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D Omitted Proofs

D.1 Proofs for Appendix A
D.1.1 Proof of Lemma A.1

For the first point, note that for any f € L!,
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Thus, T : L' — L. Moreover, since T is clearly linear, the above ensures that it is also
continuous.

For the second point, consider f € Z. Since C' is assortative, Tof(x) > Tof(2') for all
x > 2', so that T f is weakly increasing. To show that T¢ f is absolutely continuous, note that
for each z,2/ € (0,1),

Teitw) = [ o)y = / ([ st 2rtz 4t st
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where ¢y denotes the partial derivative of ¢ with respect to the second argument, which ex-
ists almost everywhere by the absolute continuity assumption on ¢. Thus T f is absolutely
continuous with (T f)'( fo c2(y, 2) f(y)dy for each z.

Finally, for the thlrd pomt fix any f € L' and v € (—=1,1). Then for any 7 > 7/,
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which vanishes as 7/ — oo. Thus, the sequence is Cauchy. Since the space L! is complete, this
yields the desired result. ]

D.1.2 Proof of Lemma A.3

~m-order: It is clear from the definition that 77, is reflexive and transitive; moreover, by
Lemma A.2, 77, is linear. To check that 7, is continuous, take sequences f, — f, g, — g in



7 such that f,, 7, g, for each n. For any y € (0,1), we have

|/f d:c—/fn dw|</!f D)ldz < | — full 0

and likewise \flg da:—f gn(x)dz| — 0. Since f fo(x)dz > f gn(z)dz and fo fo(z)dr =

fo gn(7)dx for each n, this implies f f(x)dz > f g(z d:c and fo r)dr = fo x)dx. Thus,
fromyg by Lemma A.2.

To verlfy that *m is isotone, take any f, g € Z such that f =, g and set h := f — g. Note
that fo r)dr = fo Toh(z)dr = 0. It suffices to show that fyl Teh(z)dz > 0 for all y € (0,1).

To see this, note that fy Toh(z)dz is given by

/ / Jolz|2)dzde = /Ol/ylc(z|x)dxh(z)dz:/01(1—0(y|z))h(z)dz
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where the second equality uses fl (z|z)dz = fl c(x|z)dr = 1 — C(y|z), the third holds by

integration by parts (usmg absolute continuity of ¢), the fourth uses fo z)dz = 0, and the
final inequality uses [ h(z')dz’ <0 (by f Zm g) and assortativity of C.

~q-order: It is clear from the definition that -, is reflexive, transitive, and linear. To check
that it is continuous, take sequences f,, — f and g, — ¢ in Z such that f, 74 g, for each n. By
standard results (e.g., Theorem 13.6 in Aliprantis and Border (2006)), we can find subsequences
(for)ken, (Gny, ken such that f,, () — f(z) and g, (x) — g(z) for almost all = € (0,1). This
implies f(x) — f(z') > g(z) — g(2) for almost all > 2/, which ensures f 7, g since f and g
are continuous.

To show that —; is isotone, first consider any bounded f,g € Z such that f =4 g. Since f
and g are absolutely continuous, there exist integrable functions f’, ¢’ : (0,1) — R such that
f(@) = f0)+ [y f'(y) dy and g(x )+ [y ' (y) dy for all z € (0, 1) Then, for any = > 2’
and C' € C, integration by parts ylelds
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Here, the inequality holds because the fact that f =, ¢ and f,g € Z implies f'(y) > ¢'(y) > 0
for almost all y € (0, 1).
Next, consider arbitrary f, g € Z such that f >, g. By defining bounded functions
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for each n € N, we obtain f, =4 g, for each n and f, — f,g, — ¢g. For any C' € C, since
T is a continuous operator, this implies Te f, — Tef and Teg, — Teg. Thus, Tef =q Teg
by continuity of >, as we already know that T f, =4 Teog, from the previous part of the
proof. O]

