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A Empirical example: China shock

We estimate the effect of Chinese imports on manufacturing employment in the United
States using the China shock approach of Autor, Dorn and Hanson (2013a) (ADH).1

A.1 Specification

It is helpful to write the main regression specification of ADH in our notation. The paper is
interested in a regression (where we omit covariates for simplicity, but include them in the
regressions):

ylt = β0 + βxlt + εlt, (13)

where ylt is the percentage point change in manufacturing employment rate, and xlt =

∑k zlktgUS
kt is import exposure, where zlkt is contemporaneous start-of-period industry-location

shares, and gUS
kt is a normalized measure of the growth of imports from China to the US in

industry k. The first stage is:

xlt = γ0 + γ1Blt + ηlt, (14)

where Blt = ∑k zlkt−1ghigh-income
kt , the z are lagged, and ghigh-income

kt is a normalized measure
of the growth of imports from China to other high-income countries (mainly in Europe).

We focus on the TSLS estimate in column (6) of Table 3 of ADH, which reports that a
$1,000 increase in import exposure per worker led to a decline in manufacturing employ-
ment of 0.60 percentage points. Our replication also produces a coefficient of 0.60 (see Table
A3, TSLS (Bartik) row, column (2)) .

A.2 Form of endogeneity that the instrument addresses

At a high-level, it is clear that manufacturing employment can decline for many reasons,
and the goal of ADH is to isolate the trade channel. Because the endogenous variable in the
OLS equation and the instrument both have the Bartik form, if they were constructed using
the same period to measure the shares, then in our setting there would be no way for OLS
to be biased and TSLS to fix the endogeneity problem (because the choice of growth rates
is not meaningful for identification in our setting).2 Thus, the form of endogeneity that
is addressed by the instrument stems from the timing of the measurement of the industry

1We use Census data from Ruggles et al. (2015), commuting zone data from Autor and Dorn (2013), and
other replication data provided by Autor, Dorn and Hanson (2013b), Borusyak, Hull and Jaravel (2019b) and
Adao, Kolesar and Morales (2019).

2In OLS, one can still compute Rotemberg weights. In the cross-section, αk =
gk Bl zlk

∑k′ g′k Bl zlk′
.
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shares.3 Here, the form of endogeneity is that employment responds in anticipation of
trade shocks.4

A.3 Rotemberg weights

As in the canonical setting, despite a very large number of instruments (397 industries) the
distribution of sensitivity is skewed so that a small number of instruments get a large share
of the weight. Table A1 shows that the top five instruments receive over half of the absolute
weight in the estimator (0.532/1.067). These instruments are electronic computers, games
and toys, household audio and video, telephone apparatus, and computer equipment. Ex-
cept for games and toys, these industries are different than the ones that ADH emphasize
when motivating the empirical strategy.5 In particular, rather than being low-skill techno-
logically stagnant industries where it is plausible that trade is the main shock hitting the
industry, these are higher-skill technologically innovative industries where it is plausible
that changes in technology are the main shock hitting the industry.

Relative to the canonical setting, negative weights are less prominent and the varia-
tion in the national growth rates (or, imports from China to other high-income countries)
explains more of the variation in the sensitivity elasticities. Even so, and consistent with
the discussion in the previous paragraph that the growth rates provide an imperfect guide
to which industries drive estimates, the gk component explains less than twenty percent
(0.4302, see Table A1, Panel B) of the variance of the Rotemberg weights.

A.4 Discussion of the identifying assumption in terms of the shares

Why is it reasonable to interpret this paper as being about the shares? We note first that
the paper does not emphasize having a large number of independent shocks (which would
be necessary for the shocks interpretation to be plausible). Indeed, it is hard to conceive of
a model of an “optimizing China” that would generate random patterns of exports across
a wide swathe of the economy. (The random shocks assumption is more plausible in this
setting if researchers control for “higher-level” fixed effects and so exploit more idiosyn-

3In the Borusyak, Hull and Jaravel (2019a) setting, it is possible to motivate why the choice of growth rates
would fix an endogeneity concern, but it is harder to motivate why one would want to lag the industry shares.

4Autor, Dorn and Hanson (2013a, pg. 2129) write, “We use ten-year-lagged employment levels because,
to the degree that contemporaneous employment by region is affected by anticipated China trade, the use of
lagged employment to apportion predicted Chinese imports to regions will mitigate this simultaneity bias.”

5“The main source of variation in exposure is within-manufacturing specialization in industries subject to
different degrees of import competition...there is differentiation according to local labor market reliance on
labor-intensive industries...By 2007, China accounted for over 40 percent of US imports in four four-digit SIC
industries (luggage, rubber and plastic footwear, games & toys, and die-cut paperboard) and over 30 percent
in 28 other industries, including apparel, textiles, furniture, leather goods, electrical appliances, and jewelry”
(pg. 2123).
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cratic variation. When Borusyak, Hull and Jaravel (2019a, Table 1, column 6) control for 2
digit industries, the estimates are one-sixth the size and no longer statistically significant.)
Second, the paper emphasizes particular industries and industries with particular charac-
teristics. That is, our reading of the logic of the paper is that it emphasizes that Chinese
exports were concentrated in low-skill, labor-intensive industries. This focus on particular
industries is not consistent with the consistency of the estimator coming from the shocks.

Is the identification assumption necessarily implausible when viewed in terms of shares?
We do not think so. Other papers in the trade literature leverage changes in trade policy
and study local labor market effects of these policy changes (e.g., Topalova (2010) and Ko-
vak (2013)). In these papers, the argument is not that the trade policy is literally random.
Instead, the argument is that the change in trade policy does not coincide with shocks to lo-
cations that were highly exposed to changes in trade policy. An example of this argument in
the case of ADH would be that technological changes (shifting the labor force towards au-
tomation) did not simultaneously occur to industries that were more exposed to the China
trade policy. The argument does not require that the shares predict nothing in levels, but
simply that the shares only predict changes through the causal channel emphasized by the
paper.

In the trade policy example, there is some institutional reason to expect that there is a
shock in particular industries that only operated through trade policy (because trade policy
changed in these industries). By analogy, in the context of ADH this logic would suggest
using institutional knowledge to pick industries where there was a large increase in exports
from China because of Chinese comparative advantage (rather than technological change
in the industry). Seen in this light, one motivation for ADH to look at imports to other
high-income countries might be to isolate the industries where there is strong reason to
think that China experienced rapid productivity gains. As we have emphasized, however,
the weights that the Bartik estimator places on the just-identified IV estimates are not solely
a function of the growth rates. Indeed, in this example, the growth rates explain less than
twenty percent of the variation in the Rotemberg weights. As a result, weighting the shares
by growth rates is an imperfect way of isolating the variation that the researcher intends.
If there was further pruning of the industries, then a research design based on the shares
would likely accord more closely with the goals of researchers.

