qt, yt+1) = E[qtyt+1]. Additionally, as yt+1 is

independent of xt+1, εxt+1, and εft+1, then using the same expression for qt, we have:

Cov(qt, yt+1) = E[qtyt+1] =
rΩt
ρ

[
1

r − πG
Ωft + Ωpt

τ0 + Ωpt + Ωft
− Ct

]
τ−1
0

=
rΩt
ρ

[
1

r − πG (1− τ0V̂t)−
1

r − πG

(
1− τ0 ¯̂

Vt
)]
τ−1
0

=
rΩt

ρ(r − πG)
(
¯̂
Vt − V̂t) =

rΩt
ρ(r − πG)

(1− λIt)(V̂ ′t − V̂t)

=
r

ρ(r − πG)
(πC2

t+1τ
−1
0 + πD2

t+1τ
−1
x + (

r

r − πG )2V̂t)
−1(1− λIt)(V̂ ′t − V̂t),

which is equation (139) in the main text.

C.2.3 Static Economy, π = 0

In the static economy, where π = 0, we can further simplify equations (138) and (139). First, note that with π = 0,

Ω̄t = λV̂ −1
t + (1− λ)V̂

′−1
t . Thus we have

Cov(qt, xt+1) =
V̂ −1
t

λV̂ −1
t + (1− λ)V̂

′−1
t

τ−1
x − Ct

Dt

1

ρ
V̂ −1
t (1− λIt)(V̂ ′t − V̂t)

=
τ−1
x

λ+ (1− λ)
V̂ ′t
V̂t

− Ct
Dt

Cov(qt, yt+1)

=
τ−1
x

λ+ (1− λ) τ0+(C/D)2τx
τ0+Ωft+(C/D)2(τx+Ωxt)

− Ct
Dt

Cov(qt, yt+1) (129)

and

Cov(qt, yt+1) =
1

ρ
V̂ −1
t (1− λIt)(V̂ ′t − V̂t) =

1

ρ
V̂ −1
t (1− λ)

V̂
′−1
t

λV̂ −1
t + (1− λ)V̂

′−1
t

(V̂ ′t − V̂t)

=
1− λ
ρ

1

λV̂ −1
t + (1− λ)V̂

′−1
t

(V̂ −1
t − V̂

′−1
t ) =

1− λIt
ρ

Ωft + (C/D)2Ωxt
τ0 + (C/D)2τx

=
1− λ
ρ

Ωft + (C/D)2Ωxt
τ0 + (C/D)2τx + λ (Ωft + (C/D)2Ωxt)

=
1− λ
ρ

(
λ+

τ0 + (C/D)2τx
Ωft + (C/D)2Ωxt

)−1

(130)
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We use equation (130) to compute the total effective precision acquired about innovation in dividends:

Ωft + (
Ct
Dt

)2Ωxt =
ρCov(qt, yt+1)

1− λ (1 + ρCov(qt, yt+1))

(
τ0 + (

Ct
Dt

)2τx

)
, (131)

and then we use that in equation (129) to infer the size of informed trading:

λ =
(1− τxCov(qt, xt+1))

(
τ0 + (Ct

Dt
)2τx

)
+ Cov(qt, yt+1)

(
1− τx CtDt

(
τ0 + (Ct

Dt
)2τx

))
τxCov(qt, yt+1)

(
Cov(qt, xt+1) + Ct

Dt
Cov(qt, yt+1)

)
=

Cov(qt, yt+1) +
(
τ0 + (Ct

Dt
)2τx

) [
1− τx

(
Cov(qt, xt+1) + Ct

Dt
Cov(qt, yt+1)

)]
Cov(qt, yt+1)τx

(
Cov(qt, xt+1) + Ct

Dt
Cov(qt, yt+1)

) . (132)

Thus equations (131), (132), and (76) can be used to make the same inference for the static economy.

C.3 CRRA utility and heterogeneous risk aversion

Solving a CRRA portfolio problem with information choice is challenging because the equilibrium prices are no longer

linear functions of the shocks. With two sources of information, this non-linearity implies that one of the signals no

longer has normally-distributed signal noise about the asset fundamental. That makes combining the two sources of

information analytically intractable.

At the same time, we can come very close to CRRA with state-dependent risk aversion in exponential utility.

For example, suppose we set the absolute risk aversion to ρit = [(γ − 1)ln(Cit) + ln(γ − 1)]/Cit, where Cit denotes

consumption at time t. In this case, the two utility functions would be identical: exp(ρitCit) = (γ − 1)Cγ−1
it . The

problem with doing so is that risk aversion becomes a random variable that depends on asset payoffs, through Cit.

But suppose we do a close approximation to this. Suppose we allow ρit to be a function of Et[Cit], where t denotes

the beginning of the period t information set, prior to any information processing. This approximation implies that

the utility is

U(Cit) ≈ −exp
[
− ((γ − 1)ln(Et[Cit]) + ln(γ − 1))

Cit
Et[Cit]

]
We can then rewrite this log-linear approximation in a form that is like exponential utility − exp(−ρitCit), with a

coefficient of absolute risk aversion

ρit ≡ [(γ − 1)ln(Et[Cit]) + ln(γ − 1)]/Et[Cit]. (133)

This form of risk aversion introduces wealth effects on portfolio choices but preserves linearity in prices.

Each investor chooses a number of shares q of the risky asset to maximize (C.3) subject to budget constraint (3).

