Online Appendix to "Dispersed Behavior and Perceptions in Assortative Societies"

Mira Frick, Ryota Iijima, and Yuhta Ishii

Omitted Proofs D

Proofs for Appendix A D.1

Proof of Lemma A.1 D.1.1

For the first point, note that for any $f \in L^1$,

$$||T_C f|| = \int_0^1 |T_C f(x)| dx \le \int_0^1 \int_0^1 c(x', x) |f(x')| dx' dx = \int_0^1 |f(x')| dx' = ||f|| < \infty.$$

Thus, $T_C: L^1 \to L^1$. Moreover, since T_C is clearly linear, the above ensures that it is also continuous.

For the second point, consider $f \in \mathcal{I}$. Since C is assortative, $T_C f(x) \geq T_C f(x')$ for all $x \ge x'$, so that $T_C f$ is weakly increasing. To show that $T_C f$ is absolutely continuous, note that for each $x, x' \in (0, 1)$,

$$\begin{aligned} T_C f(x) &= \int_0^1 c(y, x) f(y) dy = \int_0^1 \left(\int_{x'}^x c_2(y, z) dz + c(y, x') \right) f(y) dy \\ &= \int_{x'}^x \int_0^1 c_2(y, z) f(y) dy dz + T_C f(x'), \end{aligned}$$

where c_2 denotes the partial derivative of c with respect to the second argument, which exists almost everywhere by the absolute continuity assumption on c. Thus $T_C f$ is absolutely continuous with $(T_C f)'(z) = \int_0^1 c_2(y, z) f(y) dy$ for each z. Finally, for the third point, fix any $f \in L^1$ and $\gamma \in (-1, 1)$. Then for any $\tau > \tau'$,

$$\|\sum_{t=0}^{\tau} \gamma^{t}(T_{C})^{t}f - \sum_{t=0}^{\tau'} \gamma^{t}(T_{C})^{t}f\| \leq \sum_{t=\tau'+1}^{\tau} |\gamma|^{t} \|(T_{C})^{t}f\| \leq \sum_{t=\tau'+1}^{\tau} |\gamma|^{t} \|f\| \leq \frac{|\gamma|^{\tau'+1}}{1-\gamma} \|f\|,$$

which vanishes as $\tau' \to \infty$. Thus, the sequence is Cauchy. Since the space L^1 is complete, this yields the desired result.

Proof of Lemma A.3 D.1.2

 \succeq_m -order: It is clear from the definition that \succeq_m is reflexive and transitive; moreover, by Lemma A.2, \succeq_m is linear. To check that \succeq_m is continuous, take sequences $f_n \to f, g_n \to g$ in \mathcal{I} such that $f_n \succeq_m g_n$ for each n. For any $y \in (0, 1)$, we have

$$\left|\int_{y}^{1} f(x)dx - \int_{y}^{1} f_{n}(x)dx\right| \le \int_{y}^{1} |f(x) - f_{n}(x)|dx \le ||f - f_{n}|| \to 0$$

and likewise $|\int_y^1 g(x)dx - \int_y^1 g_n(x)dx| \to 0$. Since $\int_y^1 f_n(x)dx \ge \int_y^1 g_n(x)dx$ and $\int_0^1 f_n(x)dx = \int_0^1 g_n(x)dx$ for each *n*, this implies $\int_y^1 f(x)dx \ge \int_y^1 g(x)dx$ and $\int_0^1 f(x)dx = \int_0^1 g(x)dx$. Thus, $f \succeq_m g$ by Lemma A.2.

To verify that \succeq_m is isotone, take any $f, g \in \mathcal{I}$ such that $f \succeq_m g$ and set h := f - g. Note that $\int_0^1 h(x) dx = \int_0^1 T_C h(x) dx = 0$. It suffices to show that $\int_y^1 T_C h(x) dx \ge 0$ for all $y \in (0, 1)$. To see this, note that $\int_y^1 T_C h(x) dx$ is given by

$$\begin{split} \int_{y}^{1} \int_{0}^{1} h(z)c(z|x)dzdx &= \int_{0}^{1} \int_{y}^{1} c(z|x)dxh(z)dz = \int_{0}^{1} (1 - C(y|z))h(z)dz \\ &= -\int_{0}^{1} \frac{\partial 1 - C(y|z)}{\partial z} \int_{0}^{z} h(z')dz'dz + \left[(1 - C(y|z)) \int_{0}^{z} h(z')dz' \right]_{0}^{1} \\ &= \int_{0}^{1} \frac{\partial C(y|z)}{\partial z} \int_{0}^{z} h(z')dz'dz \ge 0, \end{split}$$

where the second equality uses $\int_y^1 c(z|x)dx = \int_y^1 c(x|z)dx = 1 - C(y|z)$, the third holds by integration by parts (using absolute continuity of c), the fourth uses $\int_0^1 h(z)dz = 0$, and the final inequality uses $\int_0^z h(z')dz' \leq 0$ (by $f \succeq_m g$) and assortativity of C.

