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A Proofs for Section 1

A.1 Derivation of equation (4)

The total number of votes for party 1 is a random variable equal to

Ṽ 1 = E[σ1q̃1(ω)B(u(p1, ω)− u(p2, ω) | ω)] =: σ1B̃1(p1, p2). (21)

Analogously, the total number of votes for party 2 equals

Ṽ 2 = E[σ2q̃2(ω)(1−B(u(p1, ω)− u(p2, ω) | ω))] =: σ2B̃2(p1, p2). (22)

Given two party proposals p1 and p2, and given the turnout for party 2, σ2, the best

response problem of the group-rule-utilitarian supporters of party 1 is to choose σ1

so as to maximize the expected value of the following expression

I{Ṽ 1 ≥ Ṽ 2}E [B(u(p1, ω)− u(p2, ω) | ω) u(p1, ω)]

+
(
1− I{Ṽ 1 ≥ Ṽ 2}

)
×

E
[
B(u(p1, ω)− u(p2, ω) | ω) u(p2, ω) +

� u(p1,ω)−u(p2,ω)

−∞ ε b(ε | ω)dε
]

− k(σ1) E[q̃1(ω)B(u(p1, ω)− u(p2, ω) | ω)].

In this expression, I is an indicator function and the product

I{Ṽ 1 ≥ Ṽ 2}E
[
B(u(p1, ω)− u(p2, ω) | ω) u(p1, ω)

]
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is utilitarian welfare realized by the supporters of party 1 in the event that their party

wins. Analogously,

(1− I {·})E

B(u(p1, ω)− u(p2, ω) | ω) u(p2, ω) +
u(p1,ω)−u(p2,ω)�

−∞

ε b(ε | ω)dε


is utilitarian welfare realized by the supporters of party 1 in the event that party 2

wins, where the integral term in this expression is the sum of the gains (or losses)

that the supporters of party 1 realize because of their idiosyncratic party preference.

Upon exploiting the linearity of the expectations operator and dropping terms

that do not depend on σ1, we can equivalently write this optimization problem as

follows: choose σ1 ∈ [0, 1] to maximize

π1(p1, p2, σ1, σ2)W 1(p1, p2)− k(σ1)B1(p1, p2), (23)

where π1(p1, p2, σ1, σ2) is the probability that Ṽ 1 ≥ Ṽ 2, W 1(p1, p2) is de�ned by (2)

and captures the welfare gain that is realized by the supporters of party 1 if their

party wins, and B1(p1, p2) is de�ned by (1) and captures the expected value of the

mass of the ethical supporters of party 1.

A.2 Proof of Proposition 1

Proof of Footnote 14. The arguments in the derivation of equation (5) imply

that, for given p1 and p2, party 1's probability of winning the election is given by

π1(p1, p2, σ1, σ2) = Fη

(
σ1(p1, p2)

σ2(p1, p2)

B1(p1, p2)

B2(p1, p2)

)
.

Given σ2, the best response problem of party 1's ethical voters in (4) can therefore

be written as follows: choose σ1 to maximize

Fη

(
σ1

σ2

B1(p1, p2)

B2(p1, p2)

)
W 1(p1, p2)− κ(σ1)B1(p1, p2)

If the Inada conditions on the cost function hold, the derivative of the objective with

respect to σ is strictly positive at σ1 = 0 and strictly negative at σ1 = 1. Thus,

the best response is interior and characterized by a �rst-order condition. Given the
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concavity of Fη and the convexity of the cost function the solution is moreover unique.

The same argument applies to the best response problem of party 2.

Equilibrium relative turnout. Using equations (21) and (22), the probability

that party 1 wins the election is equal to the probability of the event

σ1

σ2

B1(p1, p2)

B2(p1, p2)
≥ η2

η1
.

Denote by Fη the c.d.f. and by fη the density of the random variable η2

η1
. Thus,

π1(p1, p2, σ1, σ2) = Fη

(
σ1

σ2

B1(p1, p2)

B2(p1, p2)

)
. (24)

We take the party platforms p1 and p2 as given and characterize equilibrium turnout.

We say that the turnout game has an interior equilibrium if 0 < σ1∗(p1, p2) < 1

and 0 < σ2∗(p1, p2) < 1. An interior equilibrium is characterized by the �rst-order

conditions

π1
σ1(·)W 1(p1, p2)− χ

λ

(
σ1
)1/λ−1

B1(p1, p2) = 0, (25)

and

− π1
σ2(·)W 2(p1, p2)− χ

λ

(
σ2
)1/λ−1

B2(p1, p2) = 0. (26)

Using equation (24), these �rst order conditions can also be written as

fη

(
σ1

σ2

B1(p1, p2)

B2(p1, p2)

)
σ1

σ2

B1(p1, p2)

B2(p1, p2)

1

σ1
W 1(p1, p2)− χ

λ

(
σ1
)1/λ−1

B1(p1, p2) = 0, (27)

and

fη

(
σ1

σ2

B1(p1, p2)

B2(p1, p2)

)
σ1

σ2

B1(p1, p2)

B2(p1, p2)

1

σ2
W 2(p1, p2)− χ

λ

(
σ2
)1/λ−1

B2(p1, p2) = 0. (28)

Equations (27) and (28) allow us to pin down the equilibrium value of relative turnout,

σ1∗(p1, p2)

σ2∗(p1, p2)
=

[
W 1(p1, p2) /B1(p1, p2)

W 2(p1, p2) /B2(p1, p2)

]λ
. (29)

The left-hand side of this equation is a measure of party 1's turnout advantage: the

larger σ∗
1/σ

∗
2, the larger the number of ethical supporters who turn out to vote for
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party 1, relative to the number of supporters who turn out to vote for party 2. The

right-hand side is a ratio of the welfare gains per capita, W j/Bj, that the supporters

of both parties can realize in case of winning the election. Thus, according to equation

(29), the relative turnout for party 1 is increasing in the relative amounts that its

supporters and those of the competing party have at stake.

Derivation of equation (5). Under Assumption 1,

B̃1(p1, p2) = η1B1(p1, p2) and B̃2(p1, p2) = η2B2(p1, p2).

The probability that party 1 wins the election is therefore equal to the probability of

the event

σ1η1B1(p1, p2) ≥ σ2η2B2(p1, p2)

or, equivalently,
σ1

σ2

B1(p1, p2)

B2(p1, p2)
≥ η2

η1
.

Let Fη be the c.d.f. of the random variable η2/η1. Then this probability can be written

as

Π1(p1, p2) = Fη

(
σ1(p1, p2)

σ2(p1, p2)

B1(p1, p2)

B2(p1, p2)

)
.

Thus, the probability that party 1 wins the election is a non-decreasing function of

σ1(p1, p2)

σ2(p1, p2)

B1(p1, p2)

B2(p1, p2)
.

Therefore, party 1's objective is to maximize this expression and party 2's objective

is to minimize it.

Proof of Proposition 1. Party 1 seeks to maximize

σ1(p1, p2)

σ2(p1, p2)

B1(p1, p2)

B2(p1, p2)
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and party 2 seeks so minimize this term. Using equation (29) to substitute for σ1(p1,p2)
σ2(p1,p2)

yields [
W 1(p1, p2)

W 2(p1, p2)

]λ [
B1(p1, p2)

B2(p1, p2)

]1−λ

as the objective. We may as well assume that party 1 seeks to maximize a monotone

transformation of this expression, whereas party 2 seeks to minimize it. Using the

logarithm function as the monotone transformation yields Proposition 1.

A.3 Proof of Proposition 2

We �rst prove Proposition 2 under the assumption that P is a one-dimensional policy

space. We then generalize the argument to higher dimensional policy spaces. We also

use the following shorthands Q := E[q̄(ω)], HB(x) = ln( x
Q−x

), HS(x) = lnx, Finally,

we denote the derivatives of the functions HB and HS by hb and hs, respectively.

A.3.1 One-dimensional policy space

Best responses. Suppose that P = [p, p] ⊂ R. Fix p2. The derivative of Π
1(p1, p2)

with respect to the �rst argument, henceforth denoted by Π1
1, equals

Π1
1(p

1, p2) = (1− λ)hB(B
1(p1, p2)) E[q̄(ω) b(u(p1, ω)− u(p2, ω) | ω) u1(p

1, ω)]

+λ hS(W
1(p1, p2)) E[B(u(p1, ω)− u(p2, ω) | ω) u1(p

1, ω)]

+λ hS(W
2(p1, p2)) E[(1−B(u(p1, ω)− u(p2, ω) | ω)) u1(p

1, ω)] .

After a rearrangement of terms and upon denoting

γB(p
1, p2, ω) = hB(B

1(p1, p2))q̄(ω) b(u(p1, ω)− u(p2, ω) | ω)

and

γS(p
1, p2, ω) = hS(W

1(p1, p2))B(u(p1, ω)− u(p2, ω) | ω)

+hS(W
2(p1, p2)) [1−B (u(p1, ω)− u(p2, ω) | ω)] ,
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we can also write this derivative as

Π1
1(p

1, p2) = E
[ {

(1− λ) γB(p
1, p2, ω) + λ γS(p

1, p2, ω)
}
u1(p

1, ω)
]
.

For later reference, recall that

γS(p
1, p2, ω) = γ∗

S(ω) and γB(p
1, p2, ω) = γ∗

B(ω)

whenever p1 = p2. By a symmetric argument, the derivative of Π1(p1, p2) with respect

to the second argument p2 equals

Π1
2(p

1, p2) = −E
[{

(1− λ) γB(p
1, p2, ω) + λ γS(p

1, p2, ω)
}
u1(p

2, ω)
]
.

Under the regularity assumptions made in the text, p1 is a best response to p2 if and

only if

Π1
1(p

1, p2) = 0 ⇔ E
[{

(1− λ) γB(p
1, p2, ω) + λ γS(p

1, p2, ω)
}
u1(p

1, ω)
]
= 0 .

(30)

Likewise, p2 is a best response to p1 if and only if

Π1
2(p

1, p2) = 0 ⇔ E
[{

(1− λ) γB(p
1, p2, ω) + λ γS(p

1, p2, ω)
}
u1(p

2, ω)
]
= 0 .

(31)

Existence of a symmetric equilibrium. Consider the policy p∗ which solves

E
[
{(1− λ) γ∗

B(ω) + λ γ∗
S(ω)]}u1(p

1, ω)
]
= 0 .

This policy maximizes

E [{(1− λ) γ∗
B(ω) + λ γ∗

S(ω)}u(p, ω)]

over the set P. Moreover, the pair of policies (p1, p2) = (p∗, p∗) satis�es the �rst order

conditions of both parties' best response problems in (30) and (31), respectively, and

is hence an equilibrium.

Uniqueness. It remains to be shown that there is no other equilibrium. Suppose,

to the contrary, that there is an equilibrium (p1, p2) with p1 ̸= p∗ or p2 ̸= p∗. In the
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following, we assume without loss of generality that p1 ̸= p∗. Since the game under

study is zero-sum, this implies that also (p1, p∗) is a Nash equilibria, see e.g. Osborne

and Rubinstein (1994). This contradicts the assumption that party 1 has a unique

best response to any policy p2 ∈ P . Thus, the assumption that there is an alternative

equilibrium leads to a contradiction and must be false.

A.3.2 Multi-dimensional policy space

Suppose that P is a compact set. Let p1 be an interior policy and let h ∈ P be a

conceivable direction in which party 1 can deviate from p1. We assume that such a

deviation takes the form

p1 + µ h ,

where µ is a non-negative scalar that measures the size of the deviation from p1. We

denote by

δu(p1, h, ω)

the (functional) derivative of u(p1, ω) in direction h at p1. Equipped with this nota-

tion, we can now generalize the arguments for the one-dimensional policy space in a

straightforward way.

Best responses. Given p2, a best response for party 1 is a policy so that, for any

admissible direction h,

E
[{

(1− λ) γB(p
1, p2, ω) + λ γS(p

1, p2, ω)
}
δu(p1, h, ω)

]
= 0 . (32)

Likewise, p2 is a best response to p1 if and only if, for any admissible direction h,

E
[{

(1− λ) γB(p
1, p2, ω) + λ γS(p

1, p2, ω)
}
δu(p2, h, ω)

]
= 0 . (33)

Existence of a symmetric equilibrium. Consider the policy p∗ which solves, for

any admissible direction h,

E [{(1− λ) γ∗
B(ω) + λ γ∗

S(ω)} δu(p∗, h, ω)] = 0 .

This policy maximizes

E [{(1− λ) γ∗
B(ω) + λ γ∗

S(ω)}u(p, ω)]
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over the set P. Moreover, the pair of policies (p1, p2) = (p∗, p∗) satis�es the �rst order

conditions of both parties' best response problems in (32) and (33), respectively, and

is hence an equilibrium.

Uniqueness. Uniqueness follows from the same argument as above.

B Proofs for Section 2

B.1 A�ne income taxes

Concave policy preferences. Consider a�ne income taxation with quasi-linear

in consumption utility and isoelastic e�ort costs. Then

y∗(τ, ω) = (1− τ)ε ω1+ε

We can solve for tax revenue as a function of τ . This yields

r(τ) = τ(1− τ)ε E
[
ω1+ε

]
,

i.e.,

r′(τ) =

(
1− τ

1− τ
ε

)
(1− τ)ε E

[
ω1+ε

]
and

r′′(τ) = −ε (1− τ)ε−1

(
2 +

τ

1− τ
(ε− 1)

)
E
[
ω1+ε

]
.

Policy preferences are captured by the indirect utility function u(τ, ω). By the enve-

lope theorem,

u1(τ, ω) = r′(τ)− y∗(τ, ω)

The ideal policy for type ω, τ ∗(ω) solves

r′(τ)− y∗(τ, ω) = 0 ,

or, equivalently,
τ ∗(ω)

1− τ ∗(ω)
=

1

ε

(
1− ω1+ε

E [ω1+ε]

)
.
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Obviously, τ ∗ : ω 7→ τ ∗(ω) is a strictly decreasing, continuously di�erentiable function.

The second derivative of u with respect to τ is given by

u11(τ, ω) = r′′(τ)− y∗1(τ, ω) .

Note that, since y∗1(τ, ω) < 0, concavity of α is not enough to ensure that policy

preferences are concave.

Lemma 1. Consider the a�ne income taxation setting with quasi-linear in consump-

tion utility and isoelastic e�ort costs. Consider the policy space T = [τ ∗(ω), τ ∗(ω)].

Then ε ≤ 1
2
implies that, for all τ ∈ T and all ω ∈ [ω, ω], u11(τ, ω) ≤ 0.

Proof. Straightforward computations yield

u11(τ, ω) = −ε (1− τ)ε−1

((
2 +

τ

1− τ
(ε− 1)

)
E
[
ω1+ε

]
− ω1+ε

)
.

We seek to show that, for all τ ∈ T and all ω ∈ [ω, ω],

2 +
τ

1− τ
(ε− 1) ≥ ω1+ε

E [ω1+ε]
.

A (necessary and) su�cient condition is that

2 +
τ

1− τ
(ε− 1) ≥ ω̄1+ε

E [ω1+ε]
,

or using the �rst order condition characterizing τ ∗(ω),

2 +
τ

1− τ
(ε− 1) ≥ 1− τ ∗(ω)

1− τ ∗(ω)
ε .

Since τ ∗ : ω 7→ τ ∗(ω) is a strictly decreasing, a (necessary and) su�cient condition is

that

2 +
τ ∗(ω)

1− τ ∗(ω)
(ε− 1) ≥ 1− τ ∗(ω)

1− τ ∗(ω)
ε .

Equivalently,
τ ∗(ω)

1− τ ∗(ω)
(2ε− 1) ≥ −1 .

Since
τ ∗(ω)

1− τ ∗(ω)
< 0 ,
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this inequality holds if 2ε− 1 ≤ 0, or, equivalently, if ε ≤ 1
2
.

Derivation of equation (11). It follows from Proposition 2 and equation (10)

that τ ∗ maximizes

E[γ∗(ω)]r(τ) + E [γ∗(ω) ((1− τ)y∗(τ, ω)− k(y∗(τ, ω)))] .

Using the envelope theorem, the �rst order condition can be written as

r′(τ)− E
[

γ∗(ω)

E[γ∗(ω)]
y∗(τ, ω)

]
= 0 ,

where

r′(τ) = E [y∗(τ, ω)] + τE [y∗1(τ, ω)] .

Rearranging terms yields

τE
[

y∗1(τ,ω)

E[y∗(τ,ω)]

]
= E

[(
γ∗(ω)

E[γ∗(ω)]
− 1
)

y∗(τ,ω)
E[y∗(τ,ω)]

]
= Cov

(
γ∗(ω)

E[γ∗(ω)]
, y∗(τ,ω)
E[y∗(τ,ω)]

)
.

(34)

With isoelastic e�ort costs and quasi-linearity in consumption, the �rst-order condi-

tion of individual utility maximization, 1−τ = k1(y, ω), yields y
∗(τ, ω) = (1−τ)eω1+e

and y∗1(τ, ω) = −e 1
1−τ

y∗(τ, ω). Substituting these expressions into (34) yields (11).

B.2 CRP taxes

Concave policy preferences. Policy preferences captured by the indirect utility

function

u(τ, ω) = ln r(τ) + (1− τ) ln y∗(τ, ω)− k(y∗(τ, ω), ω) .

By the envelope theorem,

u1(τ, ω) =
r′(τ)

r(τ)
− ln y∗(τ, ω) .

