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A Imputation in the CPI

For compiling a price index, accurately adjusting for quality changes poses a

challenge. Let v denote an item produced at date t and which is replaced by a

new item v + 1 at date t + 1. To integrate the corresponding item change in the

overall price index, the statistical office needs to infer a value for either price

P (v + 1, t) or price P (v, t + 1) when it has information only about P (v, t) and

P (v + 1, t + 1). According to the U.S. General Accounting Office (1999) and to

the Handbook of Methods from U.S. Bureau of Labor Statistics (2015), the BLS

largely chooses among four possible courses of action to handle these item

substitutions.1

The first course of action simply involves setting

P (v + 1, t) = P (v, t).

This no-adjustment strategy is pursued by the BLS when it deems the new and

old item as comparable, by which the BLS means that the old and new items are

essentially the same, so that no quality difference exists between the two items.

The interesting case is when the BLS judges the new and old items to be

noncomparable. Then, the BLS typically chooses between three remaining

strategies. First is direct quality adjustment. This is when the BLS can perform

hedonic regressions or has information on manufacturers’ production costs.

Direct quality adjustment involves the BLS setting

P (v + 1, t) = P (v, t) ·QA(t).

Viewed through the lens of our model, BLS quality adjustments are an estimate

of the step size of innovations.

For those noncomparable substitutions where the BLS lacks the

1We use italics to highlight terminology used by the BLS.
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information to make direct quality adjustments, it resorts to class-mean

imputation or linking. Class-mean imputation is based on the rate of price

changes experienced by other item substitutions — those which the BLS

considers comparable or can directly adjust. Linking, meanwhile, uses the

average rate of price change among items without substitution, items with

comparable substitutions, and items with noncomparable substitutions

subject to direct quality adjustments. Both imputations are usually carried out

within the item’s category or category-region.

Based on Klenow and Kryvtsov (2008), the BLS judged 52% of item

substitutions to be comparable from 1988–2004; the prices for these items

entered the CPI without adjustment. The remaining 48% (the noncomparable

substitutions) broke down as follows:2

• 31.4% direct quality adjustments

• 32.4% class-mean imputations

• 36.2% linking.

To estimate the fraction of creative destruction innovations that were

effectively subject to imputation based on all surviving items (those not

creatively destroyed), we make the following three assumptions:

1. Comparable item substitutions do not involve any innovation.

2. Direct adjustments are implemented when incumbents improve their

own products (OI).

3. Creative destruction (CD) results in imputation by class-mean or linking

in the proportions stated above.

2These figures are quite close to those in the publicly available statistics for 1997 in U.S.
General Accounting Office (1999).
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Under these assumptions, we estimate that creative destruction (CD)

innovations were treated with the equivalent of all-surviving-items imputation

90% of the time from 1988–2004. To see why, let D, C, and L denote the

numbers of item substitutions subject to direct adjustment, class-mean

imputation, and linking, respectively. Let N denote the number of comparable

item substitutions.

The number of item substitutions for which some form of imputation is

done is L + C. The imputation in the two strategies, however, is based on

different sets of products. Whereas linking imputes from all surviving products

(as in our theoretical model), class-mean imputation is based on other

(comparable and noncomparable) substitutions. We are looking for the

fraction E of the products L + C for which imputation is effectively based on

all surviving products, as opposed to just those surviving products with

incumbent own innovations (fraction 1 − E). These include all cases of linking

plus a fraction (call it x) of class-mean imputations:

E =
L+ x · C
L+ C

. (1)

How do we determine x? Class-mean imputations C use a weighted average

for inflation from item substitutions for which there was either no adjustment

(fraction N/(D + N)) or a direct adjustment (fraction D/(D + N)). Since 48%

of all substitutions over the period 1988–2004 were noncomparable (31.4% of

which were direct adjustments) and 52% of all substitutions were comparable,

we get:
D

D +N
=

0.314 · 0.48

0.314 · 0.48 + 0.52
≈ 0.225.

Using the assumptions above and results from Klenow and Kryvtsov (2008),

the fraction of incumbent own-innovations (OI) among surviving products

(those not creatively destroyed) is λi ≈ 0.60% monthly.3 If the fraction of direct

3Together with a monthly rate of product exit of 3.9% this number is obtained as (0.039·0.48·
0.314)/(0.961 + 0.039[0.52 + 0.48 · 0.314]).
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quality adjustments in class-mean imputations was also 0.60%, we would say

class-mean imputation is just like linking (imputation based on all products

not creatively destroyed). Because the fraction of direct quality adjustments in

class-mean imputations (at 22.5%) was higher than 0.60%, we infer that

class-mean imputation puts extra weight on OI:

D

D +N
= x · λi + (1− x) · 1, (2)

where x is the weight on all surviving items (only fraction λi of which were

innovations) and 1 − x is the weight on those surviving products which did

experience incumbent innovations. Rearranging (2) and using the above

percentages we get

x =
N/(D +N)

1− λi
≈ 0.775

1− 0.0060
≈ 0.780.