 \succeq_d -order: It is clear from the definition that \succeq_d is reflexive, transitive, and linear. To check that it is continuous, take sequences $f_n \to f$ and $g_n \to g$ in \mathcal{I} such that $f_n \succeq_d g_n$ for each n. By standard results (e.g., Theorem 13.6 in Aliprantis and Border (2006)), we can find subsequences $(f_{n_k})_{k\in\mathbb{N}}, (g_{n_k})_{k\in\mathbb{N}}$ such that $f_{n_k}(x) \to f(x)$ and $g_{n_k}(x) \to g(x)$ for almost all $x \in (0, 1)$. This implies $f(x) - f(x') \ge g(x) - g(x')$ for almost all $x \ge x'$, which ensures $f \succeq_d g$ since f and gare continuous.

To show that \succeq_d is isotone, first consider any bounded $f, g \in \mathcal{I}$ such that $f \succeq_d g$. Since f and g are absolutely continuous, there exist integrable functions $f', g' : (0, 1) \to \mathbb{R}$ such that $f(x) = f(0) + \int_0^x f'(y) \, dy$ and $g(x) = g(0) + \int_0^x g'(y) \, dy$ for all $x \in (0, 1)$. Then, for any $x \ge x'$ and $C \in \mathcal{C}$, integration by parts yields

$$\begin{split} T_C f(x) - T_C f(x') &= \int_0^1 f(y) (c(y|x) - c(y|x')) dy \\ &= -\int_0^1 f'(y) (C(y|x) - C(y|x')) dy + [f(y) (C(y|x) - C(y|x'))]_0^1 \\ &= -\int_0^1 f'(y) (C(y|x) - C(y|x')) dy \ge -\int_0^1 g'(y) (C(y|x) - C(y|x')) dy \\ &= -\int_0^1 g'(y) (C(y|x) - C(y|x')) dy + [g(y) (C(y|x) - C(y|x'))]_0^1 \\ &= \int_0^1 g(y) (c(y|x) - c(y|x')) dy = T_C g(x) - T_C g(x'). \end{split}$$

Here, the inequality holds because the fact that $f \succeq_d g$ and $f, g \in \mathcal{I}$ implies $f'(y) \ge g'(y) \ge 0$ for almost all $y \in (0, 1)$.

Next, consider arbitrary $f, g \in \mathcal{I}$ such that $f \succeq_d g$. By defining bounded functions

$$f_n(x) = \begin{cases} f(\frac{1}{n}) \text{ if } x \in (0, \frac{1}{n}) \\ f(x) \text{ if } x \in [\frac{1}{n}, \frac{n-1}{n}] \\ f(\frac{n-1}{n}) \text{ if } x \in (\frac{n-1}{n}, 1) \end{cases} \qquad g_n(x) = \begin{cases} g(\frac{1}{n}) \text{ if } x \in (0, \frac{1}{n}) \\ g(x) \text{ if } x \in [\frac{1}{n}, \frac{n-1}{n}] \\ g(\frac{n-1}{n}) \text{ if } x \in (\frac{n-1}{n}, 1) \end{cases}$$
(21)

for each $n \in \mathbb{N}$, we obtain $f_n \succeq_d g_n$ for each n and $f_n \to f, g_n \to g$. For any $C \in \mathcal{C}$, since T_C is a continuous operator, this implies $T_C f_n \to T_C f$ and $T_C g_n \to T_C g$. Thus, $T_C f \succeq_d T_C g$ by continuity of \succeq_d , as we already know that $T_C f_n \succeq_d T_C g_n$ from the previous part of the proof.