A.5 Testing the plausibility of the identifying assumption

Test 1: Correlates of 1980 industry shares Table A2 shows the relationship between the
covariates used in ADH and the top industries reported in Table A1. First, relative to the
canonical setting, the controls explain less of the variation in shares (lower R2 in the regres-
sions). Second, electronic computers, computer equipment manufacturing as well as the
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overall measure are concentrated in more college educated areas; in contrast, games and
toys is concentrated in places with fewer college educated workers. This pattern empha-
sizes that researchers should be concerned about other trends potentially affecting manu-
facturing employment in more educated areas. Interestingly, the identifying assumption
related to the computer industry is precisely one that ADH worry about and provide sen-
sitivity analyses related to this industry.6

Test 2: Parallel pre-trends We construct our pre-trend figures as follows. We use fixed
1980 shares as our main variable, and plot the reduced form effect of each industry on
manufacturing employment.7 For our controls, we fix the controls in the same time period,
and interact with time fixed effects. As in the main specification, we also control for region
and time fixed effects as well. We then convert the growth rates to levels and we index
the levels in 1970 to 100. Standard errors are constructed using the delta method. For the
aggregate Bartik, we use the industry shares fixed in 1980, and combine them using growth
rates from 1990 to 2000.

Figure A1 shows the plots and displays several interesting patterns. First, games and
toys (Panel B), household audio and video (Panel C) and telephone apparatus (Panel D)
diverge from classic pre-trends figures, which would show no trends in the pre-periods
and then a sharp change at the date of the treatment. Second, the patterns in electronic
computers (Panel A) and computer equipment (Panel E) are more promising in that there
is a sharp drop in 2007 and no effect in 1990 and 2000; less promising, however, is that
there are statistically significant effects in 1980. Note that these panels show comparisons
of places with more and less of these particular industries in 1980, while the outcome is
employment for all manufacturing industries.

Test 3: Alternative estimators and overidentification tests Rows 1 and 2 of Table A3 re-
port the OLS and IV estimates using Bartik, with and without for the 1980 covariates as
controls, though these are not statistically distinguishable for the IV estimates. Rows 3-6
of Table A3 shows alternative estimators as well as overidentification tests. We focus on
column (2), where we control for covariates. The estimates range from half the size of the
baseline Bartik TSLS estimate (MBTSLS), to several times the size (LIML). The divergence
between the two-step estimators (TSLS with Bartik, overidentified TSLS and MBTSLS) and
the maximum likelihood estimators (LIML and HFUL) is evidence of misspecification. Sim-
ilarly, the overidentification tests reject. Combined, the movement in the estimates across

6ADH (pg. 2138): “Computers are another sector in which demand shocks may be correlated [across coun-
tries], owing to common innovations in the use of information technology.”

7We use the reduced-form effect because the endogenous variable is not available in the earlier periods. See
Figure A4 for the analogous figures using fixed 1990 shares.
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estimators is not reassuring,8 and the failure of the overidentification tests points to poten-
tial misspecification.

Visualizing the overidentification tests If one wishes to interpret the failure of the overi-
dentification tests as pointing to heterogeneity of the form outlined in Section IV rather than
as evidence of misspecification, then Figure A2 shows some of the heterogeneity in treat-
ment effects underlying the overall estimate (Figure A3 shows the relationship between
the Rotemberg weights and the first-stage F-statistic). Relative to the canonical case, the
patterns of heterogeneity are less concerning. In particular, visually there is less dispersion
in the point estimates among the high-powered industries and the high-weight industries
are clustered more closely to the overall point estimate. Finally, while there are negative
Rotemberg weights, these industries are a small share of the overall weight, suggesting
that there are unlikely to be negative weights on particular location-specific parameters
(i.e., βl ; see also Panel E in Table A1).

8Angrist and Pischke (2008, pg. 213) write: “Check overidentified 2SLS estimates with LIML. LIML is less
precise than 2SLS but also less biased. If the results come out similar, be happy. If not, worry...”
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Table A1: Summary of Rotemberg weights: China shock

Panel A: Negative and positive weights
Sum Mean Share

Negative -0.067 -0.000 0.059
Positive 1.067 0.004 0.941
Panel B: Correlations

α̂k gk β̂k F̂k Var(zk)

α̂k 1
gk 0.430 1
β̂k 0.003 -0.320 1
F̂k 0.192 0.027 0.017 1
Var(zk) 0.102 -0.141 0.157 0.229 1
Panel C: Variation across years in α̂k

Sum Mean

1990 0.017 0.000
2000 0.983 0.002
Panel D: Top 5 Rotemberg weight industries

α̂k gk β̂k 95 % CI Ind Share

Electronic Computers 0.183 186.231 -0.619 (-1.50,-0.20) 0.137
Games, Toys, and Children’s Vehicles 0.138 243.794 -0.126 (-0.60,0.30) 0.044
Household Audio and Video Equipment 0.085 187.718 0.174 (-0.20,1.80) 0.046
Telephone and Telegraph Apparatus 0.066 92.922 -0.315 (-∞, ∞) 0.100
Computer Peripheral Equipment, NEC 0.060 34.982 -0.303 (-1.20,-0.20) 0.100
Panel E: Estimates of βk for positive and negative weights

α-weighted Share of Mean
Sum overall β

Negative -0.014 0.024 -0.036
Positive -0.582 0.976 -1.170

Notes: This table reports statistics about the Rotemberg weights. In all cases, we report
statistics about the aggregated weights, where we aggregate a given industry across years
as discussed in Section III.C. Panel A reports the share and sum of negative Rotemberg
weights. Panel B reports correlations between the weights (α̂k), the national component
of growth (gk), the just-identified coefficient estimates (β̂k), the first-stage F-statistic of the
industry share (F̂k), and the variation in the industry shares across locations (Var(zk)). Panel
C reports variation in the weights across years. Panel D reports the top five industries
according to the Rotemberg weights. The gk is the national industry growth rate, β̂k is
the coefficient from the just-identified regression, the 95% confidence interval is the weak
instrument robust confidence interval using the method from Chernozhukhov and Hansen
(2008) over a range from -10 to 10 ((−∞,∞) indicates that it was not possible to successfully
define the confidence interval), and Ind Share is the industry share (multiplied by 100 for
legibility). Panel E reports statistics about how the values of β̂k vary with the positive and
negative Rotemberg weights.
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Table A2: Relationship between industry shares and characteristics: China shock