With isoleastic e�ort costs, straightforward computations yield

u1(τ, ω) = − τ

1− τ

1

1 + 1
ε

+ ln
(
E
[
(lnω)ω1−τ

])
− lnω .
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and

u11(τ, ω) = − 1

1 + 1
ε

(1− τ)−2 − E[(lnω)2 ω1−τ ] .

Clearly, for τ ∈ (0, 1), u11(τ, ω) < 0, for all ω.

Derivation of equation (13).

Individual utility-maximization. Under a CRP schedule, an individual with

earnings y has a consumption level of c = ry1−τ . With log consumption utility and iso-

elastic e�ort costs, an individual of type ω solves the following utility-maximization

problem

max
y

ln r + (1− τ) ln y − 1

1 + 1/e

( y
ω

)1+1/e

.

Utility-maximizing earnings are hence given by y∗(τ, ω) = (1− τ)
e

1+eω.

Tax revenue. We use the government budget constraint, E[T (y∗(τ, ω))] = 0, to

solve for r as a function of τ , which yields r(τ) = E[y∗(τ,ω)]
E[y∗(τ,ω)1−τ ]

, or, equivalently,

r(τ) = (1− τ)τ
e

1+e
E[ω]

E[ω1−τ ]

Policy preferences. Policy preferences are therefore captured by the indirect

utility function u(τ, ω) = ln r(τ) + (1− τ) ln y∗(τ, ω)− 1
1+1/e

(
y∗(τ,ω)

ω

)1+1/e

, or, equiv-

alently,

u(τ, ω) =
e

1 + e
ln(1− τ) + ln

(
E[ω]

E[ω1−τ ]

)
+ (1− τ) lnω − e

1 + e
(1− τ) . (35)

The assumption that lnω is normally distributed with mean µω and variance σ2
ω, can

be shown to imply that

E[ω] = exp

(
µω +

1

2
σ2
ω

)
and E[ω1−τ ] = exp

(
(1− τ)µω +

1

2
(1− τ)2σ2

ω

)
.
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Thus,

u(τ, ω) = e
1+e

ln(1− τ)− e
1+e

(1− τ)

+
(
1− (1− τ)

)
µω + 1

2

(
1− (1− τ)2

)
σ2
ω

+(1− τ) lnω .

(36)

Equilibrium policy. By Proposition 2, the political equilibrium tax policy max-

imizes E[γ∗(ω)u(τ, ω)], or, equivalently,

E[γ̄∗(ω)u(τ, ω)] = e
1+e

ln(1− τ)− e
1+e

(1− τ)

+
(
1− (1− τ)

)
µω + 1

2

(
1− (1− τ)2

)
σ2
ω

+(1− τ)E[γ̄∗(ω) lnω] ,

where γ̄∗(ω) = γ∗(ω)
E[γ∗(ω)]

. It is convenient to think of this objective as a function of

(1− τ) rather than τ . The �rst order condition characterizing the equilibrium value

of 1− τ is
e

1 + e

τ

1− τ
− µω − (1− τ)σ2

ω + E[γ̄∗(ω) lnω] = 0 .

Rewriting this equation, using that E[γ̄∗(ω) lnω] − µω = Cov
(

γ∗(ω)
E[γ∗(ω)]

, lnω
)
, yields

equation (13) in the main text.

B.3 Non-linear income taxes

Suppose that the preferences of a type ω individual over (c, y)-pairs are represented

by a quasi-linear in consumption utility function c − k(y, ω), with k1 > 0, k11 > 0,

k2 < 0 and k12 < 0.

In the following we sketch the argument for why any tax system T can be repre-

sented by a non-decreasing earnings function y : Ω → R+. Speci�cally, by the taxa-

tion principle, see e.g. Hammond (1979); Guesnerie (1995), an allocation (c,y) con-

sisting of a consumption schedule c : Ω → R+ and an earnings schedule y : Ω → R+

can be induced by an income tax if and only if it satis�es the resource constraint,

E[y(ω)] ≥ E[c(ω)] (37)
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and incentive compatibility constraints: for all ω and ω′,

u(ω) ≥ c(ω′)− k(y(ω′), ω) , (38)

where

u(ω) := c(ω)− k(y(ω), ω) (39)

gives the utility that a type ω individual realizes under allocation (c,y).

It is also well-known how to obtain a characterization of incentive-compatible

allocations in models with quasilinear preferences, see e.g. Myerson (1981). The

utility realized by any one type-ω individual can be written as a sum of two terms,

the minimal level of utility that is realized by the �poorest� type and the extra utility

realized by higher types. More formally, an application of the envelope theorem makes

it possible to show that incentive compatibility holds if and only if two conditions are

satis�ed. First, for all ω,

u(ω) = u+ ρ(y, ω) where ρ(y, ω) = −
� ω

ω

k2(y(z), z) dz , (40)

and u := u(ω) is a shorthand for the lowest type's utility and −
� ω

ω
k2(y(z), z) dz is

the information rent realized by a higher type ω > ω in the presence of incentive com-

patibility constraints.44 Second, y is a non-decreasing function, i.e., individuals with

higher productive abilities must not earn less than individuals with lower productive

abilities.

We can use these insights to derive a representation of preferences over tax polices

in a reduced form that only depends on the income function y and no longer involves

a reference to the consumption function c. This will enable us to represent a tax

policy design problem as a problem that no longer involve resource and incentive

constraints. Suppose that (c,y) is incentive compatible, then using (39), (40) and an

integration by parts we obtain

E[c(ω)] = u+ E
[
k(y(ω), ω)− 1− F (ω)

f(ω)
k2(y(ω), ω)

]
.

Plugging this expression into the public sector budget constraint E[y(ω)]−E[c(ω)] = 0

44This terminology re�ects that private information on types is the impediment to �rst-best
redistribution.
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yields an expression for u; it is equal to the virtual surplus that is associated with an

earnings function y:

u := sv(y) := E
[
y(ω)− k(y(ω), ω) +

1− F (ω)

f(ω)
k2(y(ω), ω)

]
. (41)

The virtual surplus is a surplus measure that takes account of the information rents

that tax-payers realize and which reduces what is available for the lowest type. To

arrive at the virtual surplus, the (non-virtual) surplus of aggregate output over costs

of e�ort

s(y) := E [y(ω)− k(y(ω), ω)]

is reduced by the aggregate information rent

−E
[� ω

ω

k2(y(z), z) dz

]
= −E

[
1− F (ω)

f(ω)
k2(y(ω), ω)

]
,

where the equality follows from an integration by parts. Thus,

u = sv(y) = E
[
y(ω)− k(y(ω), ω) +

1− F (ω)

f(ω)
k2(y(ω), ω)

]
. (42)

Indirect utility induced by an incentive compatible allocation can now be written as

a sum of virtual surplus and information rents

u(ω) := sv(y) + ρ(y, ω) (43)

With this characterization, the utility realized by a type ω individual depends on

the whole earnings schedule y : Ω → R+ but no longer on the consumption schedule

c : Ω → R+.

For the representation of policy preferences, we make the dependence of u on the

earnings function explicit and write u(y, ω) rather than simply u(ω).

To summarize, for non-linear income taxation, the policy space is the set of all

non-decreasing earnings functions. Any such function generates a payo� pro�le that

is characterized by equations (40) and (42).
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Derivation of equation (14). In part D.3 of the Online-Appendix we show that,

in a symmetric pure strategy equilibrium,

T ′(y∗(ω))

1− T ′(y∗(ω))
= −1− F (ω)

f(ω)
(1− Γ∗(ω))

k21(y
∗(ω), ω))

k1(y∗(ω), ω)
,

see equation (71). With an isoelastic e�ort cost function we can substitute−
(
1 + 1

e

)
1
ω

for k21(y∗(ω),ω))
k1(y∗(ω),ω)

, which yields (14).

B.4 Comparative statics

B.4.1 Using political equilibrium weights to order equilibrium tax sys-

tems

Consider two speci�cations of the model's primitives giving rise to two di�erent

weighting functions that are respectively denoted by γ∗
0 : ω 7→ γ∗

0(ω) and γ∗
1 : ω 7→

γ∗
1(ω). Suppose that there is a decreasing function δ : ω 7→ δ(ω) with E[δ(ω)] = 0 so

that
γ∗
1(ω)

E[γ∗
1(ω)]

=
γ∗
0(ω)

E[γ∗
0(ω)]

+ δ(ω) . (44)

For ease of notation, let γ̄∗
1(ω) :=

γ∗
1 (ω)

E[γ∗
1 (ω)]

and γ̄∗
0(ω) :=

γ∗
0 (ω)

E[γ∗
0 (ω)]

, so that E[γ̄∗
0(ω)] =

E[γ̄∗
1(ω)] = 1. In the following we show that, for all models of redistributive taxation

that we consider, the equilibrium tax system associated with γ∗
1 is more redistributive

than the one associated with γ∗
0 . First note that, for any increasing function z (·), we

have

Eω[γ̄
∗
1 (ω) z (ω)] = Eω[γ̄

∗
0 (ω) z (ω)] + Eω [δ (ω) z (ω)] ,

where Eω [δ (ω) z (ω)] = Cov (δ (ω) , z (ω)) < 0. Therefore, we obtain

E[γ̄∗
1 (ω) z (ω)] < E[γ̄∗

0 (ω) z (ω)].

For z (ω) = ω1+e, this inequality implies that

Cov(γ̄∗
1 (ω) , ω

1+e) < Cov(γ̄∗
0 (ω) , ω

1+e) .
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Thus, the equilibrium marginal tax rate in the a�ne taxation setting satis�es τ ∗1 > τ ∗0 .

Analogously, applying this inequality to the function z (ω) = lnω implies

Cov(γ̄∗
1 (ω) , lnω) < Cov(γ̄∗

0 (ω) , lnω) .

Thus, the equilibrium rate of progressivity in the CRP setting satis�es τ ∗1 > τ ∗0 .

Finally, for unrestricted non-linear taxation, de�ne the functions

Γ∗
0 : ω 7→ Γ∗

0(ω) = E [γ̄∗
0(s) | s ≥ ω] ,

and

Γ∗
1 : ω 7→ Γ∗

1(ω) = E [γ̄∗
1(s) | s ≥ ω] ,

and note that

Γ∗
0(ω) = Γ∗

1(ω) = 1 .

Moreover, for any ω,

Γ∗
1(ω) = Γ∗

0(ω) + ∆(ω) , where ∆(ω) := E [δ(s) | s ≥ ω] .

Note that E[δ(ω)] = 0 implies that ∆(ω) = 0, so that, since δ is decreasing, ∆(ω) < 0,

for all ω > ω. Thus,

Γ∗
1(ω) < Γ∗

0(ω) ,

for all ω > ω. Equation (14) therefore implies that marginal tax rates for all types

ω > ω are higher when political equilibrium weights are given by γ∗
1 : ω 7→ γ∗

1(ω), as

compared to the case where they are given by γ∗
0 : ω 7→ γ∗

0(ω).

B.4.2 Increasing W 1s/W 2s: proof of Proposition 3

Consider a shift in idiosyncratic party preferences so that ratio W 1s

W 2s increases from an

initial value a0 ≥ 1 to a new value a1. Also assume that this change does not a�ect

the size of the parties' bases, B1s and B2s, nor the within-base income distributions

captured by B1s : ω 7→ B1s(ω).

The implications for relative turnout follows from equation (29) and Proposition

2. Together with the assumption of linear voting costs, λ = 1, they imply that

σ1∗

σ2∗ =
W 1s /B1s

W 2s /B2s
(45)
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Thus, a1 > a0 implies that
(

σ1∗

σ2∗

)
1
>
(

σ1∗

σ2∗

)
0
.

To see that the equilibrium tax system becomes more redistributive, note that

γ̄∗
0(ω) :=

γ∗
0 (ω)

E[γ∗
0 (ω)]

= B1s(ω)+a0(1−B1s(ω))
E[B1s(ω)+a0(1−B1s(ω))]

= a0−(a0−1)B1s(ω)
a0−(a0−1)Eω [B1s(ω)]

,

and that
γ̄∗
1(ω) :=

γ∗
1 (ω)

E[γ∗
1 (ω)]

= a1−(a1−1)B1s(ω)
a1−(a1−1)Eω [B1s(ω)]

.

With a1 > a0 ≥ 1 and B1s : ω 7→ B1s(ω) non-decreasing, both γ̄∗
0 and γ̄∗

1 are non-

increasing functions. Moreover, γ̄∗
0(ω) = γ̄∗

1(ω) = 1, and, since a1 > a1,

| ∂

∂ω
γ̄∗
1(ω) | > | ∂

∂ω
γ̄∗
0(ω) | ,

for all ω > ω. Hence,

γ̄∗
1(ω) < γ̄∗

0(ω) ,

for all ω > ω.

These observations imply that there exists a decreasing function δ (ω) with mean

E [δ (ω)] = 0 satisfying (15). Thus, the tax system associated with weighting function

γ∗
1 is more redistributive than the one associated with weighting function γ∗

0 .

B.4.3 Increasing the base of party 1

Suppose that the base of party 1 rises uniformly: there is ν > 0 such that, for all

ω ∈ Ω, B1s
1 (ω) = B1s

0 (ω) + ν, where the functions B1s
0 and B1s

1 characterize party

1's base before and after the preference shift. The fact that the shift is uniform

implies that it does not a�ect the density functions that describe the distribution of

idiosyncratic party biases, see Figure 5, panel (b). We will now show that, in response

to such a shift, the equilibrium tax schedule becomes more redistributive.

First note that this shift leads, mechanically, to an increase of the ratio W 1s

W 2s . The

sum of the stakes of party 1's supporters goes up as more supporters are added. For

17



Figure 5: Comparative statics: uniform rise in political support

(a) Shift in the density b (ε | ω) for a �xed ω (b) Shift in the cdf B (0 | ω) as a function of ω

the analogous reason, the sum of the stakes of the supporters of party 2 goes down.

As shown in the previous section B.4.2, this e�ect in isolation makes the equilibrium

tax schedule more redistributive.

For the thought experiment considered here, the proof in section B.4.2 has to

be adapted, though, to accommodate the change from B1s
0 to B1s

1 . This adjustment

is straightforward, however, because a uniform shift is without consequence for the

slope of the weighting functions γ̄∗
0 and γ̄∗

1 . Thus, the adaptation is line-by-line. We

therefore omit the details.

B.4.4 Making party 1 more pro-market

Consider a marginal shift in political biases such that B1s
1 (ω) = B1s

0 (ω) + νβ (ω),

where β (·) is an increasing function with mean E [β (ω)] = 0. We, moreover, assume

that the shift is concentrated on swing voters, i.e., on voters with party preferences ε

close to zero.

To explain the nature of the thought experiment, �x ω so that β (ω) > 0. We

let voters with initial party preferences ε0 ∈ [0, ν · ε̄ (ω)] in favor of party 2, swing

to preferences ε1 ∈ [ν · ε (ω) , 0] that favor party 1. Figure 6 provides an illustration.

Panel (a) focuses on a high level of income ω: within this income group, party 1 is

dominant, both before and (even more so) after the political preference shift. Panel

(b) shows the resulting shift in party 1's base as a function of ω: both parties become

stronger in the income groups where they were already strong.

In the following, to evaluate the consequences of such a shift, we look into the

marginal changes of endogenous variables as ν → 0. Ultimately, we show that the

equilibrium tax system becomes, at the margin, more redistributive. To this end, we

18



Figure 6: Comparative statics: rise in polarization

(a) Shift in the density b (ε | ω) for a large ω (b) Shift in the cdf B (0 | ω) as a function of ω

�rst show that, at ν = 0, the marginal e�ect on the size of the parties' bases and the

relative stakes of their supporters vanishes.

To see this, �x some ω so that β (ω) > 0. The stakes of the supporters of party 2

go down by
� ν·ε̄(ω)
0

εb (ε | ω) dε, an expression that is bounded from above by

ν · ε̄ (ω)
� ν·ε̄(ω)

0

b (ε | ω) dε = ν ε̄ (ω) (B (ν ε̄ (ω) | ω)−B (0 | ω)) ,

implying that the marginal e�ect of a change in ν vanishes at ν = 0. Since the same

reasoning holds for any ω, the relative intensity of preferencesW 1s/W 2s is not a�ected

by the shift in political preferences. Moreover, E[B1s
1 (ω)] = E[B1s

0 (ω)] =: E[B1s(ω)]

since the shift in political preferences satis�es E [β (ω)] = 0.

It remains to be shown that the tax system becomes more redistributive. To this

end, we adapt the arguments in section B.4.2. Let a = W 1s/W 2s. The political

equilibrium weights prior to the shift of preferences are given by

γ̄∗
0(ω) :=

γ∗
0 (ω)

Eω [γ∗
0 (ω)]

=
a−(a−1)B1s

0 (ω)

a−(a−1)Eω [B1s(ω)]
.

After the shift they are equal to

γ̄∗
1(ω) :=

γ∗
1 (ω)

Eω [γ∗
1 (ω)]

=
a−(a−1)B1s

1 (ω)

a−(a−1)Eω [B1s(ω)]
.
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With B1s
1 (ω) = B1s

0 (ω) + νβ (ω), and β increasing, we have, for all ν > 0,

∂

∂ω
B1s

1 (ω) >
∂

∂ω
B1s

0 (ω) . (46)

To complete the argument note that γ̄∗
0 and γ̄∗

1 are non-increasing functions as both

B1s
1 and B1s

0 are increasing by assumption. Moreover, γ̄∗
0(ω) = γ̄∗

1(ω) = 1, and, by

(46),

| ∂

∂ω
γ̄∗
1(ω) | > | ∂

∂ω
γ̄∗
0(ω) | ,

for all ω > ω. Hence,

γ̄∗
1(ω) < γ̄∗

0(ω) ,

for all ω > ω.