The first-order condition of that problem is

qit =
E[πpt+1 + dt+1|Iit]− rpt

ρitV ar[fit|Iit]
− hit

Given this optimal investment choice, we can impose market clearing (6) and obtain a price function that is

linear in asset payoffs and noisy demand shocks:

pCRRA = A+B(dt − µ) + Cy +Dx

where A, B, C, and D are the same as before, except that in place of each homogeneous ρ is ρ̄ ≡ (
∫

1/ρidi)
−1, which

is the harmonic mean of investors’ risk aversions, and captures aggregate wealth effects.

Of course, in this formulation, if investors’ wealth grows over time, asset prices trend up. In that sense, the
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solution changes. However, it is still the case that the decision to learn about fundamental or demand data depends

on (C/D)2. But now wealth is an additional force that moves Dt over time. Because ρ2 shows up in the numerator

once and ρ shows up in the denominator, these effects largely cancel each other out. Quantitatively, the effect on D

is small. But large changes in wealth can now have an effect on data choices.

C.4 A Linear or Entropy-Based Information Constraint

The reason we use a constraint that is convex in signal precision is that it produces an interior optimum. A constraint

that is linear in signal precision or that takes the form of an entropy reduction produces information choices that

are corner solutions. Such corner solutions have the same forces as those at work in our version of the model. The

reason is that the main results – the substitutability of fundamental data, the complementarity of demand data and

the interactions between the two information types – all arise from the marginal utility for information, not from the

cost formulation. However, keeping track of corner solutions introduces some additional complexity. This subsection

describes how one can work out that version of the one-period asset model (π = 0).

Step 1. Individual objective. This is still the same as before:

max Ωf + (
C

D
)2Ωx

subject to an mutual information (entropy - reduction) constraint, H(x, ηx) +H(y, ηy) ≤ K or a linear constraint,

Ωf + χxΩx = K

Step 2. Information aggregation and price coefficients given information choices. We

follow very the derivations of Appendix A.4, which solves the model for two types of agents. There, one set of agents

has both types of information. Here, one group specializes in fundamental data, and another in demand data (denoted

by ′ agents).

Let λ denote the fraction of agents specializing in fundamental data and 1 − λ in demand data. Moreover, let

ξ = C
D

. Using the same notation as before, in the static model, we have that for an individual fundamental specialist

versus demand specialist:

Ωi = V̂ −1
i = τ0 + Ωfi + ξ2τx

Ω′i = V̂
′−1
i = τ0 + ξ2(τx + Ωxi)

where the first equality in each line is true because the model is static. And since all fundamental agents are identical,

and all demand agents are identical, we have Ω = Ωi and Ω′ = Ω′i. Thus, to aggregate,

Ω̄ = λΩ + (1− λ)Ω′

¯̂
V
−1

=
λΩ

Ω̄
V̂ −1 +

(1− λ)Ω′

Ω̄
V̂
′−1 =

1

Ω̄

The information aggregation is therefore very simple

Ω̄ =
¯̂
V
−1

= τ0 + Ωf + ξ2(τx + Ωx)

where Ωx = (1−λ)K
χx

, and Ωf = λK = K − χxΩx .

Step 3. Solving for optimal information choices. Let Ωf (Ωx) denote the total information of

agents specializing in fundamental (demand) analysis. We have
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ξ =
C

D
=
−ρ+

√
ρ2 − 4ΩfΩx

2Ωx

and, from the aggregation step,

Ωf = K − χxΩx

We know that when K → 0, Ωx → 0 and ξ = −Ωf
ρ

while ξ ≥ −1. Thus if K < ρ, Ωf = K and Ωx = 0.

Next assume K > ρ. For both types of information to be processed, it must be that ξ = −1. Let Ωf = K−χxΩx

and substitute into ξ equation above and solve

−1 =
−ρ+

√
ρ2 − 4Ωx(K − χxΩx)

2Ωx

This yields

Ωx =
K − ρ
χx − 1

Since K > ρ, it must be that χx > 1 for Ωx > 0, a valid solution. Moreover, Ωx <
K
χx

. Thus we must have

K < ρχx

As before, when information becomes abundant, no solution exists.

To summarize:

1. K < ρ: Ωf = K and Ωx = 0.

2. K > ρ while K < ρχx and χx > 1: Ωf = ρχx−K
χx−1

and Ωx = K−ρ
χx−1

.

3. Otherwise there is no solution. Once K > ρ, it must be that χx > 1, as otherwise there is no solution. Even

when χx > 1, as K becomes sufficiently large, K > ρχx, the solution ceases to exist.

C.5 The Real Economic Benefits of Price Information Sensitivity

We have argued that growth in financial technology has transformed the financial sector and affected financial market

efficiency in unexpected ways. But why should we care about financial market efficiency? What are the consequences

for real economic activity? There are many possible linkages between the financial and real sectors. In this section,

we illustrate two possible channels through which changes in information sensitivity and price impact can alter the

efficiency of real business investment.

Manager Incentive Effects The key friction in the first spillover model is that the manager’s effort choice

is unobserved by equity investors. The manager makes a costly effort only because he or she is compensated with

equity. Managers only have an incentive to exert themselves if the value of their equity is responsive to their efforts.

Because of this, the efficiency of a manager’s effort choice depends on the asset price information sensitivity.

Of course, this friction reflects the fact that the wage is not an unconstrained optimal contract. The optimal

compensation for the managers is to pay them for their effort directly, or to give them all the equity in their firm.