Electronic Games, Toys, Household Audio Telephone Computer Peripheral China
Computers and Children’s and Video and Telegraph Equipment, NEC to other

Vehicles Equipment Apparatus

Share Empl in Manufacturing 0.016 0.002 0.006 0.002 0.009 0.099
(0.008) (0.001) (0.003) (0.003) (0.004) (0.011)

Share College Educated 0.016 -0.001 0.002 0.001 0.012 0.068
(0.006) (0.001) (0.002) (0.003) (0.003) (0.014)

Share Foreign Born 0.004 0.001 -0.001 -0.005 0.002 0.052
(0.003) (0.001) (0.001) (0.003) (0.002) (0.009)

Share Empl of Women -0.002 0.003 -0.006 -0.003 0.000 0.031
(0.006) (0.002) (0.003) (0.006) (0.004) (0.017)

Share Empl in Routine -0.083 0.006 0.010 -0.010 -0.046 -0.051
(0.041) (0.003) (0.007) (0.015) (0.018) (0.084)

Avg Offshorability 0.410 -0.027 -0.022 0.248 0.182 -1.173
(0.214) (0.022) (0.039) (0.076) (0.091) (0.460)

R2 0.18 0.02 0.01 0.04 0.12 0.22
N 1444 1444 1444 1444 1444 1444

Notes: Each column reports a separate regression. The regressions are two pooled cross-sections, where one cross section is
1980 shares on 1990 characteristics, and one is 1990 shares on 2000 characteristics. The final column is constructed using 1990
to 2000 growth rates. Results are weighted by the population in the period the characteristics are measured. Standard errors in
parentheses.
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Table A3: OLS and IV estimates: China shock

∆ Emp Coefficients Equal Over ID Test
(1) (2) (3) (4)

OLS -0.38 -0.17 [0.00]
(0.07) (0.04)

2SLS (Bartik) -0.73 -0.60 [0.05]
[0.07] [0.10]

2SLS -0.45 -0.21 [0.00] 917.35
[0.07] [0.05] [0.00]

MBTSLS -0.56 -0.29 [0.00]
[0.07] [0.05]

LIML -1.47 -1.94 [0.83] 1868.95
(0.71) (3.33) [0.00]

HFUL -1.15 -1.13 [0.47] 968.37
(0.04) (0.04) [0.00]

Year and Census Division FE Yes Yes
Controls No Yes
Observations 1,444 1,444

Notes: This table reports a variety of estimates of the effect of rising imports from China on
US manufacturing employment. The regressions are at the CZ level and include two time
periods (1990 to 2000, and 2000 to 2007). The TSLS row is our replication of Column (1)
and Column (6) of Table 3 in ADH. Column (1) does not contain controls, while column (2)
does. The TSLS (Bartik) row uses the Bartik instrument. The TSLS row uses each industry
share (times time period) separately as instruments. The MBTSLS row uses the estimator
of Anatolyev (2013) and Kolesar et al. (2015) with the same set of instruments. The LIML
row shows estimates using the limited information maximum likelihood estimator with the
same set of instruments. Finally, the HFUL row uses the HFUL estimator of Hausman et al.
(2012) with the same set of instruments. The J-statistic for HFUL comes from Chao et al.
(2014). The p-value for the equality of coefficients compares the adjacent columns with and
without controls. The controls are the contemporaneous characteristics displayed in Table
A2. Results are weighted by start of period population. Standard errors are in parentheses
and are constructed by bootstrap over commuting zones. p-values are in brackets.
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Figure A1: Pre-trends for high Rotemberg weight industries: China shock
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight industries as reported in Table A1. The figures fix industry shares at the 1980 val-
ues and report the effect of these industry shares on manufacturing employment. For our
controls, we fix the controls in the same time period, and interact with time fixed effects.
As in the main specification, we also control for region and time fixed effects as well. We
run regressions in growth rates and then convert to levels. We normalize 1970 to 100, and
compute the standard errors using the delta method. For the aggregate panel, we use the
Bartik estimate for 1980.



Figure A2: Heterogeneity of βk: China shock

-2

-1

0

1

2
β k

 e
st

im
at

e

0 20 40 60 80
First stage F-statistic

Positive Weights Negative Weights

Notes: This figure plots the relationship between each instruments’ β̂k, first stage F-statistics
and the Rotemberg weights. Each point is a separate instrument’s estimates (industry
share). The figure plots the estimated β̂k for each instrument on the y-axis and the esti-
mated first-stage F-statistic on the x-axis. The size of the points are scaled by the magnitude
of the Rotemberg weights, with the circles denoting positive Rotemberg weights and the
diamonds denoting negative weights. The horizontal dashed line is plotted at the value
of the overall β̂ reported in the second column in the TSLS (Bartik) row in Table A3. The
figure excludes instruments with first-stage F-statistics below 5.



Figure A3: First stage versus Rotemberg weights: China shock
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Notes: This figure plots each instrument’s Rotemberg weight against the first stage F-
statistic. Each point represents the estimates for an instrument, where instruments are
aggregated across time periods following Section III.C. The labelled industries correspond
to the five highest Rotemberg weight industries from Table A1. The dashed horizontal line
is equal to 10.



B Instruments encompassed by our structure

We now discuss two other instruments that our encompassed by our framework. This list
cannot be exhaustive, but illustrates the widespread applicability of our results.

B.1 Bank lending relationships

Greenstone, Mas and Nguyen (2020) are interested in the effects of changes in bank lending
on economic activity during the Great Recession. They observe county-level outcomes and
loan origination by bank to each county. In our notation, let xl be credit growth in a county,
let zlk be the share of loan origination in county l from bank k in some initial period, and
let glk be the growth in loan origination in county l by bank k over some period. Then
xl = ∑k zlkglk.

The most straightforward Bartik estimator would compute ĝ−l,k =
1

L−1 ∑l′ 6=l gl′k. How-
ever, Greenstone, Mas and Nguyen (2020) are concerned that there is spatial correlation in
the economic shocks and so leave-one-out is not enough to remove mechanical correlations.
One approach would be to instead leave out regions. Instead, they pursue a generalization
of this approach and regress:

glk = gl + gk + εlk, (15)

where the gl and gk are indicator variables for location and bank. Then the ĝl captures the
change in bank lending that is common to a county, while ĝk captures the change in bank
lending that is common to a bank. To construct their instrument, they use B̂l = ∑k zlk ĝk,
where the ĝk comes from equation (15).