These observations imply that there exists a decreasing function δ (ω) with mean

E [δ (ω)] = 0 satisfying (15). Thus, the tax system associated with weighting function

γ∗
1 is more redistributive than the one associated with weighting function γ∗

0 .

C Proofs of Section 3

C.1 Proof of Proposition 5

C.1.1 Preliminaries

Let P = [p, p] ⊂ R. Let p∗(ω) = argmaxp∈P u(p, ω) be the ideal policy for voter

type ω. The voters' ideal policies lie in the interior of P and satisfy the �rst order

condition u1(p
∗(ω), ω) = 0. The single-crossing condition implies that p∗ : ω 7→ p∗(ω)

is non-increasing. Thus, for some ε, δ > 0, p = p∗(ω) − ε and p = p∗(ω) + δ. The

single-crossing property also implies that all types ω strictly prefer p∗(ω) over p and

p∗(ω) over p. Thus, [p∗(ω), p∗(ω)] ⊂ P is the set of Pareto-e�cient policies.

Assuming for simplicity that λ = 1, the objective of party 1 is to maximize

Π1(p1, p2) =
W 1(p1, p2)

W 2(p1, p2)

and the objective of party 2 is to minimize this expression. Focusing on this case

simpli�es the exposition, but as we clarify below the argument does not depend on

it and extends to any value of λ. Henceforth, we denote by Π1
1 and Π1

2 the partial
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derivatives of Π1 with respect to p1 and p2, respectively.

Be reminded that∆u(p1, p2, ω) = u(p1, ω)−u(p2, ω),W 1(p1, p2) = E [G1
W (∆u(·) | ω)]

and W 2(p1, p2) = E [G2
W (∆u(·) | ω)] , where

G1
W (x | ω) :=

� x

−∞
(x− ε) b(ε | ω)dε ,

and

G2
W (x | ω) :=

� ∞

x

(ε− x) b(ε | ω)dε .

The derivatives of the functions G1
W (· | ω) and G2

W (· | ω) are respectively given by

g1W (x | ω) := B(x | ω) and g2W (x | ω) := − (1−B(x | ω)) .

Lemma 2 (Best responses exist and are interior). For any p2 ∈ P, there is a

best response of party 1. Any best response of party 1 lies in the interior of P and

satis�es the �rst order condition Π1
1(p

1, p2) = 0. Analogously, for any p2 ∈ P there is

a best response of party 2. Any best response of party 2 is interior and satis�es the

�rst order condition Π1
2(p

1, p2) = 0.

Proof. We only prove the statements referring to the best responses of party 1. For

any p2, the function Π1(·, p2) is continuous in p1 and therefore attains a maximum on

the compact policy space P = [p, p]. The function Π1(·, p2) is, moreover, di�erentiable.

To prove that the maximum is interior and satis�es �rst-order conditions we show

that, for any p2,

Π1
1(p, p

2) > 0 and Π1
1(p, p

2) < 0 .

Given p2, the derivative of Π1(·, p2) with respect to p1 can be written as

Π1
1(p

1, p2) =
1

W 2(p1, p2)
E
[
g1W (∆u(·) | ω)u1(p

1, ω)
]

− W 1(p1, p2)

(W 2(p1, p2))2
E
[
g2W (∆u(·) | ω)u1(p

1, ω)
]

=
1 + Π1(p1, p2)

W 2(p1, p2)
E
[
γ1(ω | p1, p2) u1(p

1, ω)
]

where

γ1(ω | p1, p2) = 1

1 + Π1(p1, p2)
B(∆u(·) | ω) + Π1(p1, p2)

1 + Π1(p1, p2)
(1−B(∆u(·) | ω)) .
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Let p1 = p, then u1(p
1, ω) > 0 for all ω and hence Π1

1(p
1, p2) > 0. Analogously, if

p1 = p, then u1(p
1, ω) < 0 for all ω and hence Π1

1(p
1, p2) < 0.

Lemma 3 (Best responses are continuous). For given p2, let p1∗(p2) be a solution

to the �rst order condition Π1
1(p

1, p2) = 0. Then p1∗ is a continuous function.

Proof. The implicit function theorem can be applied to the �rst-order condition for

party 1 and implies that p1∗ is a di�erentiable, hence continuous, function of p2.

Lemma 4 (Existence of a �xed point). The function p1∗ has a �xed point.

Proof. The function p1∗ is a continuous function from P to P, where P is a non-

empty, compact and convex set. Therefore, it has a �xed point by Brouwer's �xed

point theorem.

Lemma 5 (Uniqueness of the �xed point). If utility functions are concave in p,

u11(p, ω) < 0 for all p and ω, the function p1∗ has only one �xed point.

Proof. Let (p1, p2) be such a �xed point of the best response function p1∗. Such a

�xed point satis�es Π1
1(p

1, p2) = 0, i.e.,

E
[
γ1(ω | p1, p2) u1(p

1, ω)
]
= 0 ,

and

p1 = p2 .

These two equations uniquely pin down p1. To see this, note �rst that p1 = p2 implies

∆u(p1, p2, ω) = 0 for all ω and that γ1(ω | p1, p2) depends on p1 and p2 only via

∆u(p1, p2, ω). Let γ(ω) be the corresponding value of γ1(ω | p1, p2), i.e.,

γ(ω) :=
1

1 + Π1
∗
B(0 | ω) + Π1

∗
1 + Π1

∗
(1−B(0 | ω)) , with Π1

∗ :=
E [G1

W (0 | ω)]
E [G2

W (0 | ω)]
.

Then p1 solves

A(p1) := E
[
γ(ω) u1(p

1, ω)
]
= 0 .

To see that this equation has a unique solution, note that the auxiliary function

A(p1) is di�erentiable, and decreasing as A′(p1) = E [γ(ω) u11(p
1, ω)] < 0. Moreover,

A(p) > 0 and A(p) < 0. Thus, there is one and only one solution to the equation

A(p1) = 0.

22



C.1.2 Proof of Claim 1.

Suppose that

Π1(p, p′) = a+ b Π2(p′, p)

a+ b (1− Π2(p′, p)) .

Hence,

Π1
1(p, p

′) = −b Π1
2(p

′, p) .

Now suppose that (p̂, p̂) is a �xed point of party 1's best response problem. Then,

Π1(p̂, p̂) ≥ Π1(p, p̂) ,

for all p ∈ P . Further note that

Π1(p̂, p̂)− Π1(p, p̂) =
� p̂

p
Π1

1(s, p̂) ds

= −b
� p̂

p
Π1

2(p̂, s) ds

= −b
(
Π1(p̂, p̂)− Π1(p̂, p)

)
= b

(
Π1(p̂, p)− Π1(p̂, p̂)

)
.

Hence,

Π1(p̂, p̂) ≤ Π1(p̂, p) ,

for all p ∈ P , implying that (p̂, p̂) is a saddle point of Π1, and hence an equilibrium.

C.1.3 Proof of Claim 2.

Together Lemma 2 and the premise of Claim 2 imply that, for every p2, there is a

unique value of p1 so that

Π1
1(p

1, p2) = 0 and Π1
11(p

1, p2) < 0 .

This value of p1 is the unique best response of party 1 to policy p2. Mutatis mutandis,

the same holds true for party 2. Under these conditions the following Lemma holds

true.
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Lemma 6 (Identical �xed points). Suppose that utility functions are concave in

p, u11(p, ω) < 0 for all p and ω. Then, the best response functions p1∗ and p2∗ have

the same �xed point.

Proof. As argued above, if (p1, p2) is a �xed point of p1∗ it satis�es

E
[
γ1(ω | p1, p2) u1(p

1, ω)
]
= 0 (47)

and

p1 = p2 . (48)

By Lemma 5, there is only one solution to this system of equations.

Analogously, given p1, the best responses of party 2, p2∗(p1) is obtained as the

solution to

min
p2∈P

Π1(p1, p2)

and solves the �rst-order condition

Π1
2(p

1, p2) = −1 + Π1(p1, p2)

W 2(p1, p2)
E
[
γ1(ω | p1, p2) u1(p

2, ω)
]
= 0 .

Thus, a �xed point (p1, p2) of p2∗ satis�es

E
[
γ1(ω | p1, p2) u1(p

2, ω)
]
= 0 , (49)

and

p1 = p2 . (50)

Hence, a �xed point of p2∗ solves the same system of equations as a �xed point of p1∗.

Thus, the two functions have the same �xed point.

Therefore, if p̂ is a �xed point of p1∗, then (p̂, p̂) is a symmetric equilibrium in

pure strategies. By Lemma 4 such a �xed point exists.

It remains to be shown that there can be no other equilibrium. Suppose to the

contrary that there is an alternative Nash equilibrium (p1, p2) with p1 ̸= p̂ or p2 ̸= p̂.

Since the game under study is zero-sum, this implies that (p1, p̂) and p̂, p2 are also

Nash equilibria, see e.g. Osborne and Rubinstein (1994). Suppose without loss of

generality that p1 ̸= p̂. Then, this implies that, for party 1, both p̂ and p1 are best

responses to p̂2. This contradicts the assumption that party 1 has a unique best
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response to any policy p2 ∈ P . Thus, the assumption that there is an alternative

equilibrium leads to a contradiction and must be false.

C.1.4 General Objective, 0 < λ < 1.

The preceding argument uses that W 1(·) and W 2(·) depend on p1 and p2 only via

∆u(p1, p2, ω) = u(p1, ω) − u(p2, ω) and the derivatives of the objective function can

be written as a weighted sum of the di�erent types' marginal utilities, where the

weights are all positive. These properties remain intact with a more general objective

function of the form

Π1(p1, p2) = (1− λ) ln

(
B1(p1, p2)

B2(p1, p2)

)
+ λ ln

(
W 1(p1, p2)

W 2(p1, p2)

)
.

For instance, the best response condition Π1
1(p

1, p2) = 0 for party 1 can then be

written as

E
[
γ1,λ(ω | p1, p2) u1(p

1, ω)
]
= 0 ,

where

γ1,λ(ω | p1, p2) = (1− λ) q̄(ω) b(· | ω) + λ
(

1
B1(·) +

1
B2(·)

)−1

γ1(ω | p1, p2).

C.2 Derivation of inequalities (19) and (20)

The objective of party 1 is to maximize

Π1(p1, p2) =
W 1(p1, p2)

W 2(p1, p2)

and the objective of party 2 is to minimize this expression. For later reference, note

that W 1(p1, p2) = E [G1
W (∆u(·) | ω)] and W 2(p1, p2) = E [G2

W (∆u(·) | ω)] where

G1
W (x | ω) :=

� x

−∞
(x− ε) b(ε | ω)dε ,

and

G2
W (x | ω) :=

� ∞

x

(ε− x) b(ε | ω)dε .
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The derivatives of the functions G1
W (· | ω) and G2

W (· | ω) are respectively given by

g1W (x | ω) := B(x | ω) and g2W (x | ω) := − (1−B(x | ω)) .

Given a policy p2, the �rst order condition of party 1's best response problem is

Π1
1(·) =

1

W 2(·)2
{
W 1

1 (·)W 2(·)−W 2
1 (·)W 1(·)

}
= 0 . (51)

The second derivative Π1
11, evaluated at a policy that satis�es this �rst order condition,

equals

Π1
11(·) =

1

W 2(·)2
{W 1

11(·)W 2(·)−W 2
11(·)W 1(·)} . (52)

Thus, Π1
11(·) < 0 holds provided that

W 1
11(·) = E[b(∆u(·) | ω)u1(p

1, ω) +B(∆u(·) | ω)u11(p
1, ω)] < 0 , (53)

and

W 2
11(·) = E[b(∆u(·) | ω)u1(p

1, ω)− (1−B(∆u(·) | ω))u11(p
1, ω)] > 0 . (54)

It is now straightforward to verify that the inequalities (19) and (20) stated in the

main text imply that the inequalities (53) and (54) hold.

C.3 Existence of mixed-strategy equilibria

Glicksberg's existence theorem implies the existence of a mixed strategy equilibrium

for a zero-sum game under the following conditions:

� Pure strategy spaces are compact.

� The payo� function Π1 is continuous in (p1, p2) for (p1, p2) ∈ P2.

In the following, we introduce notions of compactness and continuity that can be

applied to a policy space of non-negative, bounded and monotonic functions. Verifying

that these properties indeed hold is then straightforward. The existence of a mixed

strategy equilibrium then follows from Glicksberg's existence theorem.

Compactness. Let Ω = [ω, ω]. Let the set of feasible earnings levels also be a

compact subset of the reals and denote it by Y = [0, y]. An earnings function y :
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Ω → Y can be viewed as an element of a compact set Ω×Y . Now consider a sequence

of earnings functions {yk}∞k=1 that converges to a limit function ȳ in the sense that,

for every ω ∈ Ω, {yk(ω)} is a sequence in Y that converges to a limit point ȳ(ω).

The domain of all functions in the sequence is constant and equal to Ω = [ω, ω],

which is also the domain of the limit function. Thus, we only need to worry about

the convergence in the image of these functions. The image is an element of Y#Ω, a

cartesian product of compact sets. By Tychono�'s theorem, a cartesian product of

compact sets is a compact set. By assumption, the sequence {yk(Ω)}∞k=1, y
k(Ω) ∈

Y#Ω, converges to a limit ȳ. Since Y#Ω is a compact set it follows that ȳ ∈ Y#Ω.

Continuity. A sketch of the argument su�ces. What enters the parties' objective

function Π1 are averages, by type ω, of continuous functions (c.d.f.'s of party prefer-

ences) of utility di�erentials implied by policy di�erences. By hypothesis, pa → pb,

implies u(pa, ω) → u(pb, ω), for all ω ∈ Ω. Thus if the di�erence between two policies

pa and pb vanishes in the sense of uniform convergence, then, for every type ω, the

contribution to the objective under pa converges to the contribution under pb. This

property survives continuous transformations and integration.

D Proof of Proposition 4

D.1 Regularity conditions

Optimal tax problems. We impose regularity conditions that are familiar from

the literature on optimal taxation. As will become clear in the subsequent paragraph,

these regularity conditions also facilitate the analysis of the parties' best responses.

As outlined in part B.3 of the Online-Appendix, a non-linear tax schedule can be

represented by a non-negative, bounded and monotonic earnings function y : Ω → R+.

The policy preferences of a type ω individual are then represented by u(y, ω). Social

welfare S induced by an earnings function y is

S(y) = E [g(ω) u(y, ω)] .

where g : Ω → R+ speci�es the weights of di�erent types in the welfare function.

Without loss of generality we let E[g(ω)] = 1. The full optimal tax problem is to

choose the earnings function y that maximizes this welfare objective over the set of
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non-decreasing functions. The relaxed problem is to choose the earnings function that

maximizes this welfare objective over the set of all functions.

Assumption 3. Suppose that the following conditions hold:

1. For any weighting function g : Ω → R+ with E[g(ω)] = 1, the above problem

of welfare-maximization has a unique solution. Let yg be the earnings function

that solves this problem.

2. For any weighting function g : Ω → R+ with E[g(ω)] = 1, the relaxed problem

of welfare-maximization has a unique solution. Let yr
g be the earnings function

that solves the this relaxed problem.

3. The function yr
g satis�es Diamond's formula; i.e. for all ω,

1− k1(y(ω), ω) = −1− F (ω)

f(ω)
(1− Gg(ω)) k21(y(ω), ω) ,

where Gg(ω) := E[g(z) | z ≥ ω]. Moreover, yr
g is the only function that satis�es

Diamond's formula.

4. For ω so that the monotonicity constraint on yg is not binding, yr
g(ω) = yg(ω).

Assumption 3 is routinely invoked in models of optimal income taxation. The as-

sumption can be justi�ed. With an appropriate choice of the primitives, the solutions

to the relaxed and the full problem of welfare-maximization can be shown to satisfy

properties 1.� 4. We simply impose Assumption 3 as a shortcut.

To get from an earnings function y to the associated tax schedule T , one can use

the �rst-order condition of the utility-maximization problem that individuals face in

the presence of this tax system. If tax system T induces an incentive-compatible

allocation (c,y), then

1− T ′(y(ω)) = k1(y(ω), ω) .

Hence, 1−k1(y(ω), ω) is interpreted as the marginal tax rate that type-ω agents face.

Best response problems. For ease of exposition, we focus on relaxed best response

problems. Thus, given an earnings function y2 proposed by party 2, the problem of

party 1 is to choose y1 so as to maximize Π1(y1,y2). This problem di�ers from

the full best response problem that incorporates the constraint that y1 must be a
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non-decreasing function. Obviously, if the solution to the relaxed problem is non-

decreasing then it is also a solution to the full problem. Otherwise, the solution of

the full problem will give rise to bunching. While it is well-known how the analysis

would have to be modi�ed if bunching is an issue, see e.g. Hellwig (2007); Brett and

Weymark (2016), the trade-o�s that shape best responses are more easily exposed

when focusing on the relaxed problem.

The equilibrium analysis that follows involves a characterization of best responses.

As will become clear, the focus on relaxed best response problems in conjunction

with Assumption 3 then implies that best responses are characterized by a version of

Diamond's rule, albeit with a di�erent weighting function.

