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A Baseline Model

This appendix provides detailed derivations and proofs for our baseline model.

A.1 Solution

The first order condition and envelope conditions associated with (3) are, respectively,

TKit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit) = βEit [V1 (Kit+1, Iit+1)]

V1 (Kit, Iit) = Π1 (Kit, Ait)− Φ2 (Kit+1, Kit)

and combining yields the Euler equation

Eit
[
βΠ1 (Kit+1, Ait+1)− βΦ2 (Kit+2, Kit+1)− TKit+1 (1− β (1− δ))− Φ1 (Kit+1, Kit)

]
= 0

where

Π1 (Kit+1, Ait+1) = αGAit+1K
α−1
it+1

Φ1 (Kit+1, Kit) = ξ̂

(
Kit+1

Kit

− (1− δ)
)

Φ2 (Kit+1, Kit) = −ξ̂
(
Kit+1

Kit

− (1− δ)
)
Kit+1

Kit

+
ξ̂

2

(
Kit+1

Kit

− (1− δ)
)2

=
ξ̂

2
(1− δ)2 − ξ̂

2

(
Kit+1

Kit

)2

In the undistorted
(
T̄K = 1

)
non-stochastic steady state, these are equal to

Φ̄1 = ξ̂δ

Φ̄2 =
ξ̂

2
(1− δ)2 − ξ̂

2
Π̄1 = αḠĀK̄α−1

Log-linearizing the Euler equation around this point yields

Eit
[
βΠ̄1π1,it+1 − βΦ̄2φ2,it+1 − τKit+1 (1− β (1− δ))− Φ̄1φ1,it

]
= 0
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where τKit+1 = log TKit+1 and

Π̄1π1,it+1 ≈ αḠĀK̄α−1 (ait+1 + (α− 1) kit+1)

Φ̄1φ1,it ≈ ξ̂ (kit+1 − kit)

Φ̄2φ2,it+1 ≈ −ξ̂ (kit+2 − kit+1)

Rearranging gives

kit+1 ((1 + β)ξ + 1− α) = Eit [ait+1 + τit+1] + βξEit [kit+2] + ξkit

where

ξ =
ξ̂

βΠ̄1

, τit+1 = −1− β (1− δ)
βΠ̄1

τKit+1

which is expression (4) in the text. Using the steady state Euler equation,

β(Π̄1 + 1− δ)− βΦ̄2 = 1 + Φ̄1 ⇒ αβḠĀK̄α−1 = 1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))
we have

ξ =
ξ̂

1− β (1− δ) + ξ̂δ
(
1− β

(
1− δ

2

)) (A.1)

τit+1 = − 1− β (1− δ)
1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))τKit+1

To derive the investment policy function, we conjecture that it takes the form in (7). Then,

kit+2 = ψ1kit+1 + ψ2 (1 + γ)Eit+1ait+2 + ψ3εit+2 + ψ4χi

Eit [kit+2] = ψ1kit+1 + ψ2 (1 + γ) ρEit [ait+1] + ψ4χi

= ψ1 (ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi) + ψ2 (1 + γ) ρEit [ait+1] + ψ4χi

= ψ2
1kit + (ψ1 + ρ)ψ2 (1 + γ)Eit [ait+1] + ψ1ψ3εit+1 + ψ4 (1 + ψ1)χi

where we have used Eit [εit+2] = 0 and Eit [Eit+1 [ait+2]] = ρEit [ait+1]. Substituting and rear-
ranging,

(1 + βξψ4 (1 + ψ1))χi + (1 + βξψ1ψ3) εit+1

+ (1 + βξ (ψ1 + ρ)ψ2) (1 + γ)Eit [ait+1] + ξ
(
1 + βψ2

1

)
kit

= ((1 + β) ξ + 1− α) (ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi)
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Finally, matching coefficients gives

ξ
(
βψ2

1 + 1
)

= ψ1 ((1 + β)ξ + 1− α)

1 + βξ (ψ1 + ρ)ψ2 = ψ2 ((1 + β)ξ + 1− α)⇒ ψ2 =
1

1− α + βξ (1− ψ1 − ρ) + ξ

1 + βξψ1ψ3 = ψ3 ((1 + β)ξ + 1− α)⇒ ψ3 =
1

1− α + (1− ψ1) βξ + ξ

1 + βξψ4 (1 + ψ1) = ψ4 ((1 + β)ξ + 1− α)⇒ ψ4 =
1

1− α + ξ (1− βψ1)

A few lines of algebra yields the expressions in (8).

A.2 Aggregation

To derive aggregate TFP and output, substitute the firm’s optimality condition for labor

Nit =

(
α2Y

1
θ

W
ÂitK

α1
it

) 1
1−α2

into the production function (1) to get

Yit =

(
α2Y

1
θ

W

) α̂2
1−α2

Â
α̂2

1−α2
it K

α̂1
1−α2
it

and using the demand function, revenues are

PitYit = Y
1
θ

1
1−α2

(α2

W

) α2
1−α2 AitK

α
it

Labor market clearing implies

∫
Nitdi =

∫ (
α2Y

1
θ

W

) 1
1−α2

AitK
α
itdi = N

so that (α2

W

) α2
1−α2 =

(
N∫

AitKα
itdi

1

Y
1
θ

1
1−α2

)α2

⇒ PitYit = Y
1
θ

AitK
α
it(∫

AitKα
itdi
)α2

Nα2

By definition,

ARPKit =
AitK

α−1
it(∫

AitKα
itdi
)α2

Y
1
θNα2
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so that

Kit =

(
Y

1
θAit

ARPKit

) 1
1−α (

N∫
AitKα

itdi

) α2
1−α

and capital market clearing implies

K =

∫
Kitdi =

(
Y

1
θ

) 1
1−α
(

N∫
AitKα

itdi

) α2
1−α
∫
A

1
1−α
it ARPK

− 1
1−α

it di

The latter two equations give

Kα
it =

 A
1

1−α
it ARPK

− 1
1−α

it∫
A

1
1−α
it ARPK

− 1
1−α

it di
K

α

Substituting into the expression for PitYit and rearranging, we can derive

PitYit =

A
1

1−α
it ARPK

− α
1−α

it(∫
A

1
1−α
it ARPK

− 1
1−α

it di

)α ∫
A

1
1−α
it ARPK

− α
1−α

it di(∫
A

1
1−α
it ARPK

− 1
1−α

it di

)α
α2

Y
1
θKα1Nα2

Using the fact that Y =
∫
PitYitdi, we can derive

Y =

∫
PitYitdi = Y

1
θAKα1Nα2

where

A =


∫
A

1
1−α
it ARPK

− α
1−α

it di(∫
A

1
1−α
it ARPK

− 1
1−α

it di

)α


1−α2

or in logs,

a = (1− α2)

[
log

(∫
A

1
1−α
it ARPK

− α
1−α

it

)
− α log

(∫
A

1
1−α
it ARPK

− 1
1−α

it

)]
The first term inside brackets is equal to

1

1− α
a− α

1− α
arpk +

1

2

(
1

1− α

)2

σ2
a +

1

2

(
α

1− α

)2

σ2
arpk −

α

(1− α)2σarpk,a
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and the second,

α

1− α
a− α

1− α
arpk +

1

2
α

(
1

1− α

)2

σ2
a +

1

2
α

(
1

1− α

)2

σ2
arpk −

α

(1− α)2σarpk,a

Combining,

a = (1− α2)

[
a+

1

2

1

1− α
σ2
a −

1

2

α

1− α
σ2
arpk

]
and

y =
1

θ
y + (1− α2) ā+

1

2

1− α2

1− α
σ2
a −

1

2
α

1− α2

1− α
σ2
arpk + α1k + α2n

=
θ

θ − 1
(1− α2) ā+

θ

θ − 1

1

2

1− α2

1− α
σ2
a −

θ

θ − 1

1

2
α

1− α2

1− α
σ2
arpk + α̂1k + α̂2n

= a+ α̂1k + α̂2n

where, using ait = 1
1−α2

âit, σ2
a =

(
1

1−α2

)2

σ2
â and α = α1

1−α2
,

a =
θ

θ − 1
¯̂a+

1

2

θ

θ − 1

1

1− α1 − α2

σ2
â −

1

2
(θα̂1 + α̂2) α̂1σ

2
arpk

= a∗ − 1

2
(θα̂1 + α̂2) α̂1σ

2
arpk

which is equation (9) in the text.
To compute the effect on output, notice that the aggregate production function is

y = α̂1k + α̂2n+ a

so that

dy

dσ2
arpk

= α̂1
dk

da

da

dσ2
arpk

+
da

dσ2
arpk

=
da

dσ2
arpk

(
1 + α̂1

dk

da

)
In the stationary equilibrium, the aggregate marginal product of capital must be a constant,
denote it by R̄, i.e., log α̂1 + y − k = r̄ so that

k =
1

1− α̂1

(log α̂1 + α̂2n+ a− r̄)
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and
dk

da
=

1

1− α̂1

Combining,
dy

dσ2
arpk

=
da

dσ2
arpk

(
1 +

α̂1

1− α̂1

)
=

da

dσ2
arpk

1

1− α̂1

A.3 Identification

In this appendix, we derive analytical expressions for the four moments in the random walk
case, i.e., when ρ = 1, and prove Proposition 1.