B.2 Market size and demography

Acemoglu and Linn (2004) are interested in the effects of market size on innovation. Natu-
rally, the concern is that the size of the market reflects both supply and demand factors: a
good drug will increase consumption of that drug. To construct an instrument, their basic
observation is that there is an age structure to demand for different types of pharmaceuti-
cals and there are large shifts in the age structure in the U.S. in any sample. They use this
observation to construct an instrument for the change in market size.

In our notation, zlk is the share of spending on drug category l that comes from age
group k. Hence, ∑k zlk = 1. Then glk is the growth in spending of age group k on drug
category l. Hence, xl = ∑k zlkglk. To construct an instrument, they use the fact that there
are large shifts in the age distribution. Hence, they estimate ĝk as the increase in the number
of people in age group k, and sometimes as the total income (people times incomes) in age



group k. This instrument is similar to the “China shock” setting where for both conceptual
and data limitation issues glk is fundamentally unobserved and so the researcher constructs
ĝk using other information.

C Omitted proofs

Proposition 1

Proof.

β̂GMM =
X⊥

′
ZGG′Z′Y⊥

X⊥′ZGG′Z′X⊥

=
X⊥

′
BB′Y⊥

X⊥′BB′X⊥

= β̂Bartik,

where X⊥
′
B is a scalar and so cancels.

Proposition 3

We use slightly more general notation than in the body of the paper. Let Ŵ be an arbitrary
weight matrix and let

Ĉ(Ŵ) = ŴZ′X⊥ and ĉk(Ŵ) = ŴkZ′X⊥,

where Ŵk is the kth row of Ŵ. We index a solution for β̂ by Ŵ: β̂(Ŵ). The more general
version of the proposition stated in the text is:

PROPOSITION 5. Let

β̂(Ŵ) =
Ĉ(Ŵ)′Z′Y⊥

Ĉ(Ŵ)′Z′X⊥
, α̂k(Ŵ) =

ĉk(Ŵ)Z′kX⊥

∑k′ ĉk′(Ŵ)Z′kX⊥
, and β̂k = (Z′kX⊥)−1Z′kY⊥.

Then:

β̂(Ŵ) =
K

∑
k=1

α̂k(Ŵ)β̂k,

where ∑K
k=1 α̂k(Ŵ) = 1.
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Proof. The proof is just algebra:

α̂k(Ŵ)β̂k =
ĉk(Ŵ)Z′kX⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(Z′kX⊥)−1Z′kY⊥ =
ĉk(Ŵ)Z′kY⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(16)

K

∑
k=1

α̂k(Ŵ)β̂k =
∑K

k=1 ĉk(Ŵ)Z′kY⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(17)

=
Ĉ(Ŵ)′Z′Y⊥

Ĉ(Ŵ)′Z′X⊥
. (18)

The proposition stated in the text comes from substituting in for the Bartik definition of
Ŵ.

Proposition 4

Proof. For a given k,

β̂k =
∑l zlkx⊥l βl

∑l zlkx⊥l
+

∑l zlkε⊥l
∑l zlkx⊥l

(19)

=
∑l zlkx⊥l βl

∑l zlkx⊥l
+ op(1) (20)

=
∑l z⊥,2

lk πlkβl + zlku⊥lk
∑l z⊥,2

lk πlk + zlku⊥lk
+ op(1). (21)

Thus,

plim
L→∞

β̂k = E[ωlkβl ], (22)

where ωlk = z⊥,2
lk πlk

/
E[z⊥,2

lk πlk]. Since πlk ≥ 0 by assumption, ωlk is non-negative for all l.
Additionally, E[ωlk] = 1.

D Equivalence with K industries, L locations, and controls

The two stage least squares system of equations is:

ylt = Dltρ + xltβ + εlt (23)

xlt = Dltτ + Bltγ + ηlt, (24)
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where Dlt is a 1× S vector of controls. Typically in a panel context, Dlt will include location
and year fixed effects, while in the cross-sectional regression, this will simply include a
constant. It may also include a variety of other variables. Let n = L × T, the number of
location-years. For simplicity, let Y denote the n × 1 stacked vector of ylt, D denote the
n× L stacked vector of Dlt controls, X denote the n× 1 stacked vector of xlt, G the stacked
K × T vector of the gkt, and B denote the stacked vector of Blt. Denote PD = D(D′D)−1D′

as the n × n projection matrix of D, and MD = In − PD as the annhilator matrix. Then,
because this is an exactly identified instrumental variable our estimator is

β̂Bartik =
B′MDY
B′MDX

. (25)

We now consider the alternative approach of using industry shares as instruments. The
two-equation system is:

ylt = Dltρ + xltβ + εlt (26)

xit = Dltτ + Zltγt + ηlt, (27)

where Zlt is a 1× K row vector of industry shares, and γt is a K × 1 vector, and, reflecting
the lessons of Section I.B, the t subscript allows the effect of a given industry share to be
time-varying. In matrix notation, we write

Y = Dρ + Xβ + ε (28)

X = Dτ + Z̃Γ + η, (29)

where Γ is a stacked 1× (T × K) row vector such that

Γ = [γ1 · · · γT] , (30)

and Z̃ is a stacked n× (T × K) matrix such that

Z̃ =
[

Z� 1t=1 · · · Z� 1t=T

]
, (31)

where 1t=t′ is an n× K indicator matrix equal to one if the nth observation is in period t′,
and zero otherwise. � indicates the Hadamard product, or pointwise product of the two
matrices. Then, using the Z̃ as instruments, the GMM estimator is:

β̂GMM =
X′MDZ̃ΩZ̃′MDY
X′MDZ̃ΩZ̃′MDX

, (32)
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where Ω is a KT × KT weight matrix.

PROPOSITION 6. If Ω = GG′, then β̂GMM = β̂Bartik.

Proof. Start with the Bartik estimator,

β̂Bartik =
B′MDY
B′MDX

(33)

=
G′Z̃′MDY
G′Z̃′MDX

(34)

=
X′MDZ̃GG′Z̃′MDY
X′MDZ̃GG′Z̃′MDX

, (35)

where the second equality follows from the definition of B, and the third equality follows
because X′MDZ̃G is a scalar. By inspection, if Ω = GG′, then β̂GMM = β̂Bartik.