D.1.3 Proof of Lemma A.4

The base case t = 0 holds because of the following result by Ryff (1963): Call a linear operator $T: L^1 \to L^1$ an \mathfrak{S} -operator if $f \succeq_m Tf$ for all $F \in \mathcal{I}$. The representation theorem in Ryff (1963) implies that T is an \mathfrak{S} -operator if there exists some measurable function $K: [0, 1]^2 \to \mathbb{R}$ such that $Tf(x) = \frac{d}{dx} \int_0^1 K(x, y) f(y) dy$ for all $f \in L^1$ and almost every x and the following conditions are met: (1) K(0, y) = 0 for all $0 \le y \le 1$; (2) $\operatorname{essup}_y V(K(\cdot, y)) < \infty$, where $V(\cdot)$ denotes the total variation and essup the essential supremum; (3) $\int_0^1 K(x, y) f(y) dy$ is absolutely continuous in x for all $f \in L^1$; (4) $x = \int_0^1 K(x, y) dy$; (5) $x_1 < x_2 \Longrightarrow K(x_1, \cdot) \le K(x_2, \cdot)$; and (6) K(1, y) = 1 for all $y \in [0, 1]$.

Since $C \in \mathcal{C}$, it is easy to see that T_C satisfies these conditions with $K(x, y) := C(x \mid y)$ for all x, y, so that T_C is an \mathfrak{S} -operator. Thus, $f \succeq_m T_C f$, proving the base case. The inductive step then follows from isotonicity of \succeq_m (Lemma A.3).

D.2 Proofs for Appendix C

D.2.1 Proof of Proposition C.1

Let $\mu := \mathbb{E}_F[\theta]$. Consider strategy profiles g_a^{α} and g_c^{α} of assortativity neglect and correct agents expressed as functions of quantiles. Write $g^{\alpha} := \alpha g_a^{\alpha} + (1 - \alpha) g_c^{\alpha}$. In an α -ANE, we must have

$$g_a^{\alpha}(x) = F^{-1}(x) + (\beta + \gamma)T_C g^{\alpha}(x), \qquad g_c^{\alpha}(x) = F^{-1}(x) + \gamma T_C g^{\alpha}(x) + \beta \int_0^1 g^{\alpha}(y) dy$$

for each $x \in (0,1)$. Since $g^{\alpha} = \alpha g_a^{\alpha} + (1-\alpha)g_c^{\alpha}$, it follows that

$$g^{\alpha}(x) = F^{-1}(x) + (\gamma + \alpha\beta)T_C g^{\alpha}(x) + (1-\alpha)\beta \int_0^1 g^{\alpha}(y)dy$$

for each x, which implies $\int_0^1 g^{\alpha}(y) dy = \frac{\mu}{1-\beta-\gamma}$ by integrating both sides over x. Moreover, iterating the above equation we obtain

$$g^{\alpha}(x) = \sum_{t \ge 0} (\gamma + \alpha\beta)^t (T_C)^t F^{-1}(x) + \frac{(1-\alpha)\beta\mu}{(1-\gamma - \alpha\beta)(1-\beta - \gamma)},$$

where the convergence of the RHS can be shown as in the proof of Lemma 1. Note that this uniquely determines g^{α} for any α . By the best-response conditions, we obtain

$$\begin{split} g_{a}^{\alpha}(x) &= F^{-1}(x) + (\beta + \gamma)T_{C}g^{\alpha}(x) \\ &= F^{-1}(x) + (\beta + \gamma)\sum_{t\geq 1}(\gamma + \alpha\beta)^{t-1}(T_{C})^{t}F^{-1}(x) + \frac{(\beta + \gamma)(1 - \alpha)\beta\mu}{(1 - \gamma - \alpha\beta)(1 - \beta - \gamma)}, \\ g_{c}^{\alpha}(x) &= F^{-1}(x) + \gamma T_{C}g^{\alpha}(x) + \beta \int_{0}^{1}g^{\alpha}(y)dy \\ &= F^{-1}(x) + \gamma \sum_{t\geq 1}(\gamma + \alpha\beta)^{t-1}(T_{C})^{t}F^{-1}(x) + \frac{(1 - \alpha(\beta + \gamma))\beta\mu}{(1 - \gamma - \alpha\beta)(1 - \beta - \gamma)} \end{split}$$

for each x, yielding (18)-(19). Then the claim $g_a^{\alpha} \succeq_d g_c^{\alpha}$ and the comparative statics with respect to α can be verified using linearity and continuity of \succeq_d .