Moments. From expression (7), we have the firm’s investment policy function

kit+1 = ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3εit+1 + ψ4χi

and substituting for the expectation,

kit+1 = ψ1kit + ψ2 (1 + γ) (ait + φ (µit+1 + eit+1)) + ψ3εit+1 + ψ4χi

where φ = V
σ2
e
so that 1− φ = V

σ2
µ
. Then,

∆kit+1 = ψ1∆kit + ψ2 (1 + γ) ((1− φ)µit + φµit+1 + φ (eit+1 − eit)) + ψ3 (εit+1 − εit)

We will use the fact that

cov (∆kit+1, µit+1) = ψ2 (1 + γ)φσ2
µ

cov (∆kit+1, eit+1) = ψ2 (1 + γ)φσ2
e

cov (∆kit+1, εit+1) = ψ3σ
2
ε

Now,

var (∆kit+1) = ψ2
1var (∆kit) + ψ2

2 (1 + γ)2 (1− φ)2 σ2
µ

+ ψ2
2 (1 + γ)2 φ2σ2

µ + 2ψ2
2 (1 + γ)2 φ2σ2

e + 2ψ2
3σ

2
ε

+ 2ψ1ψ2 (1 + γ) (1− φ) cov (∆kit, µit)− 2ψ1ψ2 (1 + γ)φcov (∆kit, eit)

− 2ψ1ψ3cov (∆kit, εit)
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where substituting, rearranging and using the fact that the moments are stationary gives

σ2
k ≡ var (∆kit) =

(1 + γ)2 ψ2
2σ

2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

1− ψ2
1

which can be rearranged to yield expression (10). Next,

cov (∆kit+1,∆kit) = ψ1var (∆kit) + ψ2 (1 + γ) (1− φ) cov (∆kit, µit)

− ψ2 (1 + γ)φcov (∆kit, eit)− ψ3cov (∆kit, εit)

= ψ1var (∆kit)− ψ3cov (∆kit, εit)

= ψ1σ
2
k − ψ2

3σ
2
ε

so that
ρk,k−1 ≡ corr (∆kit,∆kit−1) = ψ1 − ψ2

3

σ2
ε

σ2
k

which is expression (11). Similarly,

cov (∆kit+1,∆ait) = cov (∆kit+1, µit)

= ψ1cov (∆kit, µit) + ψ2 (1 + γ) (1− φ)σ2
µ

= ψ1ψ2 (1 + γ)φσ2
µ + ψ2 (1 + γ) (1− φ)σ2

µ

= (1− φ (1− ψ1))ψ2 (1 + γ)σ2
µ

and from here it is straightforward to derive

ρk,a−1 ≡ corr (∆kit,∆ait−1) =

[
V
σ2
µ

(1− ψ1) + ψ1

]
σµψ2 (1 + γ)

σk

as in expression (12).
Finally,

arpkit = pit + yit − kit = Const + ait + αkit − kit = Const + ait − (1− α) kit

so that
∆arpkit = ∆ait − (1− α) ∆kit = µit − (1− α) ∆kit

which implies
cov (∆arpkit, µit) = (1− (1− α) (1 + γ)ψ2φ)σ2

µ
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and

λarpk,a ≡
cov (∆arpkit, µit)

σ2
µ

= 1− (1− α) (1 + γ)ψ2φ

= 1− (1− α) (1 + γ)ψ2

(
1− V

σ2
µ

)
which is expression (13).

To see that the correlation ρarpk,a is decreasing in σ2
ε , we derive

var (∆arpkit) = σ2
µ + (1− α)2 σ2

k − 2 (1− α) cov (∆kit, µit)

= σ2
µ + (1− α)2

(
ψ2

2 (1 + γ)2 σ2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

1− ψ2
1

)
− 2 (1− α)ψ2 (1 + γ)φσ2

µ

=
1

1− ψ2
1

(((
1− ψ2

1

)
(1− 2 (1− α) (1 + γ)ψ2φ) + (1− α)2 (1 + γ)2 ψ2

2

)
σ2
µ

)
+

1

1− ψ2
1

(
2 (1− α)2 (1− ψ1)ψ2

3σ
2
ε

)
so

ρarpk,a =
(1− (1− α) (1 + γ)ψ2φ)σµ

√
1− ψ2

1√(
(1− ψ2

1) (1− 2 (1− α) (1 + γ)ψ2φ) + (1− α)2 (1 + γ)2 ψ2
2

)
σ2
µ + 2 (1− α)2 (1− ψ1)ψ2

3σ
2
ε

Proof of Proposition 1. Write the variance of investment as

σ2
k = ψ2

1σ
2
k + (1 + γ)2 ψ2

2σ
2
µ + 2 (1− ψ1)ψ2

3σ
2
ε

We can rewrite the last term as a function of an observable moment, the autocovariance of
investment, which is given by

σk,k−1 = ψ1σ
2
k − ψ2

3σ
2
ε . (A.2)

Substituting,
σ2
k = ψ2

1σ
2
k + (1 + γ)2 ψ2

2σ
2
µ + 2 (1− ψ1)

(
ψ1σ

2
k − σk,k−1

)
(A.3)

To eliminate the second term, use the equation for λarpk,a to solve for

(1 + γ)ψ2φ =
1− λarpk,a

1− α
= λ̃ (A.4)

where λ̃ is a decreasing function of λarpk,a that depends only on the known parameter α.
Substituting into the expression for the covariance of investment with the lagged shock, σk,a−1 ,
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and rearranging yields
(1 + γ)ψ2 =

σk,a−1

σ2
µ

+ λ̃ (1− ψ1) (A.5)

which is an equation in ψ1 and observable moments. Substituting into (A.3) gives

σ2
k = ψ2

1σ
2
k +

(
σk,a−1

σ2
µ

+ λ̃ (1− ψ1)

)2

σ2
µ + 2 (1− ψ1)

(
ψ1σ

2
k − σk,k−1

)
and rearranging, we can derive

0 =
(
λ̂2 − 1

)
(1− ψ1)2 + 2

(
λ̂ρk,a−1 − ρk,k−1

)
(1− ψ1) + ρ2

k,a−1
(A.6)

where
λ̂ =

σµ
σk
λ̃ =

σµ
σk

(
1− λarpk,a

1− α

)
Equation (A.6) represents a quadratic equation in a single unknown, 1−ψ1, or equivalently, in
ψ1. The solution features one positive root and one negative. The positive root corresponds to
the true ψ1 that represents the solution to the firm’s investment policy. The value of ψ1 pins
down the adjustment cost parameter ξ as well as ψ2 and ψ3. We can then back out γ from
(A.5), φ (and so V) from (A.4) and finally, σ2

ε from (A.2).

B Data

Our Chinese data are from the Annual Surveys of Industrial Production conducted by the
National Bureau of Statistics. The data span the period 1998-2009 and are built into a panel
following quite closely the method outlined in Brandt et al. (2014). We measure the capital
stock as the value of fixed assets and calculate investment as the change in the capital stock
relative to the preceding period. We construct firm productivity, ait, as the log of value-added
less α multiplied by the log of the capital stock and (the log of) the average product of capital,
arpkit as the log of value-added less the log of the capital stock. We compute value-added from
revenues using a share of intermediates of 0.5 (our data does not include a direct measure of
value-added in all years). Investment growth and changes in productivity are the first differences
of the investment and productivity series (in logs) respectively.

To extract the firm-specific variation in our variables, we regress each on a year by time fixed-
effect and work with the residual. Industries are defined at the 4-digit level. This eliminates
the industry-wide component of each series common to all firms in an industry and time period
(as well the aggregate component common across all firms) and leaves only the idiosyncratic
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variation. To estimate the parameters governing firm productivity, i.e., the persistence ρ and
variance of the innovations σ2

µ, we perform the autoregression implied by (5), again including
industry by year controls. We eliminate duplicate observations (firms with multiple observations
within a single year) and trim the 3% tails of each series. We additionally exclude observations
with excessively high variability in investment (investment rates over 100%). Our final sample
in China consists of 797,047 firm-year observations.

Our US data are from Compustat North America and also spans the period 1998-2009.
We measure the capital stock using gross property, plant and equipment. We treat the data
in exactly the same manner as just described for the set of Chinese firms. We additionally
eliminate firms that are not incorporated in the US and/or do not report in US dollars. Our
final sample in the US consists of 34,260 firm-year observations.

Table B.1 reports a number of summary statistics from one year of our data, 2009: the
number of firms (with available data on sales), the share of GDP they account for, and average
sales and capital.

Table B.1: Sample Statistics 2009

No. of Firms Share of GDP Avg. Sales ($M) Avg. Capital ($M)

China 303623 0.65 21.51 8.08
US 6177 0.45 2099.33 1811.35

Materials and labor expenses. For the analyses in Section IV.A, labor input is measured
as the wage bill. The wage bill is directly reported in the Chinese data. For the US, we fol-
low, e.g., Keller and Yeaple (2009) and impute a measure of the wage bill as the number of
employees multiplied by the average industry wage, calculated using data from the NBER-CES
Manufacturing Industry Database (available at http://www.nber.org/nberces/; the average
industry wage is calculated as total industry-wide payroll divided by total employees). Expen-
ditures on intermediate inputs are reported in the Chinese data. In the US, we construct a
measure of intermediates following the method in, e.g., De Loecker and Eeckhout (2017) and
İmrohoroğlu and Tüzel (2014). Specifically, intermediate expenditures are calculated as total
expenses less labor expenses, where total expenses are calculated as sales less operating in-
come (before depreciation and amortization, Compustat series OIBDP) and labor expenses are
measured as described earlier. We can then calculate all the series used in Section IV.A, i.e.,
the raw and ‘markup-adjusted’ average revenue products of capital, labor and materials (the
inverse of materials’ share of revenues). We isolate the firm-specific variation in these series
following a similar procedure as described above, i.e., by extracting a full set of industry by
time fixed-effects and working with the residual. We trim the 1% tails of each series.
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C Computation and Estimation of Baseline Model

In this appendix, we provide details of our numerical estimation procedure and results. We
estimate the model via method of moments using the following procedure. For a given set of
parameters, we compute the cross-sectional moments of interest using the steady state distri-
bution. To do so, we cast the law of motion (7) in matrix form:

BXit = CXit−1 +DUit where

Xit =


kit

ιit

ait

Eit−1ait

 Uit =


µit

eit

εit

χi



B =


1 0 0 −ψ2(1 + γ)

−1 1 0 0

0 0 1 0

0 0 0 1

 C =


ψ1 0 0 0

−1 0 0 0

0 0 ρ 0

0 0 ρ 0

 D =


0 0 ψ3 ψ4

0 0 0 0

1 0 0 0

1− V
σ2
µ

1− V
σ2
µ

0 0

 .

Pre-multiplying by B−1 yields

Xit = B−1CXit−1 +B−1DUit = C̃Xit−1 + D̃Uit .

The steady state covariance matrix ofXit, denoted ΣX , is then obtained by solving the Lyapunov
equation:

ΣX = C̃ΣXC̃
′ + D̃ΣUD̃

′ ,

where ΣU denotes the covariance matrix of Uit. It is straightforward to compute other second
moments. For example, to obtain the covariance matrix of ∆Xit = Xit −Xit−1, note that

∆Xit = (C̃ − I)Xit−1 + D̃Uit ⇒ Σ∆X = (C̃ − I)ΣX(C̃ − I)′ + D̃ΣUD̃
′ .