D.2 Best responses: necessary conditions

For ease of exposition, we assume that λ = 1 so that

Π1(y1,y2) =
W 1(y1,y2)

W 2(y1,y2)
.

The best response of party 1 can be viewed as a compromise between maximizing

the expression in the numerator and minimizing the expression in the denominator.

We �rst look at each of these auxiliary objectives in isolation and then turn to the

compromise.

Maximizing W 1(y1,y2). Remember thatW 1(y1, y2) = E[G1
W (∆u(·))] and that the

derivative of G1
W (· | ω) equals g1W (· | ω) = B (∆u(·) | ω). We write

ḡ1W (ω | y1,y2) := E[B(u(y1, ω′)− u(y2, ω′) | ω′) | ω′ ≥ ω]

=
� ω̄

ω
B(u(y1, ω′)− u(y2, ω′) | ω′) f(ω′)

1−F (ω)
dω′

for the average value of B(u(y1, ω′) − u(y2, ω′) | ω′) among individuals with a type

ω′ above some cuto� ω. To interpret these expressions, suppose that party 1 o�ers

slightly more utility to type ω′ individuals. Then B(u(y1, ω′)−u(y2, ω′) | ω′)measures

the extra gain that type ω′-supporters of party 1 realize in the event that party 1

wins rather party 2. Therefore, ḡ1W (ω | y1,y2) is the gain that party 1 can generate

by o�ering all agents with types above ω slightly more utility. The gain that party 1

can generate by slightly raising everybody's utility is given by ḡ1W (ω | y1,y2) and the
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ratio

G1
W (ω | y1,y2) :=

ḡ1W (ω | y1,y2)

ḡ1W (ω | y1,y2)

relates the gain from making everybody with a type above ω better o� to the gain

from making everybody better o�.

Lemma 7. Given y2, the solution to maxy1 W 1(y1,y2) is such that, for all ω,

T ′(y1(ω))

1− T ′(y1(ω))
= −1− F (ω)

f(ω)

(
1− G1

W (ω | y1,y2)
) k21(y

1(ω), ω))

k1(y1(ω), ω)
. (55)

Proof. We begin by stating party 1's best response problem in a way that enables an

analysis using a Gateaux di�erential. Let y1 = y1∗ + µ h1, be a perturbed version of

party 1's best response y1∗, in which µ is a scalar and h1 : Ω → R is a function. If

y1∗ is a best response, then, for any perturbation (µ, h1),

E [G1
W (u(y1∗, ω)− u(y2, ω) | ω)] ≥ E [G1

W (u(y1∗ + µ h1, ω)− u(y2ω) | ω)] . (56)

Equivalently, using the characterization of policy preferences in part B.3 of the Online-

Appendix, for any function h1, µ = 0 must be a maximizer of the auxiliary function

A(µ | y1∗,y2) = E
[
G1

W

(
sv(y

1∗ + µ h1) + ρ(y1∗ + µ h1, ω)− u(y2, ω) | ω
)]

.

In the following, we will characterize y1∗ by analyzing the implications of the require-

ment that the derivative of this expression with respect to µ, evaluated at µ = 0, is

equal to zero. We express this condition as

Ah1(y1∗,y2) = 0 , (57)

for all functions h1.45 Using the characterization of information rents in part B.3 of

the Online-Appendix, ρ(y, ω) = −
� ω

ω
k2(y(z), z) dz, as well as the de�nition of the

virtual surplus, sv(y) = E
[
y(ω)− k(y(ω), ω) + 1−F (ω)

f(ω)
k2(y(ω), ω)

]
, we note that

Ah1(y1∗,y2) = E
[
g1W (ω | y1∗,y2)

(
sv,h1(y1∗)−

� ω

ω

h1(z) k21(y
1∗(z), z) dz

)]
,

45Formally, Ah1(y1∗, y2) is the Gateaux di�erential of E
[
G1

W

(
sv(y

1) + ρ(y1, ω)− u(y2, ω) | ω
)]

in direction h1 evaluated at y1 = y1∗.
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where

g1W (ω | y1∗,y2) := b

(
sv(y

1∗)−
� ω

ω

k2(y
1∗(z), z) dz − u(y2, ω) | ω

)
and

sv,h1(y1∗) := E
[
h1(ω)

(
1− k1(y

1∗(ω), ω) + 1−F (ω)
f(ω)

k21(y
1∗(ω), ω)

)]
is the Gateaux di�erential of the virtual surplus sv(y

1) in direction h1 evaluated at

y1 = y1∗. Thus, Ah1(y1∗,y2) can now be rewritten as

Ah1(y1∗,y2) = ḡ1W (ω | y1∗, y2)E
[
h1(ω)

(
1− k1(y

1∗(ω), ω) + 1−F (ω)
f(ω)

k21(y
1∗(ω), ω)

)]
−E

[
g1W (ω | y1∗,y2)

� ω

ω
h1(z) k21(y

1∗(z), z) dz
]
,

where, for any ω ∈ Ω, ḡ1W (ω | y1∗,y2) := E[g1W (ω′ | y1∗,y2) | ω′ ≥ ω]. Moreover, an

integration by parts shows that

E
[
g1W (ω | y1∗,y2)

� ω

ω

h1(z) k21(y
1∗(z), z) dz

]
(58)

= E
[
h1(ω) ḡ1W (ω | y1∗,y2)

1− F (ω)

f(ω)
k21(y

1∗(ω), ω)

]
so that condition (57) can equivalently be written as the requirement that, for all

functions h1,

E
[
h1(ω)

(
1− k1(y

1∗(ω), ω) + (1− G1
W (ω | y1∗,y2))

1− F (ω)

f(ω)
k21(y

1∗(ω), ω)

)]
= 0 ,

(59)

where G1
W (ω | y1∗,y2) =

ḡ1W (ω|y1∗,y2)

ḡ1W (ω|y1∗,y2)
. Condition (59) can hold only if, for all ω,

1− k1(y
1∗(ω), ω) + (1− G1

W (ω | y1∗,y2))
1− F (ω)

f(ω)
k21(y

1∗(ω), ω) = 0 , (60)

or, equivalently, if

1− k1(y
1∗(ω), ω)

k1(y1∗(ω), ω)
= −(1− G1

W (ω | y1∗,y2))
1− F (ω)

f(ω)

k21(y
1∗(ω), ω)

k1(y1∗(ω), ω)
. (61)

31



Using T ′(y1∗(ω)) = 1− k1(y
1∗(ω), ω) we can rewrite this equation as

T ′(y1∗(ω))

1− T ′(y1∗(ω))
= −(1− G1

W (ω | y1∗,y2))
1− F (ω)

f(ω)

k21(y
1∗(ω), ω)

k1(y1∗(ω), ω)
, (62)

which is what had to be shown.

Minimizing W 2(y1,y2). The following Lemma describes the solution to another

auxiliary problem for party 1, namely the problem to choose policy with the objective

to minimize what is at stake for the supporters of party 2. We omit a proof and

discussion of the Lemma as it would involve only a straightforward adjustment to

those of Lemma 7. The Lemma involves a weighting function G2
W for information

rents that is derived from W 2(y1,y2) = E[G2
W (u(y1, ω) − u(y2, ω) | ω)] along the

same lines as G1
W is derived from W 1(y1,y2), where we now have:

g2W (· | ω) ≡ 1−B
(
u(y1, ω)− u(y2, ω) | ω

)
.

Lemma 8. Given y2, the solution to miny1 W 2(y1,y2) is such that, for all ω,

T ′(y1(ω))

1− T ′(y1(ω))
= −1− F (ω)

f(ω)

(
1− G2

W (ω | y1,y2)
) k21(y

1(ω), ω))

k1(y1(ω), ω)
. (63)

Party 1's best response. We introduce notation for a weighted average of G1
W

and G2
W . Let

γ1(ω | y1,y2) :=
1

1 + Π1(y1,y2)
g1W (u(y1, ω)− u(y2, ω) | y1, y2)

+
Π1(y1,y2)

1 + Π1(y1,y2)
g2W (u(y1, ω)− u(y2, ω) | y1, y2)

=
1

1 + Π1(y1,y2)
B
(
u(y1, ω)− u(y2, ω) | ω

)
+

Π1(y1,y2)

1 + Π1(y1,y2)

(
1−B

(
u(y1, ω)− u(y2, ω) | ω

))
and

γ̄1(ω | y1, y2) := E[γ1(ω′ | y1, y2) | ω′ ≥ ω] .
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Also de�ne

Γ1(ω | y1,y2) :=
γ̄1(ω | y1,y2)

γ̄1(ω | y1,y2)
.

Lemma 9. Given y2, if y1 is a maximizer of Π1(y1,y2) then, for all ω,

T ′(y1(ω))

1− T ′(y1(ω))
= −1− F (ω)

f(ω)

(
1− Γ1(ω | y1,y2)

) k21(y
1(ω), ω))

k1(y1(ω), ω)
. (64)

Proof. Given y2 we look at the problem to choose y1 with the objective to maximize

Π1(y1,y2) =
W 1(y1,y2)

W 2(y1,y2)
.

Suppose that y1∗ is a solution to that problem. Then, it must also be that case that

µ = 0 solves the problem to choose a scalar µ with the objective to maximize

Π1(y1∗ + µ h1,y2) =
W 1(y1∗ + µ h1,y2)

W 2(y1∗ + µ h1,y2)
.

for any given but arbitrary function h1. That is, we can characterize y1∗ be the

requirement that
∂Π1(y1∗ + µ h1,y2)

∂µ

∣∣∣∣
µ=0

= 0 ,

or, equivalently, that

W 1
h1(y1∗,y2) W 2(y1∗,y2)−W 1(y1∗,y2) W 2

h1(y1∗,y2) = 0 ,

where W j
h1 is the Gateaux di�erential of W j in direction h1. The following equations

provide a characterization ofW 1
h1 andW 2

h1 The equation follow from a straightforward

adaptation of the arguments in the proof of Lemma 7. The Gateaux di�erential of

W 1 in the direction h1 evaluated at (y1∗,y2) equals

W 1
h1(y1∗,y2) = ḡ1W (ω | y1∗,y2)×

E
[
h1(ω)

{
1− k1(y

1∗(ω), ω) + 1−F (ω)
f(ω)

(1− G1
W (ω | y1∗,y2)) k21(y

1∗(ω), ω)
}]

.

(65)
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The Gateaux di�erential of W 2 in the direction h1 evaluated at (y1∗, y2) equals

W 2
h1(y1∗,y2) = −ḡ2W (ω | y1∗,y2)×

E
[
h1(ω)

{
1− k1(y

1∗(ω), ω) + 1−F (ω)
f(ω)

(1− G2
W (ω | y1∗,y2)) k21(y

1∗(ω), ω)
}]

.

(66)

Straightforward algebra now yields the observation that the Gateaux di�erential of

Π1 = W 1/W 2 in the direction h1 evaluated at (y1∗,y2) has the same sign as

W 1
h1(y1∗,y2) W 2(y1∗,y2)−W 1(y1∗,y2) W 2

h1(y1∗,y2)

γ̄1(ω | y1∗,y2)(1 + Π1(y1∗,y2))W 2(y1∗,y2)

=
1

γ̄1(ω | y1∗,y2)

{
1

1 + Π1(y1∗,y2)
W 1

h1(y1∗,y2)− Π1(y1∗,y2)

1 + Π1(y1∗,y2)
W 2

h1(y1∗,y2)

}
Also notice that

1

1 + Π1(y1∗,y2)
ḡ1W (ω | y1∗,y2)

(
1− G1

W (ω | y1∗,y2)
)

+
Π1(y1∗,y2)

1 + Π1(y1∗,y2)
ḡ2W (ω | y1∗,y2)

(
1− G2

W (ω | y1∗,y2)
)

= γ̄1(ω | y1∗,y2)
(
1− Γ1(ω | y1∗,y2)

)
.

Therefore, expressions (65) and (66) imply that the Gateaux di�erential of Π1 is given

by

E
[
h1(ω)

{
1− k1(y

1∗(ω), ω) + 1−F (ω)
f(ω)

(1− Γ1(ω | y1∗,y2)) k21(y
1∗(ω), ω)

}]
. (67)

For later reference, we state the analogues to the expressions in the proof of Lemma

9 for party 2's best response problem. The Gateaux di�erential of W 1 in the direction

h2 evaluated at (y1,y2∗) equals

W 1
h2(y1,y2∗) = −ḡ1W (ω | y1,y2∗)×

E
[
h2(ω)

{
1− k1(y

2∗(ω), ω) + 1−F (ω)
f(ω)

(1− G1
W (ω | y1,y2∗)) k21(y

2∗(ω), ω)
}]

.

(68)
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The Gateaux di�erential of W 2 in the direction h2 evaluated at (y1, y2∗) equals

W 2
h2(y1,y2∗) = ḡ2W (ω | y1,y2∗)×

E
[
h2(ω)

{
1− k1(y

2∗(ω), ω) + 1−F (ω)
f(ω)

(1− G2
W (ω | y1,y2∗)) k21(y

2∗(ω), ω)
}]

.

(69)

The Gateaux di�erential of Π1 in the direction h2 evaluated at (y1,y2∗) then has the

same sign as

W 1
h2(y1,y2∗) W 2(y1,y2∗)−W 1(y1,y2∗) W 2

h2(y1,y2∗)

γ̄1(ω | y1,y2∗)(1 + Π1(y1,y2∗))W 2(y1,y2∗)

= −E
[
h2(ω)

{
1− k1(y

2∗(ω), ω) +
1− F (ω)

f(ω)

(
1− Γ1(ω | y1,y2∗)

)
k21(y

2∗(ω), ω)

}]
.

Thus, we obtain an analogous characterization of party 2's best responses.

Lemma 10. Given y1, if y2 is a minimizer of Π1(y1,y2) then, for all ω,

T ′(y2(ω))

1− T ′(y2(ω))
= −1− F (ω)

f(ω)

(
1− Γ1(ω | y1,y2)

) k21(y
2(ω), ω))

k1(y2(ω), ω)
. (70)

D.3 An equilibrium candidate

We hypothesize the existence of a symmetric equilibrium, y1 = y2. When both

parties propose the same policies, u(y1, ω) − u(y2, ω) = 0, for all ω. Henceforth, we

make use of the following shorthands: whenever y1 = y2 we write γ∗(ω) rather than

γ1(ω | y1,y2) and Γ∗(ω) rather than Γ1(ω | y1,y2).

If y∗ is a symmetric equilibrium policy then, by Lemmas 9 and 10 it has to be

such that

T ′(y∗(ω))

1− T ′(y∗(ω))
= −1− F (ω)

f(ω)
(1− Γ∗(ω))

k21(y
∗(ω), ω))

k1(y∗(ω), ω)
. (71)

Also note that, by Assumption 3, the function y∗ is the unique candidate for a

symmetric equilibrium.

The function y∗ satis�es necessary conditions of both parties' best response prob-

lems: Given y2 = y∗, y1 = y∗ is a local extremum of the functional Π1(·,y∗) : y1 →
Π1(y1,y∗). Likewise, given y1 = y∗, y2 = y∗ is a local extremum of the functional

Π1(y∗, ·) : y2 → Π1(y∗,y2).
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D.4 Second order conditions / Saddle point

We now show that, under the premises of Proposition 4, the hypothetical equilibrium

(y1,y2) = (y∗,y∗) is a local saddle point of the function Π1.

Lemma 11. Suppose that the the premises of Proposition 4 are satis�ed. Then, a

pair of policies that satis�es (71) is a saddle point of the function Π1.

Proof. We seek to show that (y∗,y∗) is a saddle point of the function

Π1(y1,y2) =
W 1(Π1(y1,y2))

W 2(Π1(y1,y2))
.

We now state this saddle point condition in a way that enables an analysis using

functional derivatives. Let y1 = y1∗ + µ1 h1, be a perturbed version of y1∗, in which

µ1 is a scalar and h1 : Ω → R is a function. Analogously, let y2 = y2∗ + µ2 h2, be a

perturbed version of y2. The local saddle point condition according to which, for all

(y1,y2) in neighborhood of (y∗,y∗) ,

Π1(y1,y∗) ≤ Π1(y∗,y∗) ≤ Π1(y∗,y2)

can therefore be written as: for any pair of perturbations (µ1, h1) and (µ2, h2),

Π1(y∗ + µ1 h1,y∗) ≤ Π1(y∗,y∗) ≤ Π1(y∗,y∗ + µ2 h2) . (72)

Equivalently, for all functions (h1, h2), the point (µ1, µ2) = (0, 0) must be a saddle-

point of

Π1(y∗ + µ1 h1,y∗ + µ1 h2) =
W 1(y1 + µ1 h1,y2 + µ2 h2)

W 2(y∗ + µ1 h1,y2 + µ2 h2)
.

In the following, we use subscripts to indicate derivatives with respect to µ1 and µ2,

respectively.

