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1 Asymptotic Quantile Models

Consider the task of aggregating sets of quantile treatment effects and assessing
their generalizability. First recall that the uth quantile of some outcome is the value
of the inverse CDF at u:

QY (u) = F−1
Y (u). (1.1)

Performing quantile regression for some quantile u in site k when the only regressor
is the binary treatment indicator Tnk requires estimating:

Qynk|T (u) = β0k(u) + β1k(u)Tnk (1.2)

For a single quantile u, the treatment effect is the univariate parameter β1k(u).
If there is only one quantile of interest, a univariate Bayesian hierarchical model
can be applied, as in Reich et al (2011). But in the microcredit data, researchers
estimated a set of 10 quantiles U = {0.05, 0.15, ..., 0.95} and interpolated the results
to form a "quantile difference curve". This curve is constructed by computing the
quantile regression at all points of interest:

Qyik|T = {Qyik|T (u) = β0k(u) + β1k(u)Tik ∀ u ∈ U} (1.3)

The results of this estimation are two |U|-dimensional vectors containing intercept
and slope parameters. For the microcredit data, I work with the following vector of
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10 quantile effects:

β0k = (β0k(0.05), β0k(0.15), ...β0k(0.95))
β1k = (β1k(0.05), β1k(0.15), ...β1k(0.95))

(1.4)

The quantile difference curve is the vector β1k, often linearly interpolated. With
a binary treatment variable, the parameters in a quantile regression are simple func-
tions of unconditional outcome quantiles. Let Q0k(u) be the value of the control
group’s quantile u in site k, and let Q1k(u) be the value of the treatment group’s
quantile u in site k. Then:

Q0k = {Q0k(u) ∀ u ∈ U}
Q1k = {Q1k(u) ∀ u ∈ U}.

(1.5)

Then the vectors of intercepts and slopes for the quantile regression curves can
be reformulated as

β0k = Q0k

β1k = Q1k −Q0k.
(1.6)

Hence, while the quantile difference curve β1k need not be monotonic, it must im-
ply a monotonic Q1k when combined with a monotonic β0k. The fact that any infer-
ence done quantile-by-quantile may violate monotonicity of (Q1, Q0, {Q1k, Q0k}Kk=1)
is a well-understood problem (Chernozhukov et al. 2010). Partial pooling for aggre-
gation can exacerbate this problem because even if every lower level Q1k and Q0k

satisfies monotonicity, their "average" or general Q1 and Q0 may not do so. Thus,
unlike quantile crossing within a sample, the crossing in this setting is not necessarily
the result of an incorrect asymptotic assumption or an extrapolation to a poorly-
covered region of the covariate space. Indeed, for binary treatment variables, the
within-sample estimators always satisfy monotonicity, but the averaging and pooling
of these estimators may introduce crossing where none existed.1 Ideally, therefore,
an aggregation model should fit all quantiles simultaneously, imposing the mono-
tonicity constraint. Aggregating the quantile difference curves, {β1k}Kk=1, requires
more structure than aggregating quantile-by-quantile, but permits the transmission
of information across quantiles.

I propose a general methodology to aggregate reported information on quantile
1Yet even if quantile crossing does not arise, neighboring quantiles contain information about

each other not just because of monotonicity but because smooth distributions have quantiles that
tend to lie close to each other; using that information can improve the estimation and reduce
posterior uncertainty.
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difference functions building on the approach of Rubin (1981) and a classical result
from Mosteller (1946) about the joint distribution of sets of empirical quantiles.
Mosteller shows that if the underlying random variable is continuously distributed,
then the asymptotic sampling distribution of a vector of its empirical quantiles is
a multivariate Normal centered at the true quantiles and with a known variance-
covariance structure. This implies that the difference of the empirical quantile vec-
tors from two independent samples, β1k = (Q1k − Q0k), is also asymptotically a
multivariate Gaussian. The theorem offers a foundation for a hierarchical quantile
treatment effect aggregation model using the knowledge that the sampling variation
is approximately a multivariate Gaussian, and that as a result modelling the par-
ent distribution as Gaussian will be both tractable and have attractive performance
(Rubin 1981, Efron and Morris 1975). The resulting analysis requires only the lim-
ited information reported by each study (although it can be fit to the full data) and
is applicable to any continuous distribution as long as there is sufficient data in each
of the studies to make the asymptotic approximation reasonable.

For this model, the data are the vectors of sample quantile differences {β̂1k}Kk=1

and their sampling variance-covariance matrices {Ξ̂β1k
}Kk=1. Thus, the lower level

f(Yk|θk) = f(β̂1k|β1k) is given by the expression:

β̂1k ∼ N(β1k, Ξ̂β1k) ∀ k (1.7)

The upper level of the model ψ(θk|θ) is therefore:

β1k ∼ N(β1,Σ1) ∀ k. (1.8)

However, the estimated (β̃1, {β̃1k}Kk=1) from this likelihood may not respect the
implied quantile ordering restriction when combined with the estimated control
quantiles, even if β̂1ks do. We need to add the relevant constraints to this model,
but these difference functions are not the primary objects on which the constraints
operate. While (β1, {β1k}Kk=1) need not be monotonic, they must imply monotonic
(Q1, {Q1k}Kk=1) when combined with (Q0, {Q0k}Kk=1). Since the objects (Q1, Q0, {Q1k, Q0k}Kk=1)
define the constraints, they must appear in the model.

Once the quantiles (Q1, Q0, {Q1k, Q0k}Kk=1) appear in the model, transforming
them into monotonic vectors will fully impose the relevant constraint on (β1, {β1k}Kk=1).
This strategy exploits the fact that Bayesian inference treats unknown parameters as
random variables, so applying the transformation of variables formula and then re-
versing the transform at the end of the procedure completely preserves the posterior
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probability mass, and hence correctly translates the uncertainty intervals.

The Bayesian approach here has an advantage in incorporating knowledge about
the properties of quantiles and indeed on any arbitrary parameter θ, because it offers
a natural mechanism for imposing constraints on parameters. If the parameter θ
can only belong to some subset of the parameter space, AΘ ⊂ Θ, this produces the
following restricted likelihood:

LAΘ(Y|θ) = L(Y|θ) · 1{θ ∈ AΘ}. (1.9)

Because Bayesian inference treats unknown parameters as random variables, a sta-
tistical transformation of variables can impose constraints throughout the entire
inferential process. If θ is a multivariate random variable with PDF pθ(θ) then a
new random variable θ∗ = f(θ) for a differentiable one-to-one invertible function f(·)
with domain Aθ has density

p(θ∗) = pθ(f−1(θ))|det(Jf−1(θ))|. (1.10)

Therefore to implement inference using LAΘ(Y|θ), leading to the correctly con-
strained posterior fAΘ(θ|Y), I specify the model as usual and then implement a
transformation of variables from θ to θ∗. I then perform Bayesian inference using
L(Y|θ∗) and P(θ∗), derive f(θ∗|Y), and then reverse the transformation of variables
to deliver f(θ|Y) · 1{θ ∈ AΘ}.2 Frequentist implementation of constraints typically
must reckon with the constraints twice, first in point estimation and second in inter-
val estimation, and it can be challenging to ensure coherence between the two or to
extend the consequences to other parameters. The Bayesian implementation ensures
coherence because the constraint is imposed on the parameter itself throughout the
construction of the full joint posterior which is then used for both estimation and
inference.

I proceed with a transform proposed for use in Stan (2016), but in theory any
valid monotonizing transform will do, since it is always perfectly reversed.3 Consider
monotonizing the |U|-dimensional vector β0, with uth entry denoted β0[u]. One can

2In fact, for all the transformations I use here, this procedure has been automatically imple-
mented in the software package Stan, a free statistical library which calls C++ to fit Bayesian
models from R or Python (Stan Development Team, 2017).

3While some transforms may perform better than others in certain cases, to my knowledge there
is little research on this issue that presently permits us to choose between transforms.
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map β0 to a new vector β∗0 as follows:

β∗0 [u] =




β0[u], if u = 1

log(β0[u]− β0[u− 1]) if 1 < u < |U|
(1.11)

Any vector β0 to which this transform is applied and for which inference is performed
in the transformed space will always be monotonically increasing. For the rest of the
paper, I denote parameters for which monotonicity has been enforced by performing
inference on the transformed object as in equation 1.11 with a superscript m. Thus,
by applying the transform, I work with βm0 rather than an unconstrained β0.

Employing a monotonizing transform is an appealing alternative to other methods
used in the econometrics literature to ensure monotonicity during quantile regres-
sion. Restricting the Bayesian posterior to have support only on parameters which
imply monotonic quantiles means that, for example, the posterior means are those
values which are most supported by the data and prior information from the set
which satisfy the constraint. Frequentist solutions such as rearrangement, smooth-
ing or projection each prevent the violation of the constraint in one specific way
chosen a priori according to the analyst’s own preferences (He 1997, Chernozhukov
et al. 2010). While each strategy performs well in terms of bringing the estimates
closer to the estimand (as shown in Chernozhukov et al. 2010) the Bayesian trans-
formation strategy can flexibly borrow from each of the strategies as and when the
data supports their use. Imposing the constraint throughout the inference avoids
the additional complications of choosing when during aggregation one should insert
the constraint; for example, in the case of rearrangement, it would be hard to in-
terpret the result of partially pooling information on the 25th quantile only to have
some other quantile substituted in for certain studies ex-post.