Thus, class-mean imputation effectively puts 78% weight on all surviving items

and 22% weight on innovating survivors. Given that class-mean imputation was

used 32% of time time and linking was used 36% of time, we estimate that the

BLS used imputation based on all surviving items the equivalent of 90% of the

time from 1988–2004. More exactly, we substitute the numerical values for x, L

and C into (1) to get

E =
L+ x · C
L+ C

≈ 0.362 · 1 + 0.324 · 0.780

0.362 + 0.324
≈ 0.896.
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B Derivations and proofs

Here we lay out the growth accounting model in whole to show the relationship

between missing growth and underlying innovations. Time is discrete and in

each period there is a representative household that supplies L units of labor.

The household’s utility is CES:

Ct =

(∫ Nt

0

[qt(j) ct(j)]
σ−1
σ dj

) σ
σ−1

(3)

where c(j) denotes quantity and q(j) the quality of variety j. N is the number of

varieties available, which can grow over time. Here σ > 1 denotes the constant

elasticity of substitution between varieties.4

The aggregate price index In the following we derive the exact welfare-based

aggregate price index. The results follow from the consumer choosing {c(j)}Nj=0

to minimize the cost of acquiring one unit of CES composite consumption given

prices {p(j)}Nj=0.

Proposition 1 (i) the demand for consumption good c(j) of quality q(j) sold at

price p(j) is given by

ct(j) = qt(j)
σ−1
[
Pt
pt(j)

]σ
Ct, ∀j. (4)

(ii) the aggregate price index is given by

Pt =

(∫ Nt

0

[
pt(j)

qt(j)

]1−σ
dj

) 1
1−σ

. (5)

Proof. Let M = Π + WL denote the household’s nominal spending/income.

The first-order conditions when maximizing (3) subject to the (budget)

4In Section F, we use the Cobb-Douglas case with σ → 1 to highlight channels of missing
growth.
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constraint M =
N∫
0

c(j)p(j)dj, can be written as

ξ p(j) = q(j)
σ−1
σ c(j)−

1
σ

(∫ N

0

[q(j′)c(j′)]
σ−1
σ d(j′)

) 1
σ−1

, ∀j ∈ [0, N ],

where ξ is the Lagrange multiplier attached to the budget constraint. Integrating

both sides of this equation over all j’s and combining it with (3) yields

ξ =
C

M
=

1

P
.

Together with the above first-order conditions, this yields (4). Next, to derive

expression (5) for P , note that (4) implies that

p(j)c(j) =
M

P
q(j)σ−1P σp(j)1−σ.

Integrating both side of this equation over all j’s then immediately yields (5).

This establishes the proposition.

We assume monopolistic competition across varieties so that the price of

each consumer variety is5

p(j) =
σ

σ − 1
·W, (6)

where W is the nominal wage in the competitive labor market. Substituting (6)

into (5) links the aggregate price index to the quality of each variety

Pt = µWt

(∫ Nt

0

qt(j)
σ−1dj

) 1
1−σ

. (7)

5We assume Bertrand competition within varieties. But we also assume an infinitesimal
overhead cost of production that must be expended before choosing prices and output. The
overhead cost allows the highest quality producer to charge the monopoly markup σ

σ−1 , as
the next lowest quality competitor will be deterred by zero ex post profits under Bertrand
competition. Without this assumption, firms would engage in limit pricing and markups would
be heterogeneous across varieties.
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Innovation process At each point in time, and for each variety j there is a

common exogenous probability of creative destruction λd ∈ [0, 1). I.e., with

probability λd the incumbent firm of input j is replaced by a new producer. We

assume that the new producer (who may be an entrant or an incumbent firm)

improves upon the previous producer’s quality by a factor γd > 1. The previous

producer cannot profitably produce due to limit pricing by the new producer.

If j is an existing variety where quality is improved upon by a new producer, we

have

qt+1(j) = γd qt(j).

We refer to this innovation process as creative destruction.

In addition, for products j where the incumbent producer is not eclipsed by

creative destruction, there is each period an exogenous arrival rate λi ∈ [0, 1) of

an innovation that improves their by factor γi > 1. Hence, if j is a variety where

quality is improved upon by the incumbent producer, we have

qt(j) = γiqt−1(j).

We call this incumbent own innovation. The main difference from creative

destruction is that the producer of j changes with creative destruction,

whereas it stays the same with incumbent own innovation. The arrival rates

and step sizes of creative destruction and incumbent own innovation are

constant over time and across varieties.