D.1.3 Proof of Lemma A.4

The base case t = 0 holds because of the following result by Ryff (1963): Call a linear operator
T : L' — L' an G-operator if f =, Tf for all F € Z. The representation theorem in Ryff
(1963) implies that T is an (‘5 operator if there exists some measurable function K : [0,1]* — R

such that T'f(x) = fo (y)dy for all f € L' and almost every z and the following
conditions are met (1) K(O y) = O forall 0 <y <1; (2) essupyV(K( y)) < 00, where V(+)
denotes the total variation and essup the essential supremum; fo f(y)dy is absolutely
continuous in z for all f € L'; (4) z = fo (z,y)dy; (5) x1 < Ty = K(Jcl, ) < K(x9,-); and

(6) K(1,y) =1 for all y € [0, 1]

Since C' € C, it is easy to see that T satisfies these conditions with K (z,y) := C(z | y) for
all x,y, so that Ty is an G-operator. Thus, f 7=, Tcf, proving the base case. The inductive
step then follows from isotonicity of 7, (Lemma A.3). O

D.2 Proofs for Appendix C
D.2.1 Proof of Proposition C.1

Let p:= Eg[0]. Consider strategy profiles g@ and g& of assortativity neglect and correct agents
expressed as functions of quantiles. Write g := ag? + (1 — «)g?. In an a-ANE, we must have

ga(x) = F ' (a) + (B+Teg™(x),  g2(x) = F ' (x) +1Tcg™(x) +5/0 9% (y)dy

for each z € (0,1). Since ¢g* = ag? + (1 — a)g2, it follows that

¢ (2) = F (@) + (7 + aB)Teg™(@) + (1 — a)B / ¢ (y)dy



for each x, which implies fol 9*(y)dy = 1—5—7 by integrating both sides over x. Moreover,
iterating the above equation we obtain

afy aB)t tp—1(y (1 —a)Bu
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where the convergence of the RHS can be shown as in the proof of Lemma 1. Note that this
uniquely determines ¢g* for any «. By the best-response conditions, we obtain

ga(z) = F Y z)+ (B+7)Tcy*(x)
= F_%x)+(5-%W)EZQW+GBY_%TbYF_W$)+
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for each z, yielding (18)-(19). Then the claim g¢ 74 g% and the comparative statics with respect
to a can be verified using linearity and continuity of 7-4. m

D.2.2 Proof of Proposition C.2

Write P = (F,C). Consider any PANE s with [ adGy(a) absolutely continuous in §. Then
s(0) = 0+ [ adGy(a)+yEp[s(#)|6] for cach §. Thus, s is the Nash equilibrium in environment
(F,C,B,7), where § = 0 and F~'(z) = F~Y(z) + 8 [ adGp-1(y(a) for each x (note that
F € F,as [adGy(a) is increasing and absolutely continuous in ). Since F is more dispersive
than F' (and the global complementarity parameter does not affect Nash action dispersion by
Proposition 4), Proposition 3 implies that G*¥ is more dispersive than the Nash global action
distribution in environment (P, 3, 7). ]

D.2.3 Details for Example C.1

Fix any p € [0,p]. We verify that, for the expressions in Example C.1, s* is a PANE and

A . . o 1 Ao 1 * o
(Py, 89) are associated coherent perceptions. Let x := [e—rEs and & := =, so that s*(0) =

x(0 — 1) + 5= and $(¢) = (0 — fie) + 17‘;’3977 for all 0,6'. Since P(:|0) is distributed
N(p + (1 — p)u, (1 — p*)a?), @’s true local action distribution L; ¥ is distributed N (zp(f —

1)+ ==, 2*(1—p?)o?). Since Py(-|0) is distributed N (04 (1 — p)jig, (1—p*)52), §s perceived

local action distribution L3 is distributed N (2(6— i)+ 17%977’ 22(1—p?)6?). Thus, condition
1(a) of coherency can be verified by observing that, by construction, the mean and variance of
Ly"" and Ly are equal.