D.2.2 Proof of Proposition C.2

Write P = (F, C). Consider any PANE *s* with $\int a d\hat{G}_{\theta}(a)$ absolutely continuous in θ . Then $s(\theta) = \theta + \beta \int a d\hat{G}_{\theta}(a) + \gamma \mathbb{E}_{P}[s(\theta')|\theta]$ for each θ . Thus, *s* is the Nash equilibrium in environment $(\tilde{F}, C, \tilde{\beta}, \gamma)$, where $\tilde{\beta} = 0$ and $\tilde{F}^{-1}(x) = F^{-1}(x) + \beta \int a d\hat{G}_{F^{-1}(x)}(a)$ for each *x* (note that $\tilde{F} \in \mathcal{F}$, as $\int a d\hat{G}_{\theta}(a)$ is increasing and absolutely continuous in θ). Since \tilde{F} is more dispersive than *F* (and the global complementarity parameter does not affect Nash action dispersion by Proposition 4), Proposition 3 implies that $G^{s,P}$ is more dispersive than the Nash global action distribution in environment (P, β, γ) .

D.2.3 Details for Example C.1

Fix any $\hat{\rho} \in [0, \rho]$. We verify that, for the expressions in Example C.1, s^* is a PANE and $(\hat{P}_{\theta}, \hat{s}_{\theta})$ are associated coherent perceptions. Let $x := \frac{1}{1-\gamma\rho-\beta\frac{\rho-\hat{\rho}}{1-\hat{\rho}}}$ and $\hat{x} := \frac{1}{1-\gamma\hat{\rho}}$, so that $s^*(\theta) = x(\theta - \mu) + \frac{\mu}{1-\beta-\gamma}$ and $\hat{s}_{\theta}(\theta') = \hat{x}(\theta' - \hat{\mu}_{\theta}) + \frac{\hat{\mu}_{\theta}}{1-\beta-\gamma}$ for all θ, θ' . Since $P(\cdot|\theta)$ is distributed $\mathcal{N}(\rho\theta + (1-\rho)\mu, (1-\rho^2)\sigma^2)$, θ 's true local action distribution $L_{\theta}^{s^*,P}$ is distributed $\mathcal{N}(x\rho(\theta - \mu) + \frac{\mu}{1-\beta-\gamma}, x^2(1-\rho^2)\sigma^2)$. Since $\hat{P}_{\theta}(\cdot|\theta)$ is distributed $\mathcal{N}(\hat{\rho}\theta + (1-\hat{\rho})\hat{\mu}_{\theta}, (1-\hat{\rho}^2)\hat{\sigma}^2)$, θ 's perceived local action distribution $L_{\theta}^{\hat{s}_{\theta},\hat{P}_{\theta}}$ is distributed $\mathcal{N}(\hat{x}\hat{\rho}(\theta-\hat{\mu}_{\theta}) + \frac{\hat{\mu}_{\theta}}{1-\beta-\gamma}, \hat{x}^2(1-\hat{\rho}^2)\hat{\sigma}^2)$. Thus, condition 1(a) of coherency can be verified by observing that, by construction, the mean and variance of $L_{\theta}^{s^*,P}$ and $L_{\theta}^{\hat{s}_{\theta},\hat{P}_{\theta}}$ are equal.

To verify condition 2, note that, by construction, θ 's perceived strategy profile \hat{s}_{θ} is the Nash equilibrium in society $\hat{P}_{\theta} = (\hat{\mu}_{\theta}, \hat{\sigma}^2, \hat{\rho})$ (see Example 1).

Finally, we verify that s^* is a PANE with perceived global action distributions $\hat{G}_{\theta} = \hat{G}^{\hat{s}_{\theta},\hat{P}_{\theta}}$, as required by condition 1(b). Note first that, by construction, $s^*(\theta) = \hat{s}_{\theta}(\theta)$ for all θ . Thus,

conditions 1(a) and 2 imply that $s^*(\theta) \in BR_{\theta}(\hat{G}^{\hat{s}_{\theta},\hat{P}_{\theta}}, L_{\theta}^{s^*,P})$. It remains to check that $\hat{G}^{\hat{s}_{\theta},\hat{P}_{\theta}}$ is FOSD-increasing in θ . This holds because $\hat{G}^{\hat{s}_{\theta},\hat{P}_{\theta}}$ is distributed $\mathcal{N}(\frac{\hat{\mu}_{\theta}}{1-\beta-\gamma}, \hat{x}^2\hat{\sigma}^2)$ and because $\hat{\rho} \leq \rho$ ensures that $\hat{\mu}_{\theta}$ is increasing in θ .