Finally, each period t, a flow of λnNt new product varieties ι ∈ (Nt, Nt+1] are

created and available to final goods producers from t+1 onward. Consequently,

the law of motion for the number of varieties is

Nt = (1 + λn)Nt−1.

We allow the (relative) quality of new product varieties to be higher than the

“average” quality of pre-existing varieties by a factor γn. More formally, we
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assume that a firm that introduces in period t a new variety ι starts with a

quality that equals γn > 0 times the “average” quality of pre-existing varieties

j ∈ [0, Nt−1] in period t− 1, that is:

qt(ι) = γn

(
1

Nt−1

∫ Nt−1

0

qt−1(j)
σ−1dj

) 1
σ−1

, ∀ι ∈ (Nt−1, Nt]. (8)

The true inflation rate Using (7), we can compute the true inflation rate as a

function of the arrival rates and the step sizes of the various types of

innovations. We obtain the following proposition:

Proposition 2 The true gross inflation rate in the economy is given by

Pt+1

Pt
=
Wt+1

Wt

[
1 + λd

(
γσ−1d − 1

)
+ (1− λd)λi

(
γσ−1i − 1

)
+ λnγ

σ−1
n

] 1
1−σ . (9)

Proof. Taking gross growth factors of both sides of (7) gives

Pt+1

Pt
=
Wt+1

Wt

(∫ Nt

0

qt(j
′)σ−1dj′

) 1
σ−1
(∫ Nt+1

0

qt+1(j)
σ−1dj

) 1
1−σ

. (10)

Next, note that the term,
∫ Nt+1

0
qt+1(j)

σ−1dj, can be written as

∫ Nt+1

0

qt+1(j)
σ−1dj =

∫ Nt

0

qt+1(j)
σ−1dj +

∫ Nt+1

Nt

qt+1(ι)
σ−1dι. (11)

Furthermore, with (8) and Nt+1−Nt
Nt

= λn, we obtain

∫ Nt+1

Nt

qt+1(ι)
σ−1dι = λnγ

σ−1
n

∫ Nt

0

qt(j)
σ−1dj. (12)

The first term on the right-hand side of (11),
∫ Nt

0

qt+1(j)
σ−1dj, can be rewritten

as

Nt∫
0

qt+1(j)
σ−1dj = γσ−1d

∫
ι∈Dt

qt(ι)
σ−1dι+ γσ−1i

∫
j′∈Ot

qt(j
′)σ−1dj′ +

∫
ι′∈Ñt

qt(ι
′)σ−1dι′. (13)
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where Dt and Ot is the set of products with a successful creative destruction

or incumbent own innovation and Ñt = [0, Nt] \ {Dt ∪Ot} is the set of surviving

incumbents that do not improve the quality of their product between t and t+1.

We also know that |Dt| = λdNt and |Ot| = (1 − λd)λiNt. Then, because the

arrival rate of an innovation is independent of qt(j) (and there is a continuum

of varieties) the distribution of productivity of the varieties with and without

innovation coincide and then by the law of large numbers we have

∫
ι∈Dt

qt(ι)
σ−1dι = λd

∫ Nt

0

qt(j)
σ−1dj,∫

j′∈Ot
qt(j

′)σ−1dj′ = (1− λd)λi
∫ Nt

0

qt(j)
σ−1dj,∫

ι′∈Ñt
qt(ι

′)σ−1dι′ = [1− λd − (1− λd)λi]
∫ Nt

0

qt(j)
σ−1dj.

This in turn implies that (13) can be expressed as

Nt∫
0

qt+1(j)
σ−1dj

Nt∫
0

qt(j)σ−1dj

= 1 + λd
(
γσ−1d − 1

)
+ (1− λd)λi

(
γσ−1i − 1

)
. (14)

Putting equations (10), (12), and (14) together establishes the proposition.

Proposition 2 shows how the arrival rates and step sizes of the different type

of innovation affect the inflation rate (for a given change in wages). The term

λnγ
σ−1
n captures the effect of variety expansion on inflation, and the inflation

rate is indeed falling in λn and γn. The term (1 − λd)λi
(
γσ−1i − 1

)
summarizes

the effect of incumbent own innovation on price growth. The term λd
(
γσ−1d − 1

)
captures the effect from creative destruction on the inflation rate.

Imputation and measured inflation

Assumption 1 In the presence of product entry and exit the statistical office

resorts to imputation, i.e., the set of products with a surviving incumbent
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producer is assumed to be representative and the economy-wide inflation rate is

imputed from this subset of products.