E Interpreting the Rotemberg weights

To interpret the Rotemberg weights, we move from finite samples to population limits. We
first state the standard assumptions such that GMM estimators are consistent for all se-
quences of Ŵ matrices. We then consider local-to-zero asymptotics (e.g., Conley, Hansen
and Rossi (2012)) to interpret the Rotemberg weights in terms of sensitivity-to-misspecification
as discussed in Andrews, Gentzkow and Shapiro (2017) (AGS). As such, the results in this
section are largely special cases of AGS.

The Rotemberg weights depend on the choice of weight matrix, Ŵ. Given standard as-
sumptions, the choice of weight matrix does not affect consistency or bias of the estimates,
and only affects the asymptotic variance of the estimator (there is a rich literature studying
how to optimize this choice).

When some of the instruments are not exogenous, however, the population version of
the Rotemberg weights measures how much the overidentified estimate of β0 is affected by
this misspecification. To allow for this interpretation, we modify our estimating equation:

ylt = Dltρ + xltβ0 + Vltκ + εlt,

where we assume that for some k, E[ZlktVlt|Dlt] 6= 0. We follow Conley, Hansen and Rossi
(2012, Section III.C) and AGS (pg. 1569) and allow κ to be proportional to L−1/2 such that
we have local misspecification. We make the following standard regularity assumptions:

ASSUMPTION 4 (Identification and Regularity). (i) the data {{xlt, Zlt, Dlt, Vlt, εlt}T
t=1}L

l=1

are independent and identically distributed with K and T fixed, and L going to infinity;
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(ii) E[εlt] = 0, E[Vlt] = 0 and Var(ε̃) < ∞;

(iii) E[zlktεlt|Dlt] = 0 for all values of k; E[zltVlt] = ΣZV , where ΣZV is a 1× K covariance
vector with at least one non-zero entry; and E[Zltx⊥lt ] = ΣZX⊥ is a 1× K covariance vector
with all non-zero entries (xlt is a scalar), and ΣZX⊥,k is the kth entry; and

(iv) Var(zlktεlt) < ∞, Var(zlktVlt) < ∞ and Var(zlktx⊥lt ) < ∞ for all values of k.

We first establish the population version of α̂k(Ŵ):

LEMMA 1. If Assumption 4 holds and plimL→∞ ŴL = W where W is a positive semi-definite
matrix, then

plim
L→∞

α̂k(Ŵ) = αk(W) =
ΣZX⊥WkΣZX⊥,k

ΣZX⊥WΣ′ZX⊥
.

Proof. Note that

α̂k(Ŵ) =
X⊥′ZŴkZ′kX⊥

X⊥′ZŴZ′X⊥
(36)

=

(
∑l,t x⊥lt Zlt

)
Ŵk
(
∑l,t zlktx⊥lt

)(
∑l,t x⊥lt Zlt

)
Ŵ
(
∑l,t Zltx⊥lt

) . (37)

Since our data is i.i.d. and the variance of x⊥lt Zlt is bounded, the law of large numbers holds
as L→ ∞.

We now present results about the asymptotic behavior of our estimators with misspec-
ification.

PROPOSITION 7. We assume that Assumption 4 holds and plimL→∞ ŴL = W where W is a
positive semi-definite matrix.

If κ = L−1/2, then

(a)
√

L(β̂k − β0) converges in distribution to a random variable β̃k, with E[β̃k] =
ΣZV,k

ΣZX⊥ ,k
and

(b)
√

L(β̂− β0) converges in distribution to a random variable β̃, with E[β̃] = ∑K
k=1 αk(W)E[β̃k] =

∑K
k=1 αk(W)

ΣZV,k
ΣZX⊥ ,k

.

Proof. First, note that

β̂k =
∑l,t zlkty⊥lt
∑l,t zlktx⊥lt

= β0 +
∑l,t zlkt(L−1/2Vlt + εlt)

∑l,t zlktxlt

β̂k − β0 = L−1/2 ∑l,t zlktVlt

∑l,t zlktxlt
+

∑l,t zlktεlt

∑l,t zlktxlt
.
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The second term goes to zero because E[zlktεlt] = 0. The first term goes to zero as L → ∞.
Finally, since our summand terms have bounded variance, the law of large numbers holds.
A similar argument holds for the broader summand.

The asymptotic bias of β̃k follows from Proposition 3 of AGS. A sketch of the proof for
this case follows:

√
L(β̂k − β0) =

∑l,t zlktVlt

∑l,t zlktxlt
+
√

L
∑l,t zlktεlt

∑l,t zlktxlt
√

L(β̂k − β0)−
∑l,t zlktVlt

∑l,t zlktxlt
=
√

L
∑l,t zlktεlt

∑l,t zlktxlt
.

Since ∑l,t zlktVlt
∑l,t zlktxlt

converges to ΣZV,k
ΣZX⊥ ,k

, this implies that
√

L(β̂k − β0) converges in distribu-

tion to a normally distributed random variable β̃k with E[β̃k] =
ΣZV,k

ΣZX⊥ ,k
. Finally, since

α̂k(Ŵ) converges in probability to αk(W), by a similar argument this implies that
√

L(β̂−
β0) converges in distribution to a normally distributed random variable β̃ with E[β̃] =

∑k αk(W)
ΣZV,k

ΣZX⊥ ,k
= ∑k αk(W)E[β̃k].

This proposition shows that in the presence of misspecification, the estimator is asymp-
totically biased. Two useful corollaries follow:

COROLLARY 1. Suppose that β0 6= 0. Then the percentage bias can be written in terms of the
Rotemberg weights:

E[β̃]

β0
= ∑

k
αk(W)

E[β̃k]

β0
. (38)

COROLLARY 2. Under the Bartik weight matrix (W = GG′),

E[β̃]

β0
= ∑

k

gkΣZX⊥,k

G′Σ′ZX⊥

E[β̃k]

β0
. (39)

The first corollary interprets the αk(W) as a sensitivity-to-misspecification elasticity. Be-
cause of the linear nature of the estimator, it rescales the AGS sensitivity parameter to be
unit-invariant, and hence is comparable across instruments.9 Specifically, αk(W) is the per-
centage point shift in the bias of the over-identified estimator given a percentage point
change in the bias from a single industry. The second corollary gives the population ver-
sion of Bartik’s Rotemberg weights.