Having a saddle point requires that all entries of the Jacobi-matrix

JΠ(y
∗, y∗) =

(
Π1

µ1(y∗,y∗)

Π1
µ2(y∗,y∗)

)
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are equal to zero and that the Hessian

HΠ(y
∗, y∗) =

(
Π1

µ1,µ1(y∗,y∗) Π1
µ1,µ2(y∗,y∗)

Π1
µ1,µ2(y∗,y∗) Π1

µ2,µ2(y∗,y∗)

)

is inde�nite. As an implication of the necessary condition (71), all entries of the

Jacobi-matrix are equal to zero. Hence, what remains to be shown is thatHΠ(y
∗,y∗) is

inde�nite. To this end, it su�ces to show that Π1
µ1,µ1(y∗,y∗) < 0, and Π1

µ2,µ2(y∗,y∗) >

0. These two inequalities can be shown to hold provided that

∂

∂µ1

{
W 1

µ1(y∗,y∗) W 2(y∗,y∗)−W 1(y∗,y∗) W 2
µ1(y∗,y∗)

}
< 0 ,

and
∂

∂µ2

{
W 1

µ2(y∗,y∗) W 2(y∗,y∗)−W 1(y∗,y∗) W 2
µ2(y∗,y∗)

}
> 0 ,

or, equivalently, if

W 1
µ1,µ1(y∗,y∗) W 2(y∗,y∗)−W 1(y∗,y∗) W 2

µ1,µ1(y∗,y∗) < 0 , (73)

and

W 1
µ2,µ2(y∗,y∗) W 2(y∗,y∗)−W 1(y∗,y∗) W 2

µ2,µ2(y∗,y∗) > 0 . (74)

Since W 1(y∗,y∗) > 0 and W 2(y∗,y∗) > 0 su�cient conditions for the validity of (73)

and (74) are

W 1
µ1,µ1(y∗,y∗) < 0 and W 2

µ1,µ1(y∗,y∗) > 0 , (75)

and

W 1
µ2,µ2(y∗,y∗) > 0 and W 2

µ2,µ2(y∗,y∗) < 0 . (76)

We can now use the expressions for W 1
µ1 , W 2

µ1 , W 1
µ2 and W 2

µ2 (or, equivalently, the

Gateaux di�erentials W 1
h1 , W 2

h1 , W 1
h2 and W 2

h2) derived above � see equations (65)

(66), (68), and (69) � to compute W 1
µ1,µ1 , W 2

µ1,µ1 , W 1
µ2,µ2 and W 2

µ2,µ2 .

Exploiting the assumption of unform party biases, so that B (∆u(·) | ω) = α (ω)+

β (ω) ∆u(·), evaluating the resulting expressions in the limit case β(ω) close to zero

and α(ω) close to 1
2
, for all ω, one can verify that (75) and (76) indeed hold. For
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instance, we then �nd that

W 1
µ1,µ1(y∗,y∗)

= ᾱ(ω)E
[
h1(ω)2

(
−k11(y

∗(ω), ω) +
1− F (ω)

f(ω)

(
1− ᾱ(ω)

ᾱ(ω)

)
k211(y

∗(ω), ω)

)]
,

where ᾱ(ω) := E [α(ω′) | ω′ ≥ ω]. With α(ω) = 1
2
, for all ω, it follows that 1− ᾱ(ω)

ᾱ(ω)
= 0,

so that

W 1
µ1,µ1(y∗,y∗) = ᾱ(ω)E

[
h1(ω)2 (−k11(y

∗(ω), ω))
]
< 0 .

D.5 Existence and uniqueness of equilibrium

We now show that the local saddle point characterized in the previous proof is indeed

an equilibrium point. To this end, we need to show that it is a best response for party

1 to play the hypothetical equilibrium strategy � on the assumption that party 2 also

plays this strategy. The results stated so far only imply that playing the hypothetical

equilibrium strategy is a local best response for party 1. What remains to be shown

is that this local best response is also the global best response and that there is no

other global best response.

In the following, we will use the contraction mapping theorem to show that this

is indeed the case. A symmetric argument then implies that it is a best response

for party 2 to play the hypothetical equilibrium strategy provided that party 1 plays

accordingly. To simplify the exposition, suppose moreover that the e�ort cost function

is iso-elastic,

k(y, ω) =
1

1 + 1/e

( y
ω

)1+1/e

.

The condition characterizing party 1's best response y1∗ to the hypothetical equi-

librium strategy y∗ then simpli�es,

1− k1(y
1∗(ω), ω)

k1(y1∗(ω), ω)
=

(
1 +

1

e

)
1− F (ω)

f(ω) ω

(
1− Γ1(ω | y1∗,y∗)

)
. (77)

or, equivalently,

ω1+ 1
ey1∗(ω)−

1
e − 1 =

(
1 +

1

e

)
1− F (ω)

f(ω) ω

(
1− Γ1(ω | y1∗,y∗)

)
.
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Now, for an arbitrary earnings function y de�ne A(y) = {A(ω,y)}ω∈Ω with

A(ω,y) =

(
1 +

(
1 +

1

e

)
1− F (ω)

f(ω) ω

(
1− Γ1(ω | y,y∗)

))−e

ω1+e .

Armed with this notation, we rewrite the previous equation one more time as

y1∗(ω) = A(ω,y1∗) ,

for all ω. We also know from the previous arguments that this equation is satis�ed

for y1∗ = y∗.

It proves useful to interpret this equation as characterizing a �xed point in a

functional space. Thus, given an arbitrary earnings function y, �rst interpret A(·)
as a functional of the earnings function y and then de�ne by yA∗(A(y)) the earnings

function that satis�es,

yA∗(A(y), ω) = A(ω,y) ,

for all ω. By interpreting yA∗ also as a function of y, we can say that a �xed point

of yA∗ is an earnings function yfix with the property that yA∗(A(yfix)) = yfix. By

the previous arguments, we also know that y∗ is such a �xed point.

Now, if y∗ is not the best response of party 1, this implies that there must be

another solution yfix ̸= y∗ to this �xed point equation. In the following we will rule

out this possibility, by showing that, under the conditions of Proposition 4, yA∗ is a

contraction mapping and therefore has one and only one �xed point.

Consider a metric space of earnings functions equipped with the supmetric, i.e. for

two earnings functions ya and yb,

d (ya,yb) := sup
ω∈Ω

| ya(ω)− yb(ω) | .

To establish that yA∗(·) is a contraction mapping, we need to show that, for any pair

(ya,yb),

d
(
yA∗(A(ya)),y

A∗(A(yb))
)
≤ δ d (ya,yb) , (78)

for some δ ∈ (0, 1).

Remember that the analysis proceeds under the assumption that α(ω) ∈ [1
2
−

ᾱ, 1
2
+ ᾱ] and β(ω) ≤ β̄, for all ω. In the following, we show that an appropriate

choice of ᾱ and β̄ ensures that, for any ω, | yA∗(ω,A(ya))− yA∗(ω,A(yb)) | becomes
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arbitrarily small. Note that

| yA∗(ω,A(ya))− yA∗(ω,A(yb)) |

= ω1+e |
(
1 + 1−F (ω)

f(ω) ω
(1− Γ1(ω | ya,y

∗)) 1
e

)−e

−
(
1 + 1−F (ω)

f(ω) ω
(1− Γ1(ω | yb,y

∗)) 1
e

)−e

| .

Moreover, by continuity,

Γ1(ω | ya,y
∗) → Γ1(ω | yb,y

∗)

implies

|
(
1 + 1−F (ω)

f(ω) ω
(1− Γ1(ω | ya,y

∗)) 1
e

)−e

−
(
1 + 1−F (ω)

f(ω) ω
(1− Γ1(ω | yb,y

∗)) 1
e

)−e

| → 0 .

Thus, it su�ces to show that Γ1(ω | ya,y
∗) is arbitrarily close to Γ1(ω | yb,y

∗) for an

appropriate choice of ᾱ and β̄.

Let ∆u(ya,y
∗, ω) = u(ya, ω)− u(y∗, ω). Also let

∆u(ya,y
∗) = max

ω∈Ω
∆u(ya,y

∗, ω) ,

and

∆u(ya,y
∗) = min

ω∈Ω
∆u(ya,y

∗, ω) .

It is without loss of generality to assume that ya is a Pareto-e�cient earnings function

which implies that

∆u(ya,y
∗) > 0 > ∆u(ya,y

∗) .

Using the notation introduced in Section D.2 above, we can write

Γ1(ω | ya,y
∗) = λ1(ya,y

∗) G1
W (ω | ya,y

∗) + λ2(ya,y
∗)) G2

W (ω | ya,y
∗) , (79)

where

G1
W (ω | ya,y

∗) =

� ω

ω
B(∆u(ya,y

∗, ω) | ω) dω� ω

ω
B(∆u(ya,y∗, ω) | ω) dω

=

� ω

ω
{α(ω) + β(ω)∆u(ya,y

∗, ω)}dω� ω

ω
{α(ω) + β(ω)∆u(ya,y∗, ω)}dω

40



and

G2
W (ω | ya,y

∗) =

� ω

ω
(1−B(∆u(ya,y

∗, ω) | ω)) dω� ω

ω
(1−B(∆u(ya,y∗, ω) | ω)) dω

=

� ω

ω
{1− α(ω)− β(ω)∆u(ya,y

∗, ω)}dω� ω

ω
{1− α(ω)− β(ω)∆u(ya,y∗, ω)}dω

and, for any pair of earnings functions (y1,y2)

λ1(y1,y2) :=
1

1 + Π1(y1,y2)

ḡ1W (ω | y1,y2)

γ̄1(ω | y1,y2)

λ2(y1,y2) :=
Π1(y1,y2)

1 + Π1(y1,y2)

ḡ2W (ω | y1,y2)

γ̄1(ω | y1,y2)

so that

λ1(y1,y2) + λ2(y1,y2) = 1.

The assumptions that α(ω) ∈ [1
2
− ᾱ, 1

2
+ ᾱ] and β(ω) ≤ β̄, for all ω, imply that, for

all ω,
1
2
+ ᾱ + β̄ ∆u(ya,y

∗) ≥ α(ω) + β(ω)∆u(ya,y
∗, ω)

≥ 1
2
− ᾱ + β̄ ∆u(ya,y

∗) ,

and
1
2
+ ᾱ− β̄ ∆u(ya,y

∗) ≥ 1− α(ω)− β(ω)∆u(ya,y
∗, ω)

≥ 1
2
− ᾱ− β̄ ∆u(ya,y

∗) .

Thus,

(1− F (ω))(1
2
+ ᾱ + β̄ ∆u(ya,y

∗))
1
2
− ᾱ + β̄ ∆u(ya,y∗)

≥ G1
W (ω | ya,y

∗)

≥
(1− F (ω))(1

2
− ᾱ + β̄ ∆u(ya,y

∗))
1
2
+ ᾱ + β̄ ∆u(ya,y∗)

,

and

(1− F (ω))(1
2
+ ᾱ− β̄ ∆u(ya,y

∗))
1
2
− ᾱ− β̄ ∆u(ya,y∗)

≥ G2
W (ω | ya,y

∗)

≥
(1− F (ω))(1

2
− ᾱ− β̄ ∆u(ya,y

∗))
1
2
− ᾱ− β̄ ∆u(ya,y∗)

,
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which implies that

lim
ᾱ,β̄→0

G1
W (ω | ya,y

∗) = lim
ᾱ,β̄→0

G2
W (ω | ya,y

∗) = 1− F (ω) . (80)

Hence, for all ω,

lim
ᾱ,β̄→0

Γ1(ω | ya,y
∗) = 1− F (ω) , (81)

and, by a symmetric argument,

lim
ᾱ,β̄→0

Γ1(ω | yb,y
∗) = 1− F (ω) , (82)

for all ω. Equations (79)-(82) imply that

limᾱ,β̄→0 Γ1(ω | ya,y
∗)− Γ1(ω | yb,y

∗) = 0 ,

for all ω. Thus, for any pair of functions (ya,yb), ᾱ, β̄ → 0 implies

Γ1(ω | ya,y
∗) → Γ1(ω | yb,y

∗)

Thus, for ᾱ, β̄ su�ciently close to zero, yA∗ is a contraction mapping.

E Case Study: Asymmetric Demobilization in the

era of Angela Merkel

We use the theoretical framework in the body of the text for an analysis of German

politics between 2005 and 2017. Merkel became the leader of the Christian democrats

(CDU, center-right) in 2000 and successfully ran for the chancellory in 2005, 2009,

2013 and 2017. Her main competitor was the Socialdemocratic Party (SPD, center-

left).

Policy space P. We consider a policy space of linear income taxes and let the vari-

able ω index an individual's position in the income distribution. One can interpret

a redistributive policy platform τ j of party j either narrowly or broadly. First, as in

Meltzer and Richard (1981), the tax rate τ j can be interpreted as the �size of the gov-

ernment� or of the welfare state, which includes income taxes and monetary transfers
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but also social insurance, public education, etc. Second, τ j can be interpreted more

broadly as an index of the party's position on the �left-right� axis, a higher value of

τ j corresponding to a more leftist platform. In addition to the previous variables,

this broad index would also account for, e.g., the party's stance on the minimum

wage, gay marriage, or nuclear energy. These policies also played an important role

in Merkel's campaign strategy which is discussed in more detail below.

Party preferences and policy preferences. By convention and without loss of

generality, we interpret smaller values of ε as more �conservative� preferences, and

larger values of ε as more �liberal� preferences. Thus, we identify party 1 with the

CDU, and party 2 with the SPD: given identical policy platforms τ 1 = τ 2, party 1

(resp., party 2) is overly supported by voters with conservative preferences ε < 0

(resp., liberal preferences ε > 0). In practice, these party preferences may be shaped

by party identities, e.g., roots in the worker's movement or the Christian churches, or

the cultural milieu from which parties recruit their members. Party preferences may

also re�ect �xed party positions that are not adjusted in the political campaign. For

instance, a salient issue in German politics in the Merkel era was whether families

should be supported by direct transfers, as advocated by the CDU, or by publicly-

provided childcare, as preferred by the SPD.

E.1 The status quo ante

We assume that potential voters of the SPD have stronger preferences for redistribu-

tive policies than potential voters of the CDU.46 Therefore, we suppose that the

electorate of party 1 (CDU) is over-represented among the rich (i.e., high ω), while

party 2 (SPD) is over-represented among the poor (i.e., low ω). Thus, for the analysis

that follows, we take as a starting point policies (τ 1, τ 2) such that:

(i) The function B(u(τ 1, ω)− u(τ 2, ω) | ω) is increasing in ω.

46For instance, the election outcomes in 2009 and 2013 show the following pattern: the vote
shares of SPD and CDU among public servants and white collar workers were, by and large, in line
with the parties' overall vote shares, see Jung et al. (2010, 2015). Hence, in absolute numbers, the
CDU got more votes from these groups than the SPD. In relative terms, the CDU was stronger
among the self-employed and the SPD among workers. The CDU voters also tend to be older and
more formally educated. Thus, SPD voters bene�t to a larger extent from redistributive policies.
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Status quo policy τ 1. The 2005 election was an early election called by Merkel's

predecessor from the SPD, Gerhard Schröder. After an adoption of controversial labor

market reforms, the SPD had lost various state elections. When the 2005 election was

called, the CDU had a strong 21 percent lead over the SPD in opinion polls, and was

expected to become by far the strongest party. The CDU decided to run on a pro-

market platform, emphasizing the need for deregulation and lower taxes. Over the

course of the election campaign, however, the SPD recovered and in the end the CDU

won only by a tiny margin of victory: it was only 1 percent ahead of the SPD. Notice

that this outcome is consistent with the implications of Proposition 2 discussed in the

main text: because it was the clear front runner, the CDU would have maximized its

chances of victory by focusing on demobilizing the opposition, rather than mobilizing

its own electorate � i.e., by running on a redistributive platform more favorable to

the SPD's core supporters rather than taking a �scally conservative stance to bene�t

its own base. Therefore, the CDU's status quo policy τ 1 ahead of the 2009 election

was �too far� to the right, i.e.:

(ii) τ 1 < τ 1∗, where τ 1∗ denotes party 1's best response to τ 2, i.e. to the policy

prosed by party 2.

One can show that this condition is satis�ed if τ 1 is small enough, or if it is below

and close enough to the best response τ 1∗(τ 2) to party 2's policy.

Odds of winning π̄1(τ 1, τ 2). In 2009, the CDU was clearly headed for reelection.

The polls estimated that the CDU would get 35 percent of the votes, against 25

percent for the SPD and less than 15 percent for all the other parties. A week before

election day, Merkel traded at 1.08 (1/12) in the �next Chancellor� market on Betfair

� i.e., party 2 was given a chance of winning 1−π̄1(τ 1, τ 2) of 8 percent. This motivates

the following assumption:

(iii) Party 1 is the likely winner of the election, i.e., the probability that party 1

wins is π̄1(τ 1, τ 2) > 1/2.

E.2 CDU's Asymmetric Demobilization strategy

After the federal election in 2005 the CDU adopted the strategy of asymmetric de-

mobilization. What de�nes this strategy is an avoidance of controversial positions

or even an adoption of the rival's position in an attempt to lower the turnout of its
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potential voters. This strategy was successful and continued during the 2013 and

2017 campaigns. The clearest illustration is given by the 2013 o�cial CDU program,

which included many policies traditionally advocated by the SPD including the cre-

ation of a minimum wage, rent control in tight city areas, a �nancial transactions

tax, a �oor on pensions, or tax credits for families and single mothers. In addition, in

2011 Merkel had announced a plan to shut down all nuclear reactors by 2022, a mea-

sure traditionally favored by the left-leaning Green party. In 2017, the CDU avoided

controversial topics on economic and social policy, and Merkel initiated a parliamen-

tary decision on the question of gay marriage that her SPD opponent had made a

central campaign issue � at the cost of alienating her own base. Narrative records of

this strategy abound in the national and international press. While such journalistic

documentation of the CDU's asymmetric demobilization strategy is overwhelming,

it is also apparent in systematic quantitative analyses of party positions by political

scientists, as we now describe.