To verify condition 2, note that, by construction, 8’s perceived strategy profile §y is the
Nash equilibrium in society Py = (fig, 62, p) (see Example 1).

Finally, we verify that s* is a PANE with perceived global action distributions Gy = G% P 0,
as required by condition 1(b). Note first that, by construction, s*(6) = $4(#) for all §. Thus,
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conditions 1(a) and 2 imply that s*(6) € BRy(G%, L), Tt remains to check that Géobo
is FOSD-increasing in . This holds because G*- is distributed A (1—_3&_7, #26?) and because
p < p ensures that [iy is increasing in 6.

D.2.4 Proof of Proposition C.3
We only consider Nash equilibrium, as ANE at (P, 3,v) corresponds to Nash equilibrium at
(P,0,5 + 7). Let p:= Ep[f] and, for each = € (0, 1), define

- YN B
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which is a well-defined function in L' as |y| < 1. Following the same argument as in the proof
of Lemma 1, the strategy profile defined by sV¥(6) = h(F~1(6)) for each 6 is the unique Nash
equilibrium and satisfies (6).

To show the “moreover” part, note that

Bu
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Since v > —1, the additional assumption on P implies that F~1 4+~T¢F~1 is strictly increasing.
Therefore, h, and hence s™V¥, is strictly increasing. O

D.2.5 Proof of Proposition C.4

We first show that, analogously to the relationship between 7Zp;4 and =, (Lemma B.1), the
strongly more-assortative order gy is the “dual order” of the dispersiveness order = g4:

Lemma D.1. Fiz any C1,Cy € C. Then Cy Zsya Co if and only if To,f a4 T, f for all
ferl.

Proof. For the “only if” part, suppose that Cy Zgpa Co. First consider any bounded f € 7.
Then there exists an integrable function f’: (0,1) — R that is nonnegative almost everywhere
such that f(z) = f(0)+ [, f'(y)dy for all x € (0,1). Thus, for any = > 2/, integration by parts
yields

Touf0) =T ) = [ S0)erlole) - elole )iy
= - /01 F ) (Cilylz) = Cryl2)))dy + [f () (Ch(y|z) — Cy(y|a'))]s
_ /01 F'®)(Ci(ylz) — Ci(yl2'))dy > _/01 F)(Calyla) — Calyla))dy
= - /01 FW)(Calylz) — Colyla’))dy + [ (y)(Calylz) — Calyla’))]§
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where the inequality holds because f'(y) > 0 for almost all y. Hence, T¢, f 7Za Te, f -

Next take an arbitrary f € Z. Define the sequence of bounded functions (f,,) as in (21),
so that f, — f. By the previous observation, we have T¢, f,, =4 Tc, fn for each n. Since
Te, fn — To,f and Te, fr, — Te, f by continuity of T, and Tf,, continuity of 7, then yields

Tle r>\.—/d Tsz .
For the “if” part, we prove the contrapositive. Suppose that '} is not strongly more assor-
tative than C5. That is, there exist y and x > 2’ such that

Co(ylz) — Ca(yl2") < Ci(ylz) — Ci(yl2") <0

Since C and C5 admit densities the above inequality holds throughout some interval (yi,y2) 3
y. Define f € T by f(z fo f'(y')dy for all z, where f’ is an integrable function given by
f'(y)=1fory € (yl,yg) and f'(y') = 0 for all ¥’ & (y1,y2). Using the same integration by
parts argument as above, we obtain

Toof(x) — To, S / F)(Ci(yl) — Culyle))dy
- / F(4)(Calylz) — Calyla))dy = To, f(x) — Ten f ().