We then use a non-linear solver to search over the parameter vector (ξ,V, γ, σ2
ε , σ

2
χ) to minimize

the equally-weighted distance between the model and data values for the targeted moments.
Table C.1 displays the details of our baseline estimation. In the top panel, we report the

target moments computed from the data, along with standard errors (in parentheses) and
the simulated model counterparts. The estimated parameter vector is shown in the bottom
panel along with standard errors and confidence intervals. The model is able to match the full
set of target moments quite closely in both countries (in China, the fit is essentially exact)
and the standard errors and confidence intervals indicate that the estimates are quite precise.
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Standard errors and confidence intervals are calculated using the following bootstrap procedure:
we draw 1,000 random samples (with replacement) from the data (these are block-boostraps,
i.e., we resample entire histories of firms). For each re-sampled dataset, we re-calculate the
target moments and re-estimate the model parameters. Standard errors are computed as the
standard deviations of the resulting distribution of estimated moments and parameters. 95%
confidence intervals for the parameters are computed as the 2.5th and 97.5th percentiles of the
distributions of the parameter estimates.

D Interactions Between Factors

In the main text (specifically, Table 3), we measured the contribution of each factor in isolation,
i.e., setting all other forces to zero. The top panel of Table D.1 reproduces those estimates
(labeled ‘In isolation’) and compares them to the case where all the other factors are held fixed
at their estimated levels (labeled ‘Joint’). The table shows some evidence of interactions, but
since adjustment and informational frictions are modest, the numbers are quite similar under
both approaches.

E Labor Market Distortions

This appendix presents two tractable versions of our model with labor market distortions. In
the first, these are modeled as firm-specific ‘taxes’ with an arbitrary correlation structure. The
second describes the environment from Section V.B in the main text, where all the factors
acting on investment – adjustment, informational and other – are assumed to apply to the
labor decision as well. Under both specifications, the profit function takes the same form as
in the baseline analysis with suitably re-defined productivity and curvature. This implies that
our identification arguments and empirical strategy go through exactly. More importantly,
quantifying the sources of arpk dispersion still requires only data on value-added and capital
as before.

E.1 Firm-Specific Labor Taxes

Here, we introduce labor market distortions in the form of firm-specific taxes on the cost of labor.
These distortions change the interpretation of the profitability shifter, Ait, which has implica-
tions for the correct measurement strategy of this term. But, apart from this re-interpretation,
they do not change our estimates/conclusions about the drivers of arpk dispersion.
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Table D.1: Interactions Between Factors - US

Other Factors

Adj Costs Uncertainty Correlated Transitory Permanent

In isolation
∆σ2

arpk 0.05 0.03 0.06 0.03 0.29
∆σ2

arpk

σ2
arpk

10.8% 7.3% 14.4% 6.3% 64.7%

Joint
∆σ2

arpk 0.04 0.03 0.08 0.00 0.29
∆σ2

arpk

σ2
arpk

8.0% 5.7% 17.4% 0.3% 64.7%

With firm-specific labor taxes, denoted TNit , the firm’s problem becomes

V (Kit, Iit) = max
Nit,Kit+1

Eit
[
Y

1
θ ÂitK

α1
it N

α2
it −WTNit Nit − TKit+1Kit+1 (1− β (1− δ))− Φ (Kit+1, Kit)

]
+ βEit [V (Kit+1, Iit+1)] .

The labor choice satisfies the first order condition:

Nit =

(
α2
Y

1
θ ÂitK

α1
it

WTNit

) 1
1−α2

.

Substituting, we can derive operating profits (value-added net of total wages) as

PitYit −WTNit Nit = Y
1
θ
t ÂitK

α1
it

(
α2Y

1
θ
t

ÂitK
α1
it

WTNit

) α2
1−α2

−WTNit

(
α2Y

1
θ
t

ÂitK
α1
it

WTNit

) 1
1−α2

= (1− α2)
(α2

W

) α2
1−α2 Y

1
θ

1
1−α2

Â
1

1−α2
it

(TNit )
α2

1−α2

K
α1

1−α2
it

= GAitK
α
it ,

where

Ait ≡

(
Âit

(TNit )
α2

) 1
1−α2

. (E.1)

Thus, the profit function (and therefore, the firm’s investment problem) takes the same form
as in the baseline version, except that Ait now incorporates the effect of the labor distortion
as well. With this re-interpretation, our identification strategy remains valid, so long as Ait is
correctly measured.
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Measuring profitability. Recall that our empirical strategy in the baseline analysis mea-
sured profitability shocks using ait = vait−αkit. Expression (E.1) shows that this is the correct
measure of profitability even with distortions to labor. This result implies that, apart from
issues of interpretation, our quantitative analysis is not affected at all. In other words, our
empirical strategy requires neither data on labor inputs nor taking a stand on the extent of
labor distortions.

This is not the case for an alternative strategy that directly estimates the true productivity,
âit ≡ log Âit = vait − α1kit − α2nit, and uses it to construct the implied profitability term
as ait = 1

1−α2
âit, i.e., without controlling for labor distortions. It is easy to see that when

there are firm-specific labor distortions, this approach leads to an incorrect measure of ait, and
therefore, to biased estimates of (ρ, σ2

µ) and the other parameters. In particular, consider the
empirically relevant case where the labor distortion is positively correlated with productivity:
using a measure of Ait inferred from the estimated Âit without adjusting for TNit will overstate
the variability in profitability. Quantitatively, this bias can be very large: in our data, this
strategy produces estimates of (ρ, σµ) of (0.90, 0.28) and (0.88, 0.35) for the US and China,
respectively, compared to our baseline estimates of (0.93, 0.08) and (0.91, 0.15). In other words,
it overstates the volatility of shocks by a factor of almost 3.

This is essentially the strategy followed by Asker et al. (2014) and contributes to the dif-
ference between our estimates and theirs. To get a sense of the magnitude, a model with only
convex adjustment costs estimated to match the variability of investment growth would yield
an adjustment cost parameter, ξ, that is about 3 times higher in both countries under this more
volatile shock process than under the baseline process (i.e., using a profitability measure that
does account for labor distortions). This, in turn, would imply arpk dispersion from adjustment
costs alone that exceeds the total observed dispersion in the US (and is about 60% of the total
in China).

E.2 Frictional Labor

Here, we provide detailed derivations for the case of frictional labor in Section V.B.
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E.2.1 Model Solution

When labor is chosen under the same frictions as capital, the value function takes the form

V (Kit, Nit, Iit) = max
Kit+1,Nit+1

Eit
[
Y

1
θ ÂitK

α1
it N

α2
it

]
(E.2)

− Eit [Tit+1Kit+1 (1− β (1− δ)) + Φ (Kit+1, Kit)]

− Eit [Tit+1WNit+1 (1− β (1− δ)) +WΦ (Nit+1, Nit)]

+ Eit [βV (Kit+1, Nit+1, Iit+1)]

where the adjustment cost function Φ (·) is as defined in (2). Because the firm makes a one-time
payment to hire incremental labor, the cost of labor W is now to be interpreted as the present
discounted value of wages. Capital and labor are both subject to the same adjustment frictions,
the same distortions, denoted Tit+1, and are chosen under the same information set, though the
cost of labor adjustment is denominated in labor units.

The first order and envelope conditions yield two Euler equations:

Eit [Tit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit)] = Eit
[
βα1Y

1
θ Âit+1K

α1−1
it+1 N

α2
it+1 − βΦ2 (Kit+2, Kit+1)

]
WEit [Tit+1 (1− β (1− δ)) + Φ1 (Nit+1, Nit)] = Eit

[
βα2Y

1
θ Âit+1K

α1
it+1N

α2−1
it+1 − βWΦ2 (Nit+2, Nit+1)

]
To show that this setup reduces to a Bellman equation of the same form as (3), we guess

– and verify – that there exists a constant η such that the firm’s labor policy takes the form
Nit+1 = ηKit+1.

Under this conjecture, we can rewrite the firm’s problem in (E.2) as

Ṽ (Kit, Iit) = max
Kit+1

Eit
[

ηα2

1 +Wη
Y

1
θ ÂitK

α1+α2
it − Tit+1Kit+1 (1− β (1− δ))

]
+ Eit

[
−Φ (Kit+1, Kit) + βṼ (Kit+1, Iit+1)

]
Let {K∗it} be the solution to this problem. By definition, it must satisfy:

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
β

(α1 + α2)Y
1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

1 +Wη

]
(E.3)

− Eit
[
βΦ2

(
K∗it+2, K

∗
it+1

)]
Now substitute the conjecture N∗it = ηK∗it into the optimality condition for labor from the
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original problem and rearrange to get:

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
β
α2Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

Wη

]
(E.4)

− Eit
[
βΦ2

(
K∗it+2, K

∗
it+1

)]
If η satisfies

α1 + α2

1 +Wη
=

α2

Wη
⇒ Wη =

α2

α1

(E.5)

then (E.4) is identical to (E.3). In other words, under (E.5), the sequence {K∗it, N∗it} satisfies
the optimality condition for labor from the original problem. It is straightforward to verify that
this also implies that {K∗it, N∗it} satisfy the optimality condition for capital from the original
problem:

Eit
[
Tit+1 (1− β (1− δ)) + Φ1

(
K∗it+1, K

∗
it

)]
= Eit

[
βα1Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2 − βΦ2

(
K∗it+2, K

∗
it+1

)]
= Eit

[
β
α2Y

1
θ Âit+1K

∗α1+α2−1
it+1 ηα2

Wη
− βΦ2

(
K∗it+2, K

∗
it+1

)]

Thus, this version can be solved following the same steps as the baseline setup. The firm’s
problem takes the same form as expression (3), with α = α1 + α2, G = ηα2Y

1
θ

1+Wη
and Ait = Âit.