We do not model the reasons why this contract is not feasible because it would distract from our main point. Our

stylized sketch of a model is designed to show how commonly-used compensation contracts that tie wages to firm

equity prices (e.g., options packages) also tie price information sensitivity to optimal effort.

Time is discrete and infinite. A single firm with profits dt+1 depends on a firm manager’s labor choice lt.

Specifically, instead of the dividend process specified in Section 1, asset payoffs take the static form: dt+1 = g(lt)+yt+1,
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where g is increasing and concave and yt+1 ∼ N(0, τ−1
0 ) is unknown at t. Because effort is unobserved, the manager’s

pay, wt, is tied to the firm’s equity price pt: wt = w̄+pt. However, effort is costly. We normalize the units of effort so

that a unit of effort corresponds to a unit of utility cost. Insider trading laws prevent the manager from participating

in the equity market. Thus the manager’s objective is

Um(lt) = w̄ + pt − lt (134)

The firm pays out all its profits each period as dividends to its shareholders. Firm equity purchased at time t is

a claim to the present discounted stream of future profits {dt+1, dt+2 . . .}.
Investors’ preferences, endowments, budget constraint, and information choice sets are the same as they were

before. The demand data signals are defined as before. Fundamental analysis now generates signals of the form

ηfit = g(lt) + yt+1 + ε̃fit, where the signal noise is ε̃fit ∼ N(0,Ωft). Investors choose the precision Ωft of this signal,

as well as their demand signal Ωxt. Equilibrium is defined as before, with the additional condition that the manager

effort decision maximizes (134).

Solution As before, the asset market equilibrium has a linear equilibrium price:

pt = At + Ct(g(lt) + yt+1) +Dtxt+1 (135)

Notice that since dividends are not persistent, dt is no longer relevant for the t price.

The firm manager chooses his effort to maximize (134). The first-order condition is Ctg
′(lt) = 1, which yields an

equilibrium effort level lt = (g′)−1(1/Ct). Notice that the socially optimal level would set the marginal utility cost

of effort equal to the marginal product, g′(lt) = 1. When Ct is below one, managers under-provide effort relative to

the social optimum because their stock compensation moves less than one-to-one with the true value of their firm.

Similar to before, the equilibrium level of price information sensitivity C is

Ct =
1

r

(
1− τ0V ar[g(lt) + yt+1|Īt]

)
. (136)

Thus, as more information is analyzed, dividend uncertainty (V ar[g(lt) + yt+1|Īt]) falls, Ct rises and managers are

better incentivized to exert optimal effort. While the model is stylized and the solution presented here is only a

sketch, it is designed to clarify why trends in financial analysis matter for the real economy.

The most obvious limitation of the model is its single asset. One might wonder whether the effect would disappear

if the asset’s return was largely determined by aggregate risk, which is beyond the manager’s control. However, if

there were many assets, one would want to rewrite the compensation contract so that the manager gets rewarded for

high firm-specific returns. This would look like benchmarked performance pay. If the contract focused on firm-specific

performance, the resulting model would look similar to the single asset case here.

In short, this mechanism suggests that recent financial sector trends boost real economic efficiency. More data

analysis – of either type – improves price information sensitivity, and thereby incentives. But this is only one possible

mechanism that offers one possible conclusion. Our next example presents an alternative line of thought.

C.6 Real Economic Benefits of Liquidity

The second real spillover highlights a downside of financial technology growth. More information technology creates

future information risk, which raises the risk of holding equity, raising the equity premium, and making capital more

costly for firms. This enormously simplified mechanism is meant as a stand-in for a more nuanced relationship, such

as that in Bigio (2015).

Suppose that a firm has a profitable investment opportunity and wants to issue new equity to raise capital for that

investment. For every dollar of capital invested, the firm can produce an infinite stream of dividends, dt. Dividends
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follow the same stochastic process as described in the original model. However, the firm needs funds to invest, which

it raises those funds by issuing equity. The firm chooses the number of shares, x̄, to maximize the total revenue raised

(maximize output). Each share sells at price p, which is determined by the investment market equilibrium, minus

the investment or issuance cost:

E[x̄p− c(x̄)|Iit]

The firm makes its choice conditional on the same prior information that all the investors have. But the firm does

not condition on p. It does not take the price as given. Rather, the firm chooses x̄, taking into account its impact on

the equilibrium price. The change in issuance is permanent and unanticipated. The rest of the model is identical to

the dynamic model in section 1.

Solution Given the new asset supply, x̄, the asset market and information choice solutions to the problem are the

same as before. But how the firm chooses x̄ depends on how new issuances affect the asset price. When the firm issues

new equity, all asset market participants are aware that new shares are coming online. Equity issuance permanently

changes the known supply of the asset x̄. Supply x̄ enters the asset price in only one place in the equilibrium pricing

formula, through At. Recall from (9) that

At =
1

r

[
At+1 +

rµ

r −G − ρV ar[pt+1 + dt+1|Īt]x̄
]
. (137)

Taking At+1 as given for the moment, dAt/dx̄ = −ρV ar[pt+1 + dt+1|Īt]/r.21 In other words, the impact of a one-

period change in the asset supply depends on the conditional variance (the uncertainty about) the future asset payoff,

pt+1 + dt+1. Recall from the discussion of the price impact of trades in Section 3.4 that in a dynamic model, more

information analysis reduces dividend uncertainty but it can result in more uncertainty about future prices. These

two effects largely offset each other.