Equipped with this monotonizing transform, it is now possible to build models
with restricted multivariate Normal distributions which only produces monotoni-
cally increasing vectors. I propose the following model to perform aggregation in a
hierarchical framework, taking in the sets of empirical quantiles {Q̂1k, Q̂0k}Kk=1 and
their sampling variance-covariance matrices {Ξ̂1k, Ξ̂0k}Kk=1 as data. For this hierar-
chical quantile set model, the lower level f(Yk|θk) is:

Q̂0k ∼ N(βm0k, Ξ̂0k) ∀ k
Q̂1k ∼ N(Qm

1k, Ξ̂1k) ∀ k
where Q1k ≡ βm0k + β1k

(1.12)
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The upper level ψ(θk|θ) is:

βm0k ∼ N(βm0 ,Σ0) ∀ k
β1k ∼ N(β1,Σ1) ∀ k

where β1 ≡ Qm
1 − βm0

(1.13)

The priors P(θ) are:

βm0 ∼ N(0, 1000 ∗ I10)
β1 ∼ N(0, 1000 ∗ I10)
Σ0 ≡ diag(ν0)Ω0diag(ν0)′

Σ1 ≡ diag(ν1)Ω1diag(ν1)′

where ν0, ν1 ∼ halfCauchy(0, 20) and Ω0,Ω1 ∼ LKJCorr(1).

(1.14)

This formulation is convenient as the form of Ξ̂1k is exactly derived in the
Mosteller (1946) theorem, though the individual entries need to be estimated. The
structure could be modified to take in the empirical quantile treatment effects
{β̂1k}Kk=1 and their standard errors instead of {Q̂1k} if needed. The model im-
poses no structure on (Σ,Σ0), other than the logical requirement of positive semi-
definiteness. This complete flexibility is made possible by the discretization of the
quantile functions; these matrices could not take unconstrained form if the quan-
tile functions had been modelled as draws from Gaussian Processes.4 Overall, this
structure passes information across the quantiles in two ways: first, by imposing the
ordering constraint, and second, via the functional form of Σ̂k from the Mosteller
(1946) theorem.

The above model implements partial pooling not only on the {β1k}Kk=1 parameters
but also on the {β0k}Kk=1 parameters, that is, the control group quantiles. The
technical reason for this is that one needs to define a notion of a general β0 in order
to define the constraint on the general β1 and the predicted β1,K+1. However, this
structure also provides us with useful insight that allows us to better interpret the
results of the partial pooling on {β1k}Kk=1. Suppose for example that we observe
substantial pooling on {β1k}Kk=1, but we also observe this on {β0k}Kk=1; in that case,
we observe similarities in the treatment effects perhaps only because we have studied

4Gaussian Processes in general are too flexible to fit at the upper level of these models for
this application, and popular covariance kernels tend to have identification issues that limit their
usefulness in the current setting. In particular, most tractable and popular kernels do not permit
the separation of dispersion of points within the functional draws from dispersion of points across
the functional draws.
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places with similar control groups. In that case it will be hard to justify extrapolation
to another setting with a substantially different value of β0k. On the other hand,
suppose that we observe substantial pooling on {β1k}Kk=1 but no pooling at all on
{β0k}Kk=1. Then we have learned much more generalisable information, because we
now know that the treatment effects can be similar even when the underlying control
distributions are different.

1.1 Model Performance

To assess the performance of the model, I provide Monte Carlo simulations under a
variety of data scenarios and report the coverage of the posterior intervals. Ideally,
the 50% posterior interval should contain the true parameter 50% of the time, and
the analogous property should hold for the 95% posterior interval. When the data
is simulated from the model itself this property is guaranteed in Bayesian inference,
however, in practice one typically does not have the luxury of fitting data that one
knows originates from a particular model. Therefore, all the monte carlo simulations
I provide here fit the model above to data generated from a somewhat different
model. In particular, I always simulate data for which my priors are incorrect; as
the priors are reasonably diffuse they should not compromise the inference, and nor
do they.

The results in table 1 show that the model typically provides approximately nom-
inal coverage on β1, and often provides greater than nominal coverage, regardless of
the generating process. However, inference on the β0 and the covariation parameters
Σ0,Σ1 is more sensitive to underlying conditions. When there is large variation in
the data within sites, the model can have difficulty with achieving nominal coverage
on the 50% interval for these parameters, although the 95% interval usually retains
its coverage properties. The fact that the model has trouble when the data ex-
hibits large variation reflects one of the conditions of the Mosteller (1946) theorem,
namely that the underlying density that generates the data is not vanishing in the
neighbourhood of the quantile. While this condition is formally satisfied in the sim-
ulations, the model seems to be affected regardless: the poor average performance
in these cases is generated by difficulty characterising the extremal quantiles where
the density is thinnest.

Encouragingly, when the data variation is moderate or small, the model does
reasonably well on most parameters even when the full pooling or no pooling cases
approximately hold. The no pooling case provides some trouble for inference on
Σ0,Σ1 due to the extreme cross-site variation. Large within-site data variation
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seems to cause difficulties for the 50% intervals in the full pooling inference, but
the 95% intervals retain their coverage properties even in this case. There are some
results in the table that do not fit the broad patterns laid out here, but this may
be due to the relatively small number of MC runs (due to the relatively long time
it takes to run the model). The results point to overall good performance, although
suggesting that caution should be applied when approaching data sets that have
high variance or heavy tails even when the theoretical conditions for asymptotic
normality are formally satisfied.

1.2 Limitations

The strength of the model based on the Mosteller (1946) theorem is that it works for
any continuous outcome variable; its weakness is that it only works for continuous
variables. In the microcredit data, this approach will work for household consump-
tion, consumer durables spending and temptation goods spending. But household
business profit, revenues and expenditures are not continuous because many house-
holds either did not own or did not operate their businesses in the month prior to
being surveyed and therefore recorded zero for these outcomes. This creates large
"spikes" at zero in the distributions, as shown in the histograms of the profit data for
the sites (figure 1)). This spike undermines the performance of the Mosteller theo-
rem and of the nonparametric bootstrap for standard error calculation. The Mexico
data provides the cleanest example of this, shown in figure 2: the first panel is the
result of using the Mosteller asymptotic approximation, and the second panel is the
result of the nonparametric bootstrap applied to the standard errors on the same
data. The former produces the dubious result that the uncertainty on the quantiles
in the discrete spike is the same as the uncertainty in the tail; the latter produces
the dubious result that the standard errors are exactly zero at most quantiles.

The potential for quantile regression techniques to fail when the underlying data
is not continuous is a well-understood problem (Koenker and Hallock 2001; Koenker
2011). In some cases, "dithering" or "jittering" the data by adding a small amount of
random noise is sufficient to prevent this failure and reliably recover the underlying
parameters (Machado and Santos Silva, 2005). However this does not work for the
microcredit setting: the reason for this is that the jittering method is intended to be
used for count data, in which there are gaps between the integer values which can
be filled in by the jitter while still maintaining the crucial one-to-one relationship
between the quantiles of the count data and the quantiles of the new continuous
data produced by the jitter. But in the business variables, the discrete spike at zero
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is accompanied by a continuous tail that has support right up until zero itself – even
a small jitter applied to the spike at zero causes some of the "zeroes" to leapfrog
some of the continuous data points, destroying the one-to-one relationship required
for the jittering to be theoretically sound.5

5Author’s correspondence with Machado and Santos Silva via email confirms this point. Cor-
respondence available from the author on request.
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Figure 1: Histograms of the profit data in each site, in USD PPP per 2 weeks.
Display truncated both vertically and horizontally in most cases. [Back to main]
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Naive application of asymptotic theorem to quantile effects on Mexico profit data
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Nonparametric bootstrapped quantile effects on Mexico profit data

Figure 2: Quantile TEs for the Mexico profit data, Mosteller theorem approxima-
tion standard errors (above) and nonparametrically bootstrapped standard errors
(below). The green line is the estimated effect, the opaque bands are the central
50% interval, the translucent bands are the central 95% interval. The output of
these estimators should be similar if the Mosteller (1946) theorem holds, but it is
not similar because profit is not in fact continuously distributed. This is due to a
discrete probability mass at zero, reflecting numerous households who do not operate
businesses. [Back to main]
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Dithering is often an effective strategy for partially discrete data: In fact, a small
amount of dithering is necessary for the microcredit data on consumer durables
spending and temptation goods spending to conform to the Mosteller approximation,
as this data is actually somewhat discrete. However, in the microcredit business
data, the complications caused by these spikes at zero are not effectively addressed
by dithering. The results in figure 3 show that applying the Mosteller theorem to
the dithered profit data leads to inference that is too precise in the tail relative to
the results of the bootstrap on the same data.
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Naive application of asymptotic theorem to quantile effects on Mexico profit data (dithered)
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Nonparametric bootstrapped quantile effects on Mexico profit data (dithered)

Figure 3: Quantile TEs for the dithered Mexico profit data, Mosteller theorem ap-
proximation standard errors (above) and nonparametrically bootstrapped standard
errors (below). The green line is the estimated effect, the opaque bands are the
central 50% interval, the translucent bands are the central 95% interval. Dithering
is a simple strategy which can overcome problems associated with quantile regres-
sion on discrete distributions, recommended in Machado & Santos Silva (2005) and
Koenker (2011). It has failed in this case. [Back to main]
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Table 1: Simulation Results: Coverage of Limited-Information Quantile Model Pos-
terior Inference under Cross-Site Variation (CSV) and Data Variation (DV)

Features β1: 50% 95% β0: 50% 95%
Little CSV, Little DV 0.524 0.976 0.560 0.952

Little CSV, Moderate DV 0.644 0.980 0.480 0.936
Large CSV, Moderate DV 0.532 0.956 0.448 0.928
Large CSV, Large DV 0.568 0.992 0.512 0.944

Moderate CSV, Large DV 0.632 0.988 0.480 0.940
Little CSV, Large DV 0.596 0.996 0.548 0.984

Moderate CSV, Little DV 0.512 0.952 0.488 0.912
Very Large CSV, Large DV 0.476 0.928 0.266 0.688

Approx No Pooling, Moderate DV 0.480 0.944 0.434 0.870
Approx Full Pooling, Moderate DV 0.668 0.988 0.668 0.996
Approx Full Pooling, Very Large DV 0.758 0.998 0.576 0.972

Σ1 (off diag): 50% 95% Σ1 (diag) :50% 95% (diag)
Little CSV, Little DV 0.903 1 0.880 0.996