D.2.4 Proof of Proposition C.3

We only consider Nash equilibrium, as ANE at (P, β, γ) corresponds to Nash equilibrium at $(P, 0, \beta + \gamma)$. Let $\mu := \mathbb{E}_F[\theta]$ and, for each $x \in (0, 1)$, define

$$h(x) := \sum_{t \ge 0} \gamma^t (T_C)^t F^{-1}(x) + \frac{\beta \mu}{(1 - \gamma)(1 - \beta - \gamma)},$$

which is a well-defined function in L^1 as $|\gamma| < 1$. Following the same argument as in the proof of Lemma 1, the strategy profile defined by $s^{NE}(\theta) = h(F^{-1}(\theta))$ for each θ is the unique Nash equilibrium and satisfies (6).

To show the "moreover" part, note that

$$h = \sum_{t \ge 0} \gamma^{2t} T_C^{2t} (F^{-1} + \gamma T_C F^{-1}) + \frac{\beta \mu}{(1 - \gamma)(1 - \beta - \gamma)}$$

Since $\gamma > -1$, the additional assumption on P implies that $F^{-1} + \gamma T_C F^{-1}$ is strictly increasing. Therefore, h, and hence s^{NE} , is strictly increasing.

D.2.5 Proof of Proposition C.4

We first show that, analogously to the relationship between \succeq_{MA} and \succeq_m (Lemma B.1), the strongly more-assortative order \succeq_{SMA} is the "dual order" of the dispersiveness order \succeq_d :

Lemma D.1. Fix any $C_1, C_2 \in \mathcal{C}$. Then $C_1 \succeq_{SMA} C_2$ if and only if $T_{C_1}f \succeq_d T_{C_2}f$ for all $f \in \mathcal{I}$.

Proof. For the "only if" part, suppose that $C_1 \succeq_{SMA} C_2$. First consider any bounded $f \in \mathcal{I}$. Then there exists an integrable function $f': (0,1) \to \mathbb{R}$ that is nonnegative almost everywhere such that $f(x) = f(0) + \int_0^x f'(y) dy$ for all $x \in (0,1)$. Thus, for any $x \ge x'$, integration by parts yields

$$\begin{aligned} T_{C_1}f(x) - T_{C_1}f(x') &= \int_0^1 f(y)(c_1(y|x) - c_1(y|x'))dy \\ &= -\int_0^1 f'(y)(C_1(y|x) - C_1(y|x'))dy + [f(y)(C_1(y|x) - C_1(y|x'))]_0^1 \\ &= -\int_0^1 f'(y)(C_1(y|x) - C_1(y|x'))dy \ge -\int_0^1 f'(y)(C_2(y|x) - C_2(y|x'))dy \\ &= -\int_0^1 f'(y)(C_2(y|x) - C_2(y|x'))dy + [f(y)(C_2(y|x) - C_2(y|x'))]_0^1 \\ &= \int_0^1 f(y)(c_2(y|x) - c_2(y|x'))dy = T_{C_2}f(x) - T_{C_2}f(x'), \end{aligned}$$

where the inequality holds because $f'(y) \ge 0$ for almost all y. Hence, $T_{C_1}f \succeq_d T_{C_2}f$.

Next take an arbitrary $f \in \mathcal{I}$. Define the sequence of bounded functions (f_n) as in (21), so that $f_n \to f$. By the previous observation, we have $T_{C_1}f_n \succeq_d T_{C_2}f_n$ for each n. Since $T_{C_1}f_n \to T_{C_1}f$ and $T_{C_2}f_n \to T_{C_2}f$ by continuity of T_{C_1} and T_{C_2} , continuity of \succeq_d then yields $T_{C_1}f \succeq_d T_{C_2}f$.

For the "if" part, we prove the contrapositive. Suppose that C_1 is not strongly more assortative than C_2 . That is, there exist y and x > x' such that

$$C_2(y|x) - C_2(y|x') < C_1(y|x) - C_1(y|x') \le 0.$$

Since C_1 and C_2 admit densities, the above inequality holds throughout some interval $(y_1, y_2) \ni y$. Define $f \in \mathcal{I}$ by $f(z) = \int_0^z f'(y')dy'$ for all z, where f' is an integrable function given by f'(y') = 1 for $y' \in (y_1, y_2)$ and f'(y') = 0 for all $y' \notin (y_1, y_2)$. Using the same integration by parts argument as above, we obtain

$$T_{C_1}f(x) - T_{C_1}f(x') = -\int f'(y)(C_1(y|x) - C_1(y|x'))dy$$

$$< -\int f'(y)(C_2(y|x) - C_2(y|x'))dy = T_{C_2}f(x) - T_{C_2}f(x').$$

Thus, $T_{C_1}f \succeq_d T_{C_2}f$ fails.