When we simulate the calibrated model, we find a modest change in the payoff risk from these competing effects

on the price impact of issuing new equity. To give the units of the price impact some meaning, the issuance cost is

scaled by the average dividend payment so that it can be interpreted as the change in the price-dividend ratio from

a one-unit change in equity supply. Thus a one-unit increase in issuance reduces the asset price by an amount equal

to 4 months of dividends, on average.

We learn that technological progress in information analysis – of either type – initially makes asset payoffs slightly

more uncertain, making it more costly to issue new equity. When we now take into account the fact that the increase

in asset supply is permanent, the effect of issuance is amplified, relative to the one-period (fixed At+1) case. But when

analysis becomes sufficiently productive, issuance costs decrease again, as the risk-reducing power of more precise

information dominates.

Again, a key limitation of the model is its single asset. With multiple assets, one firm’s issuance is a tiny change

in the aggregate risk supply. But the change in the supply of firm-specific risk looks similar to this problem. If one

were to evaluate this mechanism quantitatively, the magnitude would depend on how much the newly issued equity

loads on the idiosyncratic versus the aggregate risk.

C.7 Price Volatility

One concern with the model is that the future information risk might manifest itself as an implausible rise in price

volatility. Price volatility is V ar[pt]. Taking the unconditional variance of the model’s pricing equation, we get

21In principle, a change in issuance x̄ could change the payoff variance, V ar[pt+1+dt+1|Īt]. However, in this setting,
the conditional variance does not change because the information choices do not change. Information does not change
because the marginal rate of transformation of fundamental and demand information depends on (Ct/Dt)

2, which is
not dependent on x̄. If there were multiple assets, issuance would affect information choices, as in Begenau, Farboodi
and Veldkamp (2017).
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B2
t V ar[dt] + C2

t V ar[yt+1] + D2
tV ar[xt+1] = B2

t τ
−1
0 /(1 − G2) + C2

t τ
−1
0 + D2

t τ
−1
x . Figure 4 shows that the price

volatility time series exhibits a modest increase. Because price is larger in magnitude than dividends are, a small

increase in price volatility can offset a large decrease in dividend uncertainty.

Figure 4: Price Volatility (model) Price volatility is V ar[pt] =
(
B2/(1−G2) + C2

t

)
τ−1
0 +D2

t τ
−1
x .

D Decomposing the Numerical Results

In this section, we explore what part of the results are attributable to the growth in fundamental information, what

part to the growth in demand information, and what role future payoff risk plays.

D.1 Turning off Demand Data

For this next set of results, we turn off demand data by setting Ωxt = 0. We keep Ωft, on the same sequence that

it was in the unconstrained model. Obviously, that is not an optimal choice for fundamental data in this setting

because it leaves some data capacity unused. But it does allow for a clear comparison of results because it does not

conflate the effects of less demand data with more or less fundamental data. In Figure 5, the amount of fundamental

data analysis is exactly the same as in Figure 2. The only difference is that the results here have zero demand data

analysis. In other words, we substitute Ωxt = 0 into pricing coefficient equations 11 and 12.

To highlight the differences between this no-demand-data version of the model and the original results, we plot

each price coefficient as the difference from the level in the original model. Figure 6 reveals that the lack of demand

data has only a tiny effect on Ct but a sizeable effect on Dt. Specifically, removing demand data makes the market

significantly more illiquid. At high levels of data Kt, the price impact of a trade without demand data is nearly

double what it would be with demand data. Note that the jump at the end of the plot is a relic of our calibration

procedure. It arises because period 150 is assumed to be the steady state. Since the steady state is the same in both

cases, the difference appears as zero. Nothing economically interesting occurs there.

Figure 7 plots how much of the precision in the investors’ forecast of pt+1 + dt+1 comes from their demand

data. When Kt is low (left side), there is almost no demand data processing. So, readding the equilibrium amount

of demand data adds almost nothing to forecast precision. When Kt gets high (on the right), almost 100% of the

forecast precision comes from demand data. The forecasts without demand data have almost no precision.

Alternatively, we turn off demand data by setting Ωxt = 0 and re-optimize over Ωft given a path of Kt. Here,

data capacity is used to its fullest. Trivially, we have Ωft =
√
Kt . In the long-run, we see clearly that the shift in

demand analysis has no effects on market efficiency, whether it is measured by the steady state value of C, D, or
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Figure 5: Price Information Sensitivity (Ct) and the Price Impact of Trades (|Dt|) without
Demand Data. Ct is the impact of dividend innovations on price. (|Dt|) is the price impact of a one-unit
uninformed trade. (Ct/Dt)

2 tells us the marginal value of demand information relative to fundamental information.
The x-axis is time in years.

Figure 6: Change in Ct and |Dt| from Removing Demand Data. Ct is the impact of dividend innovations
on price. (|Dt|) is the price impact of a one-unit uninformed trade. These plots report the percentage change in the
coefficient that would result from changing Ωxt = 0 back to its optimal level. The x-axis is time.

C/D. This exercise also illustrates the effects of demand analysis on the transition path. Allowing demand data to

adjust endogenously smooths out the bumps in the marginal value of demand information (C/|D|).
Similar to the no-demand-data version with the same sequence for Ωft as in the unconstrained model, we plot

each price coefficient as a difference from the level in the original model. Figure 9 reveals that the lack of demand

data has only a tiny effect on Ct, but it has a sizeable effect on Dt.