Products of continuing producers can be either subject to incumbent own

innovation or no innovation at all. We denote the statistical office’s estimates

for the frequency and step size of quality-improving innovations on surviving

products as λ̂i and γ̂i.

Proposition 3 Under Assumption 1, the measured inflation rate is given by(
P̂t+1

Pt

)
=
Wt+1

Wt

[
1 + λ̂i

(
γ̂i
σ−1 − 1

)] 1
1−σ

. (15)

Proof. Under Assumption 1 we have(
P̂t+1

Pt

)
=
Wt+1

Wt

(∫
It
qt(j

′)σ−1dj′
) 1

σ−1
(∫
It
qt+1(j)

σ−1dj

) 1
1−σ

, (16)

where It = [0, Nt] \Dt is the set of surviving products with the same producer in

period t and t+1. Note that a fraction λi of these surviving products experiences

incumbent own innovation (and the quality improves by a factor of γi) whereas

for the remaining fraction, 1 − λi, quality remains unchanged. Hence, we have∫
It qt+1(j)

σ−1dj =
(∫
It qt(j

′)σ−1dj′
) [

1− λi + λiγ
σ−1
i

]
. Using this equation in (16)

and replacing γi and λi by their estimates yields (15).

Henceforth we assume that the statistical office perfectly observes the

frequency and step size of incumbent own innovations, i.e., we have λ̂i = λi

and γ̂i = γi. We make this assumption to isolate missing growth due to

imputation. In Section D, we show how missing growth would change if the

quality improvement of incumbents is not perfectly measured.

Missing growth from imputation We close the economy with market

clearing condition y(j) = c(j) for all j and
∫
j
l(j)dj = L. This implies that

aggregate nominal output is equal to consumption expenditure PY = PC.
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Using the welfare based index, aggregate real output growth in logs is then

log
Yt
Yt−1

= log
PtYt

Pt−1Yt−1
− πt.

Assuming the statistical agencies measure nominal output accurately and

use the measured inflation (15) to deflate, measured real output growth is then

log
Ŷt
Yt−1

= log
PtYt

Pt−1Yt−1
− π̂t.

Combining the above two equation yields missing growth as the difference

between measured and true inflation rate: π̂t − πt. Substituting in (9) and (15)

allows us to express missing growth as

MGt =
log
[
1 + λd

(
γσ−1d − 1

)
+ (1− λd)λi

(
γσ−1i − 1

)
+ λnγ

σ−1
n

]
− log

(
1 + λi

(
γσ−1i − 1

))
σ − 1

.
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C Missing growth with capital

The purpose of this section of the Online Appendix is to extend our “missing

growth” framework to a production technology with capital as an input, and to

see how this affects estimated missing growth as a fraction of “true” growth.

C.1 A simple Cobb-Douglas technology with capital

Instead of the linear technology in the main text, we assume the following Cobb-

Douglas production technology for each variety

y(j) = (k(j)/α)α (l(j)/(1− α))1−α .

It is straightforward to see how this generalization affects the main equations

in the paper. IfR denotes the rental rate of capital, then the true aggregate price

index becomes

P = p

(∫ N

0

q(j)σ−1dj

) 1
1−σ

,

with just p = p(j) = µRαW 1−α.

Again we assume that the statistical office perfectly observes the nominal

price growth pt+1(j)
pt(j)

of the surviving incumbent products. Since the

Cobb-Douglas production technologies are identical across all varieties the

capital-labor ratio equalizes across all firms and we have in equilibrium

y(j) = (α)−α (1− α)−(1−α)
(
K

L

)α
l(j),

where K and L denote the aggregate capital and labor stocks in the economy.

We assume that labor supply is constant over time and we assume a closed

economy where profits, Π, labor earnings and capital income are spent on the
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final output good such that

P · Y = W · L+R ·K + Π.

Then we can derive the equilibrium output of variety j which yields

yt(j) = (α)−α (1− α)−(1−α)Kα
t L

1−αqt(j)
σ−1
(∫ Nt

0

qt(j
′σ−1dj′

)−1
. (17)

The aggregate production function can now be written in reduced form as

Yt = (α)−α (1− α)−(1−α)QtK
α
t L

1−α,

where Qt ≡
(∫ Nt

0
qt(j)

σ−1dj
) 1
σ−1

. The term Qt summarizes how quality/variety

gains affect total productivity for given capital stock Kt.

Allowing for capital does not change anything in the model-based market

share approach since we still have

SIt,t+1

SIt,t
=

(
Pt+1

Pt

)σ−1(
P̂t+1

Pt

)−(σ−1)
.