Little CSV, Moderate DV 0.932 1 0.884 0.996
Large CSV, Moderate DV 0.845 1 0.616 0.996
Large CSV, Large DV 0.933 1 0.868 1

Moderate CSV, Large DV 0.887 1 0.810 1
Little CSV, Large DV 0.927 1 0.820 1

Moderate CSV, Little DV 0.807 1 0.520 0.992
Very Large CSV, Large DV 0.336 1 0.850 0.998

Approx No Pooling, Moderate DV 0.593 0.998 0.454 0.926
Approx Full Pooling, Moderate DV 1 1 0.420 0.996
Approx Full Pooling, Very Large DV 1 1 0.026 0.998

Σ0 (off diag): 50% 95% Σ0 (diag): 50% 95%
Little CSV, Little DV 0.857 1 0.476 0.996

Little CSV, Moderate DV 0.878 1 0.444 1
Large CSV, Moderate DV 0.255 1 0.304 0.984
Large CSV, Large DV 0.083 0.999 0.196 0.992

Moderate CSV, Large DV 0.101 1 0.198 0.994
Little CSV, Large DV 0.675 1 0.228 1

Moderate CSV, Little DV 0.800 1 0.420 0.980
Very Large CSV, Large DV 0.497 0.994 0.426 0.944

Approx No Pooling, Moderate DV 0.560 0.995 0.362 0.866
Approx Full Pooling, Moderate DV 1 1 0.684 0.996
Approx Full Pooling, Very Large DV 1 1 0.052 1

Notes: CSV is Cross-Site Variation, DV is Data Variation. Simulation runs kept small
due to relatively long runtime for model fit, but results are relatively stable within run
sets. For this exercise, the CSV in β0k space is typically larger than that in β1k space, to
reflect the likely reality of comparing quite different places with plausibly similar effects.
[Back to main]
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1.3 Interpretation

The goal of the hierarchical model is to estimate the central location and the dis-
persion in the distributions from which each of the observed {β0k, β1k} are drawn.
This permits analysts and policymakers to formulate expectations about what may
be likely in future settings. The expectations are taken over the distribution of
the vectors {β0k, β1k}, not over households; this point is crucial to avoid confusion
about how to interpret quantiles in a hierarchical setting. The estimate of β0 is an
estimate of the expected marginal distributions of the control groups’ outcomes in
the set of sites exchangeable with the K sites at hand, subject to the constraint that
these objects all be monotonic. The estimate of β1 is an estimate of the expected
differences between the marginal outcomes of the treatment and control groups in
the set of exchangeable sites, subject to the known properties of each of the groups
distributions. The monotonicity constraint complicates the interpretation relative
to unconstrained Gaussian models - since, for example, the mean of a sum of or-
dered Gaussians may not necessarily obey the property of the mean of a sum of
Gaussians. Yet the broad intuition is that the parameters β0, β1 provide an esti-
mate of the centrality of the individual distributions over the vector spaces in which
{β0k, β1k} live.

Quantile effects are often subject to misinterpretation. Quantiles do not satisfy
laws of iterated expectations, so the treatment effects at the quantiles of the outcome
distribution (which is what is delivered here) are not the quantiles of the distribu-
tion of treatment effects.6 Another source of confusion is that while unconditional
quantiles of a distribution correspond to specific data points in the sample, these
data points (and the individuals who produce them) are not meaningful in them-
selves. It does not make sense to think of quantile estimation as applying to specific
households nor "tracking" them across time or place. As stressed in Koenker 2005,
the fact that one can locate the specific data point that sits at a particular sample
quantile does not mean that this datum is deeply related to the population quantile
in some way: it happens to be the best estimate of that population quantile, nothing
more. The population quantile is a parameter, not a "representative household"; the
sample household whose outcome value is "selected" as a quantile estimate is not
playing the role of an individual in the world but rather the role of a sample order
statistic of similar general stature to a sample mean. If the sample had realised
differently, a different household would have been selected as the estimate, but the

6While it would be nice to know the latter object, this is not estimable without considerable
additional structure
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population quantile remains the same.7

Koenker’s point extends fully to the case of aggregation of quantiles. The hi-
erarchical nature of the model does not imply that the information or outcome of
any specific individual household is being passed (or not passed) up to the "general"
level of the model. Rather, the model posits the potential existence of a general or
meta-distribution which governs the K observed distributions and observed differ-
ences between the treatment and control distributions in each site. We then study
the means and covariance matrices of these parent distributions in an attempt to
understand how useful that structure is for prediction. In this context, the relative
positions of e.g. the 25th quantile in site 1 and the 25th quantile in site 2, and how
similar they are to the expected value of the 25th quantile taken across all the sites,
is simply a question: how similar are the value of the 25th quantiles are in all the
sites we have studied? If the answer is "not very similar" this is not a problem for
interpretation of the quantiles, but simply a possible state of reality we have fully
anticipated in the model and which will be expressed by a very large covariance
matrix (or at least a large entry on the diagonal for that quantile).

In fact, the expected value of the quantile treatment effect in the hierarchical
context does not find solutions corresponding to single households, but rather, takes
weighted averages of the K solutions. Suppose for example that all consumption
values in one site lie below all those in another site. This does not mean that the
lower quantiles of the general distribution are all taken from the first site, nor that
the upper quantiles of the general distribution are all taken from the second site.
Instead, the procedure examines each site’s data set quantile by quantile and asks
"What is the average estimate of this quantile, and how similar are these quantiles
across sites?". The expected value of a given quantile taken over all sites for example
may not correspond to any household’s value or any specific quantile effect in any
site, any more than the expectation of a set of values would correspond to any
one of the values: it wouldn’t, except by chance. The expected median is not
necessarily the median of the K medians and nor does it need to be such in order to
be interpreted: the expectation is formulated over a posited distribution of medians,
which corresponds to the question: "What should I expect the median to be in these
kinds of places?"

Hence, β0 and β1 should not be interpreted as the quantiles or differences of
7Another common misunderstanding is that "only" the "chosen" household contributes to the

inference at any given quantile. In fact, in quantile estimation, as in mean estimation, all the house-
hold data points together determine the best estimate of a point (or set of points) corresponding
to a population object of interest.
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some aggregated data set; rather, they are the expected quantiles and differences in
any given site with this expectation taken across sites, subject to the monotonicity
constraint in this case. The monotonicity constraint does make the situation more
complex because the averages conditional on this constraint will tend to lie below
the raw averages in each site, since when site effects are "drawn" from the distribu-
tion governed by this average, they will more often lie above it than below it. This
complication aside, the hierarchical model does not attempt to arrange all the indi-
vidual data points or quantile difference estimates in some kind of grand order (nor
would it be clear how to interpret such an exercise). Quantile regression permits one
to infer the shapes of distributions, not to track individuals specifically over time
or over ranks of relative groups one could decide to place them in. The goal of the
hierarchical quantile model is to infer a set of true differences that correspond to a
population distribution’s response to a treatment, and to understand how different
these responses are across settings.

2 Results for Consumption
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Appendix B: Nonlinearity of Shrinkage Operations

Rachael Meager

November 11, 2020

1 The Set-up

Consider K parallel experiments each containing N participants randomized 50/50
into "treatment" and "control" groups (indicated by a binary variable Tik = 1 if
individual i in trial k is treated, else 0). Within a single experiment, the average
treatment effect (ATE) is the difference of the means in the treatment and control
groups, which is also the mean of the difference between the two groups due to
the linearity of the expectation operator. Denote the ATE in experiment k by τk,
estimated using the sample counterpart τ̄k = E[Y1ki − Y0ki] = E[Y1ki] − [Y0ki] =
ȳ1k − ȳ0k. This result relies only on the linearity of the expectations operator.

However, once the analyst places a hierarchical model on the data and jointly
analyses all K experiments together, the updated expectations of these objects cease
to obey this linear relationship. This is because shrinkage on any of these objects is
a nonlinear operation in the unknown parameters, with particular issue caused by
the unknown hypervariances. This appendix contains an illustration and proof of
the problem, and concludes that analysts need to choose the object of interest and
shrink directly on that object.

Consider the following Gaussian hierarchical model in which all the random pa-
rameters are independent to simplify the exposition.
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y0k ∼ N(y0, σ
2
0)

τk ∼ N(τ, σ2
τ )

y1k ≡ y0k + τk

∴ y1k ∼ N(y0 + τ, σ2
0 + σ2

τ )
ȳ0k ∼ N(y0k, ŝe

2
y0)

τ̄k ∼ N(τk, ŝe2
τk)

∴ ȳ1k ∼ N(y0k + τk, ŝe
2
0k + ŝe2

τk)

2 The Nonlinearity Result

This model generates new estimates of the parameters in each site k updated given
the information in the other sites – that is, the model performs shrinkage.1 Per
Gelman et al (2004), if one knew the hyperparameters that govern {τk}Kk=1, i.e.
(τ, σ2

τ ), one could manually compute the shrinkage on the observed τ̄k and thus the
new posterior ATE τ̃k for a given site k as follows:

τ̃k =
1

ŝe2
τk
τ̄k + 1

σ2
τ
τ

1
ŝe2
τk

+ 1
σ2
τ

.

Analogous objects exist for the y0k and the y1k if shrinkage is performed on them:

ỹ0k =
1

ŝe2
y0k
ȳ0k + 1

σ2
y0
y0

1
ŝe2
y0k

+ 1
σ2
y0

, ỹ1k =
1

ŝe2
y1k
ȳ1k + 1

σ2
y1
y1

1
ŝe2
y1k

+ 1
σ2
y1

.

However, despite the fact that τ̄k = ȳ1k − ȳ0k and that τ = y1 − y0, the following
result holds:

Theorem 2.1. Given the model above, τ̃k 6= ỹ1k − ỹ0k and hence shrinkage is not a
linear operation.