In this scenario, we repeat the exercise of computing and plotting how much of the precision in investors’ forecasts

of pt+1 + dt+1 comes from their demand data. The result looks indistinguishable from Figure 7. When Kt is low

(left side), there is almost no demand data processing. When Kt becomes high (on the right), the forecast precision

comes almost entirely from demand data processing.

D.2 Turning off Fundamental Data Growth

Next, we perform the opposite exercise to see what effect fundamental information has on the results. We turn off

fundamental data by setting Ωft = 0.01. Unlike before, when we set the demand data precision exactly to zero, we

cannot set the fundamental precision to zero. Doing so would trivially give us Ct = 0 no matter what. Instead, to see
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Figure 7: Additional Payoff Forecast Precision from Demand Data. V −1 is V ar[dt|Īt]−1 in the main
model. V −1

a is V ar[dt|Īt]−1 in the model without demand analysis (Ωxt = 0). The vertical axis, (V −1 − V −1
a )/V −1

represents the fraction of forecast precision due to demand analysis. The x-axis is time in years.

Figure 8: Price Information Sensitivity (Ct) and the Price Impact of Trades (|Dt|) without
Demand Data, Ωft Optimized. Ct is the impact of dividend innovations on price. (|Dt|) is the price impact
of a one-unit uninformed trade. (Ct/Dt)

2 tells us the marginal value of demand information relative to fundamental
information. The x-axis is time in years.

the role of demand analysis, we hold the fundamental data precision at a small, exogenous amount. For Ωxt, we keep

it on the same sequence as it was in the unconstrained model. In Figure 10, the amount of demand data analysis is

exactly the same as in Figure 2. The only difference is that the results here have zero fundamental data analysis. In

other words, we substitute Ωft = 0 into pricing coefficient equations 11 and 12.

To highlight the differences between this no-demand-data version of the model and the original results, we

plot each price coefficient as the difference from the level in the original model. Figure 11 reveals that the lack of

fundamental data has only a tiny effect on Dt but a sizeable effect on Ct. This is the reverse of the previous exercise.

Specifically, removing fundamental data makes the market significantly less sensitive to dividend innovations. At

low levels of data (Kt low), the price dividend sensitivities, with and nearly-without fundamental data are very

different. At high levels of Kt, since most of the information comes from demand data anyway, the levels with and

nearly-without fundamental data are almost the same.

D.3 Turning Off Dynamics

To see the role that long-lived assets play in the results, it is useful to remove all dynamic effects by setting π = 0

and seeing how the results change. We can only report results from the first few periods because, after that the
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Figure 9: Change in Ct and |Dt| from Removing Demand Data and Optimizing over Ωft. Ct is
the impact of dividend innovations on price. (|Dt|) is the price impact of a one-unit uninformed trade. These plots
report the percentage change in the coefficient that would result from changing Ωxt = 0 and Ωft =

√
Kt back to its

optimal level. The x-axis is time.

Figure 10: Price Information Sensitivity (Ct) and the Price Impact of Trades (|Dt|) without
Fundamental Data. Ct is the impact of dividend innovations on price. (|Dt|) is the price impact of a one-unit
uninformed trade. (Ct/Dt)

2 tells us the marginal value of demand information relative to fundamental information.
The x-axis is time in years.

equilibrium no longer exists.

The main difference between the static and dynamic models is that the magnitudes are quite different. The

static model features price sensitivity to fundamentals and demand shocks that are between four and ten times less

than the same coefficients in the dynamic model. In the dynamic model, a whole stream of payoffs is affected by

the dividend information observed today. A small change in a signal affects not only today’s dividend estimate, but

also tomorrow’s and every future date’s dividend. That cumulative effect moves the price by more. It also raises

the effect of demand shocks because these shocks affect the price, which is used as a signal about future dividends.

Because any signal about dividends, including a price signal, has more impact on price, and because demand shocks

affect the price signal, demand shocks also have a larger impact on price.
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Figure 11: Change in Ct and |Dt| from Removing Fundamental Data. Ct is the impact of dividend
innovations on price. (|Dt|) is the price impact of a one-unit uninformed trade. These plots report the percentage
change in the coefficient that would result from changing Ωxt = 0 back to its optimal level.

E Robustness of the Numerical Results

We want to investigate the effect of changing parameters on the predictions of the numerical model. First, we show

how re-calibrating the model with different risk aversion affects the values of other calibrated parameters. Then we

show how changes in risk aversion and other parameters have modest effects on the results. We first consider changes

to the exogenous parameters: time preference, risk aversion, and the growth rate of the data technology. Then we

consider altering the endogenous, calibrated parameters: dividend innovation variance, noise trade variance, and the

relative cost of demand information.

Changes to fixed parameters

We consider a lower/higher time preference and risk aversion. Whenever a parameter is changed, all other parameters

are re-calibrated to match that new value and the numerical model is simulated again.

Table 2 shows the original calibration alongside a higher and lower-risk aversion calibration to show how the

other parameters adjust when risk aversion changes.

Figure 12 shows the model outcomes for various levels of risk aversion. Data demands are almost identical and

market outcomes are qualitatively similar, particularly in the first 20 periods, which correspond to observed, past

data. The reason that not much changes is that the other parameters adjust to the change in risk aversion. Figures

13 and 17 repeat the analogous robustness exercises for the rate of the time preference and the technological growth

rate.