This equation can (still) be used to estimate missing growth as in the main

text.6 Hence the missing growth figures we obtained in Section 3.3 of the main

text are unaffected when we introduce capital as specified above. The only

important thing to note here is that this missing growth is “missing growth in

the Q term” since under the assumption that nominal price growth is perfectly

well observed by the statistical office we have:

MGt+1 =

(
Pt
Pt+1

)(
P̂t+1

Pt

)
=

(
Qt+1

Qt

)(
Q̂t

Qt+1

)
.

What may (potentially) change when introducing capital is how this

6This also easily generalizes to any constant return to scale production function.
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missing growth should be compared to measured productivity growth. This

issue is discussed in the remaining sections of this Online Appendix.

C.2 Finding “true” growth

So far we saw that our market share analysis in the main text remains valid

when introducing capital, in the sense that it allows us to compute the bias in
Qt+1

Qt
. We now want to combine this missing growth estimate with information

on measured growth to calculate “true” growth. The main question then is:

what is the “right” estimate for measured growth
(
Q̂t+1

Qt

)
? Once we have found

this “right” estimate of measured growth we can simply calculate true growth

as (
Qt+1

Qt

)
= MG ·

(
Q̂t+1

Qt

)
, (18)

where MG is 1.0056 for the whole period in the baseline specification.

A potentially difficulty here is that the capital stock, Kt, may itself grow over

time.7 Suppose Kt is growing at a constant rate over time, then part of the

aggregate output growth Yt+1

Yt
is generated by capital deepening. Relatedly, if

the capital stock grows over time the question arises as to whether this capital

growth is perfectly measured or not. Finally, the long-run growth path of the

capital stock will also matter and consequently we need to specify the saving

and investment behaviors which underlie this growth of capital stock, and also

need to take a stand as to whether there is investment specific technical

change etc. The answer to all these questions have implication for the

interpretation of the measured TFP growth and how it relates to Q̂t+1

Qt
.

We first assume that the long-run growth rate of Kt results from a constant

(exogenous) saving rate and abstract from investment specific technical

change (see Section C.2.1). Furthermore we assume that all growth due to

7If instead Kt was like “land”, i.e., constant over time then the measured
(
Q̂t+1

Qt

)
would be

equal to the measured Hicks-neutral TFP growth.



16

capital deepening is perfectly well observed and measured by the statistical

office (see Section C.2.2) . Then, in Section C.2.3, we consider two alternative

assumptions as to which part of physical capital growth is measured and

analyze how these affect true growth estimates.

C.2.1 Capital accumulation

We assume that the final output good can be either consumed or invested.

Furthermore we assume a constant exogenous saving/investment rate in the

economy (we thus abstract from intertemporal optimization), i.e.,

Kt+1 = Kt(1− δ) + sYt, (19)

where s is the constant savings rate and δ is the depreciation rate of capital.

Suppose that Qt+1/Qt = g is constant over time. This in turn implies that in

the long run the capital-output ratio will stabilize at

K

Y
=

s

g
1

1−α − 1 + δ
. (20)

Along this balanced growth path investment, capital, and wages all grow at the

same constant gross rate g
1

1−α .

C.2.2 Measured output growth

Under the above assumption for capital accumulation, in the long run, true

output growth is given by

Yt+1

Yt
=
Qt+1

Qt

(
Qt+1

Qt

) α
1−α

. (21)

Note that the first term on the right-hand side captures direct quality/variety

gains, whereas the second term captures output growth due to capital

deepening. In the following we assume that the second term is perfectly well
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measured whereas the first term is mismeasured as specified in our theory.8

Under this assumption, measured output growth is equal to

Ŷt+1

Yt
=
Q̂t+1

Qt

(
Qt+1

Qt

) α
1−α

. (22)

C.2.3 Two alternative approaches on measured growth in capital stock

Next, we need to take a stand on how to measure the growth rate of capital stock.

For given measured capital growth, the statistical office can compute the rate of

Hicks-neutral TFP growth implicitly through the following equation:

Q̂t+1

Qt

(
Qt+1

Qt

) α
1−α

=

(
K̂t+1

Kt

)α ̂TFPt+1

TFPt
. (23)

First “macro” approach Here we assume that the bias in the measure of

capital stock is the same as that for measuring real output.9 Then the measured

growth rate of capital stock in the long run is equal to

K̂t+1

Kt

=
Ŷt+1

Yt
=
Q̂t+1

Qt

(
Qt+1

Qt

) α
1−α

. (24)

Substituting this expression for measured capital growth in (23) in turn

yields
̂TFPt+1

TFPt
=

(
Q̂t+1

Qt

)1−α(
Qt+1

Qt

)α
. (25)

8This assumption rests on the view that the part of growth driven by capital deepening
materializes—for given quality and variety—in increasing y(j) (see (17)) which the statistical
office should be able to capture (otherwise we would have still another source of missing
growth).