E.2.2 Aggregation

To derive aggregate output and TFP for this case, we use Nit = ηKit where η = α2

α1W
. Substi-

tuting into the revenue function gives

PitYit = Y
1
θ Âitη

α2Kα1+α2
it = Y

1
θ Âitη

α2Kα
it

By definition,
ARPKit = Y

1
θ Âitη

α2Kα−1
it

so that

Kit =

(
Y

1
θ Âitη

α2

ARPKit

) 1
1−α
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so that

PitYit = Y
1
θ ηα2Âit

(
Y

1
θ ηα2Âit

ARPKit

) α
1−α

= Y
1
θ

1
1−αη

α2
1−α Â

1
1−α
it ARPK

− α
1−α

it

and
Y =

∫
PitYitdi = Y

1
θ

1
1−αη

α2
1−α

∫
Â

1
1−α
it ARPK

− α
1−α

it di

or, rearranging,

Y = Y
1
θ
α̂1+α̂2
1−α η

α̂2
1−α

(∫
Â

1
1−α
it ARPK

− α
1−α

it di

) θ
θ−1

Capital market clearing implies

K =

∫
Kitdi = Y

1
θ

1
1−α

t η
α2
1−α

∫
Â

1
1−α
it ARPK

− 1
1−α

it di

so that

K α̂1N α̂2 = Y
1
θ
α̂1+α̂2
1−α

t ηα̂2+
α2
1−α (α̂1+α̂2)

(∫
Â

1
1−α
it ARPK

− 1
1−α

it di

)α̂1+α̂2

Aggregate TFP is

A =
Y

K α̂1N α̂2
=

(∫
Â

1
1−α
it ARPK

− α
1−α

it di

) θ
θ−1

(∫
Â

1
1−α
it ARPK

− 1
1−α

it di

)α̂1+α̂2

Following similar steps as in the baseline case, we can derive

a = a∗ − 1

2

θ

θ − 1

α

1− α
σ2
arpk

Under constant returns to scale in production, this simplifies to

a = a∗ − 1

2
θσ2

arpk

The output effects of σ2
arpk are the same as in the baseline case.
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F Heterogeneity in Markups/Technologies

Baseline approach. The firm’s cost minimization problem is

min
Kit,Nit,Mit

RtT
K
it Kit +WtT

N
it Nit + PM

it Mit s.t. Yit ≤ K α̂it
it N

ζ̂−α̂it
it M1−ζ̂

it

The first order condition on Mit gives

PM
it =

(
1− ζ̂

) Yit
Mit

MCit ⇒ PM
it Mit

PitYit
=
(

1− ζ̂
)MCit

Pit

where MCit is the Lagrange multiplier on the constraint (i.e., the marginal cost). Rearranging
gives expression (14). In logs,

log
Pit
MCit

= log
(

1− ζ̂
)

+ log
PitYit
PM
it Mit

⇒ σ2

(
log

Pit
MCit

)
= σ2

(
log

PitYit
PM
it Mit

)
Similarly, the optimality conditions for Kit and Nit yield:

log
PitYit
Kit

= log
Pit
MCit

− log α̂it + τKit + Constant

log
PitYit
Nit

= log
Pit
MCit

− log
(
ζ̂ − α̂it

)
+ τNit + Constant

Log-linearizing around the average α̂it, denote it ᾱ, and ignoring constants yields log
(
ζ̂ − α̂it

)
≈

− ᾱ

ζ̂−ᾱ log α̂it. Substituting gives expression (17).

Proof of Proposition 2. Assuming log α̂it is uncorrelated with τKit and τNit ,

cov
(
ãrpkit, ãrpnit

)
= − ᾱ

ζ̂ − ᾱ
σ2

log α̂ + cov
(
τ kit, τ

n
it

)
(F.1)

σ2

ãrpk
= σ2

log α̂ + σ2
τk (F.2)

σ2
ãrpn =

(
ᾱ

ζ̂ − ᾱ

)2

σ2
log α̂ + σ2

τn (F.3)

From here, we can solve for the correlation of the distortions:

ρ
(
τKit , τ

N
it

)
=

cov
(
ãrpkit, ãrpnit

)
+ ᾱ

ζ̂−ᾱσ
2
log α̂√

σ2

ãrpk
− σ2

log α̂

√
σ2
ãrpn
−
(

ᾱ

ζ̂−ᾱ

)2

σ2
log α̂

which is increasing in σ2
log α̂. An upper bound for σ2

log α̂, denoted σ̄2
log α̂, is where ρ

(
τKit , τ

N
it

)
= 1,
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and substituting and rearranging gives

σ̄2
α̂ =

σ2

ãrpk
σ2
ãrpn
− cov

(
ãrpkit, ãrpnit

)2

2 ᾱ

ζ̂−ᾱcov
(
ãrpkit, ãrpnit

)
+
(

ᾱ

ζ̂−ᾱ

)2

σ2

ãrpk
+ σ2

ãrpn

Heterogeneous materials elasticities. We now allow for heterogeneity in ζ̂it, so the cost
minimization problem becomes

min
Kit,Nit,Mit

RtT
K
it Kit +WtT

N
it Nit + PM

it Mit s.t. Yit ≤ K α̂it
it N

ζ̂it−α̂it
it M1−ζ̂it

it

The first order conditions give the optimal average products of inputs (after some rearranging):

ARPKit ≡
PitYit
Kit

=
Pit
MCit

1

α̂it
TKit Rt

ARPNit ≡
PitYit
Nit

=
Pit
MCit

1

ζ̂it − α̂it
TNit Wt

ARPMit ≡
PitYit
PM
it Mit

=
Pit
MCit

1

1− ζ̂it

or in logs:

arpkit = ϕit − log α̂it + τKit + Constant

arpnit = ϕit − log
(
ζ̂it − α̂it

)
+ τNit + Constant

≈ ϕit −
ζ̄

ζ̄ − ᾱ
log ζ̂it +

ᾱ

ζ̄ − ᾱ
log α̂it + τNit + Constant

arpmit = ϕit − log
(

1− ζ̂it
)

≈ ϕit +
ζ̄

1− ζ̄
log ζ̂it + Constant

where, to ease notation, we define ϕit ≡ log Pit
MCit

as the log markup and the approximations
reflect log-linearizations around the average elasticities, denoted ᾱ and ζ̄.

There are three categories of firm-specific variation in the average product of inputs: markups,
ϕit, input elasticities in production, α̂it and ζ̂it, and distortions, τKit and τNit . We make the follow-
ing key assumption: this variation is independent across categories. Within categories, however,
we allow for arbitrary correlations. In other words, the covariances σlog α̂,log ζ̂ and στK ,τN are
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unrestricted but the other covariances are set to zero.1 We can derive the following expressions
for the second moments of the average products of the three inputs:

σ2
arpk = σ2

ϕ + σ2
log α̂ + σ2

τK (F.4)

σ2
arpn = σ2

ϕ +

(
ζ̄

ζ̄ − ᾱ

)2

σ2
log ζ̂

+

(
ᾱ

ζ̄ − ᾱ

)2

σ2
log α̂ −

2ᾱζ̄(
ζ̄ − ᾱ

)2σlog α̂,log ζ̂ + σ2
τN (F.5)

σarpk,arpn = σ2
ϕ +

ζ̄

ζ̄ − ᾱ
σlog α̂,log ζ̂ −

ᾱ

ζ̄ − ᾱ
σ2

log α̂ + στK ,τN (F.6)

σ2
arpm = σ2

ϕ +

(
ζ̄

1− ζ̄

)2

σ2
log ζ̂

(F.7)

σarpk,arpm = σ2
ϕ −

ζ̄

1− ζ̄
σlog α̂,log ζ̂ (F.8)

σarpn,arpm = σ2
ϕ −

ζ̄2(
ζ̄ − ᾱ

) (
1− ζ̄

)σ2
log ζ̂

+
ᾱζ̄(

ζ̄ − ᾱ
) (

1− ζ̄
)σlog α̂,log ζ̂ (F.9)

The following result states that we can identify the dispersion in (log) markups and materials
elasticities from the second moments of arpm.

Lemma 1. The parameters σ2
ϕ, σ

2
log ζ̂

and σlog α̂,log ζ̂ are uniquely identified by σ2
arpm, σarpn,arpm

and σarpk,arpm.

Proof. Rearrange (F.9) to derive

ζ̄

1− ζ̄
σlog α̂,log ζ̂ =

ζ̄ − ᾱ
ᾱ

(
σarpn,arpm − σ2

ϕ

)
+

1− ζ̄
ᾱ

(
ζ̄

1− ζ̄

)2

σ2
log ζ̂

Substituting into (F.8) gives:

σ2
ϕ =

ᾱ

ζ̄
σarpk,arpm +

ζ̄ − ᾱ
ζ̄

σarpn,arpm +
1− ζ̄
ζ̄

(
ζ̄

1− ζ̄

)2

σ2
log ζ̂

and then into (F.7) yields:(
ζ̄

1− ζ̄

)2

σ2
log ζ̂

= ζ̄σ2
arpm − ᾱσarpk,arpm −

(
ζ̄ − ᾱ

)
σarpn,arpm

This equation pins down σ2
log ζ̂

. Given this, the other two equations yield σ2
ϕ and σlog α̂,log ζ̂ .

Intuitively, the greater the positive covariation in the average revenue products of the three
inputs, the lower (higher) the variation in the output elasticity of materials (markups). Using

1The fact that materials shares were relatively uncorrelated with size provides some justification for this
assumption.
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these estimates, we can appropriately adjust the second moments of arpk and arpn and apply
the logic of Proposition 2 to derive an upper bound for the variation in α̂it. We state this result
formally in the following proposition:

Proposition 1. The dispersion in log α̂it satisfies

σ2(log α̂it) ≤
σ̃2
arpkσ̃

2
arpn − ˜cov (arpk, arpn)2

2 ᾱ

ζ̂−ᾱ ˜cov (arpk, arpn) +
(

ᾱ

ζ̂−ᾱ

)2

σ̃2
arpk + σ̃2

arpn

. (F.10)

where

σ̃2
arpk ≡ σ2

arpk − σ2
ϕ

σ̃2
arpn ≡ σ2

arpn − σ2
ϕ −

(
ζ̄

ζ̄ − ᾱ

)2

σ2
log ζ̂

+
2ᾱζ̄(
ζ̄ − ᾱ

)2σlog α̂,log ζ̂

˜cov (arpk, arpn) ≡ σarpk,arpn − σ2
ϕ −

ζ̄

ζ̄ − ᾱ
σlog α̂,log ζ̂ .

Proof. Note that

σ̃2
arpk = σ2

log α̂ + σ2
τK

σ̃2
arpn =

(
ᾱ

ζ̄ − ᾱ

)2

σ2
log α̂ + σ2

τN

˜cov (arpk, arpn) = − ᾱ

ζ̄ − ᾱ
σ2

log α̂ + cov
(
τKit , τ

N
it

)
.

which are identical to expressions (F.1), (F.2) and (F.3). The proof is then the same as for
Proposition 2.