Table 2: Parameters

lower risk av original calibration high risk av

G 0.98 0.98 0.98
µ 0.04 0.04 0.04
τ0 80.08 80.08 80.08
τx 19.75 19.75 19.75
χx 21.13 21.12 21.12

r 1.02 1.02 1.02
ρ 0.0425 0.05 0.0575
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Figure 12: Results with Different Risk Aversion. The first row is information acquisition and the second is the
price coefficients. The left axis measures Ωft on the top plots and measures Ct and |Dt| on the bottom plots. The
remaining lines are measured on the right side axis. Column 1 corresponds to ρ = 0.0425. Column 2 is the baseline
calibration used in the paper, ρ = 0.05, and column 3 displays the paths with ρ = 0.0575.
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Figure 13: Results with Different Rates of Time Preference. The first row is information acquisition and the
second is the price coefficients. The left axis measures Ωft on the top plots and Ct and |Dt| on the bottom plots.
The remaining lines are measured on the right side axis. Column 1 displays the path with r = 1.02, column 2 is the
baseline calibration used in the paper corresponding to r = 1.05, and column 3 displays the path with r = 1.08.

Changes to calibrated parameters

We consider lower/higher dividend shock variance, noise trade variance, the growth rate of the data capacity con-

straint, and the relative cost of demand information. As these parameters are determined jointly by the calibration,

we cannot simply change them and re-calibrate as above. Rather, we calibrate to the baseline then change the param-

eter of interest for the experiment and then recover the model’s terminal values associated with that new parameter

of interest. It is important to note that when we make changes here, we do not re-calibrate the other parameters.
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Figure 14: Results with Different Values of τ0. The first row is information acquisition and the second is the price
coefficients. The left axis measures Ωft on the top 3 plots and Ct and |Dt| on the bottom 3 plots. The remaining
lines are measured on the right side axis. Column 2 is the baseline calibration used in the paper. Column 1 displays
the path for τ∗0 = 0.75× τ0 and column 3 for τ∗0 = 1.25× τ0.
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Figure 15: Results with Different Values of τx. The first row is information acquisition and the second is the price
coefficients. The left axis measures Ωft on the top 3 plots and Ct and |Dt| on the bottom 3 plots. The remaining
lines are measured on the right side axis. Column 2 is the baseline calibration used in the paper. Column 1 displays
the path for τ∗x = 0.75× τx and column 3 for τ∗x = 1.25× τx.
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Figure 16: Results with Different Values of χx. The first row is information acquisition and the second is the price
coefficients. The left axis measures Ωft on the top 3 plots and Ct and |Dt| on the bottom 3 plots. The remaining
lines are measured on the right side axis. Column 1 is the baseline calibration used in the paper. Columns 2 and 3
display paths for χ∗x = 0.5× χx and χ∗x = 2× χx, respectively.
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Figure 17: Results with Different Growth Rates of Kt. The first row is information acquisition and the second
is the price coefficients. The left axis measures Ωft on the top 3 plots and Ct and |Dt| on the bottom 3 plots. The
remaining lines are measured on the right side axis. Column 1 has α = 0.47, column 2 is the baseline specification in
the paper with α = 0.49, and column 3 has α = 0.51.

Figure 18: Unbalanced Technological Progress: χx falls. This figure shows the information choices (left
plot) and market efficiency (right plot) with faster productivity growth in demand analysis. The left axis measures
Ωft on left plot and Ct and |Dt| on the right plots. The remaining lines are measured on the right side axis. The
path for total information Kt is the same as before. But the marginal cost of demand analysis χx follows a path that
is log linear: The points ln(χxt) are evenly spaced between 0 and ln(χxt/10). The x−axis is time.

(a) Information Acquisition (b) Price Coefficients

Generated Regressor Problem. In our numerical results, we run time series regression (2) asset by asset

and take the regression residual as the innovation term in dividends (yt+1). We then use this innovation term as a

regressor in cross sectional regression (8) to get the price coefficients as well as the variance of the residual for each

point of time. The variance of the residual corresponds to D2
t τ
−1
x in our model, and we use it as one of our moment

conditions to calibrate our parameters. Since one of the regressors in the regression of (8) is generated inside the
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model, this can potentially lead to the generated regressor problem and contaminate the variance of the residual in

regression (8).

This problem is unlikely to be quantitatively important in our setting because Gi is estimated quite precisely.

Of the 171 firms we consider, 103 of them have Gi estimates that are significantly different from zero, at the 5%

level, and 80 of them are significant at the 1% level. With such small standard errors and such large variance of the

residuals, the generated regressor is clearly not the main source of the variance of the AR(1) residuals.
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F Data Appendix

Asset Data: Compustat Database The Compustat database provides more than 500 company-level fun-

damentals, including items such as income statements, balance sheets, and flow of funds. Our variables for analysis

includes earnings before interest and taxes (EBIT), total assets and market capitalization. The Compustat database is

owned by S&P Global. Researchers can subscribe to the data. Many universities and research institutions have such a

subscription. More info on data access for academia can be found at https://www.spglobal.com/marketintelligence/en/client-

segments/academia.

Hedge Fund Data: Lipper TASS Database The figure showing the shift over time in investment

strategies is based on hedge fund data from Lipper. Lipper TASS provides performance data on over 7,500 actively

reporting hedge funds and funds of hedge funds and also provides historical performance data on over 11,000 graveyard

funds that have liquidated or that stopped reporting. In addition to performance data, data are also available

on certain fund characteristics, such as the investment approach, management fees, redemption periods, minimum

investment amounts and geographical focus. The Lipper TASS database is accessible via Thomson Reuters underneath

“Current Subscriptions” on the Wharton Research Data Services homepage https://wrds-web.wharton.upenn.edu/.