9This is a reasonable assumption to the extent that: (i) the same final good serves both as
consumption good and as investment good; (ii) if the long-run growth rate ofQt is constant, i.e.,
Qt+1/Qt = g, then the bias in measuring capital stock growth (when using a perpetual inventory
method) is in the long run identical to the bias in measuring real output growth.
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Substituting this into (18) then leads to:

(
Qt+1

Qt

) 1
1−α

= MGt+1 ·

(
̂TFPt+1

TFPt

) 1
1−α

. (26)

In other words, one should add MG to measured growth in TFP (in labor

augmenting units) to get total “true” quality/variety growth in labor

augmenting units. This is exactly what we are doing in our core analysis in the

main text. Thus under the assumptions underlying this first approach the

whole analysis and quantification of missing growth in our core analysis

carries over to the extended model with capital. Let us repeat what underlies

this approach: first, the focus is on the long-run when the capital-output ratio

stabilizes at its balanced growth level; second, investment specific technical

change is ruled out, so that the bias in measuring the growth in capital stock is

the same as that in measuring the growth in real output.10

Second “micro” approach Here we assume that the growth in capital stock is

perfectly measured by the statistical office, i.e.,

K̂t+1

Kt

=

(
Qt+1

Qt

) 1
1−α

. (28)

Plugging this expression in (23) gives

̂TFPt+1

TFPt
=
Q̂t+1

Qt

, (29)

10To get some intuition, note that we can also write the production function as

Yt = (α)
−α

(1− α)−(1−α)
Q

1
1−α
t

(
Kt

Yt

) α
1−α

L. (27)

Since under the assumptions above the growth rate in the capital-output ratio, Kt
Yt

, (which is
zero in the long run) is properly measured, we see that missing growth automatically obtains
a labor-augmenting interpretation and should consequently be compared to TFP growth
estimates expressed in labor augmenting terms.
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so that
Qt+1

Qt

= MGt+1 ·
̂TFPt+1

TFPt
. (30)

This in turn implies that our missing growth estimate should be added to

measured TFP growth in Hick-neutral terms to obtain Hicks-neutral “true” TFP

growth. Assuming α = 1/3, this approach would increase missing growth as a

fraction of true growth from 22% (= 0.54/(1.87 + 0.54)) see Table 3 in the main

text) to 30% (= 0.54/(1.87 · 2/3 + 0.54))11.

C.3 Wrapping-up

In this Appendix we argued that our core analysis can easily be extended to

production technologies involving physical capital. Under our first (macro)

approach the missing growth estimates remain exactly the same as in our core

analysis based on the model without capital. And moving to our second

(micro) approach only increases our missing growth estimates. In that sense,

the macro approach can be viewed as being more conservative.

11We see this approach as being more “micro” for the following reason. Suppose we only have
data about the only one industry. Then we could use our market share approach together with
data about the revenue shares of different products to estimate missing output growth in this
particular industry. It would then be reasonable to compare this number to the Hicks-neutral
TFP growth in this industry, within the implicit assumption that the statistical office perfectly
measures the growth in capital stock in the industry when calculating TFP growth. Next, one
could sum-up “missing growth” and measured Hicks-neutral TFP growth to compute “true” TFP
growth. This true TFP growth would of course itself be mismeasured if there is mismeasurement
in the growth of capital stock: this would add yet another source of missing growth.
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D Other robustness checks

The gains from variety Our theory does not impose much discipline in terms

of how the gains from specialization/variety are calibrated. Our baseline

specification makes the standard assumption connecting the gains from

specialization to the elasticity of substitution. It assumes the increasing the

available product variety by one percent increases final output by 1/(σ − 1)

percent. This only affects missing growth from variety expansion. In our

second quantification approach, in the next section, we show that missing

growth mainly originates from creative destruction as opposed to variety

expansion. Consequently, we expect this assumption not to be as critical as it

first seems.

Bias in measuring incumbent own innovation In the main text we assume

that quality improvements from incumbent own innovation are correctly

measured, i.e., that γ̂i = γi and λ̂i = λi. Without this assumption, missing

growth in our model is given by

MGt+1 =
1

σ − 1

[
log

(
1 + λi(γ

σ−1
i − 1)

1 + λ̂i(γ̂
σ−1
i − 1)

)
+ log

(
SIt,t
SIt,t+1

)]
. (31)

Understating incumbent own innovation adds log-linearly to missing growth,

contributing directly and making the bias from imputation larger.