In Table F.1, we report the results from applying this methodology to our datasets. Com-
paring them to the results in Table 4 reveals that allowing for unobserved variation in the
output elasticity of materials slightly attenuates the contribution of markup dispersion and
raises the upper bound for the effects of technology heterogeneity, but the values are extremely
close. One reason why the two approaches are so similar is that the variation in the materials
elasticity (across firms within the same industry), σ2

log ζ̂
, is estimated to be very small in both

countries: 0.007 in the US and 0.018 in China.
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Table F.1: Heterogeneous Markups and Technologies with Firm-Specific Materials Elasticities

China US

Covariance matrix arpkit arpnit arpmit arpkit arpnit arpmit

arpkit 1.30 0.41
arpnit 0.33 0.69 0.10 0.20
arpmit 0.01 0.01 0.05 0.03 0.05 0.06

Estimated ∆σ2
arpk Level Share Level Share

Dispersion in Markups 0.03 (2.4%) 0.05 (11.8%)
Dispersion in log α̂it 0.31 (24.1%) 0.21 (51.6%)
Total 0.34 (26.5%) 0.26 (63.4%)

G Size-Dependent Policies

In this appendix, we explore the relationship between size- and productivity-dependent factors.
First, note that our empirical strategy can be thought of as essentially recovering the law of
motion for kit – in particular, the coefficients ψ1, ψ2 (1 + γ), ψ3 and ψ4. Importantly, these
estimates are invariant to assumptions about γk, which only affects the mapping from these
coefficients to the underlying structural parameters. For example, suppose we assume γk = 0.
Then, given our values for (α, β, δ), the estimated ψ1 identifies the adjustment cost parameter
ξ. Next, the value of ξ can be used to pin down ψ2, allowing us to recover γ from the estimated
ψ2 (1 + γ). This procedure can be applied for any given γk as well. Since the estimated ψ1 and
ψ2 (1 + γ) do not change, for any γk, the adjustment cost parameter becomes, from (8),

ξ = ψ1
1− α− γk

βψ2
1 + 1− ψ1 (1 + β)

.

The next step is the same as before: the estimated ξ implies a value for ψ2, which then allows us
to back out γ from the estimated ψ2 (1 + γ). Table 5 applies this procedure for various values
of γk to trace out a set of parameters that are observationally equivalent, i.e., that cannot be
distinguished using only data on capital and value-added.

H Financial Frictions

Including the liquidity cost, the firm’s problem can be written as

V (Kit, Bit, Iit) = max
Bit+1,Kit+1

Eit
[
Π (Kit, Ait) +RBit −Bit+1 − TKit+1Kit+1 (1− β (1− δ))

]
− Φ (Kit+1, Kit)−Υ (Kit+1, Bit+1) + βEit [V (Kit+1, Bit+1, Iit+1)]
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The first order conditions are given by

Eit [βΠ1 (Kit+1, Ait+1)− βΦ2 (Kit+2, Kit+1)] = TKit+1 (1− β (1− δ)) + Φ1 (Kit+1, Kit) + Υ1 (Kit+1, Bit+1)

−Υ2 (Kit+1, Bit+1) + βR = 1

Note that

Υ2 (Kit+1, Bit+1) = −ν̂ω2

Kω1
it+1

Bω2+1
it+1

, Υ1 (Kit+1, Bit+1) = ν̂ω1

Kω1−1
it+1

Bω2
it+1

Using the FOC for Bit+1

1 = ν̂ω2

Kω1
it+1

Bω2+1
it+1

+ βR ⇒ Bit+1 =

(
v̂ω2

1− βR

) 1
ω2+1

K
ω1
ω2+1

it+1

Υ1 (Kit+1, Bit+1) = ν̂ω1

Kω1−1
it+1

Bω2
it+1

= ν̂ω1

Kω1−1
it+1(

v̂ω2

1−βR

) ω2
ω2+1

K
ω2ω1
ω2+1

it+1

=

(
ν̂

ωω2
2

) 1
ω2+1

ω1 (1− βR)
ω2
ω2+1 K

ω1−(ω2+1)
ω2+1

it+1

= ν (1− βR)
ω2
ω2+1 Kω

it+1 ,

where

ν ≡
(

ν̂

ωω2
2

) 1
ω2+1

ω1

ω ≡ ω1 − (ω2 + 1)

ω2 + 1
.

Log-linearizing,

Ῡ1 + Ῡ1υ1t+1 ≈ ν (1− βR)
ω2
ω2+1 K̄ω + ν (1− βR)

ω2
ω2+1 K̄ωωkit+1

Ῡ1υ1t+1 ≈ ν (1− βR)
ω2
ω2+1 K̄ωωkit+1 .

Substituting into the FOC,

Eit
[
αβḠĀK̄α−1 (ait+1 + (α− 1) kit+1) + βξ̂ (kit+2 − kit+1)− τKit+1 (1− β (1− δ))

]
= ξ̂ (kit+1 − kit) + ν (1− βR)

ω2
ω2+1 K̄ωωkit+1 ,

or
kit+1 ((1 + β) ξ + 1− α− γk) = Eit [ait+1 + τit+1] + βξEit [kit+2] + ξkit ,
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where

γk = −ν (1− βR)
ω2
ω2+1 ωK̄ω

αβḠĀK̄α−1
= − ν (1− βR)

ω2
ω2+1 ωK̄ω

ν (1− βR)
ω2
ω2+1 K̄ω + 1− β (1− δ) + ξ̂δ

(
1− β

(
1− δ

2

))
= − ωῩ1

Ῡ1 + κ

where we have substituted in from the steady state Euler equations and κ ≡ 1 − β (1− δ) +

ξ̂δ
(
1− β

(
1− δ

2

))
.

I Robustness

I.1 Computation and Estimation of Non-Convex Model

This appendix provides details of our analysis of non-convex adjustment costs from Section
V.A. Since we can no longer rely on the perturbation approach, we solve the model non-linearly
using value function iteration and estimate the parameters via simulated method of moments.

Estimation details. Our estimation uses the following procedure. For a given parameter
vector

(
ξ̂, ξ̂f ,V, γ.σ2

ε , σ
2
χ

)
, we solve for the value and policy functions using a standard iterative

procedure and discretized grids for the state variables.2 We then use these solutions to simulate
time paths (10,000 periods) for firm-level capital and productivity. We discard the first 5,000
periods and compute the moments of interest using the remaining observations. We then search
over the parameter vector to minimize the equally-weighted sum of squared deviations between
the simulated values of the six target moments and their empirical counterparts.

Model fit. We report the fit of the estimated model in row ‘All factors baseline’ of Table I.1.
The left panel displays the parameter estimates and the right panel the simulated moments
(the top row labeled ‘Data’ reports the empirical values of the moments). The set of targeted
moments is marked in bold italics. The table shows that the model matches the targeted
moments quite well (the fit is almost exact in the US; the model slightly undershoots the
variance of investment growth and the correlation of arpk with a in China, but is still fairly
close on those dimensions).

The last four columns of the table contain four additional moments not explicitly targeted
in the estimation – the autocorrelation of investment (in levels), denoted ρk,k−1 , the correlation

2We use a relatively fine grid for capital (at intervals of 0.025 log points). For the productivity process, we
use 21 grid points, spanning 6 standard deviations (±3 standard deviations on either side of the mean). We
have verified that our results are not particularly sensitive to these choices.
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of investment with productivity, ρk,a, and investment ‘spikes,’ defined as the fraction of obser-
vations with (gross) investment rates above 20%, spike+, or less than -20%, spike−. These are
the moments targeted in Cooper and Haltiwanger (2006). The set of moments examined in
the table were broadly chosen to encompass those from our estimation and additional moments
considered in previous influential studies of adjustment costs, namely, Cooper and Haltiwanger
(2006) and Asker et al. (2014) (the latter paper targets the variability of investment, inaction
and spikes, where the latter two moments are defined in the same way as here).

Turning to the non-targeted moments, the model somewhat over-predicts the serial correla-
tion of investment as well as its correlation with productivity. The model also overshoots a bit
on the fraction of positive investment spikes. To explore the extent to which these deviations
matter for our main conclusions, we estimated two alternative versions of the model. The first
replaces inaction as a target with spike+ and spike−.3 The results, reported in row ‘All factors
spikes’, yield estimates of the adjustment costs that are only slightly higher than the baseline
values in both countries. In the second exercise, we targeted the serial correlation of invest-
ment in levels (rather than growth rates). As with the first exercise, the parameter estimates
(reported in row ‘All factors ρk,k−1 ’) change only slightly. Importantly, across both exercises,
the contribution of the various factors to arpk dispersion (not reported in the table) are almost
unchanged. In sum, these exercises reveal that (i) while our relatively simple specification of
adjustment costs and other distortionary factors can reconcile an extremely broad set of invest-
ment moments, it struggles to exactly match all moments simultaneously, but (ii) despite this,
our conclusions about the sources of dispersion in arpk are quite robust to the precise choice
of moments.4

The role of other factors. Explicitly allowing for other distortionary factors plays a key
role in our analysis. It significantly contributes to our ability to simultaneously match various
data moments and is the primary reason for the difference between our estimates of adjustment
costs and those in previous studies.

To show this more clearly, we estimated three alternative versions of our model with only
adjustment costs.5 The first is estimated by targeting the same moments as do Cooper and
Haltiwanger (2006), namely, the serial correlation of investment, its correlation with productiv-

3This is in line with Cooper and Haltiwanger (2006), who argue that inaction may be poorly measured in
the micro-data and use these moments instead.

4We also estimated a version where all 10 moments are targeted together. Unsurprisingly, the model cannot
exactly match all of them, but the best-fit parameter estimates are quite similar to the baseline.

5Formally, all the parameters except the two governing adjustment costs (ξ̂ and ξ̂f ) are set to 0. We then
search over ξ̂ and ξ̂f to minimize the equally-weighted distance between the model-implied and data values for
the target moments.
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ity and the fractions of positive and negative spikes.6 The results, presented in row ‘AC Only
I’ in Table I.1, show much larger fixed adjustment costs (and lower convex costs) compared
to all the variants of our estimation in the first three rows. Intuitively, as the only offsetting
force, large non-convex costs are necessary to match the relatively modest serial correlation of
investment observed in the data. However, this comes at the expense of counterfactually high
values for inaction and investment variability. For example, in the US, this version of the model
predicts an inaction rate of 70% and a variance of investment growth of 0.26, compared to their
empirical values of 18% and 0.06, respectively. In other words, an adjustment cost-only model
estimated to match only the serial correlation of investment and investment spikes struggles to
match the modest degrees of both inaction and investment variability observed in the data.