9AGS (pg. 1558) write: “The second limitation is that the units of [our sensitivity vector] are contingent
on the units of [the moment condition]. Changing the measurement of an element [j of the moment condi-
tion] from, say, dollars to euros, changes the corresponding elements of [the sensitivity vector]. This does not
affect the bias a reader would estimate for specific alternative assumptions, but it does matter for qualitative
conclusions about the relative importance of different moments.”
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An alternative approach to measuring sensitivity is to drop an instrument and then re-
estimate the model. Let β̂(Ŵ−k) be the same estimator as β̂(Ŵ), except excluding the kth

instrument and define the bias term for β̂(Ŵ−k) as β̃(Ŵ−k) = β̂(Ŵ−k)− β.

PROPOSITION 8. The difference in the bias from the full estimator and the estimator that leaves out
the kth industry is:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
β

= αk(W)
E[β̃k]

β
− αk(W)

1− αk(W) ∑
k′ 6=k

αk′(W)
E[β̃k′ ]

β
.

If E[β̃k′ ] = 0 for k′ 6= k, then we get a simpler expression:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
β

= αk(W)
E[β̃k]

β
.

Proof. Consider the difference in the bias for the two estimators:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
= ∑

k′
αk′(W)E[β̃k′ ]− ∑

k′ 6=k
αk′(W−k)E[β̃k′ ] (40)

= αk(W)E[β̃k] + ∑
k′ 6=k

(αk′(W)− αk′(W−k))E[β̃k′ ]. (41)

Now, consider αk′(W) − αk′(W−k). If W = GG′, then C(W) = GB′X⊥ and αk′(W) =
gk′Zk′X

⊥

∑k′ gk′Zk′X⊥
. If W−k = G−kG′−k, then αk′(W−k) =

gk′Zk′X
⊥

∑k′ 6=k gk′Zk′X⊥
, or αk′(W−k) = αk′(W)/(1−

αk(W)).10 This gives:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
= αk(W)E[β̃k] + ∑

k′ 6=k

(
αk′(W)− αk′(W)

1− αk(W)

)
E[β̃k′ ] (42)

= αk(W)E[β̃k]−
αk(W)

1− αk(W) ∑
k′ 6=k

(αk′(W))E[β̃k′ ]. (43)

As emphasized by AGS (Appendix A.1), dropping an instrument and seeing how es-
timates change does not directly measure sensitivity. Instead, this measure combines two
forces: the sensitivity of the instrument to misspecification, and how misspecificed the in-
strument is relative to the remaining instruments.

10Note that with TSLS, these results would not hold, as the estimates for the first stage parameters after
dropping an industry would be different.
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F Rotemberg weights and first-stage F-statistics

In this appendix, we derive the relationship between the Rotemberg weight on the kth in-
strument, and the relative first stage F-statistic.

Let π̂k ≡
Z⊥,′

k X⊥

Z⊥,′
k Z⊥k

and π̂ ≡ B⊥,′X⊥
B⊥,′B⊥ be the first stage coefficients for the kth industry and the

Bartik instrument. The first stage F-statistic on the kth instrument can be written11

Fk =
π̂k

2

Σ̂πkπk

(44)

=

(
Z′kX⊥

Z⊥′k Z⊥k

)2
1

Σ̂πkπk

(45)

=
1
g2

k

 gkZ′kX⊥

∑k′ gk′Zk′X⊥︸ ︷︷ ︸
α̂k


2(

(∑k′ gk′Zk′X⊥)
Z⊥′k Z⊥k

)2
1

Σ̂πkπk

(46)

=
1
g2

k
α̂2

k

(
(B⊥,′X⊥

Z⊥′k Z⊥k

)2
1

Σ̂πkπk

(47)

=
1
g2

k

(B⊥,′B⊥)2

(Z⊥,′
k Z⊥k )

2

(B⊥,′X⊥)2

(B⊥,′B⊥)2︸ ︷︷ ︸
π̂2

α̂2
k

1
Σ̂πkπk

(48)

=
1
g2

k

(B⊥,′B⊥)2

(Z⊥,′
k Z⊥k )

2
Fα̂2

k
Σ̂ππ

Σ̂πkπk

. (49)

From the first to the second line we substitute in the definition of π̂2
k , from the second to

the third line we multiply by g2
k

g2
k

and
(

∑k′ gk′Zk′X
⊥

∑k′ gk′Zk′X⊥

)2
, from the third to the fourth line we use

the definition of α̂k and the fact that ∑k′ gk′Zk′X⊥ = B⊥,′, from to the fourth to the fifth line

we multiply by
(

B⊥,′

B⊥,′

)2
, and from the fifth to the sixth line we multiply by ˆΣππ

ˆΣππ
and use the

definition of F.
Hence, we have:

Fk

F
=

(B⊥,′B⊥)2

(Z⊥,′
k Z⊥k )

2

Σ̂ππ

Σ̂πkπk

1
g2

k
α̂2

k (50)

= α̂2
k

(
V̂ar(B⊥)

gkV̂ar(Z⊥k )

)2 Σ̂ππ

Σ̂πkπk

. (51)

11See, e.g., https://www.nber.org/econometrics_minicourse_2018/2018si_methods.pdf at slide 21.
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G Normalization of the Rotemberg weights

This appendix presents results to understand the role of normalizations. Following Remark
1 we always “drop” industry k by subtracting off gk from all the growth rates. Proposition
9 shows that the bias coming each instrument can be written as a weighted average of the
bias coming from the remaining K− 1 instruments. Corollary 3 shows how the Rotemberg
weight gets shifted across instruments depending on which instrument is dropped. Finally,
corollary 4 shows that the average of the K normalizations is to set the unweighted mean
of the growth rates to zero.

PROPOSITION 9. If the ∑K
k=1 zlk = 1∀l, then we can write

E[β̃k] = ∑
j 6=k

ωj,kE[β̃ j]

where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

and E[β̃ j] =
ΣZVj

ΣZX⊥j
.

Proof. Recall from Proposition 7 that

E[β̃k] =
ΣZVk

ΣZX⊥k
.

When ∑K
k=1 zlk = 1, then ∑K

k=1 ΣZX⊥k
= 0 and ∑K

k=1 ΣZVk = 0. Then we can write

ΣZVk = −∑
j 6=k

ΣZVj

and
ΣZX⊥k

= −∑
j 6=k

ΣZX⊥j
.

Then:

E[β̃k] =
ΣZVk

ΣZX⊥k

(52)

= ∑
j 6=k

ΣZVj

∑j′ 6=k ΣZX⊥j′

(53)

= ∑
j 6=k

ΣZX⊥j

∑j′ 6=k ΣZX⊥j′

ΣZVj

ΣZX⊥j

(54)

= ∑
j 6=k

ωj,kE[β̃ j], (55)

22



where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

and E[β̃ j] =
ΣZVj

ΣZX⊥j
.