Data sources. The Manifesto Project, see Volkens et al. (2018), provides a quanti-

tative text analysis of party manifestos. The text is split into quasi-sentences, units

of text that contain one political statement. Quasi-sentences are then assigned to cat-

egories such as Free Market Economy, Market Regulation, Welfare State Expansion

or Welfare State Limitation.47 Following our discussion of the policy space P above,

we focus on two such indices. See Volkens et al. (2018) for a detailed description of

the data set and the methodology.48

First, we use the Welfare State index, which corresponds to our narrower interpre-

tation of a policy platform τ j. This index aggregates all of the favourable mentions of

the �need to introduce, maintain or expand any public social service or social security

scheme ... for example: government funding of health care, child care, elder care and

pensions, social housing�; and of �equality: concept of social justice and the need for

fair treatment of all people�. Second, we use the Right-Left index, which corresponds

to our broader interpretation of a policy platform τ j. This index positions a party

47The overall analysis is not restricted to economic policy dimensions, but also contains categories
for positions on foreign policy, migration, political corruption and others.

48An alternative data source is the Chapel Hill Expert Survey, see Polk et al. (2017); Bakker et al.
(2015). It also provides an analysis of party positions in various dimensions, including a left-versus-
right positioning for economic policy issues. It di�ers from the Manifesto Project in that it is based
on a survey of expert opinions as opposed to the text of party manifestos. This data set does not
yet cover the most recent federal election in Germany in 2017. For the elections between 2002 and
2013 it shows the same pattern as the Party Manifesto data.
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manifesto on a one-dimensional policy space by taking the share of quasi-sentences

that are indicative of rightist positions (e.g., favorable mentions of military, freedom

and human rights, constitutionalism, political authority, free market economy, incen-

tives, economic orthodoxy, welfare state limitation, national way of life, traditional

morality, law and order, civic mindedness) and substracts the share of quasi-sentences

that are indicative of leftist positions (e.g., favorable mentions of anti-imperialism,

peace, internationalism, democracy, economic planning, protectionism, nationaliza-

tion, welfare state expansion, education expansion, labor groups).

Results. The table below describes how the positions of the CDU and the SPD

evolved according to the two indices from the Manifesto Project for the federal elec-

tions since 2002. Both indices are normalized to 1 for the SPD in 2002. Larger

(resp., smaller) values of the �Welfare State� index mean that the party's manifesto

puts stronger (resp., weaker) emphasis on the expansion of the welfare state. Larger

(resp., smaller) values of the �Right-Left� index mean that the party's manifesto is

located further to the right (resp., left). This table shows clearly that the party po-

sitions diverged between the 2002 and 2005 elections. While the SPD reinforced its

emphasis on welfare state expansion (the Welfare State index increased from 1 to

1.49) and overall moved further to the left (the Right-Left index decreased from 1 to

−0.53), instead the CDU advocated a smaller welfare state (the corresponding index

decreased from 0.85 to 0.58) and overall moved further to the right (the corresponding

index increased from 5.06 to 6.25). From 2009 onwards, instead, the CDU moved to

the left according to both indices: the welfare state index increased continuously from

0.58 in 2005 to 1.08 in 2017, and the right-left index decreased from 6.26 in 2005 to

0.67 in 2017. The two parties moved in parallel: when the SPD moved to the left,

so did the CDU. Notice that according to both indices, the CDU was substantially

more left-leaning in 2017 than the SPD was in 2002.

Welfare State Right-Left

SPD CDU SPD CDU

2002 1 0.85 1 5.06

2005 1.49 0.58 -0.53 6.25

2009 1.76 0.74 -4.46 2.13

2013 2.14 0.83 -5.75 0.63

2017 1.83 1.08 -5.23 0.67
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E.3 Analysis of turnout and election outcomes

In this section we analyze the impact of the CDU's asymmetric demobilization strat-

egy on turnout rates and election results. Our goal is to confront the comparative

statics predictions of our model with the outcomes of German elections from 2009 to

2017.

Comparative statics predictions. A major insight of our theoretical analysis is

that a party that is leading in the polls has an incentive to adopt a platform that is

appealing to the core supporters of its competitor. Thereby the potential voters of the

competitor are demobilized. Proposition 6 below is an adaptation of this �nding to the

German context described above. For convenience, we invoke additional functional

form assumptions.

Assumption 4.

a) Voting costs are linear: λ = 1.

b) Party biases ε follow a uniform distribution at each income level: for any ω ∈ Ω

there exist α (ω) ∈ (0, 1) and β (ω) > 0 such that B (x | ω) = α (ω) + β (ω)x.

Moreover, the distributions have a wide support and are close to symmetric:

There exists β̄ close to zero so that 0 < β(ω) ≤ β̄, for all ω.

There exists ᾱ close to zero so that, α (ω) ∈ [1
2
− ᾱ, 1

2
+ ᾱ].

c) The random variables η1 and η2, de�ned in Assumption 1, are uniformly dis-

tributed on an interval [1− δ, 1 + δ] with δ > 0.

d) Party 1 is more right-leaning than party 2: τ 1 ≤ τ 2 implies that B(u(τ 1, ω) −
u(τ 2, ω) | ω) is increasing in ω, and that B(u(τ 1, ω) − u(τ 2, ω) | ω) < 1

2
, i.e.,

among the very poor there is more support for party 2 than for party 1.

As the proof below makes clear, Assumption 4 is su�cient, but by no means necessary,

to obtain our next result.

Proposition 6. Suppose that Assumption 4 holds. Consider a one-dimensional policy

space and suppose that policy preferences satisfy the single crossing property and are

concave. Suppose that P = [τ , τ ] is a set of Pareto-e�cient tax systems. Consider

τ 1, τ 2 ∈ (τ , τ) with τ 1 < τ 2, π̄1(τ 1, τ 2) > 1
2
, and τ 1 < argmaxτ π̄1(τ, τ 2). Then a

marginal increase of party 1's tax rate has the following implications:
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1. Party 1's probability of winning increases.

2. Party 1's expected vote share increases.

3. Overall turnout decreases.

4. The demobilization is asymmetric: σ1∗/σ2∗ increases.

A proof of Proposition 6 can be found in Section E.4 below. In the remainder of

this section we confront the theoretical predictions in Proposition 6 with the election

outcomes in Germany.

Empirical election outcomes. As we discussed above, the strategy of asymmetric

demobilization was adopted in the 2009, 2013 and 2017 elections in response to the

2005 experience, in which Merkel learned that running on a platform that appeals to

the core voters of her own party could jeopardize an almost sure victory. This strategy

paid o�: despite a similar lead in the polls in 2009, her margin of victory over the

SPD increased from 1 percent in 2005 to more than 10 percent. Overall turnout (70.8

percent) went down by 6.9 percentage points compared to the 2005 election, and was

at an all-time low. Crucially, turnout was lower among potential SPD voters than

among potential CDU voters: 52 percent of the potential SPD voters indeed voted

for the SPD, whereas 62 percent of the potential CDU voters voted for the CDU, see

Jung et al. (2010); Forschungsgruppe Wahlen (2013b,a).49

In 2013, the CDU moved further left in parallel with the SPD. The election out-

come was again a great success for the CDU: it gained 41.5 percent of the votes, was

close to an absolute majority in parliament, and was 16 percent ahead of the SPD.

Again, mobilization was asymmetric: turnout was 51 percent among the potential

SPD voters and 69 percent among the potential CDU voters, see Forschungsgruppe

Wahlen (2015). In 2017, the rise of a right-wing populist party implied large losses for

the CDU relative to the 2013 election. The SPD also lost, however, and so the CDU

stayed more than 12 percent ahead of the SPD. Moreover, it defended its dominant

49These numbers are obtained in the following way. The research institute Forschungsgruppe
Wahlen runs a monthly survey with a representative sample of voters. The study is known as the
Politbarometer. Shortly before an election it includes questions on prospective voting behavior. A
person who plans to vote SPD or who includes the SPD in the set of conceivable parties is considered
a potential SPD voter. Likewise for the CDU. The ratio of actual to potential voters then gives the
numbers of 62 percent for the CDU and of 52 percent of the SPD. As a caveat, note that the
Politbarometer is not a panel; i.e., it is not tracking the actual voting behavior of the participants
in the survey.
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position in the German party system: as the only party with more than 30 percent of

the votes, every realistic option for government formation had the CDU in the lead-

ing role with Merkel as the chancellor. Again, turnout of potential CDU voters (60

percent) was much higher than the turnout of the potential SPD voters (44 percent),

see Forschungsgruppe Wahlen (2018). Overall turnout was slightly higher in 2013

and somewhat higher in 2017 than it was in 2009, at 76 percent, but still lower than

any turnout ratio observed prior to 2009.

These outcomes are all consistent with our theoretical comparative statics predic-

tions of Proposition 6.

E.4 Proof of Proposition 6

Party 1's probability of winning. If policy preferences are concave, and if part

b) of Assumption 4 is satis�ed, then one can easily show that the function

Π1(·, τ 2) : τ 1 7→ Π1(τ 1, τ 2) :=
W 1(τ 1, τ 2)

W 2(τ 1, τ 2)
=

σ1∗(τ 1, τ 2)B1(τ 1, τ 2)

σ2∗(τ 1, τ 2)B2(τ 1, τ 2)

is globally concave for every value of τ 2. Moreover, recall that party 1's probability of

winning the election is an increasing function of Π1(τ 1, τ 2). Thus, for every value of τ 2,

there is a unique best response and moving closer to that best response unambiguously

increases the winning probability.

Party 1's expected vote share. The total number of votes for party j is equal

to Ṽ j(τ 1, τ 2) = σj∗(τ 1, τ 2)B̃j(τ 1, τ 2). Hence party 1's expected vote share is equal to

Eη

[
σ1∗(τ1,τ2)B̃1(τ1,τ2)

σ1∗(τ1,τ2)B̃1(τ1,τ2)+σ2∗(τ1,τ2)B̃2(τ1,τ2)

]
= Eη

[(
1 + σ2∗(τ1,τ2)

σ1∗(τ1,τ2)
η2B2(τ1,τ2)
η1B1(τ1,τ2)

)−1
]

= Eη

[(
1 + W 2(τ1,τ2)

W 1(τ1,τ2)
η2

η1

)−1
]

= Eη

[(
1 + 1

Π1(τ1,τ2)
η2

η1

)−1
]
,

where expectations are taken with respect to the distribution of η2

η1
. With ∂Π1(τ1,τ2)

∂τ1
>

0, this expression increases in τ 1.
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Overall turnout. Expected overall turnout is equal to

Σ := Eη

[
σ1∗(τ 1, τ 2)B̃1(τ 1, τ 2) + σ2∗(τ 1, τ 2)B̃2(τ 1, τ 2)

B̃1(τ 1, τ 2) + B̃2(τ 1, τ 2)

]

=
σ1∗(τ 1, τ 2)B1(τ 1, τ 2) + σ2∗(τ 1, τ 2)B2(τ 1, τ 2)

E [q̄(ω)]

=
σ2∗(τ 1, τ 2)B2(τ 1, τ 2)

E [q̄(ω)]

(
1 +

W 1(τ 1, τ 2)

W 2(τ 1, τ 2)

)
=

fη (Π
1(τ 1, τ 2))Π1(τ 1, τ 2)W 2(p1, p2)

κE [q̄(ω)]

(
1 + Π1(τ 1, τ 2)

)
,

where fη is the density of the random variable η2

η1
and the last equality follows from

(28). Denoting by gη the density of the random variable η1

η2
, a change of variables

implies that fη (x) dx = −gη(
1
x
)d( 1

x
), that is, fη (x) = 1

x2 gη(
1
x
). Therefore, we can

rewrite the previous expression as

Σ :=
W 2(p1, p2)

κE [q̄(ω)]
gη

(
1

Π1(τ 1, τ 2)

)(
1 +

1

Π1(τ 1, τ 2)

)
.

We now show that ∂Σ/∂τ 1 < 0. Since all the terms in the expression for Σ are positive,

and since ∂Π1(τ1,τ2)
∂τ1

> 0 as shown above, the result follows if both gη (1/Π
1(τ 1, τ 2))

and W 2(τ 1, τ 2) are decreasing in τ 1.

We �rst show that gη (1/Π
1(τ 1, τ 2)) is decreasing in τ 1. Part (c) of Assumption 4

can be shown to imply that50

gη(x) =
1

(η̄ − η)2

�
η2I{η2∈[η,η̄]}I{η2∈[η/x,η̄/x]}dη2 ,

where η := 1 − δ, η̄ := 1 + δ and I is the indicator function. Note that if x > 1, we

have η/x < η and η̄/x < η̄, so that [η/x, η̄/x] ∩ [η, η̄] = [η, η̄/x]. Conversely, if x < 1,

50To see this, note that

Gη(x) = prob(η
1

η2 ≤ x)

=
�
prob(η1 ≤ xη2 | η2)µ2(η2)dη2

=
� xη2−η

η−η I{η2∈[η/x,η̄/x]}µ
2(η2)dη2

where µ2(η2) =
I{η2∈[η,η̄]}

η−η is the density of η2. Computing the derivative with respect to x yields the

expression for gη(x) in the text.
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we have [η/x, η̄/x] ∩ [η, η̄] = [η/x, η̄]. Therefore,

gη(x) =
1

(η̄ − η)2


� η̄

η/x
η2dη2 if x ≤ 1,� η̄/x

η
η2dη2 if x > 1.

We easily obtain that, for any x ≤ 1,

gη(x) =
η̄2 − η2/x2

2(η̄ − η)2
,

which is increasing in x. It is, moreover, straightforward to verify that Gη (1) = 1/2.

Now recall that party 1's probability of winning increases in response to the devia-

tion considered in this proof, so that ∂[1/Π1(τ 1, τ 2)]/∂τ 1 < 0. But party 2's prob-

ability of winning, which is the probability of the event σ2

σ1

B2(p1,p2)
B1(p1,p2)

≥ η1

η2
, is equal to

π̄2(τ 1, τ 2) = Gη (1/Π
1(τ 1, τ 2)). But π̄2(τ 1, τ 2) = 1− π̄1(τ 1, τ 2) < 1/2 by assumption.

Thus, we must have 1/Π1(τ 1, τ 2) < 1. Therefore, gη(1/Π
1(τ 1, τ 2)) is locally decreas-

ing in τ 1, and hence ∂gη(1/Π
1(τ 1, τ 2))/∂τ 1 < 0 in response to party 1's deviation.

We now show that W 2(τ 1, τ 2) is decreasing. First, recall that Π1(τ 1, τ 2) =
W 1(τ1,τ2)
W 2(τ1,τ2)

, or, equivalently,

Hs(W
1(τ 1, τ 2))−Hs(W

2(τ 1, τ 2))

increases in τ 1. Further note that

∂W 1(τ 1, τ 2)

∂τ 1
= E

[
B
(
u
(
τ 1, ω

)
− u

(
τ 2, ω

)
| ω
)
u1(τ

1, ω)
]

and

∂W 2(τ 1, τ 2)

∂τ 1
= −E

[(
1−B

(
u
(
τ 1, ω

)
− u

(
τ 2, ω

)
| ω
))

u1(τ
1, ω)

]
Thus, Π1(τ 1, τ 2) increasing in τ 1 is equivalent to

E
[{

B(∆u(ω) | ω) + hs(W
2)

hs(W 1)
(1−B(∆u(ω) | ω))

}
u1(τ

1, ω)

]
> 0 ,
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or, once more, equivalently,

E
[
{(1− λ′)B(∆u(ω) | ω) + λ′(1−B(∆u(ω) | ω))}u1(τ

1, ω)
]
> 0 , (83)

where ∆u(ω) is a shorthand for u(τ 1, ω)− u(τ 2, ω), and λ′ for hs(W 2)
hs(W 1)

(
1 + hs(W 2)

hs(W 1)

)−1

.

By the single crossing property u1(τ
1, ω) is decreasing in ω. Also, since τ 1 is, by

assumption, an interior policy, u1(τ
1, ω) is positive for small values of ω and negative

for large values of ω.

We now proceed by contradiction. Suppose, contrary to what we seek to show, that
∂W 2(τ1,τ2)

∂τ1
≥ 0, or, equivalently, that

E
[
(1−B(∆u(ω) | ω)) u1(τ

1, ω)
]
≤ 0 . (84)

Now compare the weighting functions

γ′(ω) := (1− λ′)B(∆u(ω) | ω) + λ′(1−B(∆u(ω) | ω)

and

γ(ω) := 1−B(∆u(ω) | ω) .

Since by hypothesis B(∆u(ω) | ω) is increasing in ω, γ′ puts less weight on low values

of ω, corresponding to positive values of u1(τ
1, ω), and more weight on high values of

ω, where u1(τ
1, ω) takes negative values. Therefore, (84) implies that

E
[
{(1− λ′)B(∆u(ω) | ω) + λ′(1−B(∆u(ω) | ω))}u1(τ

1, ω)
]
< 0 ,

a contradiction (83). Thus, the assumption that ∂W 2(τ1,τ2)
∂τ1

≥ 0 has led to a contra-

diction and must be false.

Relative turnout. Finally, we show that the relative turnout σ1∗/σ2∗ increases.