1Notice that at most two of the triple (y0k, y1k, τk) can be independently distributed because
the third object is constructed from the other two, and this third object will always be dependent
on the components from which it is constructed. Here I have chosen y0k and τk, which amounts
to taking linear regression seriously as a model.
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Proof. To see this, we begin with ỹ1k and substitute in its components:

ỹ1k =
1

ŝe2
y1k

(ȳ0k + τ̄k) + 1
σ2
y1

(y0 + τ)
1

ŝe2
y1k

+ 1
σ2
y1

=
1

ŝe2
y0k+ŝe2

τk
(ȳ0k + τ̄k) + 1

σ2
y0 +σ2

τ
(y0 + τ)

1
ŝe2
y0k+ŝe2

τk
+ 1

σ2
y0 +σ2

τ

Focusing only on the term that contains τ , we can see that it is being given the
wrong weight in this expression:

1
σ2
y0 +σ2

τ
τ

1
ŝe2
y0k+ŝe2

τk
+ 1

σ2
y0 +σ2

τ

6=
1
σ2
τ
τ

1
ŝe2
τk

+ 1
σ2
τ

Since there is no other instance of τ in the formula for ỹ1k, this issue cannot be
rectified by the presence of some other term.

Notice that the only time the shrinkage will be "correct" on τk is when both the
sampling error and the cross-site heterogeneity in y0k is exactly zero. This turns out
to be the key to understanding why the two kinds of shrinkage do not coincide: it is
because shrinking the composite object y1k allows the noise from the control mean
to corrupt the shrinkage on the treatment effects (and vice versa).

To make this clear, consider an example. Suppose that y0 = 50, τ = 30 and thus
y1 = 80. Suppose that σy0 = 50 and στ = 1, so that σy1 =

√
502 + 12 = 50.01. Then

suppose that ȳ0k = 10, ŝey0k = 10, τ̄k = 20, ŝeτk = 8, and that therefore ȳ1k = 30
and ŝey1k =

√
102 + 82 = 12.80625. Applying the formulae above, we get:

ỹ0k = 11.53846
ỹ1k = 32.38005
τ̃k = 29.61538 6= ỹ1k − ỹ0k = 21.53846.

In this case the discrepancy is about 30% of the underlying parameter’s true
magnitude. This occurs it is because the control means y0k vary greatly across the
K sites, but the treatment effects τk vary little across the K sites. Faced with
the task of shrinking on the composite object y1k, the treatment group’s mean, the
model compromises between the two patterns – but the huge variance in y0k across
the K sites dominates the weight, so we still see essentially zero shrinkage on y1k.
However, when we direct the hierarchical model to shrink directly on τk, we isolate
it from the noise on y0k and the model can therefore detect that the τk component

3



of y1k is very similar across the K sites and should be shrunk strongly towards the
common mean of 30.
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Appendix C: Tabular Results and Robustness
Checks

Rachael Meager

February 4, 2021

1 Tabular results
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Table 1: Lender and Study Attributes by Country

Country Bosnia &
Herzegovina Ethiopia India Mexico Mongolia Morocco The Philippines

Study
Citation

Augsburg
et al (2015)

Tarozzi
et al (2015)

Banerjee
et al (2015b)

Angelucci
et al (2015)

Attanasio
et al (2015)

Crepon
et al (2015)

Karlan and
Zinman (2011)

Treatment
Lend to

marginally
rejected
borrowers

Open
branches

Open
branches

Open
branches,
promote
loans

Open branches,
target likely
borrowers

Open
branches

Lend to
marginal
applicants

Randomization
Level Individual Community Community Community Community Community Individual

Urban or
Rural? Both Rural Urban Both Rural Rural Urban

Target
Women? No No Yes Yes Yes No No

MFI already
operates
locally?

Yes No No No No No Yes

Microloan
Liability
Type

Individual Group Group Group Both Group Individual

Collateralized? Yes Yes No No Yes No No

Any other
MFIs

competing?
Yes No Yes Yes Yes No Yes

Household
Panel? Yes No No Partial Yes Yes No

Interest Rate
(Intended
on Average)

22% APR 12% APR 24% APR 100% APR 24% APR 13.5% APR 63% APR

Sampling
Frame

Marginal
Applicants

Random
Sample

Households
with at least
1 woman
age 18-55
of stable
residence

Women
ages 18-60
who own
businesses
or wish to
start them

Women who
registered
interest
in loans
and met
eligibility
criteria

Random
Sample
plus
Likely

Borrowers

Marginal
Applicants

Study
Duration 14 months 36 months 40 months 16 months 19 months 24 months 36 months

Note: The construction of the interest rates here is different to the construction of Banerjee et al (2015a); they have taken the
maximal interest rate, whereas I have taken the average of the intended range specified by the MFI. In practice the differences in
these constructions are numerically small. This table was also printed in Meager (2018) which used the same studies.
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Excess Kurtosis in LogNormal distributions is the extent to which tail indices
are greater, and thus the extent to which the tails are heavier, than those of the
Gaussian. For a LogNormal parameterised as

LogNormal(y|µ, ω) = 1√
2πωy

exp
(
−(log(y)− µ)2

2ω2

)

the excess kurtosis is

exp(4ω2) + 2 exp(3ω2) + 3 exp(2ω2)− 6.

I compute the kurtosis for the general control group based on the posterior mean
values of µ and σ for this group in the tables below. The µ parameters are the same in
the model and in the formula above, but the ω parameter requires some explanation.
ω in the formula is the Lognormal scale. The σ parameters in the models are the log
versions of this parameter. For example, the posterior mean scale parameter for the
LogNormal in the "generalized" control group’s positive tail is actually ω = exp(σc2),
and this must be squared further to enter the formula above.The examples in the
text are obtained using σc2 from profit and from consumption respectively, to give
excess kurtosis values of 810.5 and 13.9 respectively (there will be a small rounding
error if plugging in the values from the table here).

Table 2: All General-Level Posterior Marginals for the LogNormal Profit Model
mean MCMC error sd 2.5% 25% 50% 75% 97.5% # effective draws R̂

µ1 3.200 0.008 0.732 1.722 2.784 3.200 3.615 4.698 9, 099 1.000
µ2 3.843 0.007 0.818 2.225 3.356 3.845 4.324 5.496 15, 000 1.000
τ1 0.094 0.001 0.094 -0.099 0.045 0.095 0.143 0.273 6, 719.600 1.001
τ2 0.077 0.0005 0.042 -0.007 0.054 0.078 0.102 0.157 7, 566.232 1.000
σµ1 1.659 0.008 0.654 0.867 1.227 1.514 1.923 3.302 7, 284.792 1.000
σµ2 2.033 0.006 0.677 1.153 1.574 1.889 2.332 3.711 15, 000 1.000
στ1 0.117 0.004 0.128 0.005 0.035 0.079 0.154 0.459 1, 090.338 1.003
στ2 0.055 0.001 0.052 0.002 0.020 0.043 0.075 0.183 1, 323.050 1.004
σc1 0.452 0.002 0.145 0.180 0.374 0.447 0.525 0.761 7, 205.404 1.000
σc2 0.225 0.001 0.101 0.022 0.167 0.225 0.284 0.428 10, 278.910 1.000
σt1 0.022 0.001 0.094 -0.162 -0.024 0.022 0.067 0.206 6, 128.028 1.001
σt2 0.017 0.0003 0.029 -0.043 0.001 0.017 0.032 0.072 9, 321.264 1.000
σσc

1
0.302 0.002 0.164 0.122 0.196 0.262 0.357 0.724 5, 126.273 1.001

σσc
2

0.242 0.001 0.100 0.125 0.176 0.220 0.280 0.499 9, 328.806 1.000
σσt

1
0.163 0.002 0.116 0.034 0.089 0.134 0.201 0.467 2, 860.338 1.001

σσt
2

0.046 0.001 0.037 0.002 0.020 0.038 0.062 0.140 2, 034.778 1.002
β11 -1.965 0.016 1.273 -4.525 -2.715 -1.958 -1.193 0.527 6, 334.358 1.000
β12 0.025 0.001 0.114 -0.187 -0.035 0.019 0.080 0.265 6, 957.068 1.001
β21 0.390 0.010 0.906 -1.379 -0.168 0.367 0.918 2.255 7, 964.995 1.000
β22 -0.067 0.001 0.104 -0.279 -0.124 -0.066 -0.012 0.143 8, 309.348 1.001
σβ11 2.767 0.017 1.277 0.770 1.959 2.560 3.346 5.904 5, 636.316 1.000
σβ12 0.128 0.002 0.125 0.005 0.047 0.096 0.168 0.446 5, 901.720 1.001
σβ21 1.603 0.014 0.902 0.130 0.990 1.532 2.093 3.672 3, 987.814 1.002
σβ22 0.146 0.002 0.114 0.007 0.065 0.124 0.197 0.432 5, 234.755 1.001
σβ31 1.450 0.014 0.889 0.091 0.815 1.381 1.942 3.493 3, 896.658 1.001
σβ32 0.117 0.002 0.109 0.004 0.041 0.089 0.161 0.390 5, 085.964 1.002

Note: The β3 parameters are normalized to be zero at the general level as required for
multinomial logit models. The site-specific effects still have variation around this zero
anchor as reported.
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Table 3: All General-Level Posterior Marginals for the LogNormal Revenues Model
mean MCMC error sd 2.5% 25% 50% 75% 97.5% # effective draws R̂

µ1 4.472 0.007 0.873 2.733 3.959 4.479 4.992 6.193 15, 000 1.000
τ1 0.083 0.001 0.068 -0.058 0.045 0.086 0.123 0.211 10, 482.840 1.000
σµ1 2.181 0.007 0.718 1.258 1.693 2.030 2.496 3.982 10, 285.460 1.000
στ1 ] 0.140 0.001 0.080 0.039 0.089 0.124 0.171 0.329 5, 189.630 1.001
σc1 0.213 0.001 0.136 -0.063 0.134 0.214 0.292 0.485 11, 190.950 1.000
σt1 -0.010 0.0003 0.031 -0.071 -0.028 -0.011 0.008 0.052 9, 554.774 1.000
σσc

1
0.331 0.001 0.135 0.171 0.241 0.301 0.383 0.668 8, 452.406 1.001

σσt
1

0.062 0.0004 0.033 0.020 0.040 0.055 0.075 0.146 6, 447.524 1.000
β11 0.011 0.008 0.734 -1.464 -0.424 -0.004 0.443 1.521 8, 107.184 1.001
β12 -0.063 0.001 0.081 -0.235 -0.101 -0.058 -0.020 0.091 6, 772.048 1.001
σβ11 1.209 0.010 0.760 0.064 0.637 1.164 1.645 2.912 5, 305.339 1.001
σβ12 0.095 0.001 0.091 0.003 0.032 0.071 0.129 0.327 5, 418.020 1.001
σβ21 1.192 0.010 0.762 0.062 0.615 1.147 1.631 2.894 5, 341.343 1.001
σβ22 0.095 0.001 0.091 0.003 0.033 0.071 0.130 0.328 5, 944.329 1.000

Note: The β3 parameters are normalized to be zero at the general level as required for
multinomial logit models. The site-specific effects still have variation around this zero
anchor as reported. Note also that σt1 can be negative as this is the effect specified on
the exponential level.