COROLLARY 3. Let ∑K
k=1 zlk = 1∀l. Let {αk(GG′)}K

k=1 be the set of sensitivity-to-misspecification
elasticities given a weight matrix formed by a set of growth rates G. Now renormalize the growth
rates by subtracting off gk. Define αj,k(GG′) = αj((G− gk)(G− gk)

′) to be the resulting sensitivity-
to-misspecification elasticities (which imply that we have “zeroed out” the kth instrument). Then:

αj,k(GG′) = αj(GG′) + ωj,kαk(GG′),

where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

.

Proof. Write:

αj,k(GG′) =
(gj − gk)ΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

(56)

=
gjΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

−
gkΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

(57)

=
gjΣZX⊥j

∑j′ gj′ΣZX⊥j′

−
gkΣZX⊥j

∑j′ gj′ΣZX⊥j′

, (58)

because gk ∑j′ ΣZX⊥j′
= 0. Then:

αj,k(GG′) = αj(GG′)−
gkΣZX⊥j

∑j′ gj′ΣZX⊥j′

ΣZX⊥k
ΣZX⊥k

(59)

= αj(GG′)− αk(GG′)
ΣZX⊥j

ΣZX⊥k

. (60)

Recall that ΣZX⊥k
= −∑j 6=k ΣZX⊥j

. So that: −
ΣZX⊥j
ΣZX⊥k

=
ΣZX⊥j

∑j 6=k ΣZX⊥j
= ωj,k. Hence:

αj,k(GG′) = αj(GG′) + ωj,kαk(GG′).

COROLLARY 4. The average of the K normalizations is:

αj(GG′)avg = αj(GG′)−
ΣZX⊥j

K

[
∑K

k=1 gk

∑K
k=1 gkΣZX⊥k

]
.
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If ∑K
k=1 gk = 0, then αj(GG′)avg = αj(GG′).

Proof. Note that we have two expressions for ωj,k = −
ΣZX⊥j
ΣZX⊥k

=
ΣZX⊥j

∑j 6=k ΣZX⊥j

αj(GG′)avg =
1
K

K

∑
k=1

αj,k(GG′) (61)

=
1
K

K

∑
k=1

[
αj(GG′) + ωj,kαk(G′G)

]
(62)

=
1
K

K

∑
k=1

[
αj(GG′)−

ΣZX⊥j

ΣZX⊥k

αk(G′G)

]
(63)

= αj(GG′)− 1
K

K

∑
k=1

ΣZX⊥j

ΣZX⊥k

gkΣZX⊥k

∑K
j′=1 gj′ΣZX⊥j′

 (64)

= αj(GG′)−
ΣZX⊥j

K

[
∑K

k=1 gk

∑K
k=1 gkΣZX⊥k

]
. (65)

G.1 Empirical robustness

In the canonical Bartik setting (the only one of our three examples where the shares sum to
one), we consider the impact of three ways of normalizing the growth rates on the 10 largest
Rotemberg weights. Panel A of Appendix Table A4 repeats the results from Table 1 where
we subtract off the simple mean of growth rates in each time period. Panel B shows what
happens if we do not demean. Finally, in Panel C we demean using the mean of growth
rates averaged across three time periods.

The Table shows that in this setting the Rotemberg weights are not sensitive to rea-
sonable perturbations on the normalization. In all three cases, the industries with eight
largest Rotemberg weights are the same, and in almost identical order. Though the sizes
are slightly different, these differences are quite small.
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Figure A4: Pre-trends for high Rotemberg weight industries (1990 shares): China shock
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Panel C: Household Audio and Video Panel D: Telephone Apparatus
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Panel E: Computer Equipment Panel F: Aggregate
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight industries as reported in Table A1. The figures fix industry shares at the 1990 val-
ues and report the effect of these industry shares on manufacturing employment. For our
controls, we fix the controls in the same time period, and interact with time fixed effects.
As in the main specification, we also control for region and time fixed effects as well. We
run regressions in growth rates and then convert to levels. We normalize 1970 to 100, and
compute the standard errors using the delta method. For the aggregate panel, we use the
Bartik estimate for 1990.
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Table A4: Robustness of Rotemberg weights: canonical setting

Panel A: Top 10 Rotemberg weight industries (baseline)
α̂k Ind Share

Oil+Gas Extraction 0.229 0.568
Motor Vehicles 0.140 1.404
Other 0.091 1.697
Guided Missiles 0.069 0.236
Blast furnaces 0.058 0.800
Construction and material handling machines 0.055 0.444
Landscaping 0.039 0.213
Electrical machinery, equipment, and supplies, n.s. 0.035 0.182
Coal mining 0.033 0.317
Petroleum refining 0.032 0.211
Panel B: Top 10 Rotemberg weight industries (no demeaning)

α̂k Ind Share

Oil+Gas Extraction 0.204 0.568
Motor Vehicles 0.167 1.404
Other 0.125 1.697
Guided Missiles 0.075 0.236
Construction and material handling machines 0.046 0.444
Blast furnaces 0.046 0.800
Landscaping 0.041 0.213
Electrical machinery, equipment, and supplies, n.s. 0.038 0.182
Computers and related equipment 0.036 0.498
National security and international affairs 0.033 0.736
Panel C: Top 10 Rotemberg weight industries (simple demeaning)

α̂k Ind Share

Oil+Gas Extraction 0.204 0.568
Motor Vehicles 0.167 1.404
Other 0.125 1.697
Guided Missiles 0.075 0.236
Construction and material handling machines 0.046 0.444
Blast furnaces 0.046 0.800
Landscaping 0.041 0.213
Electrical machinery, equipment, and supplies, n.s. 0.038 0.182
Computers and related equipment 0.036 0.498
National security and international affairs 0.033 0.736

Notes: This table reports statistics about the Rotemberg weights across alternative growth rate demeaning examples.
Panel A reports the top ten industries according to the Rotemberg weights, replicating the demeaning from the main text.
Panel B reports the top ten industries according to the Rotemberg weights, without demeaning. Panel C reports the top ten
industries according to the Rotemberg weights, demeaning using the simple mean. The “Other” industry is the “N/A" code
in the IND1990 classification system and includes full-time military personnel.
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H Using growth rates to test overidentification restrictions

We consider a setting where only one instrument has first stage power. We consider a
researcher choosing two sets of weights. We show that given one set of weights, denoted
by G1, and all but one entry in a second vector G2, it is possible to generate two instruments
that have a covariance of 0 and lead to identical parameter estimates. In this case, however,
both Bartik instruments use the same identifying variation and so finding that they are
uncorrelated does not imply that they leverage different sources of variation.