We have
σ1∗(τ 1, τ 2)

σ2∗(τ 1, τ 2)
= Π1(τ 1, τ 2)

E [q̄ (ω)]−B1(τ 1, τ 2)

B1(τ 1, τ 2)
.
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In response to party 2's deviation, we have

∂B1(τ 1, τ 2)

∂τ 1
= E

[
q̄ (ω) b

(
u
(
τ 1, ω

)
− u

(
τ 2, ω

)
| ω
) ∂u (τ 1, ω)

∂τ 1

]
= E

[
q̄ (ω) b

(
u
(
τ 1, ω

)
− u

(
τ 2, ω

)
| ω
)(

−y1 (ω) + Ey1 − τ 1

1− τ 1
eE
[
y1 (ω)

])]
.

Part b) of Assumption 4 implies that this derivative is close to zero. Hence, the result

follows immediately from the fact that Π1(τ 1, τ 2) increases in τ 1.

F Alternative Settings

F.1 A model that includes ethical voters who always vote

We now assume that the base of each party is split into three groups: a group that

always votes, a group that always abstains, and a group of voters whose voting decision

follows from a rule-utilitarian calculation. We denote by q̃jv(ω) the fraction of de�nite

voters among the type ω supporters of party j, by q̃ja(ω) the fraction of de�nite

abstainers and by q̃ju(ω) the fraction of rule-utilitarian or ethical supporters, with

q̃jv(ω)+ q̃ja(ω)+ q̃ju(ω) = 1. We assume that these are random quantities both from

the perspective of parties when choosing platforms and from the perspective of voters

when choosing whether or not to vote. We write q̃j = {q̃jv(ω), q̃ja(ω), q̃ju(ω)}ω∈Ω for

the collection of random variables that refer to party j. We denote the expected value

of the random variable q̃ju(ω) by q̄ju(ω). The total number of votes for party 1 is

then a random variable equal to

Ṽ 1(p1, p2, σ1, q̃1) = E[(q̃1v(ω) + σ1 q̃1u(ω))B(u(p1, ω)− u(p2, ω) | ω)] .

Analogously, the total number of votes for party 2 equals

Ṽ 2(p1, p2, σ2, q̃2) = E[(q̃2v(ω) + σ2 q̃2u(ω))(1−B(u(p1, ω) − u(p2, ω) | ω))] .

We assume throughout that µ → ∞, so that the per capital cost of voting is equal to

κσj.

Assume furthermore that the random variables q̃1 and q̃2 are driven by aggre-

gate shocks that a�ect the shares of de�nite and rule-utilitarian voters one the one
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hand and of de�nite abstainers on the other so that the following two properties are

satis�ed. First, the ratio of de�nite and rule-utilitarian voters is not subject to ran-

domness; i.e., shocks a�ect the ratio of potential voters to de�nite abstainers without

a�ecting the internal composition of the set of potential voters. Second, among the

supporters of party j, the ratio of de�nite to rule-utilitarian voters is the same for all

types.

Assumption 5. There is a pair of independent random variables, η1 and η2, so that,

for all ω,

q̃1v(ω) = q̄1v(ω) η1 and q̃1u(ω) = q̄1u(ω) η1

and

q̃2v(ω) = q̄2v(ω) η2 and q̃2u(ω) = q̄2u(ω) η2.

In addition, there are numbers q1v, q1u, q2v and q2u so that, for all ω

q̄1v(ω) = q1v and q̄1u(ω) = q1u

and

q̄2v(ω) = q2v and q̄2u(ω) = q2u .

Under Assumption 5 the total number of votes for party 1 can be written as

Ṽ 1(p1, p2, σ1, q̃1) = η1 V 1(p1, p2, σ1)

where V 1(p1, p2, σ1) := m1(σ1) B1(p1, p2) and m1(σ1) := q1v + σ1 q1u is a multiplier

that determines how party 1's base B1(p1, p2) is transformed into actual votes. Anal-

ogously, the votes for party 2 are given by Ṽ 2(p1, p2, σ2, q̃2) = η2 V 2(p1, p2, σ2), where

V 2(p1, p2, σ2) := m2(σ2) B2(p1, p2) and m2(σ2) = q2v + σ2 q2u. Armed with this

notation, we can express the probability that party 1 wins as

π1(p1, p2, σ1, σ2) = P

(
V 1(p1, p2, σ1)

V 2(p1, p2, σ2)

)
= P

(
m1(σ1)

m2(σ2)

B1(p1, p2)

B2(p1, p2)

)
, (85)

where P is the cdf of the random variable η2/η1. Its density function is denoted by ρ.

Note that imposing Assumption 5 implies a multiplicative separability between the

term

Rσ(p1, p2) =
m1(σ1(p1, p2))

m2(σ2(p1, p2))
, (86)
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that is shaped by the rule-utilitarian voter's participation thresholds and the ratio of

their bases

RB(p1, p2) =
B1(p1, p2)

B2(p1, p2)

so that we can write

π1(p1, p2, σ1, σ2) = P
(
Rσ(p1, p2) RB(p1, p2)

)
. (87)

Turnout. For now, we take the party platforms p1 and p2 as given and characterize

the parties' equilibrium turnout. We say that the turnout game has an interior

equilibrium if 0 < σ1∗(p1, p2) < 1 and 0 < σ2∗(p1, p2) < 1. If the function P is

continuously di�erentiable then an interior equilibrium is characterized by the �rst

order conditions

π1
σ1(·) W 1 − κ q1u B1 = 0 , (88)

and

− π1
σ2(·) W 2 − κ q2u B2 = 0 . (89)

Using Assumption 5 we can rewrite these conditions as

ρ(·)Rσ(p1, p2)

q1v + σ1 q1u
W 1 − κ B1 = 0 , (90)

and
ρ(·)Rσ(p1, p2)

q2v + σ2 q2u
W 2 − κ B2 = 0 . (91)

Equations (90) and (91) imply that

Rσ(p1, p2) =
W 1/κ B1

W 2/κ B2
=

W 1/B1

W 2/ B2
, (92)

which is the same expression as (29) in the body of the text.

Probability of winning. Suppose �rst that parties seek to maximize the proba-

bility of winning, i.e.,

P

(
Rσ(p1, p2)

B1(p1, p2)

B2(p1, p2)

)
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and party 2 seeks to minimize this expression. As P is a non-decreasing function we

can as well assume that party 1 maximizes

Rσ(p1, p2)
B1(p1, p2)

B2(p1, p2)

or any monotone transformation of it such as, e.g.,

ln
(
Rσ(p1, p2)

)
+ ln

(
B1(p1, p2)

)
− ln

(
B2(p1, p2)

)
. (93)

Remark 1. The �conventional� probabilistic voting model can be viewed as a special

case of this that is de�ned by two properties. First, since turnout is exogenous and

universal, Rσ(p1, p2) = 1 for all (p1, p2) and hence ln (Rσ(p1, p2)) = 0. Second, and

again for the reason that turnout is exogenous and universal, V 1 = B1(p1, p2) and

V 2 = B2(p1, p2) = 1−B1(p1, p2). In the probabilistic voting model, the objective of

party 1 can therefore be taken to be ln (B1(p1, p2))−ln (1−B1(p1, p2)) or simply V 1 =

B1(p1, p2). I.e., maximizing the probability of winning is the same as maximizing the

number of votes.

Remark 2. With Nash equilibrium rather than subgame perfect equilibrium as the

solution concept (or, equivalently, with µ = 0), the parties view Rσ(p1, p2) as exoge-

nously �xed, albeit at the level that is induced by the equilibrium policies. Party 1

then seeks to maximize

ln
(
B1(p1, p2)

)
− ln

(
B2(p1, p2)

)
and party 2 seeks to minimize this expression. Since B2(p1, p2) = 1 − B1(p1, p2),

party 1's objective can as well simply taken to be B1(p1, p2) and B2(p1, p2) can be

taken to be the objective of party 2. Nash equilibrium then requires that p1 solves

maxp̂1∈P B1(p̂1, p2) and that p2 solves maxp̂2∈P B2(p1, p̂2). Note that these equi-

librium are also the equilibrium conditions in the �conventional� probabilistic voting

model. Thus, equilibrium existence in the �conventional� probabilistic voting model

implies the existence of a Nash equilibrium in the given setup.

If the turnout subgame has an interior equilibrium, then the probability of winning

for party 1 can be written in a reduced form that no longer involves an explicit

reference to the participation thresholds σ1 and σ2. Speci�cally, equation (92) implies
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that the winning probability in (87) becomes

π̄1(p1, p2) = P
(
Π1(p1, p2)

)
for Π1(p1, p2) :=

W 1(p1, p2)

W 2(p1, p2)
. (94)

Thus, as in the main body of the text (Proposition 1), under Assumption 5, if (p1, p2)

is a pair of interior subgame perfect equilibrium policies, then it it is a saddle point

of the function Π.

F.2 Public goods

Our framework for studying endogenous turnout and endogenous platforms in polit-

ical competition is developed for a generic policy domain. We have emphasized that

the set of non-linear income tax systems is a policy domain of particular interest.

That said, our framework can also be applied to study the implications of endoge-

nous turnout for political competition over other policy domains. In this section, we

brie�y summarize the results from such an analysis. Speci�cally, we report on the

implications of our framework for public goods provision.

Individuals have preferences over public goods that are given by u(ω, p) = ω p −
k(p), where p ∈ R+ denotes the quantity of the public good, ω ∈ Ω is an individual's

public goods preference and the cost function k captures the per capita cost of public

goods provision.51 We begin with a characterization of the public good provision level

that party 1 would choose if its sole objective was to mobilize its supporters. In this

case, it would choose q1 with the objective to maximize

W 1(p1, p2) = E[G1
W (ω p1 − k(p1)− u(p2, ω) | ω)] ,

where we denote by

G1
W (x | ω) :=

� x

−∞
(x− ε) b(ε | ω)dε

G2
W (x | ω) :=

� ∞

x

(ε− x) b(ε | ω)dε.

Note that the derivatives of the functions G1
W (· | ω) and G2

W (· | ω) are respectively

51In an economy with a continuum of individuals and private information on public goods prefer-
ences, equal cost sharing is the only way of satisfying robust incentive compatibility, budget balance
and anonymity, see Bierbrauer and Hellwig (2016).
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given by

g1W (x | ω) := B(x | ω)

g2W (x | ω) := − (1−B(x | ω)) .

Given p2, the �rst order condition characterizing the optimal choice of p1 is

E
[
G1
W (ω | p1, p2) ω

]
= k′(p1)

where

G1
W (ω | p1, p2) = g1W (u(p1, ω)− u(p2, ω) | ω)

E[g1W (u(p1, ω)− u(p2, ω) | ω)]
.

This �rst order condition is a political economy analogue to the Samuelson rule for

�rst-best public good provision. For the given setup, the Samuelson rule stipulates

that E[ω] = k′(p), i.e., it requires equal weights for all public goods preferences.

For the purpose of mobilizing its supporters, party 1 does not apply equal weights.

Instead the public good preferences of di�erent individuals are weighted according to

the function G1
W . The public good provision level that party 1 would choose if it only

wanted only to demobilize the supporters of party 2 is such that

E
[
G2
W (ω | p1, p2) ω

]
= k′(p1) ,

and the policy that maximizes W 1(p1p2)
W 2(p1,p2)

satis�es

E[G1
SP (ω | p1, p2) ω] = k′(p1)

where

G1
SP (ω | p1, p2) := λ1(p1, p2) G1

W (ω | p1, p2) + (1− λ1(p1, p2)) G2
W (ω | p1, p2)

and λ1(p1, p2) is de�ned by

λ1(p1, p2) :=
1

1 + Π1(p1, p2)

ḡ1W (ω | p1, p2)
E[γ1(ω | p1, p2)]
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with

γ1(ω | p1, p2) :=
1

1 + Π1(p1, p2)
g1W (u1(ω)− u2(ω) | p1, p2)

+
Π1(p1, p2)

1 + Π1(p1, p2)
g2W (u1(ω)− u2(ω) | p1, p2).

Again, the party compromises between mobilizing its own supporters and demobiliz-

ing the supporters of the other party � with the weight on the own supporters being

smaller if the party is more likely to win.

F.3 Alternative modelling choices for ethical voting

The ethical voter models by Feddersen and Sandroni (2006), on the one hand, and

by Coate and Conlin (2004), on the other di�er, in some aspects. For instance,

Feddersen and Sandroni (2006) assume that the population consists of ethical voters

and of non-ethical voters. Moreover, the fraction of ethical voters is a priori uncertain.

Uncertainty over election outcomes in Feddersen and Sandroni (2006) is entirely due

to this uncertainty about the fraction of ethical voters. Coate and Conlin (2004), by

contrast, assume that all voters are ethical voters. Uncertainty over election outcomes

in their framework is driven by uncertainty over the policy preferences of these ethical

voters.

In this section of the Online-Appendix we show that these modelling choices are

not essential for our main results. We could go either way. In the main text, we

present an analysis that adopts the framework of Feddersen and Sandroni (2006).

We show that we could as well work with the model of Coate and Conlin (2004) in

Section F.3.2.

For tractability, our adaptation of Feddersen and Sandroni makes use of an as-

sumption which implies that the parties' bases add up to a constant. An advantage

is that it becomes transparent that the standard probabilistic voting model is nested

as a special case of our analysis. In Section F.3.3 we present an extension that does

not rest on this assumption. The extension shows that the parties' trade-o� between

attracting swing voters, mobilizing their own core voters and demobilizing the oppo-

nent's core voters is at the heart of our analysis, with or without the assumption that

the parties' bases add up to a constant.

The bottom line is that what is really driving our results is the combination of
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probabilistic and ethical voting. We use the probabilistic voting model to determine

preferences over policies and parties. We use a model of ethical voting to determine

turnout. How exactly we model ethical voting is of secondary importance. Our

analysis is robust to alternative speci�cations of ethical voting.

F.3.1 A general framework

We begin with a general framework for political competition that connects proba-

bilistic and ethical voting. As will become clear, the general framework contains as

special cases

� an environment where all voters are ethical voters and with uncertainty about

policy preferences as in Coate and Conlin (2004),

� an environment where the population share of ethical voters is a random quan-

tity as in Feddersen and Sandroni (2006).

Party and policy preferences. Consider a pair of policies p1 and p2 proposed by

parties 1 and 2, respectively. As in the body of the text, a type ω-individual preferes

a victory of party 1 if

u(p1, ω)− u(p2, ω) ≥ ε ,

where the utility function u captures policy preferences and the variable ε captures

idiosyncratic party preferences. We assume that, conditional on ω, ε is a random

variable with a distribution that can be represented by a cumulative distribution

function B̃(· | ω, η). Thus,

B̃(u(p1, ω)− u(p2, ω) | ω, η)

is the fraction of type ω-voters who are better o� if party 1 wins. The complement

1− B̃(u(p1, ω)− u(p2, ω) | ω, η)

is the fraction of type ω-voters who are better o� if party 2 wins.

The formulation di�ers from the one in the main text in that we allow these

distributions to be random objects themselves. The distributions of idiosyncratic

party preferences now depend on the realization of a random variable η. Thus, we

allow for uncertainty in policy preferences as in Coate and Conlin (2004).
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Example: Aggregate uncertainty on preferences. At this stage there is no

need to introduce more speci�c assumptions about η. Still, the following example

might be helpful to get an idea of what the randomness in party and policy prefer-

ences might look like: For any type ω, there is a set of feasible distributions Φ(ω),

with generic entry B̃(· | ω, η). Distributions in this set can be ordered according to

�rst order stochastic dominance. Let this order be represented by a mapping from the

unit interval to the set of feasible distributions. Also suppose that there is a random

variable ηω taking values in the unit interval, indicating which of these distributions

materializes. Finally, let there be one such a random variable for each type ω. Then

the random variable η that governs the state of the system is a stochastic process that

can be written as η = {ηω}ω∈Ω.

In Feddersen and Sadroni (2006), by contrast, party and policy preference are deter-

ministically �xed once the alternatives p1 and p2 are given. The following assumption

contains a more formal version of this statement.

Assumption 6 (Feddersen and Sandroni: No aggregate uncertainty on pref-

erences). For every type ω, there exists a cumulative distribution function B(· | ω),
so that, for all p1 and p2 and all possible realizations of η,

B̃(u(p1, ω)− u(p2, ω) | ω, η) = B(u(p1, ω)− u(p2, ω) | ω) .

Ethical and non-ethical voters. A complete description of the state of the system

also requires to specify, for each type, the fraction of ethical voters. Formally, let

q̃1(ω, η) be the fraction of ethical voters among those type ω-individuals who are

better o� if party 1 wins. Likewise denote by q̃2(ω, η) be the fraction of ethical

type ω-individuals who are better o� if party 2 wins. In the approach of Feddersen

and Sandroni these are random objects. Here, we capture this again, through the

dependence on an aggregate shock, or, more speci�cally, the random variable η. By

contrast, in the model of Coate and Conlin, q̃1 and q̃1 are set equal to one. For ease

of reference, we also highlight this assumption.

Assumption 7 (Coate and Conlin: All voters are ethical voters). For any

ω, q̃1(ω, η) and q̃2(ω, η) are degenerate random variables so that

q̃1(ω, η) = q̃2(ω, η) = 1
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for all realizations of η.