Proof of Proposition C.4. Note that Nash and ANE strategies are monotone by the assumption on P_i (Proposition C.3). We prove each part only for Nash, as the ANE at (P, β, γ) is the Nash at $(P, 0, \beta + \gamma)$. For each $f, g \in \mathcal{I}$, write $f \succeq_{dil} g$ iff $f \succeq_m g + \alpha$ for some constant function α . This order inherits linearity, isotonicity, and continuity from \succeq_m . Note that for $F, G \in \mathcal{F}, F$ is a dilation of G iff $F^{-1} \succeq_{dil} G^{-1}$; moreover, the \succeq_{dil} order is implied by the \succeq_d order.

Second part: Let $\beta := \beta_1 = \beta_2$, $\gamma := \gamma_1 = \gamma_2$, $C := C_1 = C_2$. The proof of Proposition 3 carries over to the case $\gamma \ge 0$, so we focus on the case $\gamma < 0$. Since β only shifts the action mean without affecting the dilation order, we also assume $\beta = 0$ without loss.

For each i = 1, 2, define an operator $\Gamma_i : \mathcal{I} \to \mathcal{I}$ by $\Gamma_i f = F_i^{-1} + \gamma T_C F_i^{-1} + \gamma^2 T_C^2 f$ for each $f \in \mathcal{I}$. Note that $\Gamma_i(\cdot)$ is increasing, as $(1 + \gamma T_C)F_i^{-1}$ is increasing by the assumption on P_i . We make two preliminary observations:

1. For i = 1, 2, $\Gamma_i f \succeq_{dil} \Gamma_i g$ whenever $f \succeq_{dil} g$.

This follows from isotonicity of \succeq_{dil} .

2. $\Gamma_1 f \succeq_{dil} \Gamma_2 f$ for each $f \in \mathcal{I}$.

To see this, note that $F_1^{-1} \succeq_d F_2^{-1}$ implies $F_1^{-1} - F_2^{-1} \in \mathcal{I}$. Thus,

$$F_1^{-1} - F_2^{-1} \succeq_m T_C(F_1^{-1} - F_2^{-1}) \succeq_{dil} -\gamma T_C(F_1^{-1} - F_2^{-1})$$

where the first comparison uses Lemma A.4 and the second uses $-1 < \gamma \leq 0$. Therefore, $F_1^{-1} + \gamma T_C F_1^{-1} \succeq_{dil} F_2^{-1} + \gamma T_C F_2^{-1}$, and thus $\Gamma_1 f \succeq_{dil} \Gamma_2 f$ for each $f \in \mathcal{I}$. Now, fix any $f \in \mathcal{I}$. Let

$$g_i := \sum_{t \ge 0} \gamma^t T_C^t F_i = \lim_{t \to \infty} \Gamma_i^t(f).$$

This is the inverse cdf of G_i^{NE} , as s_i^{NE} is increasing. By induction, we show that $\Gamma_1^t f \succeq_{dil} \Gamma_2^t f$ for all t. The base case t = 1 holds by the second observation above. Moreover, if $\Gamma_1^{t-1} f \succeq_{dil} \Gamma_2^{t-1} f$, then

$$\Gamma_1^t f \succeq_{dil} \Gamma_2 \Gamma_1^{t-1} f \succeq_{dil} \Gamma_2^t f$$

holds by observations 1-2. Given this, $g_1 \succeq_{dil} g_2$ follows by continuity of \succeq_{dil} .

First part: Let $F := F_1 = F_2$, $\beta := \beta_1 = \beta_2$, $\gamma := \gamma_1 = \gamma_2$. The proof of Proposition 2 carries over to the case $\gamma \leq 0$, so we focus on the case $\gamma < 0$. Since β only shifts the action mean without affecting the dilation order, we also assume $\beta = 0$ without loss. Let $g_i := \sum_{t \geq 0} \gamma^t T_{C_i}^t F^{-1}$; this is the inverse cdf of G_i^{NE} since s_i^{NE} is monotone.