Table 4: All General-Level Posterior Marginals for the LogNormal Expenditures
Model

mean MCMC error sd 2.5% 25% 50% 75% 97.5% # effective draws R̂

µ1 4.042 0.006 0.733 2.563 3.593 4.047 4.483 5.528 15, 000 1.000
τ1 0.103 0.001 0.048 0.005 0.076 0.104 0.132 0.198 8, 840.624 1.000
σµ1 1.867 0.005 0.624 1.061 1.449 1.735 2.135 3.449 15, 000 1.001
στ1 0.078 0.001 0.060 0.004 0.035 0.067 0.106 0.226 1, 919.668 1.002
σc1 0.303 0.002 0.171 -0.037 0.204 0.304 0.401 0.649 8, 974.738 1.001
σt1 -0.008 0.001 0.045 -0.092 -0.033 -0.009 0.016 0.082 5, 069.866 1.000
σσc

1
0.421 0.002 0.171 0.218 0.309 0.382 0.489 0.845 8, 374.404 1.001

σσt
1

0.094 0.001 0.051 0.035 0.062 0.082 0.111 0.217 3, 164.881 1.001
β11 0.234 0.009 0.694 -1.177 -0.180 0.233 0.653 1.645 6, 027.909 1.000
β12 -0.116 0.001 0.117 -0.349 -0.177 -0.114 -0.053 0.112 7, 262.210 1.000
σβ11 1.148 0.011 0.712 0.062 0.613 1.102 1.565 2.729 4, 414.652 1.001
σβ12 0.157 0.002 0.125 0.007 0.071 0.132 0.209 0.465 5, 601.528 1.000
σβ21 1.119 0.011 0.707 0.056 0.580 1.075 1.535 2.714 4, 076.193 1.001
σβ22 0.159 0.002 0.124 0.007 0.074 0.136 0.212 0.463 5, 427.373 1.001

Note: The β3 parameters are normalized to be zero at the general level as required for
multinomial logit models. The site-specific effects still have variation around this zero
anchor as reported.Note also that σt1 can be negative as this is the effect specified on the
exponential level.
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For visual ease, the figures below graph the treatment effects and posterior pre-
dicted effects for each of the dimensions of change permitted in the model.

Expenditure 
 (Spike vs Positive)

Profit 
 (Negative vs Positive)

Profit 
 (Spike vs Positive)

Revenue 
 (Spike vs Positive)

−0.50 −0.25 0.00 0.25 0.50
Posterior mean, 50% interval (box), and 95% interval (line) 

 for each exponentiated multiplicative Treatment Effect

BHM Posterior Full Pooling Model

Category Allocation Effects (Reference category: positive tail) 
 Posterior distribution of treatment effects on Logit Scale

Figure 1: Posterior distributions for the logit treatment effects (πj) on category
assignment. These treatment effects are specified as an exponentiated multiplicative
factor on the control group proportion of households in the category: if π̃j = 0 the
effect is zero, if π̃j < 0 the treatment increases the proportion of households in the
positive tail relative to other categories.
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Expenditure

Profit (Negative)

Profit (Positive)

Revenue

−0.50 −0.25 0.00 0.25 0.50
Posterior mean, 50% interval (box), and 95% interval (line) 

 for each exponentiated multiplicative Treatment Effect

BHM Posterior Full Pooling Model

Logmean Parameter Effects (exponentiated multiplicative) 
 Posterior distribution of treatment effects

Expenditure

Profit (Negative)

Profit (Positive)

Revenue

−0.50 −0.25 0.00 0.25 0.50
Posterior mean, 50% interval (box), and 95% interval (line) 

 for each exponentiated multiplicative Treatment Effect

BHM Posterior Full Pooling Model

Logvariance Parameter Effects (exponentiated multiplicative) 
 Posterior distribution of treatment effects

Figure 2: Posterior distributions for the location treatment effects (τj) and the
scale treatment effects (σtj).
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Profit 
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Profit 
(Spike vs Positive)

Revenue 
(Spike vs Positive)

−0.8 −0.4 0.0 0.4 0.8
Posterior mean, 50% interval (box), and 95% interval (line) 

 for each logit scale treatment effect

BHM Posterior Full Pooling Model

Category Allocation Effects on Logit Scale 
 Posterior Predicted treatment effect
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Revenue

−0.8 −0.4 0.0 0.4 0.8
Posterior mean, 50% interval (box), and 95% interval (line) 

 for each exponentiated multiplicative Treatment Effect

BHM Posterior Full Pooling Model

Logmean Tail Effects (exponentiated multiplicative) 
 Posterior predicted treatment effect
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 for each exponentiated multiplicative Treatment Effect

BHM Posterior Full Pooling Model

Logvariance Effects (exponentiated multiplicative) 
 Posterior predicted treatment effect

Figure 3: Posterior predicted distributions for the logit treatment effects on cate-
gory assignment and tail shape effects.

7



2 Robustness Checks

2.1 Pareto Tail Models

If using the Pareto distribution for the continuous component, the tails are governed
by a location parameter which controls the lower bound of the support and a scale
parameter which controls the thickness of the tail. The location parameter ιjk is
exactly known because I have already defined the domain of each of the components
by manually splitting the data. However the shape parameter is unknown and
may be affected by treatment, which I model using a multiplicative exponential
regression specification to impose a non-negativity constraint on the parameter.
The shape parameter in mixture component j for household n in site k is therefore
exp(ρjk + κjkTnk).

The lower level of the likelihood f(Yk|θk) is specified according to this mixture
distribution. Let j = 1 denote the negative tail of the household profit distribution,
let j = 2 denote the spike at zero, and let j = 3 denote the positive tail. Then the
household’s business profit is distributed as follows:

ynk|Tnk ∼ Λ1k(Tnk)Pareto(−ynk|ι1k, exp(ρ1k + κ1kTnk)
+Λ2k(Tn)δ(0)

+Λ3k(Tn)Pareto(ynk|ι3k, exp(ρ3k + κ3kTnk) ∀ k

where Λjk(Tnk) = exp(αjk + πjkTnk)∑
j=1,2,3 exp(αjk + πjkTnk)

(2.1)

The quantiles are recovered thus using the Castellaci method:

Q(u) = −Pareto−1
(

1− u

Λ1(Tn) | ι1k, ρ1k(exp(κ1kTn))
)
∗ 1{u < Λ1(Tn)}

+ 0 ∗ 1{Λ1(Tn) < u < (Λ1(Tn) + Λ2(Tn)}

+Pareto−1
(
u− (1− Λ3(Tn))

Λ3(Tn) | ι3k, ρ3k(exp(κ3kTn)
)
∗ 1{u > (1− Λ3(Tn))}

(2.2)

The fit of this model to the microcredit data is not good. The table below shows
the posterior predictive fit of this model and the LogNormal model.
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Table 5: Posterior Predictive Comparison of LogNormal and Pareto Models

Control Group Quantiles 5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

Revenues Data 0 0 0 0 0 0 4 41 154 622
Lognormal Prediction 0 0 0 0 0 12 37 77 154 408
Pareto Prediction 0 0 0 0 0 0 0 5 337 2, 793, 933

Expenditures Data 0 0 0 0 0 0 0 17 85 411
Lognormal Prediction 0 0 0 0 0 0 15 40 93 283
Pareto Prediction 0 0 0 0 0 0 0 1 94 1, 172, 324

Profit Data -29 0 0 0 0 0 0 4 49 226
Lognormal Prediction -2 0 0 0 0 0 4 21 56 173
Pareto Prediction 0 0 0 0 0 0 0 0 21 70, 170

Notes: The posterior predictive distributions are generated by drawing samples of data from the
likelihood averaged over the posterior probability of the unknown parameters. Because this data
is itself fat tailed, I have compared the actual sample quantiles from the fully pooled control
group against the posterior predicted median value of each quantile from each model. [Back to
main]
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Figure 4: General Quantile Treatment Effect Curves (β1) for business variables.
The dark line is the median, the opaque bars are the central 50% interval, the
translucent bands are the central 95% interval. Display is in cubed root of USD
PPP due to the scale differences in the uncertainty at the right tail versus the rest
of the distribution.
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Expenditure 
 (Spike vs Positive)

Profit 
 (Negative vs Positive)

Profit 
 (Spike vs Positive)

Revenue 
 (Spike vs Positive)

−0.50 −0.25 0.00 0.25 0.50
Posterior mean, 50% interval (box), and 95% interval (line) 

 for each exponentiated multiplicative Treatment Effect

BHM Posterior Full Pooling Model

Category Allocation Effects (Reference category: positive tail) 
 Posterior distribution of treatment effects on Logit Scale

Figure 5: Posterior distributions for the logit treatment effects (πj) on category
assignment. These treatment effects are specified as an exponentiated multiplicative
factor on the control group proportion of households in the category: if π̃j = 0 the
effect is zero, if π̃j < 0 the treatment increases the proportion of households in the
positive tail relative to other categories.
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Table 6: Pooling Factors for Categorical Logit Parameters (Reference Category:
Positive)

Outcome Treatment Effects Control Group Means
ω(κj) ω̆(κj) λ(κj) ω(ρj) ω̆(ρj) λ(ρj)

Profit (Negative vs Positive) 0.378 0.721 0.907 0.144 0.421 0.240
Profit (Zero vs Positive) 0.137 0.476 0.688 0.013 0.379 0.487
Expenditures (Zero vs Positive) 0.084 0.612 0.783 0.010 0.498 0.570
Revenues (Zero vs Positive) 0.131 0.694 0.881 0.010 0.509 0.562

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1
indicating full pooling. The ω(·) refers to the conventional pooling metric that scores
signal strength at the general level against average signal strength at the local level. The
ω̆(·) refers to the proximity-based "brute force" pooling metric that measures the
geometric proximity of the partial pooling estimate to the no-pooling and full-pooling
estimates. The λ(·) refers to the Gelman and Pardoe (2006) pooling metric that scores
the posterior variation at the general level against the average posterior variation at the
local level.