Imports and outsourcing Our model did not taken into account the

possibility that plants may outsource the production of some items to other

plants. Nor did it consider the role of imports as an additional source of new

products. On outsourcing, our answer is twofold: (i) if the outsourcing is to

another incumbent plant or leads an incumbent plant to shut down, then then

outsourcing will not affect our analysis and results; (ii) if outsourcing is to a

new plant then it can be viewed as an instance of creative destruction since the
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reason for such outsourcing is presumably that the new plant produces at

lower (quality-adjusted) price; it will be treated as such in our market share

approach.

Outsourcing may indeed create a bias in our missing growth estimates if

incumbent plants survive but outsource overseas. Our LBD dataset only covers

domestic employment.12

Finally, imports are known to affect manufacturing the most, as

manufacturing goods are the most tradable. Very little of our missing growth,

however, comes from manufacturing (see Table 1 in the main text). This

suggests that overall missing growth is not affected much by what happens in

import-competing sectors.

12Domestic M&A should not affect missing growth in the same way because we are looking at
plants, not firms. If firm A acquires firm B and all firm B plants remain in operation, then these
plants will be counted as surviving plants. If some of firm B’s plants close as a result of the M&A,
then we rightly count them as exiting. One might want to compute the fraction of aggregate
missing growth associated with M&A, but we leave that for future research.
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E Implementation of GHK

We made the following changes to the GHK algorithm (Table E displays the a

mapping between the notation used in GHK and our paper).

1. The original GHK methodology assumes that the statistical office

measures growth perfectly. Hence, the algorithm chooses parameters

such that true growth, given by equation (A1), matches measured growth

in the data. We modify the algorithm to allow measured and true growth

to differ. Instead of matching to true growth, we choose parameters so

that measured growth in (A2) matches the observed growth rates: 1.66%

for 1983–1993, 2.29% for 1993–2003 and 1.32% for 2003–2013.

2. We impose an additional restriction that comes from the CPI micro data.

We restrict the sum of the (unconditional) arrival rates of OI and CD to

equal the cumulative rate of non-comparable substitutions from the CPI

over 5 years. This substitution rate averages 3.75% per 2 months in the

CPI.13 Using the notation in our market share model, we impose that λi(1−
λe,d − λi,d) + λi,d + λe,d = 0.68.14

3. Since the original GHK code estimates 5-year arrival rates and step sizes,

whereas BLS substitutions and imputations happen at a monthly or

bimonthly frequency (depending on the item), we convert 5-year arrival

rates into bimonthly arrival rates by imposing (1 − X(b))30 = 1 − X(5),

where X(b) and X(5) denote the bimonthly and five-year arrival rates,

respectively. We then scale the bimonthly OI and CD arrival rates in equal

proportion so that their sum equals the bimonthly CPI non-comparable

substitution rate of 3.75%. Finally, we adjust the step sizes of NV and CD

so that: (i) annualized bimonthly measured growth equals the observed

13Klenow and Kryvtsov (2008).
140.68 = 1− (1− 0.0375)30. 30 compounds the bi-monthly arrival rate to 60 months (5 years).
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annual measured growth; and (ii) the relative contributions of CD and NV

to growth stay the same as those estimated using 5-year parameters.

Table 1: GHK NOTATIONS VS. OUR NOTATION

Parameter Our model GHK equivalent

Share of non-obsolete products
with OI innovation

λi(1− λd) λi
(1−δo)

Share of non-obsolete products
having incumbent CD

0 δi(1−λi)
(1−δo)

Share of non-obsolete products
having entrant CD

λd
δe(1−λi)
(1−δo)

Measure of incumbent or entrant
NV in t + 1 relative to the number
of products in t

λn κi + κe + δo

Share of obsolescence 0 δo

Net expected step size of CD
innovation

γσ−1d − 1 1−δo
1−δoψ (E[sσ−1q ]− 1)

Net expected step size of OI
innovation

γσ−1i − 1 1−δo
1−δoψ (E[sσ−1q ]− 1)

Quality of NV innovation relative
to average productivity last
period

γn sκ
1

σ−1

Average quality of product
becoming obsolete in t + 1
relative to average quality in t

n/a ψ

Elasticity of substitution σ σ
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F An illustrative example: the Cobb-Douglas case

Even though this may not be the most realistic case, we use the special case

where the consumption function is Cobb-Douglas to illustrate how creative

destruction can lead to missing growth. So let us assume

C = N exp

[
1

N

∫ N

0

log [q(j)c(j)] dj

]
. (32)

We assume the number of varieties N is fixed here because there is no love-of-

variety under Cobb-Douglas aggregation.

Aggregate price index Demand for product c(j) is

c(j) =
PC

Np(j)
.

P is the price index:

P = exp

(
1

N

∫ N

0

log [p(j)/q(j)] dj

)
.

Under the optimal price setting rule we get

P = µW exp

(
− 1

N

∫ N

0

log (q(j)) dj

)
.