The parties' bases. The potential voters of party 1 are those who vote for party

1 in case of turning out to vote. This mass of these voters is a random variable

B̃1(p1, p2, η) := E
[
q̃1(ω, η) B̃(u(p1, ω)− u(p2, ω) | ω, η)

]
Analogously, the mass party 2's potential voters is given by

B̃2(p1, p2, η) := E
[
q̃2(ω, η)(1− B̃(u(p1, ω)− u(p2, ω) | ω, η))

]
We denote, respectively, by

B1(p1, p2) =

�
B̃1(p1, p2, η) dP (η)

and

B2(p1, p2) =

�
B̃2(p1, p2, η) dP (η)

the expected values of B̃1(p1, p2, η) and B̃2(p1, p2, η), where P is the cumulative dis-

tribution function of the random variable η. For brevity, we also refer to B1(p1, p2)

and B2(p1, p2) as the parties' bases.

The turnout subgame. As in the main text, the ethical voters of party 1 choose

σ1 to maximize

π1(σ1, σ2, p1, p2) W 1(p1, p2)− k(σ1) B1(p1, p2)

and the ethical voters of party 2 choose σ2 to maximize

(1− π1(σ1, σ2, p1, p2)) W 2(p1, p2)− k(σ2) B2(p1, p2) .

We have to adjust, however, our de�nitions of W 1(p1, p2) and W 2(p1, p2) so that they

are consistent with the more general setup that we are currently exploring. We now

let

W̃ 1(p1, p2, η) = E
[�

R
max

{
u(p1, ω)− [u(p2, ω) + ε] , 0

}
b̃(ε | ω, η) dε

]
. (95)
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denote the stakes for the ethical voters of party 1 in state η and let W 1(p1, p2) be the

expectation of W̃ 1(p1, p2, η), conditional on party 1 winning the election. We denote

by b̃(· | ω, η) the derivative of B̃(· | ω, η), i.e. b̃(· | ω, η) is the density of ε, conditional

on type ω and state η. We de�ne W̃ 2(p1, p2, η) and W 2(p1, p2) analogously. Party 1

wins the election if

σ1 B̃1(p1, p2, η) ≥ σ2 B̃2(p1, p2, η) ,

where σ1 and σ2 are the turnout rates of the potential voters of party 1 and party 2,

respectively. Equivalently, party 1 wins if

σ1

σ2
× B̃1(p1, p2, η)

B̃2(p1, p2, η)
≥ 1 .

The probability that party 1 wins the election is therefore given by

π1(σ1, σ2) = prob

(
σ1

σ2
× B̃1(p1, p2, η)

B̃2(p1, p2, η)
≥ 1

)
.

For later reference, note that we can also write this winning probability as an average

winning probability over the di�erent states η, i.e. so that

π̄1(p1, p2) =

�
prob

(
σ1

σ2
× B̃1(p1, p2, η)

B̃2(p1, p2, η)
≥ 1 | η

)
dP (η) . (96)

Note that the turnout rates enter this expression only via the ratio σ1

σ2 . This implies

that our analysis of the turnout subgame � for given policies p1 ans p2 � does not

depend on wether we adopt the Feddersen-Sandroni or the Coate-Conlin formulation.

As a consequence, Lemma 1 in the main text goes through. Thus, irrespectively of

whether Assumption 7 or Assumption 6 is imposed, in an equilibrium of the turnout

subgame

σ1∗(p1, p2)

σ2∗(p1, p2)
=

[
W 1(p1, p2) /B1(p1, p2)

W 2(p1, p2) /B2(p1, p2)

]λ
. (97)

F.3.2 Adopting the approach of Coate and Conlin: Only ethical voters

We now impose Assumption 7, i.e. the Assumption made by Coate and Conlin (2004)

that there are only ethical voters. Thus, to have non-trivial winning probabilities, we

must not at the same time impose Assumption 6. Put di�erently, we suppose that
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policy preferences are subject to aggregate shocks. We will establish two �ndings:

First, our Proposition 1 in the main text rests on a simplifying assumption on the

nature of aggregate uncertainty. The same assumption can be made in the Coate and

Conlin version of our model and has the same e�ect. Proposition 1 is therefore robust

to the way in which we model ethical voting. Second, the parties' bases add up to

a constant. A model of ethical voting that does not share this property therefore

requires to relax Assumption 7.

Recall equations (96) and (97), i.e. that taking the endogeneity of turnout into

account, the probability of winning can be written as

π̄1(p1, p2) =

�
prob

(
σ1

σ2
× B̃1(p1, p2, η)

B̃2(p1, p2, η)
≥ 1 | η

)
dP (η) ,

where
σ1

σ2
=

[
W 1(p1, p2) /B1(p1, p2)

W 2(p1, p2) /B2(p1, p2)

]λ
.

In principle, there is no problem to working directly with this objective, it gives raise

to the same tradeo�s as those highlighted in our manuscript. For a tractable compar-

ative statics analysis, we would, however, have to impose (possibly non-parametric)

assumptions on how di�erent realizations of the random variable η shift the distribu-

tions B̃(·). Our Assumption 1 in the main text is one conceivable way of doing this,

a way that has the advantage of simplicity. The main text focuses on the Feddersen-

Sandroni version of ethical voting and Assumption 1 is imposed in this context. As we

will now explain, we can get to same conclusions also with a Coate-Conlin approach.

To see this, consider the following assumption.

Assumption 8 (Multiplicative shocks I). Suppose that η = (η1, η2) is a pair of

two random variables η1 and η2 so that

B̃1(p1, p2, η) = η1 B1(p1, p2) (98)

and

B̃2(p1, p2, η) = η2 B2(p1, p2) . (99)

Under Assumption 8 the aggregate shocks η1 and η2 can be interpreted as per-

centage deviations of the random variables B̃1(p1, p2, η) and B̃2(p1, p2, η) from their

respective means. To see this, suppose that the means of both η1 and η2 are equal to
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1 and rewrite (98) and (99) as

B̃1(p1, p2, η)−B1(p1, p2)

B1(p1, p2)
= η1 − 1

and
B̃2(p1, p2, η)−B2(p1, p2)

B2(p1, p2)
= η2 − 1

The left hand sides of these equations give the percentage deviation of the random

variables B̃1(p1, p2, η) and B̃2(p1, p2, η) from their respective means. The right-hand

sides give the deviations of η1 and η2 from their means.

Under Assumption 8 the expression for the probability of winning in (96) becomes

π̄1(p1, p2) = prob

([
W 1(p1, p2) /B1(p1, p2)

W 2(p1, p2) /B2(p1, p2)

]λ
× B1(p1, p2)

B2(p1, p2)
≥ η2

η1

)
(100)

Upon letting η := η2

η1
, we can write this as

π̄1(p1, p2) = P

([
W 1(p1, p2)

W 2(p1, p2)

]λ
×
[
B1(p1, p2)

B2(p1, p2)

]1−λ
)

. (101)

P is a cumulative distribution function and hence a monotonic function. Maximiz-

ing (minimizing) π̄1(p1, p2) is therefore equivalent to maximizing (minimizing) the

argument of P , [
W 1(p1, p2)

W 2(p1, p2)

]λ
×
[
B1(p1, p2)

B2(p1, p2)

]1−λ

or any monotone transformation of it such as

(1− λ) log
B1(p1, p2)

B2(p1, p2)
+ λ log

W 1(p1, p2)

W 2(p1, p2)
.

We summarize these observations in the following Lemma.

Lemma 12. Suppose that Assumptions 7 and 8 hold. Then party 1's objective is to

maximize

Π1(p1, p2) := (1− λ) log
B1(p1, p2)

B2(p1, p2)
+ λ log

W 1(p1, p2)

W 2(p1, p2)
, (102)
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and party 2's objective is to minimize it. Thus, if (p1∗, p2∗) is a pair of interior

subgame perfect equilibrium policies, then it is a saddle point of the function Π1(p1, p2).

Note that the Lemma gives exactly the same conclusion as Proposition 1 in the

body of the text. This shows that � even though Assumptions (98) and (99) may

have a more plausible microfoundation in the Feddersen-Sadroni-model � our ap-

proach is essentially agnostic on the question how to best model ethical voting. We

can work both with the Coate-Conlin formulation and with the Feddersen-Sandroni

formulation.

The parties' bases add up to a constant. The following Lemma shows that the

Coate-Conlin speci�cation of ethical voting shares one property of the model that we

present in the main text, namely that the parties bases add up to a constant. Thus, a

change of policies that increases the base for, say, party 1 translates one-for-one into

a decrease of the base of party 2.

Lemma 13. Suppose that Assumption 7 holds. Then

B1(p1, p2) +B2(p1, p2) = 1 .

Proof. If q̃1(ω, η) = q̃2(ω, η) = 1 for all realizations of η, we have

B̃1(p1, p2, η) := E
[
q̃1(ω, η) B̃(u(p1, ω)− u(p2, ω) | ω, η)

]
= E

[
B̃(u(p1, ω)− u(p2, ω) | ω, η)

]
= 1− E

[
1− B̃(u(p1, ω)− u(p2, ω) | ω, η)

]
= 1− E

[
q̃2(ω, η)(1− B̃(u(p1, ω)− u(p2, ω) | ω, η))

]
= 1− B̃2(p1, p2, η) .
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Hence, also

B1(p1, p2) :=
�
B̃1(p1, p2, η) dP (η)

= 1−
�
B̃2(p1, p2, η) dP (η)

= 1−B2(p1, p2) .

F.3.3 An alternative version of the Feddersen-Sandroni model in which

the parties' bases do not add up to a constant

In the following, we consider an extension of our model in which the parties' bases

do not add up to a constant. It follows from Lemma 13 that we cannot employ As-

sumption 7 according to which the electorate consists, in all states, entirely of ethical

voters. For ease of exposition, we impose instead Assumption 6, due to Feddersen

and Sandroni, so that there is no aggregate uncertainty in policy preferences. This

has the expositional advantage that all the aggregate uncertainty in the model is due

to the randomness of the share of ethical voters.

We seek to show that the parties' tradeo�s between attracting swing voters, cater-

ing to their own core voters in an attempt to mobilize them and catering to the rival's

core voters with the intention to demobilize them does not rest on the assumption

that the parties's bases add up to a constant. Recall that, in the main text, this

property is implied by the assumption, that, for any type ω, the random variables

q̃1(ω, η) and q̃2(ω, η) have the same mean

q̄(ω) :=

�
q̃1(ω, η) dP (η) =

�
q̃1(ω, η) dP (η) .
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Therefore,

B1(p1, p2) =
�
B̃1(p1, p2, η) dP (η)r

=
�
E[q̃1(ω, η) B(u(p1, ω)− u(p2, ω) | ω)] dP (η)

= E
[(�

q̃1(ω, η) dP (η)
)
B(u(p1, ω)− u(p2, ω) | ω)

]
= E [q̄(ω)B(u(p1, ω)− u(p2, ω) | ω)] ,

(103)

and, by the same logic,

B2(p1, p2) = E [q̄(ω)(1−B(u(p1, ω)− u(p2, ω) | ω))] . (104)

Obviously, equations (103) and (104) imply that

B1(p1, p2) +B2(p1, p2) = E[q̄(ω)]

so that the two bases add up to an exogenous constant E[q̄(ω)], i.e. a term that does

not depend on the policies that are proposed.

Example. As a simple case that avoids the property that the parties bases add up

to a constant consider the following Assumption.

Assumption 9 (Party speci�c means). There are numbers q̄1 and q̄2 so that, for

all ω,

q̄1 =

�
q̃1(ω, η) dP (η) and q̄2 =

�
q̃2(ω, η) dP (η) .

The assumption says, all supporters of party 1 are, irrespective of their type ω,

equally likely to be of the ethical type: For any supporter of party 1, this probability is

equal to q̄1. Likewise, all supporters of party 2 are of the ethical type with probability

q̄2.

An implication of this Assumption is that

B1(p1, p2) = q̄1 E[B(u(p1, ω)− u(p2, ω) | ω)]

and

B2(p1, p2) = q̄2 E[1−B(u(p1, ω)− u(p2, ω) | ω)] .
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Hence,

B1(p1, p2) +B2(p1, p2) = q̄2 +
(
q̄1 − q̄2

)
E[B(u(p1, ω)− u(p2, ω) | ω)] ,

which implies that the bases add up to a quantity that depends on p1 and p2. The

overall mass of potential voters therefore does depend on the policies that the parties.

Also note that

B2(p1, p2) = q̄2 − q̄2E[B(u(p1, ω)− u(p2, ω) | ω)]

= q̄2 − q̄2

q̄1
q̄1 E[B(u(p1, ω)− u(p2, ω) | ω)]

= q̄2 − q̄2

q̄1
B1(p1, p2).

Note that it is still the case that an increase of party 1's base implies a decrease of

party 2's base � even though no longer one-by-one.

Henceforth and in parallel to our previous analysis we impose an assumption of

multiplicative shocks. This assumption of multiplicative shocks is consistent with

Assumption 9, i.e. both assumptions can hold simultaneously, but does not require

it. That is, we can have multiplicative shocks without party speci�c means.

Assumption 10 (Multiplicative shocks II). Let q̄1(ω) :=
�
q̃1(ω, η)dP (η) be the

expected value of the random variable q̃1(ω, η) for any ω. Analogously, let q̄2(ω) :=�
q̃2(ω, η)dP (η) be the expected value of the random variable q̃2(ω, η). Suppose that

η = (η1, η2) is a pair of two random variables η1 and η2 so that, for all ω,

q̃1(ω, η) = η1 q̄1(ω) (105)

and

q̃2(ω, η) = η2 q̄2(ω) . (106)

Note the following implications of this Assumption:

B̃1(p1, p2, η) = E[q̃1(ω, η)B(u(p1, ω)− u(p2, ω) | ω)]

= η1E[q̄1(ω)B(u(p1, ω)− u(p2, ω) | ω)]

= η1 B1(p1, p2)
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and, analogously,

B̃2(p1, p2, η) = η2 B2(p1, p2) .

This shows that equations (98) and (99) � imposed previously in our analysis of the

Coate and Conlin model � also hold in the given context. An immediate implication is

that Lemma 12 also extends to the given setup. This observation yields the following

Corollary.

Corollary 1. Suppose that Assumption 10 holds. Then party 1's objective is to

maximize

Π1(p1, p2) := (1− λ) log
B1(p1, p2)

B2(p1, p2)
+ λ log

W 1(p1, p2)

W 2(p1, p2)
, (107)

and party 2's objective is to minimize it. Thus, if (p1∗, p2∗) is a pair of interior

subgame perfect equilibrium policies, then it is a saddle point of the function Π1(p1, p2).

The signi�cance of the Corollary is to show that Proposition 1 in our main text

also extends to a model in which the parties' bases do not add up to a constant. Thus,

the tradeo�s that we highlight in our main text also extend to the given setup, albeit

with some modi�cations. To understand these modi�cations, it is again instructive

to look �rst at the polar cases µ = ∞ and µ = 0.

For µ = ∞, the parties' bases do not matter at all for the probability of winning

the election. The analysis therefore has exactly the same logic as the one presented

in the body of the text: Party 1 focuses on maximizing

W 1(p1, p2)

W 2(p1, p2)

and party 2 seeks to minimize this expression. From the perspective of party 1, the

numerator W 1(p1, p2) points to the political returns from increasing the stakes for its

own core voters, the denominator points to the political returns from decreasing the

stakes for party 2's core voters. Moreover, how these motives balance depends on

the equilibrium value of W 1(p1, p2)/W 2(p1, p2). The larger this quantity, the larger is

party 1's equilibrium probability of winning and the more it has an incentive to focus

on the demobilization of the potential voters of party 2.52

52Recall from the analysis in the main text that any equilibrium is symmetric and that this
observation makes it possible to pin down the equilibrium value of W 1(p1, p2)/W 2(p1, p2).
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The case µ = 0 is the exact mirror image. The stakes for the parties' core voters

play no role, and all that matters is the ratio of the parties bases. Party 1 now seeks

to maximize
B1(p1, p2)

B2(p1, p2)

while party 2 minimizes this expression. This problem of party 1 problem is � contrary

to our analysis in the main text � not generally equivalent to maximizing B1(p1, p2).

Remark 3. This equivalence holds, however, if we impose, in addition, Assumption

9. To see this, note that in this case,

B1(p1, p2)

B2(p1, p2)
=

B1(p1, p2)

q̄2 − q̄2

q̄1
B1(p1, p2)

,

which is an expression that is increasing in B1(p1, p2).

If the equivalence does not hold, party 1 faces a tradeo� between maximizing

B1(p1, p2) and minimizing B2(p1, p2). Maximizing B1(p1, p2) would mean to cater

primarily to those voters who are likely to swing into the base of party 1. Minimizing

B2(p1, p2) would give priority to those voters who swing out of the base of party 2 if

party 1 o�ers a better deal. Since the bases do not add up to a constant, those who

swing out of the base of party 2 do not automatically swing into the base of party 1.

Thus, there is again a tradeo� between doing something that is good for the own vote

share and doing something that is bad for the rival's vote share. How this tradeo� is

resolved depends, again, on the equilibrium value of B1(p1, p2)/B2(p1, p2). The larger

this value the larger the weight on the minimization of the rival's base.

Obviously, for values of µ that are interior, µ ∈ (0,∞) both forces are at play,

and the parties consider the implications of their platforms choices both for their

relative base advantage, as measured by B1(p1, p2)/B2(p1, p2), and for their relative

stake advantage, as measured by W 1(p1, p2)/W 2(p1, p2).

To summarize this discussion we highlight two observations: First, a more general

model in which the parties bases do not add up to a constant gives rise to the same

tradeo�s as our analysis in the main text, but possibly with some modi�cations in

the relevant formulas. Second, if we impose an additional assumption, Assumption

9, then no such modi�cations are needed and the analysis in the main text literally

extends � even though the parties' bases do not add up to a constant.
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