It is possible to partly fix some of these counterfactual implications using a more complicated
specification of the adjustment cost function. For example, assuming that only large investments
are subject to the fixed cost helps reduce the degree of inaction.7 The row labeled ‘AC Only II’
shows results from such a modification, where the fixed cost is incurred only for investment rates
greater than 5% in absolute value. As expected, this brings the predicted value for inaction much
closer to the data, particularly in China (predicted inaction remains excessively high in the US,
34% compared to 18% in the data), but has little effect on the variability of investment growth,
which remains counterfactually high. More importantly for our purposes, neither version of
the adjustment cost-only model generates significant dispersion in arpk (indeed the second
specification that better fits the data actually reduces the implied dispersion from adjustment
costs) – in the US, the predicted σ2

arpk is only about 13% of the observed level in the data. This
fraction is even lower in China.

The final exercise, displayed in row ‘AC Only III’, targets the variability of investment
growth along with inaction and spikes together. This is similar to the strategy in Asker et al.
(2014) (with the caveat that they target the variance of investment in levels). This produces
substantially higher estimates for the convex cost in both countries:8 Intuitively, a large convex
component is necessary to match the extremely low variability of investment. However, these
estimates imply a counterfactually high serial correlation. In China, for example, the predicted
ρk,k−1 is 0.67, compared to the empirical value of only 0.04 (the corresponding values in the
US are 0.66 compared to 0.25). These findings are precisely in line with the logic presented in

6See section 4.1.2 of that paper. The moments and resulting parameter estimates are not directly comparable
since the set of firms is quite different – Cooper and Haltiwanger (2006) work with data on US manufacturing
firms from the Longitudinal Research Database.

7This is along the lines of the specification in Khan and Thomas (2008), who also point out the inability of
standard adjustment cost models to simultaneously match both inaction and spikes in firm/establishment-level
data.

8The results for the fixed component are more mixed – the estimate is very close to our baseline value in the
US and is significantly higher in China, though well below the previous two adjustment cost-only estimations.
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Section II and are analogous to our discussion of the adjustment cost results in Section III.D
– the fact that the data show only modest serial correlations of investment/investment growth
rates limits the potential for convex adjustment frictions; an estimation strategy ignoring this
moment (and targeting the volatility of investment) can lead to substantial upward bias in the
estimates of convex costs.

In contrast to these adjustment cost-only specifications, our baseline model is able to capture
a broader set of data patterns precisely because of the inclusion of other factors influencing
investment. To gain some intuition for how they help, we turn to the formulae for the variance
and serial correlation of investment derived in Section 3 for the random walk case:

σ2
k =

(
ψ2

2

1− ψ2
1

)
(1 + γ)2 σ2

µ +
2

1 + ψ1

ψ2
3σ

2
ε

ρk,k−1 = ψ1 −
ψ2

3σ
2
ε

σ2
k

,

where ψ1, ψ2, ψ3 are composite parameters independent of distortions. These expressions show
that, ceteris paribus, more severe correlated distortions (i.e., more negative γ) reduce both the
volatility and serial correlation of investment (the latter through the effects on σ2

k). Intuitively,
correlated distortions lessen the influence of the persistent productivity process on investment,
reducing the serial correlation. Uncorrelated factors (higher σ2

ε) also make investment less
serially correlated, but more volatile. Quantitatively, the first effect is much larger.9 As a
result, the model can match both of these moments without resorting to large non-convex costs
(and the associated counterfactual implications).

In sum, the exercises in this appendix emphasize one of the main messages of our analysis:
examining a broad set of investment moments imposes additional discipline on the magnitude
of the various forces (including adjustment costs). In both countries, the data show that
investment/investment growth is (i) neither particularly volatile (ii) nor highly autocorrelated,
but (iii) there are large and extremely extremely persistent deviations of firm-level capital from
its ‘efficient’ level. These patterns seem hard to rationalize with standard specifications of
adjustment costs alone and lead us to find a significant role for other factors, particularly when
it comes to explaining the dispersion in σ2

arpk.

I.2 Alternative Stochastic Processes

In this section, we analyze the implications of alternative, richer stochastic processes for firm-
level productivity and distortions.

9For example, at our baseline estimates in the US, the coefficient on ψ2
3σ

2
ε in the expression for σ2

k is
2

1+ψ1
≈ 1.2 while the coefficient in the expression for ρk,k−1 is 1

σ2
k
≈ 25.
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Fixed-effects in productivity. First, we generalize the process on productivity in equation
(5) to include firm-level fixed-effects. Specifically, we assume:

ait = āi + âit, āit ∼ N
(
0, σ2

ā

)
(I.1)

âit = ρâit−1 + µit, µit ∼ N
(
0, σ2

µ

)
Now, productivity is composed of both an AR(1) component, âit, as in equation (5) and a firm
fixed-effect, āi, with cross-sectional variance σ2

ā.
We can show that the three parameters (ρ, σ2

µ, σ
2
ā) are uniquely identified by (i) the serial

correlation of productivity growth along with (ii) the coefficient from a simple autoregression
of ait on ait−1 and (iii) the residuals from that regression, which we denote σ2

µ̂ to distinguish it
from σ2

µ, which is the true, unobserved variance of the innovations in the process (the latter two
moments are the same that were used to identify the baseline process). Specifically, we derive:

ρ∆a,∆a−1 =
ρ− 1

2

ρa,a−1 =
σ2
ā + ρσ2

â

σ2
ā + σ2

â

σ2
µ̂ =

(
1− ρa,a−1

)2
σ2
ā +

(
ρ− ρa,a−1

)2
σ2
â + σ2

µ

where σ2
â =

σ2
µ

1−ρ2 . The first equation identifies ρ directly. The second two represent two
equations in two unknowns, which can be solved for σ2

ā and σ2
µ. We can then re-estimate the

other parameters of the model using this richer process for ait (the remaining moments are
unchanged).

We report the results of this estimation in Table I.2. The first three columns display the
parameters governing the process on productivity. The estimates for the fixed-effect, σ2

ā, are
significant in both countries – 0.29 and 0.33 in China and the US, respectively. Comparing
the parameter estimates with those in Table 2 shows that (i) the persistence of the AR(1)
component here is somewhat lower than under the baseline specification – 0.87 vs. 0.91 for
China and 0.84 vs. 0.91 for the US and (ii) the volatility of the shocks, σ2

µ, is almost unchanged
in both countries.

We report the results for the other parameters in the remaining columns of Table I.2. The
top panel shows the parameter estimates and the bottom panel the contribution of each factor
to observed arpk dispersion. In both countries, the estimated adjustment costs, ξ, are slightly
lower and the correlated distortion slightly higher (in absolute value) than under the baseline
specification in Table 3. The values are almost unchanged for the other factors. The bottom
panel of the table shows that our main conclusions regarding the sources of arpk dispersion
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Table I.2: Estimates with Firm Fixed-Effects

Parameters ρ σ2
µ σ2

ā ξ V γ σ2
ε σ2

χ

China 0.87 0.14 0.29 0.12 0.10 −0.71 0.00 0.42

US 0.84 0.08 0.33 0.76 0.04 −0.38 0.00 0.30

∆σ2
arpk

σ2
arpk

China 1.1% 10.3% 47.8% 0.0% 46.1%

US 6.7% 8.1% 18.9% 1.1% 65.9%

continue to hold.

Persistence in distortions. In our baseline setup, the transitory uncorrelated distortion was
assumed to be an iid draw in each period. Here, we generalize that formulation and assume
that it follows an AR(1) process:

τit = γait + τ̂it + χi (I.2)

τ̂it = ρτ τ̂it−1 + εit

Compared to the baseline case, there is now an additional parameter, ρτ , and therefore the
estimation requires more moments. At the end of this appendix, we extend our analytical
approach from Section II and prove identification of all the parameters under this more general
process.10 In particular, we show that adding the second-order serial correlation of arpk (in
changes) is sufficient for identification of the new parameter, ρτ .11 Guided by this result, we
re-estimated the model adding both the first- and second-order serial correlations of arpk as
target moments.

We report the results from this estimation in Table I.3. The estimates for ρτ are essentially
zero in both countries, providing support for the baseline iid assumption. In other words, condi-
tional on the fixed and correlated components, the remaining transitory piece of the distortion
is extremely short-lived. The remaining parameters are quite close to their baseline values.12

The remainder of this appendix proves identification of the model parameters in the case
10As before, we cannot identify the fixed-effect, σ2

χ since second moments in levels are not well defined.
11The first-order serial correlation turns out to be a simple transformation of other target moments and thus

does not contain new information.
12We also estimated another version of the model, where we assumed the uncorrelated component follows an

AR(1) without fixed-effects, i.e., we set σ2
χ = 0, and estimated ρτ along with the other parameters by targeting

the same set of moments as in the baseline analysis. This yielded values of ρτ very close to one, again pointing
to an extremely persistent component. Further, the estimated magnitude of the uncorrelated component in this
case, i.e., σ2

ε

1−ρ2τ
, was quite close to the baseline estimate for σ2

χ. The remaining parameters were almost identical
in the two versions.
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Table I.3: Persistence in Distortions

New Moments Parameter Estimates

ρarpk,arpk−1 ρarpk,arpk−2 ξ V γ σ2
ε ρτ σ2

χ

China 0.90 0.81 0.24 0.09 −0.69 0.00 0.00 0.40

US 0.91 0.83 1.00 0.03 −0.34 0.01 0.00 0.28

that productivity follows a random walk and distortions follow the process in (I.2).
Following the same steps as in Section I of the text, we can derive the firm’s investment

policy function under this more general structure:

kit+1 = ψ1kit + ψ2 (1 + γ)Eit [ait+1] + ψ3τ̂it+1 + ψ4χi

where ψ1 solves the quadratic equation

ξ
(
βψ2

1 + 1
)

= ψ1 ((1 + β) ξ + 1− α)

and

ψ2 =
1

1− α− βξψ1 + ξ

ψ3 =
1

1− α + βξ (1− ψ1 − ρτ ) + ξ

ψ4 =
1

1− α + ξ (1− βψ1)

This law of motion is similar to (7) and (8) with a few modifications to the coefficients: ψ1

and ψ4 are the same as before, but ψ2 here corresponds to the case where ρ = 1 and ψ3 is
generalized to allow for ρτ 6= 0.