For each i = 1, 2 and any $f \in L^1$, the linearity of the operators $T_{C_i}^t$ implies

$$(\mathbf{1} - \gamma_i T_{C_i}) \sum_{t \ge 0} \gamma_i^t T_{C_i}^t f = \sum_{t \ge 0} (\gamma_i^t T_{C_i}^t) (\mathbf{1} - \gamma_i T_{C_i}) f = f,$$
(22)

where **1** denotes the identity operator. Observe that

$$g_2 = \sum_{t \ge 0} \gamma^t T_{C_2}^t F^{-1} = \sum_{t \ge 0} \gamma^t T_{C_2}^t (1 - \gamma T_{C_1}) g_1,$$

where the second equality uses (22) with i = 1 and $f = F^{-1}$. Likewise,

$$g_1 = \sum_{t \ge 0} \gamma^t T_{C_2}^t (\mathbf{1} - \gamma T_{C_2}) g_1,$$

by the second equality in (22) with i = 2 and $f = g_1$. This shows that g_1 and g_2 correspond to the inverse cdfs of the Nash action distributions in two modified environments that share a common interaction structure C_2 and complementarity parameters $(0, \gamma)$ and have type distributions \tilde{F}_1 and \tilde{F}_2 with inverse cdfs $\tilde{F}_1^{-1} := (\mathbf{1} - \gamma T_{C_2})g_1$ and $\tilde{F}_2^{-1} := (\mathbf{1} - \gamma T_{C_1})g_1$, respectively. Since $g_1 \in \mathcal{I}, \gamma < 0$, and $C_1 \succeq_{SMA} C_2$, Lemma D.1 implies $\tilde{F}_2^{-1} \succeq_d \tilde{F}_1^{-1}$.

Given this, the arguments in part 2 above imply that $g_2 \succeq_{dil} g_1$, provided we can show that $(\mathbf{1} + \gamma T_{C_2})\tilde{F}_i^{-1}$ is increasing for i = 1, 2 (which ensures that the corresponding operators $\Gamma_i(\cdot)$ in the two modified societies are increasing). For i = 2, note that $(\mathbf{1} + \gamma T_{C_2})\tilde{F}_2^{-1} :=$ $(\mathbf{1} + \gamma T_{C_2})(\mathbf{1} - \gamma T_{C_1})g_1 = (\mathbf{1} + \gamma T_{C_2})F^{-1}$ by (22), which is increasing by the assumption on P_2 and since $\gamma > -1$. For i = 1, note that (i) $(\mathbf{1} - \gamma^2 T_{C_1}^2)g_1 = (\mathbf{1} + \gamma T_{C_1})F^{-1}$ is increasing (by the assumption on P_1 and since $\gamma > -1$), and (ii) $\gamma^2 T_{C_1}^2 g_1 \succeq_d \gamma^2 T_{C_2}^2 g_1$ since $C_1 \succeq_{SMA} C_2$ (Lemma D.1). Combining (i) and (ii) yields that $(\mathbf{1} + \gamma T_{C_2})\tilde{F}_1^{-1} := (\mathbf{1} - \gamma^2 T_{C_2}^2)g_1$ is increasing, as required.

Third part: Let $F := F_1 = F_2$, $C := C_1 = C_2$. The proof of Proposition 4 carries over to the case $\gamma_i \geq 0$ for i = 1, 2. Thus, by the transitivity of the dilation order, we can focus on the case $\gamma_i \leq 0$ for i = 1, 2. Since β only shifts the action mean without affecting the dilation order, we also assume $\beta_1 = \beta_2 = 0$ without loss. Let $g_i := \sum_{t \geq 0} \gamma_i^t T_C^t F^{-1}$; this is the inverse cdf of G_i^{NE} since s_i^{NE} is monotone. Observe that

$$g_1 = \sum_{t \ge 0} \gamma_1^t T_C^t F^{-1} = \sum_{t \ge 0} \gamma_1^t T_C^t (\mathbf{1} - \gamma_2 T_C) g_2,$$

where the second equality uses (22) with i = 1 and $f = F^{-1}$. Likewise,

$$g_2 = \sum_{t\geq 0} \gamma_1^t T_C^t (\mathbf{1} - \gamma_1 T_C) g_2,$$

by the second equality in (22) with i = 1 and $f = g_2$. This shows that g_1 and g_2 can be seen as inverse cdfs of Nash action distributions in two modified environments that share a common interaction structure C and complementarity parameters $(0, \gamma_1)$ and have type distributions \tilde{F}_1 and \tilde{F}_2 with inverse cdfs $\tilde{F}_1^{-1} := (\mathbf{1} - \gamma_2 T_C)g_2$ and $\tilde{F}_2^{-1} := (\mathbf{1} - \gamma_1 T_C)g_2$, respectively. Since $0 \ge \gamma_1 \ge \gamma_2$, we have $\tilde{F}_1^{-1} \succeq_d \tilde{F}_2^{-1}$.