Table 7: Pooling Factors for Tail Shape Parameters

Outcome Treatment Effects Control Group Means
ω(πj) ω̆(πj) λ(πj) ω(αj) ω̆(αj) λ(αj)

Profit (Negative Tail) 0.389 0.855 0.991 0.284 0.346 0.494
Profit (Positive Tail) 0.219 0.785 0.988 0.036 0.074 0.089
Expenditures 0.175 0.756 0.987 0.019 0.061 0.050
Revenues 0.169 0.692 0.977 0.014 0.036 0.029

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1
indicating full pooling. The ω(·) refers to the conventional pooling metric that scores
signal strength at the general level against average signal strength at the local level. The
ω̆(·) refers to the proximity-based "brute force" pooling metric that measures the
geometric proximity of the partial pooling estimate to the no-pooling and full-pooling
estimates. The λ(·) refers to the Gelman and Pardoe (2006) pooling metric that scores
the posterior variation at the general level against the average posterior variation at the
local level.
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Revenue

−0.2 −0.1 0.0 0.1 0.2
Posterior mean, 50% interval (box), and 95% interval (line) 

 for each exponentiated multiplicative Treatment Effect

BHM Posterior Full Pooling Model

 Tail Shape Parameter Effects (exponentiated multiplicative) 
 Posterior distribution of treatment effects

Figure 6: Posterior distributions for the Pareto shape treatment effects (κj) in each
site. These treatment effects are specified as an exponentiated multiplicative factor
on the control group scale parameter: if κ̃j = 0 the effect is zero, if κ̃j = 0.7 the
effect is a 100% increase in the scale parameter.
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Figure 7: Posterior predicted distributions for the logit treatment effects on cate-
gory assignment and tail shape effects. In each case this is the predicted treatment
effect in a future exchangeable study site, with uncertainty intervals that account
for the estimated generalizability (or lack of it).
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Figure 8: Posterior predicted quantile treatment effect Curves for Business Vari-
ables. The dark line is the median, the opaque bars are the central 50% interval,
the translucent bands are the central 95% interval. Display is in cubed root of USD
PPP due to the scale differences in the uncertainty at the right tail versus the rest
of the distribution.
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Figure 9: General Quantile Treatment Effect Curves (β1) for business variables
split by prior business ownership. The dark line is the median, the opaque bars are
the central 50% interval, the translucent bands are the central 95% interval. Display
is in cubed root of USD PPP due to the scale differences in the uncertainty at the
right tail versus the rest of the distribution.
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Figure 10: Upper panel: Posterior distributions for the logit treatment effects
(πj) on category assignment split by prior business ownership. These treatment
effects are specified as an exponentiated multiplicative factor on the control group
proportion of households in the category: if π̃j = 0 the effect is zero, if π̃j < 0 the
treatment increases the proportion of households in the positive tail relative to other
categories. Lower panel: Posterior distributions for the Pareto shape treatment
effects (κj) in each site. These treatment effects are specified as an exponentiated
multiplicative factor on the control group scale parameter: if κ̃j = 0 the effect is
zero, if κ̃j = 0.7 the effect is a 100% increase in the scale parameter.
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Figure 11: General Quantile Treatment Effect Curves for Business Outcomes:
Treated households who took up vs Compliant control households who did not take
up. This effect should overestimate the true impact of microcredit on those who
take it up in a simple selection framework. Consumption variables are in USD PPP
per two weeks, business variables are in cubed root of USD PPP per two weeks due
to the scale differences in their uncertainty intervals. The dark line is the median,
the opaque bars are the central 50% interval, the translucent bands are the central
95% interval.

18



−600

−400

−200

0

200

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 e
ffe

ct
 (

cu
be

d 
ro

ot
 o

f U
S

D
 P

P
P

)

Posterior quantile effects on profit: 
 Takeup vs Takeup in Control

−1000

0

1000

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 e
ffe

ct
 (

cu
be

d 
ro

ot
 o

f U
S

D
 P

P
P

)

Posterior quantile effect on revenues:
 Takeup vs Takeup in Control

−1000

−500

0

500

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 e
ffe

ct
 (

cu
be

d 
ro

ot
 o

f U
S

D
 P

P
P

)

Posterior quantile effects expenditures:
 Takeup vs Takeup in Control

−50

0

50

100

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 e
ffe

ct
 (

U
S

D
 P

P
P

)

Posterior quantile effects on consumption:
 Takeup vs Takeup in Control

−50

0

50

100

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 e
ffe

ct
 (

U
S

D
 P

P
P

)

Posterior quantile effects on consumer durables:
 Takeup vs Takeup in Control

−50

−25

0

25

50

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 e
ffe

ct
 (

U
S

D
 P

P
P

)

Posterior quantile effects on temptation goods:
 Takeup vs Takeup in Control

Figure 12: General Quantile Treatment Effect Curves for Business Outcomes:
Treated households who took up vs Control households who took up. This effect
should underestimate the true impact of microcredit on those who take it up in a
simple selection framework. Consumption variables are in USD PPP per two weeks,
business variables are in cubed root of USD PPP per two weeks due to the scale
differences in their uncertainty intervals. The dark line is the median, the opaque
bars are the central 50% interval, the translucent bands are the central 95% interval.
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2.2 Flexible Tail Mixture Models

In this section I provide details of the two models fit with more flexible tail spec-
ifications than the simple Lognormal. First consider the Pareto-Lognormal model
of Reed and Jorgensen (2004). Denote the Mills ratio of the standard Gaussian as
R(z) = (1 − Φ(z))/φ(z). The log of the Pareto-Lognormal is much more tractable
computationally. By taking the log of equation 13 from Reed and Jorgensen (2004),
I get the following likelihood function:

`(y|α, ν, τ) := log(α) + log(φ((y − ν)/τ)) + log(R(ατ − (y − ν)/τ) (2.3)

Substituting this tail into the mixture model, for notational clarity given the main
paper’s notation I now denote these parameters by (A,N, t). Allowing microcredit
to affect any of these distributional parameters in any way, I get the following:

ynk|Tnk ∼ Λ1k(Tnk)`(− log(ynk)|A1k + TEA1kTnk, N1k + TEN1kTnk, t1k + TEt1kTnk))
+Λ2k(Tn)δ(0)

+Λ3k(Tn)`(log(ynk)|A3k + TEA3kTnk, N3k + TEN3kTnk, t3k + TEt3kTnk)) ∀ k

where Λjk(Tnk) = exp(αjk + πjkTnk)∑
j=1,2,3 exp(αjk + πjkTnk))

(2.4)

The upper level ψ(θk|θ) is:

(α1k, α2k, α3k, π1k, ...)′ ≡ ζk ∼ N(ζ,Υ) ∀ k (2.5)

The priors for this model need to be strong to overcome the convergence issues
noted in Reed and Jorgensen (2004), which on this data was particularly problematic
on the parameter A. Following extensive testing and discussion with computational
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experts, I chose the following priors with a view to computational performance.1

A ∼ N(3, 2)
ζ\A ∼ N(0, 3)

Υ ≡ diag(νΥ)ΩΥdiag(νΥ)′

νΥ ∼ halfNormal(0, 3)
ΩΥ = I|ζ|

αmk ∼ N(0, 5).

(2.6)

Even with these quite specific priors, this model still represents a strict relaxation
of the LogNormal model fit in the paper; while the priors are stronger conditional
on the given parameters, the parameters themselves construct a weaker structure
on the data. However, while the convergence issues are mitigated, they are not
eliminated: the "Rhat" criteria statistics from this model are indeed further from
1 than those of the LogNormal tail model, indicating poorer convergence and less
reliable posterior inference despite these priors (Gelman and Rubin 1992). For this
reason I minimize focus on this model in the main paper.