Thus, Tle i:d Tc2f fails. ]

Proof of Proposition C.4. Note that Nash and ANE strategies are monotone by the as-
sumption on P; (Proposition C.3). We prove each part only for Nash, as the ANE at (P, 3,7)
is the Nash at (P,0,5 + 7). For each f,g € Z, write f 74y g iff f 7o g + « for some constant
function «. This order inherits linearity, isotonicity, and continuity from 2Z,,. Note that for
F,G € F, F is a dilation of G iff ! =4, G~!; moreover, the =4 order is implied by the =,
order.
Second part: Let §:= ) = (2, v := 71 = 7, C := C7 = (5. The proof of Proposition 3
carries over to the case v > 0, so we focus on the case v < 0. Since f only shifts the action
mean without affecting the dilation order, we also assume § = 0 without loss.

For each i = 1,2, define an operator I'; : T — Z by I';f = F, ' + 4T F; ! + v*T2 f for each
f € Z. Note that I';() is increasing, as (1 + yT¢)F, ! is increasing by the assumption on P;.
We make two preliminary observations:

1. For i =1,2, I';f 74u ['ig whenever f =4 g.

This follows from isotonicity of 2 g;.

2. I'yf 7mgu I f for each f € 7.
To see this, note that Fy ! 7oy Fy ' implies F; ' — F, ' € Z. Thus,

Fil = Byt 2 Te(Fy = Fy ') Zan —Te(FT = By,
where the ﬁrst comparison uses Lemma A4 and the second uses —1 < v < 0. Therefore,

Ffl + 7T0F1 Zdil F + ’yTCF2 , and thus 'y f 7Zgy Taf for each f € 7.

Now, fix any f € Z. Let
= E VTLE, = tlim THf).
—00

t>0



This is the inverse cdf of GN¥, as sVF is increasing. By induction, we show that T f = a1 TL f for
all t. The base caset =1 holds by the second observation above. Moreover, if T4 f =g T4 f,
then

F f ~dil FQF f ~dil thf

holds by observations 1-2. Given this, g1 74 g2 follows by continuity of 2~ 4.

First part: Let F':= F|, = F,, := 1 = (2, 7 := 71 = 2. The proof of Proposition 2 carries
over to the case v < 0, so we focus on the case v < 0. Since S only shifts the action mean without
affecting the dilation order, we also assume = 0 without loss. Let g; := >, v'T¢ F~'; this
is the inverse cdf of GNP since sM¥ is monotone. B

For each i = 1,2 and any f € L', the linearity of the operators Téi implies

(1= %Te) > ATES =D (WTE) (A —~Te)f = f, (22)

t>0 t>0

where 1 denotes the identity operator. Observe that

g2 =Y ATELF =) AT (1= Te,)gr,

>0 >0

where the second equality uses (22) with i =1 and f = F~!. Likewise,

= Z’ytTé2(1 - ’VTCz)glv

>0

by the second equality in (22) with i = 2 and f = g;. This shows that g; and gs correspond to the
inverse cdfs of the Nash action distributions in two modified environments that share a common
interaction structure Cy and complementarity parameters (0,7) and have type distributions F
and F, with inverse cdfs F! := (1 — 4T¢,)g1 and Fy ' = (1 —9T¢,)g1, respectively. Since
g1 €Z,v<0,and C; Zgya Co, Lemma D.1 implies F ! > Frh

Given this, the arguments in part 2 above imply that 92 Zail 91, provided we can show
that (14 ~Z¢,)F! is increasing for i = 1,2 (which ensures that the corresponding operators
[;(+) in the two modified societies are mcreasmg) For i = 2, note that (1 4+ 7T¢,)Ey " -
(1 +7Tc,)(1 —Te,)g1 = (1 +Te,)F~! by (22), which is increasing by the assumption on
P, and since v > —1. For ¢ = 1, note that (i) (1 —~°Tg )g1 = (1 +~T¢,)F~ " is increasing
(by the assumption on P; and since v > —1), and (ii) 72Tg~191 =4 VQT(%le since C Zsnma Co
(Lemma D.1). Combining (i) and (i) yields that (1 +4T¢,)Fy ! = (1 — Y*TE,)g: is increasing,
as required.
Third part: Let F':= F; = F,, C := (C} = Cs. The proof of Proposition 4 carries over to the
case y; > 0 for ¢ = 1,2. Thus, by the transitivity of the dilation order, we can focus on the case
v; < 0 for ¢ = 1,2. Since f only shifts the action mean without affecting the dilation order, we
also assume 81 = 5 = 0 without loss. Let g; := >,V TLF ™Y this is the inverse cdf of GNF