Though the database provides a comprehensive window into the hedge fund industry, data reporting standards

are low. A large portion of the industry (representing about 42% of assets) simply does not report anything (Edelman,

Fund and Hsieh, 2013). Reporting funds regularly report only performing assets (Bali, Brown and Caglayan, 2014).

While any empirical analysis must be considered with caution, some interesting stylized facts about the current state

and evolution of the hedge fund industry do exist in these data.

All hedge fund data is monthly and come from Lipper TASS. In total, the database reports on 17,534 live and

defunct funds. Data are from 1994-2015, as no data was kept on defunct funds before 1994. A significant portion of

this total consists of the same fund reported in different currencies and thus are not representative of independent

fund strategies (Bali, Brown and Caglayan, 2014). Therefore, we limit the sample to only U.S.-based hedge funds and

remove funds of funds. This limits the sample size to 10,305 funds. As the focus is to gain insight into the division

between fundamental and quantitative strategies in the market, we further limit the sample to the 7093 funds that

explicitly possess these characteristics, described below. Throughout the sample, funds are born and die regularly.

At any point in time, there are never more than 3000 existing, qualifying funds. By the end of 2015, there were just

over 1000 qualifying funds.

Lipper TASS records data on each fund’s investment strategy. In total, there are 18 different classifications,

most of which have qualities of both fundamental and quantitative analyses. As an example of a strategy that could

be considered both, “Macro: Active Trading strategies utilize active trading methods, typically with high frequency

position turnover or leverage; these may employ components of both Discretionary and Systematic Macro strategies.”

However, 4 strategy classifications explicitly denote a fund’s strategy as being either fundamental or quantitative.

They are:

• Fundamental: This denotes that the fund’s strategy is explicitly based on fundamental analysis.

• Discretionary: This denotes that the fund’s strategy is based upon the discretion of the fund’s manager(s).

• Technical: This denotes that the fund deploys a technical strategy.

• Systematic Quant: This denotes that funds deploy a technical/algorithmic strategy.

Using these classifications, it is possible to divide hedge fund strategy into three broad groups:

• Fundamental: Those funds with a strategy that is classified as fundamental and/or discretionary, and not

technical and/or sytematic quant.

• Quantitative: Those funds with a strategy that is classified as technical and/or systematic quant, and not

fundamental and/or discretionary.
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• Mixture: Those funds with a strategy that is classified as having at least one of fundamental or discretionary

and at least one of technical or systematic quant.

From 2000-2015, the assets under management (AUM) systematically shifted away from fundamental funds and

towards those that deploy some sort of quantitative analysis in their investment approach. In mid-2000, the assets

under management per fundamental fund was roughly 8 times the size of those in a quantitative or mixture fund,

but by 2011 this had equalized, representing a true shift away from fundamental and towards quantitative analysis

in the hedge fund industry.

Figure 19: Hedge Funds are Shifting away from Fundamental Analysis.
Source: Lipper TASS. The data are monthly from 1994-2015. The database reports on 17,534 live and defunct funds.
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Evidence for Growth of Algorithmic Trade Some suggestive evidence supports the notion that funds

are shifting away from fundamental analysis. Figure 19 plots the share of funds that report their own style to

fundamental. This share is falling, both as a share of funds and as a share of assets managed. Figure 20 presents

very different sort of evidence that points in the same direction. It shows that the fraction of google searches for the

term “fundamental analysis” has been falling, while searches for the term “order flow” have been rising.

G How To Test This Model

One of the benefits of a framework like this is that it can generate testable predictions to isolate technology’s effects.

This section lays out a new measurement strategy for using the model to infer information choices. The end of the

section describes how to use these new information measures to test this model, or other related theories.
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Figure 20: Google Trends: Fraction of Google searches involving “order flow” or “fundamental analysis.”
Source: Google trends. The data are the weekly fraction of searches involving these search terms. The series is
normalized to make the highest data point equal to 100.
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G.1 Testable Predictions

Two predictions are central to the main point of this paper. We first lay out these predictions and then describe how

one might infer information choices in order to test them.

Prediction 1 Demand Data Grew, Relative to Fundamental Data

The implied measure of Ωxt has grown at a faster rate than the measure of Ωft.

The model calibration points to the current regime as one in which demand data is rising relative to fundamental

data (Figure 1). With the implied data measures, this would be simple to test by constructing growth rates and

testing for differences in means. One could also examine whether demand data growth is speeding up, suggesting

complementarity.

Prediction 2 Price Informativeness Predicts Demand Data Usage

When prices are highly informative (large Ct/|Dt|), investors use more demand data (high Ωxt).

The key insight of the information choice part of the model is that the marginal rate of substitution of demand

for fundamental data is proportional to (Ct/Dt)
2. One could test whether, controlling for other factors, highly

informative prices coincide with, or predict, demand data increases.

G.2 Extending the Model to Facilitate Empirical Testing

The key barrier to testing the predictions above is that one cannot observe investors’ data choices. However, data

choices do show up in portfolio choice. Data is valuable because it allows investors to trade in a way that is correlated

with what they observe. They can buy when dividends are likely to be high or sell when the price appears high for

non-fundamental reasons. These strategies are not feasible – not measurable in theory parlance – without observing

the relevant data. If many investors systematically buy when payouts are going to be high, this would be conclusive

evidence of information. But not all investors can buy at one time, as doing so violates the market clearing condition.