PROPOSITION 10. Suppose that Z′Z is full rank. Suppose that only the first entry in Z′X (a K× 1
vector) is non-zero. Since we assume that the Z constitute a valid instrument, then only the first
entry in Z′Y is non-zero. Suppose that we are given two sets of weights, G1 and G2, with G1,1 6= 0
and G2,1 6= 0. Suppose we leave the last entry of the second vector unknown (G2,K). Use these two
sets of weights to construct two Bartik instruments: B1 = ZG1 and B2 = ZG2. Assume further
that all the entries in G′1Var(Z) are non-zero. Then it is always possible to find G2,K such that:

1. The two Bartik instruments lead to identical parameter estimates.

2. The two Bartik instruments are uncorrelated.

The proof shows that the first constraint is always satisfied, and derives an expression
for the second constraint.

Proof. The first constraint is that:

β̂1 = β̂2 (66)

where for j ∈ {1, 2} β̂ j = G′jZ
′Y(G′jZ

′X)−1. Since only the first entries in Z′X and Z′Y are
nonzero, we have:

G′jZ
′Y(G′jZ

′X)−1 =
∑k Gj,kZ′kY
∑k Gj,kZ′kX

(67)

=
Gj,1Z′1Y + ∑K

k=2 Gj,kZ′kY

Gj,1Z′1X + ∑K
k=2 Gj,kZ′kX

(68)

=
Gj,1Z′1Y + ∑K

k=2 Gj,k0

Gj,1Z′1X + ∑K
k=2 Gj,k0

(69)

=
Z′1Y
Z′1X

, (70)

where this derivation uses the fact that only the first entry in Z′X (and Z′Y) is nonzero.
Hence, if G1,1 6= 0 and G2,1 6= 0, β̂1 = β̂2, which is true by assumption. Hence, the first
constraint always holds.
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The second constraint is that the covariance between the two Bartik instruments is zero:

Cov(B1, B2) = E[B1B2]−E[B1]E[B2] (71)

= E[(ZG1)(ZG2)]−E[ZG1]E[ZG2] (72)

= E[(ZG1)
′(ZG2)]−E[ZG1]E[ZG2] (73)

= G′1E[Z′Z]G2 − G′1E[Z′]E[Z]G2 (74)

= G′1[E[Z′Z]−E[Z′]E[Z]]G2 (75)

= G′1Var(Z)G2, (76)

where this exploits the fact that B1,l is a scalar so we can take the transpose, and G1 and G2

are non-stochastic so that we can pull them out of the expectation. Let T = G′1ΣZ, where
ΣZ = Var(Z). So we can write this first constraint as:

TG2 = 0. (77)

Note that T is 1× K. By assumption, the last entry in T are nonzero. We now construct an

expression for this entry. To make TG2 = 0, we need ∑K
k=1 TkG2,k = 0⇒ G2,K = −∑K−1

k=1 TkG2,k
TK

.

I The Rotemberg weights with leave-one-out

The formulas we present in Section III apply to the case where the weights are common to
all locations (i.e., we compute the national industry growth rates using a weighted average
that included all locations). Here we present the formulas for the αk that obtain when we
use leave-one-out growth rates to construct the Bartik estimator. We note a few things. First,
the numerical equivalence between GMM and Bartik obtains in the limit as the number of
locations goes to infinity when we use a leave-one-out estimator. Second, when we use a
leave-one-out estimator, the weights sum to one in the limit as the number of locations goes
to infinity. (For notational simplicity we suppress notation that residualizes for controls.)

First, we derive how the leave-location-l-out estimator of G, which we denote by G−l ,
relates to the overall average, G and the location-specific Gl (L is the number of locations):

G =
L− 1

L
G−l +

1
L

Gl ⇒ G−l =
L

L− 1
G− 1

L− 1
Gl .

Second, we derive a version of Proposition 3 with the leave-one-out estimator of G.
Note that the instrument constructed using leave-l-out growth rates in location l is: Bl,−l =

Zl
( L

L−1 G− 1
L−1 Gl

)
where G and Gl are K × 1 vectors and Zl is a 1× K vector (and Z will
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be the L× K stacked matrix). Then:

Bl,−l = Zl

(
L

L− 1
GL −

1
L− 1

Gl

)
(78)

Bl,−l =
L

L− 1
ZlG−

1
L− 1

ZlGl (79)

Bl,−l =
L

L− 1
Bl −

1
L− 1

Xl , (80)

where the observation is that ZlGl = Xl . Then the stacked version is:

B−l =
L

L− 1
B− 1

L− 1
X,

where B is the vector of Bl and B−l is the vector of Bl,−l .
Then:

β̂ =
B′−lY
B′−lX

(81)

=

( L
L−1 B− 1

L−1 X
)′ Y( L

L−1 B− 1
L−1 X

)′ X (82)

=

( L
L−1 (ZG)− 1

L−1 X
)′ Y( L

L−1 (ZG)− 1
L−1 X

)′ X . (83)

As before:

βk =
Z′kY
Z′kX

. (84)

Then one can show:

αk =
L

L−1 gkZ′kX− 1
L−1 X′Yβ−1

k

∑k
L

L−1 gkZ′kX− 1
L−1 X′X

. (85)

By inspection, ∑k αk 6= 1. However, as L → ∞ the sum converges to 1 as the leave-one-out
terms drop out.
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Figure A5: First stage versus Rotemberg weights: canonical setting
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Notes: This figure plots each instrument’s Rotemberg weight against the first stage F-
statistic. Each point represents the estimates for an instrument, where instruments are
aggregated across time periods following Section III.C. The labelled industries correspond
to the five highest Rotemberg weight industries from Table 1. The dashed horizontal line is
equal to 10.



Figure A6: First stage versus Rotemberg weights: immigrant enclave

Panel A: High school equivalent
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Panel B: College equivalent
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Notes:This figure plots each instrument’s Rotemberg weight against the first stage F-
statistic. Each point represents the estimates for an instrument, where instruments are
aggregated across time periods following Section III.C. The labelled industries correspond
to the five highest Rotemberg weight industries from Table 4. The dashed horizontal line is
equal to 10.
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