The true inflation rate can then be expressed as

Pt+1

Pt
=
Wt+1

Wt

γ
−(1−λd)λi
i γ−λdd .

Measured inflation and missing growth Under Assumption 1 measured

inflation becomes (
P̂t+1

Pt

)
=
Wt+1

Wt

γ−λii .
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Consequently, we obtain for missing growth

MG = λd · (log γd − λi log γi). (33)

This missing growth from creative destruction can be decomposed as

λd (log γd − λi log γi) = λd(1− λi) log γi + λd (log γd − log γi) .

The first term in this decomposition captures the fact that not all incumbents

innovate, whereas the second term captures the step size differential between

creative destruction and incumbent own innovation.

Numerical example The Cobb-Douglas case with the following calibration

replicates the motivating example of the introduction. Let us assume: (i) no

variety expansion; (ii) the same step size for incumbent own innovation (OI)

and for creative destruction (CD), i.e., γi = γd = γ, and (iii) annualized arrival

rates λi and λd of OI and CD by new entrants that are both equal to 10%.

Finally, assume that the common step size is γi = 1.1, or 10%. Then measured

annual real output growth is equal to 1.1% (λi log γi = .011). From (33), the

annual rate of missing growth from creative destruction is equal to

MG = 10% · (1− 10%) · 10% = 0.9%.

True growth is 2% in this example. Hence, roughly half of the growth is missed

due to imputation. Although this is just an illustrative exercise, we will see in the

next sections that this simple example is not far off from what we obtain using

firm-level data on employment dynamics to infer the step sizes and frequencies

of each type of innovations.
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G Varying markups

Our baseline analysis carries over to the case where markups are heterogeneous

but uncorrelated with the age of the firm or with whether or not there was a

successful innovation (own incumbent or new entrant innovation).

Now, suppose that: (i) the markups of unchanged products grow at gross rate

g; (ii) the markups of new varieties are equal to gn times the “average markup”

in the economy in the last period; (iii) markups grow at gross rate gi if there is an

incumbent own innovation; (iv) markups after a successful creative destruction

innovation is gd times the markup of the eclipsed product. This amounts to

replacing (8) by:15

qt+1(j)

µt+1(j)
=
γn
gn

(
1

Nt

∫ Nt

0

(
qt(i)

µt(i)

)σ−1
di

) 1
σ−1

, ∀j ∈ (Nt, Nt+1].

Under the above assumptions the market share approach can still provide a

precise estimate of missing growth, as long as: (a) we still make the assumption

that the statistical office is measuring changes in markups of surviving product

properly since changes in nominal prices are observed; (b) the market share

relates to the quality-adjusted price in the same way for young and old firms,

but recall that we are focusing our market share analysis on plants that have

appeared in the data set for at least five years.

However, allowing for changing markups affects the expression for missing

growth, which now becomes:

MG =
1

σ − 1
log

1 +

λd

[(
γd
gd

)σ−1

− g1−σ − λi
((

γi
gi

)σ−1

− g1−σ
)]

+ λn

(
γn
gn

)σ−1

g1−σ + λi

((
γi
gi

)σ−1

− g1−σ
)

 .

15Note that this covers several possible theories governing the dynamics of markups. In
particular it covers the case where firms face a competitive fringe from the producer at the next
lower quality rung, in which gi > 1 and g < 1. It also covers the case where newly born plants
start with a low markup and markups just grow over the live-cycle of a product, in which gd < 1,
gn < 1 and g > 1.
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In particular, allowing for changing markups introduces an additional

source of missing growth having to do with the fact that the subsample of

(surviving) products are not representative of all firms in their markup

dynamics. For example, even if λi = 1 and γi = γd, there can be missing growth

from creative destruction if the markup of creatively destroyed goods grows

slower than the markup of products with incumbent own innovation, i.e., if

gd < gi.

In the market share section of our paper. The second and third columns

report missing growth in manufacturing and non-manufacturing, respectively.

Missing growth in non-manufacturing is about 0.11 percentage points larger

than our baseline results but also appears to be constant over time. Missing

growth in manufacturing, however, is only 0.04 percentage points on average

between 1983–2013.



28

References

Klenow, Peter J. and Oleksiy Kryvtsov. 2008. “State-dependent or time-

dependent pricing: Does it matter for recent US inflation?” Quarterly Journal

of Economics, 123(3): 863–904.

U.S. Bureau of Labor Statistics. 2015. “The Consumer Price Index.” In

Handbook of Methods. Chapter 17. Washington D.C.:U.S. Department of

Labor.

U.S. General Accounting Office. 1999. “Consumer Price Index: Impact of

Commodity Analysts’ Decisionmaking Needs to be Assessed.” GAO/GDD-99-

84.