Investment is given by:

∆kit+1 = ∆kit + ψ2 (1 + γ) ∆Eit [ait+1] + ψ3∆τ̂it+1

= ψ1∆kit + ψ2 (1 + γ) ((1− φ)µit + φµit+1 + φ (eit+1 − eit)) + ψ3 ((ρτ − 1) τ̂it + εit+1)

where 1−φ = V
σ2
µ
. From here, we can derive the following four moments: the variance of invest-

ment, σ2
k, the autocovariance of investment, σk,k−1 , the coefficient from a regression of ∆arpkit

on ∆ait (λarpk,a), and the covariance of investment with lagged innovations in productivity,
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σk,a−1 :

σ2
k = ψ2

1σ
2
k + (1 + γ)2 ψ2

2σ
2
µ +

2 (1− ψ1)ψ2
3σ

2
ε

(1 + ρτ ) (1− ψ1ρτ )
(I.3)

σk,k−1 = ψ1σ
2
k −

(1− ρτ )ψ2
3σ

2
ε

(1 + ρτ ) (1− ψ1ρτ )
(I.4)

λarpk,a = 1− (1− α) (1 + γ)ψ2φ (I.5)

σk,a−1 = (1− φ (1− ψ1)) (1 + γ)ψ2σ
2
µ (I.6)

Here, we have one new parameter, ρτ , and so will need an additional moment. It turns out
that the first-order serial correlation of arpk does not contain any additional information. To
see this, we can derive

σarpk,arpk−1 ≡ cov (∆arpkit,∆arpkit−1)

= cov (µit − (1− α) ∆kit, µit−1 − (1− α) ∆kit−1)

= (1− α)2 σk,k−1 − (1− α)σk,a−1

which shows that the moment is a simple combination of two moments we have previously used.
Similarly, the variance of ∆arpkit is

σ2
arpk ≡ var (∆arpkit) = var (µit − (1− α) ∆kit)

= σ2
µ + (1− α)2 σ2

k − (1− α)λarpk,aσ
2
µ

which, again, is simply a combination of other moments we have already used.
However, the second-order serial correlation, σarpk,arpk−2 , does contain new information:

σarpk,arpk−2 ≡ cov (∆arpkit,∆arpkit−2)

= cov (µit − (1− α) ∆kit, µit−2 − (1− α) ∆kit−2)

= (1− α)2 cov (∆kit,∆kit−2)

= (1− α)2

(
ψ1σk,k−1 −

ρτψ
2
3σ

2
ε

(1 + ρτ ) (1− ψ1ρτ )

)
(I.7)

Substituting expressions (I.4)-(I.6) into (I.3), we obtain:

σ2
k = ψ2

1σ
2
k +

(
σk,a−1

σ2
µ

+

(
1− λarpk,a

1− α

)
(1− ψ1)

)2

σ2
µ +

2
(
ψ1σ

2
k − σk,k−1

)
(1− ψ1)

1− ρτ
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This is one equation in two unknowns, ψ1 and ρτ . Next, substitute (I.4) into (I.7):

σarpk,arpk−2 = (1− α)2

(
ψ1σk,k−1 −

ρτ
1− ρτ

(
ψ1σ

2
k − σk,k−1

))
which gives a second equation in the two unknowns. The solution to the two equations yields
ψ1 and ρτ . From ψ1, we can compute ξ and ψ2. Along with ρτ , these give ψ3. The remaining
moment conditions yield the remaining parameters, γ, σ2

ε and V.

I.3 Lower Elasticity of Substitution

There is no clear consensus on the appropriate value for the elasticity of substitution parameter,
θ, which is set to 6 in our analysis. Estimates generally range between 3 and 10 (see, e.g., Broda
and Weinstein (2006)). Studies on firm dynamics tend to use values closer to 6. For example,
Cooper and Haltiwanger (2006) estimate a demand elasticity among US manufacturing firms of
just about 6; the curvature parameter in Atkeson and Kehoe (2005) is 0.85, which corresponds
to θ = 7 in our setup. The literature on misallocation, following Hsieh and Klenow (2009),
often uses a lower value, θ = 3.

To investigate the robustness of our conclusions to this parameter, we re-did our analysis
using θ = 3. In conjunction with the production function elasticities, α̂1 and α̂2, reported in
Table 1, this yields values of α of 0.4 in the US and 0.5 in China (compared to 0.62 and 0.71
in the baseline analysis). We have recomputed the target moments under these new values
(recall that moments in productivity depend on the curvature parameter) – Table I.4 – and
re-estimated the model targeting these moments – Table I.5.

The moments in Table I.4 show largely the same patterns as those in Table 2 and many of
the point estimates change little – for example, investment growth in China is more correlated
with lagged shocks, is more volatile and less serially correlated and shows a higher correlation
between arpk and productivity (although this figure is somewhat lower in both countries than
under the baseline α). The extent of the overall dispersion in the arpk is almost identical to
the baseline, since this figure is independent of α (there is a negligible difference in this value
for the US due to the trimming of outliers).

Table I.4: Moments – θ = 3

ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

China 0.92 0.13 0.21 −0.36 0.56 0.15 0.92
US 0.95 0.11 0.03 −0.30 0.28 0.06 0.46

The estimation results in Table I.5 also point to very similar patterns regarding the sources
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of arpk dispersion: adjustment/information frictions explain only a modest share, leaving a
large role for other factors. The estimated adjustment costs are slightly higher in China and
lower in the US. The opposite is true for the level of uncertainty. The estimates for correlated
(permanent) factors are slightly smaller (larger) in both countries. Importantly, correlated
factors are estimated to be much more severe in China than the US. Of course, θ also plays
a significant role in determining the magnitude of aggregate productivity losses from a given
amount of arpk dispersion, as expression (9) reveals. Thus, with θ = 3, the implied TFP losses
from all of the factors are smaller than the baseline. However, these losses remain substantial
and differ across the two countries, totaling about 50% in China and 12% in the US.

Table I.5: Contributions to ‘Misallocation’ – θ = 3

Other Factors

Adjustment Costs Uncertainty Correlated Transitory Permanent

Parameters ξ V γ σ2
ε σ2

χ

China 0.21 0.08 −0.49 0.00 0.64
US 0.66 0.04 −0.10 0.00 0.38

∆σ2
arpk

China 0.01 0.08 0.24 0.00 0.64
US 0.02 0.04 0.01 0.00 0.38

∆σ2
arpk

σ2
arpk

China 1.1% 8.3% 26.4% 0.0% 69.2%
US 4.3% 9.4% 1.4% 0.0% 82.5%

∆a
China 0.01 0.04 0.12 0.00 0.32
US 0.01 0.01 0.00 0.00 0.10

Taken together, our findings in Table I.5 confirm that our main conclusions regarding the
sources of arpk dispersion are not overly sensitive to the value of the elasticity of substitution.
While the exact productivity costs of that dispersion does depend on this parameter (and more
generally, on the extent of curvature), all the cases we have examined suggest they can be
substantial.

I.4 Alternative Targets: Investment Moments

In this appendix, we re-estimate our model targeting the autocorrelation and variance of in-
vestment in levels, rather than growth rates. The values of these moments are 0.25 and 0.04,
respectively, in the US and 0.04 and 0.08 in China. The other target moments are the same as

36



in Table 2. Table I.6 reports the results. A comparison to Table 3 shows that the parameter
estimates are quite close to the baseline, as are the contributions to arpk dispersion – adjust-
ment costs and uncertainty account for between 15% and 20% of σ2

arpk in the two countries,
correlated factors play a large role in China and less so in the US, while fixed factors are quite
significant in both countries.

Table I.6: Using Moments from Investment in Levels

Other Factors

Adjustment Costs Uncertainty Correlated Transitory Permanent

Parameters ξ V γ σ2
ε σ2

χ

China 0.37 0.11 −0.72 0.02 0.38
US 1.77 0.04 −0.31 0.19 0.28

∆σ2
arpk

σ2
arpk

China 4.3% 11.9% 48.9% 2.5% 40.8%
US 12.1% 8.1% 13.2% 42.4% 62.8%

I.5 Measurement of Capital

Our baseline analysis uses reported book values of firm-level capital stocks. Here, we use the
perpetual inventory method to construct an alternative measure of capital for the US firms. To
do this, we follow the approach in Eberly et al. (2012). Here, we briefly describe the procedure
and refer the reader to that paper for more details. We use the book value of capital in the
first year of our data as the starting value of the capital stock and use the recursion:

Kit =

(
Kit−1

PKt
PKt−1

+ Iit

)
(1− δj)

to estimate the capital stock in the following years, where It is measured as expenditures on
property, plant and equipment, PK is the implicit price deflator for nonresidential investment,
obtained from the 2013 Economic Report of the President, Table 7, and δj is a four-digit
industry-specific estimate of the depreciation rate. We calculate the useful life of capital goods
in industry j as Lj = 1

Nj

∑
Nj

PPENTit−1+DEPRit−1+Iit
DEPRit

whereNj is the number of firms in industry
j, PPENT is property, plant and equipment net of depreciation and DEPR is depreciation
and amortization. The implied depreciation rate for industry j is δj = 2

Lj
. We use the average

value for each industry over the sample period.
Table I.7 reports the estimation results. The parameters governing firm productivity, ρ

and σ2
µ, are quite close to the baseline values, as is the total amount of observed arpk disper-
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sion, σ2
arpk.13 The autocorrelation of investment growth is somewhat higher and its volatility

somewhat lower, which together lead to a higher estimate of the adjustment cost parameter,
ξ. This is reflected in the higher contribution of these costs to arpk dispersion, which is about
27% of the total (compared to 11% in the baseline). The estimated degree of uncertainty is
close to the baseline value. Together, these two forces account for about 33% of the observed
arpk dispersion, compared to about 18% under our baseline calculations. Thus, our finding of
a key role for other firm-specific factors continues to hold – these factors account for roughly
two-thirds of σ2

arpk. The largest component shows up as a permanent factor that is orthogonal
to firm productivity. The time-varying correlated and uncorrelated components contribute only
modestly.