In order to test this hypothesis, we need to consider a simple extension of the model to incorporate informed and

uninformed traders.
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Figure 21: Algorithmic Trading Growth 2001-2006. Source: Hendershott, Jones and Menkveld (2011). Their
proxy for algorithmic trading is the dollar volume of trade per electronic message. The rise is more pronounced for the
largest market cap (Q1) stocks. Q1-Q5 are the 5 quintiles of NYSE stocks, ordered by size (market capitalization).

We extend the model to include a measure λ of investors, who are endowed with capacityK to acquire information,

and the complementary measure of investors who do not acquire information but who submit demand optimally based

on their priors. Priors are common to all investors.

This extension facilitates testing because it allows informed investors’ portfolios to react more to shocks about

which they have data, and still have the market clear. That is crucial because our measures of fundamental information

and demand information are based on the covariance of an informed investor’s portfolio qt with shocks x̃t and ỹt.

This extension resolves the tension because uninformed investors can hold less of an asset that informed investors

demand more of.

The solution to this model, derived in Online Appendix C.2, is a simple variant of the original solution. We

denote all variables corresponding to uninformed investors with a prime (′). The uninformed agents’ portfolio takes

the same form as (7), except that the mean and variance are conditional on all information revealed in the last period

and today’s price.

The equilibrium price coefficients, adjusted for heterogeneous agents, are given by (127) and (128). To construct

the portfolio covariances with shocks, we take the portfolio first-order condition (7) and then substitute in the

definition of signals, equilibrium price (8), and conditional expectations and variances (32) and (33). Expressing q as

a function of the shocks xt+1, yt+1 and signal noise (ε̃fit, ε̃xit) allows us to compute

Cov(qit, xt+1) =
V ar[πpt+1 + dt+1|Iit]

λV ar[πpt+1 + dt+1|Iit] + (1− λ)V ar[πpt+1 + dt+1|Ii,t−1, pt]
τ−1
x

− rΩit
ρ(r − πG)

Ct
Dt

(1− λIt)(V ar[yt+1|Ii,t−1, pt]− V ar[yt+1|Iit]), (138)

Cov(qit, yt+1) =
r

ρ(r − πG)
(πC2

t+1τ
−1
0 + πD2

t+1τ
−1
x

+ (
r

r − πG )2V ar[yt+1|Iit])−1(1− λIt)(V ar[yt+1|Ii,t−1, pt]− V ar[yt+1|Iit]). (139)

These covariances depend on aggregate terms like Ct, Dt, as well as Ωit and conditional variances, which depend on

individual i’s data precision, Ωfit and Ωxit.
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G.3 Measuring Information

To test the model, one needs to measure the pricing coefficients in (127) and (128), as well as the covariances in

(138) and (139), and combine them, in order to back out Ωfit and Ωxit. Then, determine whether data processing

of each type is increasing or not.

To construct these measures, we first need to estimate the variance and persistence of dividends (τ−1
0 and G),

riskless rate (r), variance of demand shocks (τ−1
x ), and a sequence of pricing equation coefficients. Section 3.1 details

how we estimated these objects from publicly available financial data. Given these estimates and a decision about

whether to use a static (π = 0) or dynamic (π = 1) framework, we can construct Zt from (25), V ar[yt+1|Īt] from

(13), and V ar[yt+1|I−t , pt] = (τ0 + τx(Ct/Dt)
2)−1.

To compute the portfolio covariance with shocks requires a time series of the portfolio holdings of some informed

investors. Mutual fund or hedge fund portfolio holdings might make a good informed data set.Then for each fund,

we compute the covariance over the window of a year, or over the first and second halves of the sample. Backing out

Ωft and Ωxt then requires solving two equations, (138) and (139), for the two unknowns, Ωft and Ωxt.

With multiple assets, a simple principal components analysis would allow a researcher to construct linear com-

binations of assets that are independent. For each independent asset or risk factor, one could follow the above

procedure, to recover Ωft and Ωxt data for that asset or risk (as in Kacperczyk, Van Nieuwerburgh and Veldkamp

(2016)). One could use these measures and the model structure to answer many questions. For example, one could

infer a series for χx, the relative shadow cost of processing demand versus fundamental data. That would inform the

debate about the role of technological change in high frequency trading.

Cross-fund implied information might be interesting in relation to questions pertaining to the distribution of skill

or financial income inequality. But for questions about the long-run trend, averaging the implied precisions (Ωft,

Ωxt) of various investors is consistent with the model: with heterogeneous information quality, the aggregates in the

model are the same as they are for a representative agent who has information precision that is the average of all

investors’ precisions.

Of course, these measures depend on a model that is never entirely correct. However, the parts of the model

used to derive these measures are the most standard parts. Specifically, (138) and (139) depend on the form of the

first-order condition, which has a very standard form in portfolio problems. They also depend on the way in which the

model assumes that agents form expectations and conditional variances, using Bayes law and extracting information

from linear prices. But these measures do not depend on the information choice portion of the model. They do not

assume that agents optimally allocate data. These measures infer what data must be present in order for agents to

be making the portfolio choices that they make and for prices to reflect the information they contain. As such, they

offer meaningful ways of testing this model, as well as others.
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