To avoid the convergence issues without having to employ such strong and specific
priors, it is possible to employ the original insight from the methods section again
and split up the tail into two components with disjoint supports: a Lognormal for
the component with support adjacent to zero, and a Pareto for the extremal tail
component.2 This leads to the following "composite tail" likelihood with the Pareto
location parameter ι naturally taking the form of the breakpoint or cutoff location:

Composite(y|ι, ρ, µ, σ) := 1{y ≤ ι}Lognormal(y|µ, σ) + 1{y > ι}Pareto(y|ι, ρ)
(2.7)

The challenge in practice is how to define the cutoff location ι in a hierarchical
context, as one can no longer rely on the convenient scale-invariance of the cutoff
location being zero. For tractability, in light of potential convergence issues, I do not
allow the proportion of data in the two tail components to change at all in this model
and I estimate it before the rest of the model; this two-step procedure is not ideal
but it is computationally advantageous. I have defined the cutoff for the microcredit
data as at the 80th quantile of the positive continuous tail and the 20th quantile

1I thank Dr Michael Betancourt in particular, as well as Dr Ben Goodrich
and Professor Aki Vehtari, for their advice and assistance with this problem. A
public record of our work can be found here https://discourse.mc-stan.org/t/
double-pareto-lognormal-distribution-in-stan/10097/20

2Once again I think Ulrich Müller and Andriy Norets for this insight.
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of the negative continuous tail within each site, which corresponds to a model in
which 80% of the data in every tail takes a LogNormal form, and the most extremal
20% of draws take a Pareto shape. In practice this is quite easy to implement:
one uses any well-behaved quantile estimator, frequentist or Bayesian, within each
tail to generate ι̂, with no inferential problems as this data is continuous. Then,
one fits the mixture model with the tails taking the form of the composite model
above, with ι̂ treated as data. I use the original priors from the main model on all
the hyperparameters. To recover the quantiles, one uses the same Castellaci (2012)
method, noting that one must rescale the cutoff quantile by 0.2 in the negative tail
and 0.8 in the positive tail to determine the "average" cutoff ι at the superpopulation
level. Given the suboptimal two-step nature of this procedure I do not focus on this
model in the main results.

2.3 Running the Rubin Model Quantile by Quantile

Table 8: Profit: Results of running the Rubin (1981) model quantile by quantile

Quantile: 94th 95th 96th
Partial Pooling

Bosnia 280.5 255.6 251.7
(39.1,524.6) (65.7,445.3) (-25.1,535.9)

India -16.3 -16.9 -19.4
(-53.6,21.5) (-63.6,29.4) (-58.4,20.2)

Mexico -0.1 19.7 20.5
(-15.6,15.2) (-0.5,40) (1.7,39)

Mongolia 0 -0.1 -0.5
(-0.7,0.7) (-1.4,1.1) (-2.6,1.6)

Morocco 95.6 87.3 157.9
(4.4,188) (-43.6,217.3) (4.2,311.6)

Ethiopia 5.5 3.6 4.3
(-1.8,12.8) (-7.2,14.4) (-12.7,21.3)

Philippines 339.8 454.1 681.7
(-24.9,705.2) (-16.6,916.4) (168.3,1208.1)

Average 2.3 7.9 9.5
(-11.2,59.2) (-13.3,99.2) (-19.6,141.8)

Notes: All units are USD PPP per two weeks. Estimates are shown with their 95%
uncertainty intervals below them in brackets. These models had difficulty converging and
likely do not represent a good fit to the data. This may be because the Gaussian
approximation to the sampling error is unlikely to hold for this data given its extreme
kurtosis.
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2.4 Leaving Out Certain Studies

Across the different studies, both an eyeball test and the results of the main analysis
show that the underlying data are on very different scales, and that the control
groups look quite different. This makes the main conclusion that the quantile effects
are quite similar for most of the distribution even more striking. However, one might
be concerned that a single study with a particularly large or small scale is driving
or unduly affecting the results. In this case Mongolia, with its much smaller scale
than all other studies, or Bosnia with its unique lack of negative profit observations,
are the main concerns.

I have re-run the analysis leaving out Bosnia and Mongolia respectively. The
results are shown in the graph below with the main results for comparison. Leaving
out Bosnia changes virtually nothing; leaving out Mongolia makes the results much
more uncertain and somewhat more positive, but still displays the same fundamental
pattern and substantive conclusions of the main analysis.
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Figure 13: Average quantile treatment effects across all settings for profit (USD PPP
per two weeks) without Mongolia (graph 1), without Bosnia (graph 2), and main
results with all sites for comparison.

2.5 Trimming the data

With such extreme kurtosis values, it would be of interest to understand whether
removing the largest 0.5% of values from the data set as a whole substantially
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impacts the inference. I examine the positive tail as this is the location of both
the greatest uncertainty and greatest potential for positive effects. The table below
shows the inference on the lognormal tail parameters for the profit data with these
top positive values trimmed out. The posterior mean intervals on these parameters
are reasonably stable across the original and trimmed data sets. While the lognormal
scale parameters are slightly smaller, and τ2 has most notably been reduced from
approximately 0.077 to 0.057 indicating the important role of the extremal upper
tail in generating even these results, this is within half a standard deviation of the
original estimate.

Table 10: Profit Tail Inference from Trimmed Data (top 0.5% removed)

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
µ1 3.228 0.025 0.810 1.733 2.747 3.214 3.679 4.828 1, 038.916 0.999
µ2 3.795 0.034 0.846 2.119 3.264 3.809 4.317 5.449 603.721 1.003
τ1 0.096 0.003 0.092 -0.078 0.044 0.095 0.146 0.277 1, 265.345 1.000
τ2 0.057 0.001 0.047 -0.037 0.030 0.057 0.083 0.148 1, 946.863 1.000
σµ1 1.835 0.025 0.784 0.912 1.303 1.640 2.150 3.844 1, 002.582 1.000
σµ2 2.178 0.024 0.799 1.189 1.639 1.996 2.499 4.092 1, 094.257 1.000
στ1 0.111 0.004 0.123 0.003 0.033 0.074 0.146 0.435 1, 082.284 1.001
στ2 0.073 0.002 0.059 0.003 0.029 0.060 0.099 0.219 957.807 1.001
σc1 0.453 0.005 0.144 0.181 0.373 0.446 0.526 0.759 837.234 1.004
σc2 0.179 0.004 0.106 -0.049 0.116 0.180 0.242 0.388 868.749 1.003
σt1 0.023 0.002 0.089 -0.154 -0.025 0.025 0.069 0.215 1, 370.381 1.001
σt2 0.001 0.001 0.026 -0.051 -0.014 0.001 0.015 0.054 1, 624.716 1.001
σσc1 0.307 0.006 0.169 0.126 0.199 0.264 0.364 0.737 912.078 1.004
σσc2 0.268 0.004 0.112 0.142 0.195 0.242 0.309 0.530 992.346 1.003
σσt1 0.164 0.004 0.122 0.037 0.091 0.136 0.202 0.448 1, 211.250 1.000
σσt2 0.038 0.001 0.032 0.002 0.016 0.031 0.051 0.118 1, 026.529 1.002
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Appendix D:
Bounds on Complier Effects

Rachael Meager

January 12, 2021

1 The role of take-up

One concern about the models presented in the main analysis is that they ignore the
role of differential take-up in explaining the impact of microcredit. While the results
of the analysis stand for themselves as group-level causal impacts, the economic
interpretation of the results might differ if we knew, for example, that the zero
impact along most of the outcome quantiles was entirely due to lack of take-up by
most of the households in the sample. The main results contain suggestive evidence
that the lack of impact at most quantiles is not solely due to lack of take-up: the
2 sites that randomized loan access rather than branch access and therefore had
almost full take-up (Bosnia and the Philippines) displayed the same trend as all the
other sites. Yet the observed pattern of zeroes could still be due to low differential
in take-up between treatment and control group, which was recorded in most sites.
It would be ideal to understand the effect of microcredit on those who are induced
to take up loans by this random expansion of access (the "compliers" in the Neyman-
Rubin causal framework).

The core challenge to an analysis of the impact on compliers is that the Sta-
ble Unit Treatment Value Assumption (SUTVA) is unlikely to hold for individual
households within a village, such that there is no satisfactory way to identify the
distributional treatment effect only on those households. Without SUTVA it may
still be possible to infer certain average characteristics of the compliers as in Finkel-
stein and Notowidigdo (2018), but this exercise does not easily extend to quantiles
and relies on zero effects for never-takers. Even if SUTVA did hold, the conven-
tional LATE result is not available to us because there is two-sided non-compliance
in these samples: I not only have treated households who do not take up loans, but
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I also have control households who do manage to access loans from the MFI being
studied. Finally, even if the above two complications were not present, we would
still face the challenge of translating these results to a quantile effects framework
which is nontrivial as quantile functions do not obey any law comparable to the law
of iterated expectations.

As an alternative approach, I pursue a bounding exercise that provides suggestive
evidence that loan take-up patterns are unlikely to be responsible for the precise
zero results along most of the distribution. Ideally, the right comparison to make is
between the group of households who took up microcredit only due to the random
expansion of access, and the same group of households in the control group. This
comparison estimates the distributional effect on the compliers. But we cannot
identify those households in the control group, because they are indistinguishable
from the "never taker" households. Nor can we separate the compliers from the
"always takers" in the treatment group. However, under a set of broadly reasonable
assumptions for the microcredit setting - that is, assuming SUTVA may be violated
- it is possible to develop bounds on the changes in the compliers’ distribution.

The bounds I propose can be intuitively described and justified using the following
reasoning. First, in the style of an individual-rationality constraint, one assumes that
the always-taker and complier groups who take up the microloans should see weakly
positive effects from actually taking up these loans versus not taking them up, and
that this should be the case even if other things are changing in the environment
around these borrowers. Second one assumes that always-takers ought to do better
than compliers from taking up, since they take up even if it is very costly to do so.
Third, one assumes that the spillover effects or other consequences of any SUTVA
violation ought generally to be smaller than the direct effects on the compliers or
always-takers.

Under these assumptions, consider comparing the outcomes for individuals who
took up in the treatment group (always takers and compliers) and subtracting the
outcome of those who took up in the control group (always-takers). One would
imagine that the difference in outcomes observed between these groups has to be
smaller than the treatment effect on compliers, since it compares within a set of
people who all took up loans, and if anything the compliers probably do worse than
always takers in absolute terms in the take-up state. Hence, this comparison might
form a sensible lower bound on the complier effect.