Table I.7: Perpetual Inventory Method for Capital - US firms

Moments ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

0.94 0.07 0.15 −0.18 0.55 0.01 0.43

Parameters ξ V γ σ2
ε σ2

χ

5.80 0.02 −0.17 0.05 0.26

Aggregate Effects
∆σ2

arpk 0.12 0.02 0.02 0.05 0.26
∆σ2

arpk

σ2
arpk

27.5% 5.7% 4.3% 12.8% 59.9%

∆a 0.05 0.01 0.01 0.02 0.11

Similar to the exercise in Appendix I.4, we have also re-estimated the model using this
alternative measure of firm-level capital stocks and targeting the autocorrelation and variability
of investment in levels, rather than growth rates. The results are reported in Table I.8. The
estimates are broadly in line with those in Table I.7 and are extremely close to the baseline
ones in Table 3. To see why, we have also computed the implied values of the autocorrelation
and variance of investment using the parameter estimates from Table I.7. This gives values of
0.69 and 0.02, respectively, compared to the empirical values of 0.57 and 0.02. Because the
estimation in Table I.7 already matches these (non-targeted) moments fairly closely, explicitly
targeting them does not have a large effect.

I.6 Sectoral Analysis

In this appendix, we repeat our analysis for US firms at a disaggregated sectoral level, allowing
for sector-specific structural parameters.

13Even in the last year of the sample, the correlation of the two capital stock measures exceeds 0.95.
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Table I.8: Perpetual Inventory Capital and Investment in Levels -
US

ξ V γ σ2
ε σ2

χ

Parameters 1.65 0.03 −0.32 0.00 0.28
∆σ2

arpk

σ2
arpk

12.0% 6.9% 14.0% 0.7% 64.3%

We begin by computing sector-specific α’s (curvature in the profit function) using data on
value-added and compensation of labor by sector from the Bureau of Economic Analysis, Annual
Industry Accounts.14 To match the SIC (or NAICS) classifications in Compustat, we compute
labor’s share of value-added for the 9 major sectors of the industrial classification – Agriculture,
Forestry and Fishing; Mining; Construction; Manufacturing; Transportation, Communications
and Utilities; Wholesale Trade; Retail Trade; Finance, Insurance and Real Estate; Services.15

To translate these shares into a value of α, note that under our assumptions of monopolistic
competition and constant returns to scale in production, labor’s share of value-added is equal
to LS = θ−1

θ
(1− α̂1) where 1 − α̂1 is the labor elasticity in the production function. Then,

solving for α̂1 and substituting into the definition of α, we have

α =
α1

1− α2

=
θ−1
θ
− LS

1− (1− α̂1) θ−1
θ

=
θ−1
θ
− LS

1− LS

Implementing this procedure yields the values of α in the top panel of Table I.9.16

Next, we re-compute our cross-sectional moments for each sector, using the values of α to
estimate firm-level productivities. We continue to control for time and industry fixed-effects
to extract the firm-specific components of the series (there are multiple four-digit industries
within each sector). We report the target moments in the first panel of Table I.9. We then
estimate the model separately for each sector, allowing the structural parameters governing the
various sources of arpk dispersion to vary across sectors. The resulting parameter estimates
are presented in the second panel of the table and the implied contribution of each factor to
arpk dispersion in the last two panels.

There is some heterogeneity across the sectors, both in the overall extent of arpk dispersion
14The data are available at https://www.bea.gov/industry/iedguide.htm.
15Most of these correspond one-for-one with sectors reported by the BEA data. There, Transportation and

Utilities are reported separately, as are several subcategories of services, which we aggregate. The only sector
we were unable to include from the BEA data was Information, as it does not line up one-for-one with an SIC
or NAICS category. The shares are calculated as the average over the most recent period available, 1998-2011
(which roughly lines up with the period of the firm-level data, 1998-2009).

16We have also calculated this value for the entire US economy by summing across all the sectors reported
by the BEA. This gives an aggregate labor share of 0.56 and an implied α of 0.62, exactly our baseline value.
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as well as in the estimates for the underlying factors. For example, adjustment costs are largest
in manufacturing, where they account for as much as 20% of the observed dispersion and
are smallest in FIRE. But, overall, the main message from our baseline analysis continues to
hold – adjustment and information frictions, although significant, do not create a lot of arpk
dispersion, leaving a substantial role for other firm-specific factors. While the results point
to some heterogeneity in the correlation structure of these factors, the permanent component
seems to play a key role across all sectors.

J Estimates for Other Countries/Firms

In this appendix, we apply our empirical methodology to two additional countries for which we
have firm-level data - Colombia and Mexico - as well as to publicly traded firms in China.

The Colombian data come from the Annual Manufacturers Survey (AMS) and span the
years 1982-1998. The AMS contains plant-level data and covers plants with more than 10
employees, or sales above a certain threshold (around $35,000 in 1998, the last year of the
data). We use data on output and capital, which includes buildings, structures, machinery
and equipment. The construction of these variables is described in detail in Eslava et al.
(2004). Plants are classified into industries defined at a 4-digit level. The Mexican data are
from the Annual Industrial Survey over the years 1984-1990, which covers plants of the 3200
largest manufacturing firms. They are also at the plant-level. We use data on output and
capital, which includes machinery and equipment, the value of current construction, land,
transportation equipment and other fixed capital assets. A detailed description is in Tybout
and Westbrook (1995). Plants are again classified into industries defined at a 4-digit level.
Data on publicly traded Chinese firms are from Compustat Global. Due to a lack of a sufficient
time-series for most firms, we focus on single cross-section for 2015 (the moments use data going
back to 2012). Similarly, due to the sparse representation of many industries, we focus on those
with at least 20 firms. For all the datasets, we compute the target moments following the same
methodology as outlined in the main text of the paper. Our final samples consist of 44,909 and
3,208 plant-year observations for Colombia and Mexico, respectively, and 1,055 firms in China.

Table J.1 reports the moments and estimated parameter values for these sets of firms,
as well as the share of arpk dispersion arising from each factor and the effects on aggregate
productivity. The results are quite similar to those for Chinese manufacturing firms in Table
3 in the main text. The contribution of adjustment costs and uncertainty to observed arpk

dispersion is rather limited, and that of uncorrelated transitory factors negligible - across these
sets of firms, a large portion of the observed dispersion stems from correlated and permanent
firm-specific factors.
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Table I.9: Sector-Level Results

Moments α ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

Agr., Forestry and Fishing 0.77 0.92 0.11 0.13 −0.37 0.92 0.03 0.61
Mining 0.76 0.91 0.10 0.16 −0.29 0.74 0.07 0.35
Construction 0.49 0.93 0.15 0.17 −0.28 0.71 0.07 0.69
Manufacturing 0.59 0.94 0.08 0.10 −0.32 0.50 0.05 0.43
Trans., Comm. and Utilities 0.67 0.94 0.04 0.13 −0.32 0.58 0.03 0.38
Wholesale Trade 0.65 0.94 0.08 0.18 −0.31 0.67 0.05 0.57
Retail Trade 0.61 0.96 0.02 0.20 −0.30 0.25 0.02 0.20
Finance, Insurance and Real Estate 0.78 0.90 0.09 0.28 −0.32 0.77 0.07 0.61
Services 0.38 0.95 0.10 0.03 −0.28 0.31 0.08 0.53

Parameters ξ V γ σ2
ε σ2

χ

Agr., Forestry and Fishing 0.83 0.05 −0.78 0.01 0.09
Mining 0.49 0.04 −0.56 0.00 0.13
Construction 0.65 0.08 −0.50 0.00 0.32
Manufacturing 3.35 0.03 −0.17 0.18 0.28
Trans., Comm. and Utilities 0.55 0.02 −0.55 0.00 0.25
Wholesale Trade 0.55 0.04 −0.54 0.00 0.30
Retail Trade 1.97 0.01 −0.07 0.03 0.17
Finance, Insurance and Real Estate 0.18 0.06 −0.80 0.00 0.26
Services 0.81 0.04 −0.14 0.00 0.44

∆σ2
arpk

Agr., Forestry and Fishing 0.07 0.05 0.45 0.01 0.09
Mining 0.06 0.04 0.19 0.00 0.13
Construction 0.04 0.08 0.26 0.00 0.32
Manufacturing 0.09 0.03 0.02 0.18 0.28
Trans., Comm. and Utilities 0.01 0.02 0.10 0.00 0.25
Wholesale Trade 0.02 0.04 0.20 0.00 0.30
Retail Trade 0.02 0.01 0.00 0.03 0.17
Finance, Insurance and Real Estate 0.01 0.06 0.31 0.00 0.26
Services 0.02 0.04 0.02 0.00 0.44

∆σ2
arpk

σ2
arpk

Agr., Forestry and Fishing 0.11 0.08 0.74 0.02 0.15
Mining 0.18 0.10 0.54 0.00 0.37
Construction 0.05 0.11 0.37 0.00 0.47
Manufacturing 0.21 0.07 0.05 0.41 0.63
Trans., Comm. and Utilities 0.03 0.05 0.26 0.01 0.65
Wholesale Trade 0.04 0.07 0.35 0.00 0.54
Retail Trade 0.08 0.05 0.01 0.14 0.85
Finance, Insurance and Real Estate 0.02 0.09 0.51 0.00 0.42
Services 0.05 0.07 0.04 0.00 0.83
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Table J.1: Additional Countries/Firms

Moments ρ σ2
µ ρι,a−1 ρι,ι−1 ρarpk,a σ2

ι σ2
arpk

Colombia 0.95 0.09 0.28 −0.35 0.61 0.07 0.98
Mexico 0.93 0.07 0.17 −0.39 0.69 0.02 0.79
China Compustat 0.96 0.04 0.30 −0.42 0.76 0.04 0.41

Parameters ξ V γ σ2
ε σ2

χ

Colombia 0.54 0.05 −0.55 0.01 0.60
Mexico 0.13 0.04 −0.82 0.00 0.42
China Compustat 0.15 0.03 −0.69 0.00 0.18

∆σ2
arpk

Colombia 0.02 0.05 0.30 0.01 0.60
Mexico 0.00 0.04 0.36 0.00 0.42
China Compustat 0.00 0.03 0.22 0.00 0.18

∆σ2
arpk

σ2
arpk

Colombia 2.5% 5.6% 30.9% 0.7% 61.3%
Mexico 0.5% 4.9% 44.9% 0.0% 52.8%
China Compustat 0.8% 6.3% 54.0% 0.2% 43.7%

∆a
Colombia 0.01 0.02 0.13 0.00 0.26
Mexico 0.00 0.02 0.16 0.00 0.18
China Compustat 0.00 0.02 0.19 0.00 0.16
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