since sN E is monotone. Observe that

g1 = > NTEF = ANTL1 = %T0)g,

£>0 >0



where the second equality uses (22) with ¢ = 1 and f = F~!. Likewise,

9= > NTEA = nTo)gs,

t>0

by the second equality in (22) with ¢ = 1 and f = g,. This shows that ¢; and go can be seen
as inverse cdfs of Nash action distributions in two modified environments that share a common
interaction structure C' and cornplernentarlty parameters (0 ~1) and have type distributions Fi
and F, with inverse cdfs F = (1 — %T¢)ge and F = (1 — 717¢)gs, respectively. Since
0> 1 > 7, we have 1,§ F 1.

Given this, the arguments in part 2 above imply that ¢; 74 g2, provided we can show
that (1 + fleC)ﬁ’Z-’l is increasing for ¢ = 1,2 (which ensures that the corresponding operators
[';(-) in the two modified societies are 1ncreasmg) For i = 1, note that (1 + yTe)Ey ! =
(1 4+ 1Te)(1 — %Te)ge = (1 + 1Te)F~!, which is increasing by the assumption on P; and
7 > —1. For i = 2, note that (i) (1— %TC)gg (14+~T¢)F~! is increasing (by the assumption
on P; and since vo > —1), and (ii) v3T¢g2 Za 7i1Eg2 as 0 > 43 > 5. Combining (i) and (ii)
yields that (1 4+ 1 Te)E " = (1 — 43T2)g, is increasing, as required. O

D.2.6 Proof of Proposition C.5

Fix any ANE s*V =: 5 and 6. For each @, set 59(¢) := BRy(Ly", L") and Fg(é”) =
L7 (59(0")), and let Py := Fy x Fy. To verify observational consistency, note that LS‘)’PG( ) =
Fy(35 (a)) = Ly" (a) for each a, where the first equality uses Py = Fy x Fy and the inverse 5, is
well-defined and increasing by the surjectivity and monotonicity assumption on best-responses.
To verify the perceived best-response condition, note that, for each ¢’,

§9(9/) = BR,Q/ (LZvP’ LZvP) — BR,QI (Lg&ﬁe, Lze,pe) — BR9/<G§9,ﬁg’ Lg?,f)@)’

where the second equality uses observational consistency and the third uses non-assortativity
of P,. Thus, (159, S9) is a coherent assortativity neglect perception for type 6.

To show uniqueness, consider any coherent assortativity neglect perception (lf’g = Fp x
Fg,ég) for 8. Then, for each #', the perceived best-response condition, non- assortativity of

Py, and observational consistency imply 59(6’ ) = BRy/ (G-, Ls"’P" ) = BRg/(Ls"’P" LS"’P" ) =
BRgr(LSP Ly"). Moreover, Py = Fy x Fy and observational consistency imply Fj(3;(a)) =

Ly P"( ) = LSP(CL) for each a, which yields Fy(6") = Ly"(34(6')) for each @'. Thus, (Pp, 59)
coincides with the perceptions in the first paragraph. ]

D.2.7 Proof of Proposition C.6

Consider any monotone ANE s4V and any Nash equilibrium s¥#. For any types > #', the
fact that ¢ and ¢ are monotone yields

sAN(0)— sV () = () — () + (L Ty = (L) > (0)— p(0) = sNE () — sVE(O) > 0,

where the first inequality holds because LSAN P FOSD-dominates L;,AN . (by monotonicity of
s4N and assortativity of P). Thus, G=""'F is more dispersive than Gs" P, O