Now consider comparing the outcomes for individuals who took up in the treat-
ment group (always takers, compliers) against individuals who did not take up in
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the control group (compliers, never-takers). One expects the always takers to do
better from microcredit than compliers do, and if one’s treatment effect is some-
what positively correlated with one’s raw outcomes (as seems to be the case in the
cross-country evidence) then one expects never-takers to fare no better than compli-
ers on average. Therefore, one might expect that the outcomes for those who take
up are an overestimate of the complier outcomes in the treatment state, while the
outcomes of those who don’t take up in the control state might be an underestimate
of the outcomes of compliers in the control state. Thus, subtracting the latter from
the former ought to produce a larger gap than the difference in the outcomes that
compliers see from taking up versus not.

In the following section I derive a set of sufficient conditions under which these
intuitive bounds hold even when we encounter violations of SUTVA and moderate
rank re-ordering of households (even such that they can cross ranks with households
from other groups).

1.1 Analytical Bounds Derivation Set-Up

Denote the three possible groups of households: always takers, compliers and never
takers, G ∈ {AT, C, NT}, adopting the no defiers assumption standard from the
LATE literature. Denote the quantiles of a group’s outcome distribution QG(TU, T )
where TU is a binary indicator of taking up the loans, and T is any vector of assigned
treatment status for the households in the given village or local area. I now derive
a set of sufficient, though strong, conditions that justify the empirical bounds I
propose above.

Assumption 1. Quantile treatment effects on compliers and always-takers are weakly
positive regardless of any effects of changes in the treatment assignment allocation
(that is, regardless of the potential for SUTVA violations). Thus, pointwise for any
u and ∀ T, T’:

QAT (1, T )(u)−QAT (0, T ′)(u) ≥ 0

QC(1, T )(u)−QC(0, T ′)(u) ≥ 0
(1.1)

Assumption 1 would be implied by a similar ordering on the individual treatment
effects, but as this present ordering does not imply a full ordering on the individual
effects, it is more general. Some individuals in these groups can experience negative
effects, but not so many nor so punitively that they outweigh the countervailing set
of individuals who experience positive effects. In spirit, this is a quantiles version of
the assumption of a positive expected return from taking up a loan.
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If SUTVA holds, then the secondary argument is irrelevant and this collapses to
an ordering of quantile treatment effects within any given treatment assignment.
Once we accept that SUTVA is unlikely to hold, requiring stability of effects across
treatment assignment regimes is natural, since by definition the compliers only take
up when assigned to do so and therefore their "treatment effect" comparison always
involves a counterfactual assignment status.

In addition, I use the following first order stochastic dominance assumption to
generate a partial ordering of the quantiles of the three groups.

Assumption 2. Pointwise for any u, ∀ T, T’:

FAT (1, T ) FOSD FC(1, T ) and

FC(0, T ′) FOSD FNT (0, T ′)
(1.2)

When a particular CDF F FOSD another, let us say F ′, then F always lies to the
right of F ′. Hence, when they are transposed to quantile functions, the quantiles
of F always lie above the quantiles of F ′. Hence, Assumption 2 implies that for
example QAT (1, T )(u) ≥ QC(1, T )(u) for any u. This is a strong assumption and
makes the derivation of the quantile effect bounds quite simple; the bounds will still
hold under moderate violations of this assumption.

Assumption 2 is also a little unusual in that it involves an ordering on absolute
outcomes rather than the conventional ordering on treatment effects that one uses
in monotonic selection models. Yet the specific assumption 2 here will be implied
by the monotonic selection assumption if in addition the levels of the outcomes are
somewhat positively correlated with this treatment effect. Assumption 2 will be
unlikely to hold, even approximately, if either of these two patterns does not hold
in the data. Fortunately, it seems likely that this is indeed the case for microcredit.

To see why, consider that as it generally takes a lot of time and effort to access
microcredit, households are more likely to do so if their own treatment effects are
larger. Further, while we cannot be sure this reflects the ordering within sites, the
cross-site correlation between the average treatment effects and the control groups’
levels of consumption, profit, etc. is generally positive (Meager, 2018). This at least
provides suggestive evidence that a positive correlation between levels and effects
may be present within sites as well, and that as a result, these bounds are reasonable
here. Thus while this assumption and thus the bounds I derive may not be applicable
to every situation, they do seem applicable to the microcredit data.

Finally I employ the following assumption on the SUTVA violation adjustments
– also known as spillover effects across treatment assignment statuses – requiring
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them to be weakly smaller than the direct effects on compliers and always takers
of actually taking up loans. This seems sensible since it is hard to imagine how
any spillover could be larger than the direct effect occurring; if giving me a loan
increased my neighbour’s consumption more than my own, economic theory and
practice would need to be quite different than it is now. Of course, this is likely not
the case for the never takers who may not experience any effects – or even negative
group effects – but fortunately my bounds do not require any assumption on the
size of the spillovers on the nevertakers. This requirement for moderation in the
effect of changing treatment regimes from T’ to T on our complier and always-taker
groups can be expressed in assumption 3:

Assumption 3. For always-takers and compliers, spillover effects are always smaller
than direct effects. Pointwise for any u, ∀ T, T’, and ∀ G, G’ ∈ AT, C,

QG(1, T )(u)−QG(1, T ′)(u) ≤ QG′(1, T )(u)−QG′(0, T ′)(u). (1.3)

Armed with these conditions, I can derive bounds without assuming that there is
no effect on the never-takers (in contrast to Imbens and Rubin 1997, Abadie Angrist
and Imbens 2002, and Finkelstein and Notowidigdo 2018) which is fortunate because
this is unlikely when SUTVA is violated in general, and particularly when other
households in one’s village are taking up new sources of credit.

In the following sections, I provide the upper and lower bounds for which the
above assumptions are sufficient but not necessary. The value of the sufficiency
conditions is that they provide some intuition for the situations in which the bounds
are likely to hold. The bounds themselves are their own necessary conditions. The
sufficiency conditions are nevertheless important because they allow us to develop
an understanding of why and how we might expect these bounds to be relevant in
any given study.

1.2 The Upper Bound

First, consider comparing the outcome of the households who take up in treatment
versus those households who do not take up in control, as a potential upper bound on
the distributional effects on compliers. These groups are composed of combinations
of the three groups denoted above, so denote the quantiles of a combination of two
groups by QAT C for the pooled set of always-takers and compliers, and QNT C for
the pooled set of never-takers and compliers.
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Theorem 1.1. Under assumptions 1 and 2, the following upper boundary con-
dition on the complier quantile effects holds pointwise for any quantile u.

QAT C(1, T )(u)−QNT C(0, T ′)(u) ≥ QC(1, T )(u)−QC(0, T ′)(u) ∀ T, T ′. (1.4)

Proof. From assumption 2, we know QAT (1, T )(u) ≥ QC(1, T )(u) ∀ u. A random
pooling of the two groups - such as occurs during a randomized trial - will generate
an intermediate set of quantiles such that

QAT (1, T )(u) ≥ QAT C(1, T )(u) ≥ QC(1, T )

By a reverse argument, assumption 2 also implies that

QC(0, T )(u) ≥ QNT C(0, T )(u) ≥ QNT (0, T )

Hence,

QAT C(1, T )(u)−QNT C(0, T ′)(u) ≥ QC(1, T )(u)−QC(0, T ′)(u).

1.3 The Lower Bound

Continuing with the same set-up, now consider comparing the outcome of the house-
holds who take up in treatment versus those households who take up loans in control.
For this comparison to form a lower bound on the distributional effects for compliers,
it must be that the following result holds.

Theorem 1.2. Under assumptions 1, 2 and 3, the following lower boundary
condition on the complier quantile effects holds pointwise for any quantile u.

QAT C(1, T )(u)−QAT (1, T ′)(u) ≤ QC(1, T )(u)−QC(0, T ′)(u) ∀ T, T ′ (1.5)

Proof. From assumption 2, we know QAT C(1, T )(u) < QAT (1, T )(u), so

QAT C(1, T )(u)−QAT (1, T ′)(u) ≤ QAT (1, T )(u)−QAT (1, T ′)(u).

The only difference in QAT (1, T )(u) and QAT (1, T ′)(u) is a spillover effect from
the change in the treatment allocation regime. But for always takers and compliers,
assumption 3 guarantees that this spillover effect must be smaller than the treatment
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effect at any quantile. Hence,

QAT (1, T )(u)−QAT (1, T ′)(u) ≤ QC(1, T )(u)−QC(0, T ′)(u).

Combining these two statements produces the required bound.

2 Empirical Bounds Results

I compute these bounds and I find that the posited lower bound does lie weakly
below the posited upper bound in all cases (and strictly below in the case of con-
sumption). However, the bounds are very close together and overall similar to the
main distributional effect estimated by comparing treatment status itself (the "ITT"
comparison, or the "access as treatment" comparison). Comparing the households
who took up the loans in the treatment group to households in the control group
who did not take up loans produces largely similar results - although they are weakly
more positive - as comparing all treated and control households, as shown in figure
1. The results of comparing the households who took up the loans in the treatment
group to households who took up in the control group for all outcomes is shown in
figure 2. These effects tend to be broadly similar to the impact of mere access, in
that they are zero almost everywhere, although on average the effects are estimated
to lie weakly below the ITT effect. Taken together these results suggest that the
bounds are themselves applicable to the microcredit studies and that the broad pat-
tern of zero effects along most of the distribution occurs within the complier group
as well as in the general population of households.
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Figure 1: General Quantile Treatment Effect Curves for Business Outcomes:
Treated households who took up vs Compliant control households who did not take
up. This effect should overestimate the true impact of microcredit on those who
take it up in a simple selection framework. The dark line is the median, the opaque
bars are the central 50% interval, the translucent bands are the central 95% interval.
[Back to main]
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Figure 2: General Quantile Treatment Effect Curves for Business Outcomes:
Treated households who took up vs Control households who took up. This effect
should underestimate the true impact of microcredit on those who take it up in a
simple selection framework. The dark line is the median, the opaque bars are the
central 50% interval, the translucent bands are the central 95% interval. [Back to
main]
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