Given this, the arguments in part 2 above imply that $g_1 \succeq_{dil} g_2$, provided we can show that $(\mathbf{1} + \gamma_1 T_C) \tilde{F}_i^{-1}$ is increasing for i = 1, 2 (which ensures that the corresponding operators $\Gamma_i(\cdot)$ in the two modified societies are increasing). For i = 1, note that $(\mathbf{1} + \gamma_1 T_C) \tilde{F}_2^{-1} :=$ $(\mathbf{1} + \gamma_1 T_C) (\mathbf{1} - \gamma_2 T_C) g_2 = (\mathbf{1} + \gamma_1 T_C) F^{-1}$, which is increasing by the assumption on P_i and $\gamma_1 > -1$. For i = 2, note that (i) $(\mathbf{1} - \gamma_2^2 T_C^2) g_2 = (\mathbf{1} + \gamma_2 T_C) F^{-1}$ is increasing (by the assumption on P_i and since $\gamma_2 > -1$), and (ii) $\gamma_2^2 T_C^2 g_2 \succeq_d \gamma_1^2 T_C^2 g_2$ as $0 \ge \gamma_1 \ge \gamma_2$. Combining (i) and (ii) yields that $(\mathbf{1} + \gamma_1 T_C) \tilde{F}_1^{-1} := (\mathbf{1} - \gamma_1^2 T_C^2) g_2$ is increasing, as required. \Box

D.2.6 Proof of Proposition C.5

Fix any ANE $s^{AN} =: s$ and θ . For each θ' , set $\hat{s}_{\theta}(\theta') := BR_{\theta'}(L^{s,P}_{\theta}, L^{s,P}_{\theta})$ and $\hat{F}_{\theta}(\theta') := L^{s,P}_{\theta}(\hat{s}_{\theta}(\theta'))$, and let $\hat{P}_{\theta} := \hat{F}_{\theta} \times \hat{F}_{\theta}$. To verify observational consistency, note that $L^{\hat{s}_{\theta},\hat{P}_{\theta}}(a) = \hat{F}_{\theta}(\hat{s}^{-1}_{\theta}(a)) = L^{s,P}_{\theta}(a)$ for each a, where the first equality uses $\hat{P}_{\theta} = \hat{F}_{\theta} \times \hat{F}_{\theta}$ and the inverse \hat{s}^{-1}_{θ} is well-defined and increasing by the surjectivity and monotonicity assumption on best-responses. To verify the perceived best-response condition, note that, for each θ' ,

$$\hat{s}_{\theta}(\theta') = \mathrm{BR}_{\theta'}(L^{s,P}_{\theta}, L^{s,P}_{\theta}) = \mathrm{BR}_{\theta'}(L^{\hat{s}_{\theta}, \hat{P}_{\theta}}_{\theta}, L^{\hat{s}_{\theta}, \hat{P}_{\theta}}_{\theta}) = \mathrm{BR}_{\theta'}(G^{\hat{s}_{\theta}, \hat{P}_{\theta}}, L^{\hat{s}_{\theta}, \hat{P}_{\theta}}_{\theta}),$$

where the second equality uses observational consistency and the third uses non-assortativity of \hat{P}_{θ} . Thus, $(\hat{P}_{\theta}, \hat{s}_{\theta})$ is a coherent assortativity neglect perception for type θ .

To show uniqueness, consider any coherent assortativity neglect perception $(\hat{P}_{\theta} = \hat{F}_{\theta} \times \hat{F}_{\theta}, \hat{s}_{\theta})$ for θ . Then, for each θ' , the perceived best-response condition, non-assortativity of \hat{P}_{θ} , and observational consistency imply $\hat{s}_{\theta}(\theta') = BR_{\theta'}(G^{\hat{s}_{\theta},\hat{P}_{\theta}}, L^{\hat{s}_{\theta},\hat{P}_{\theta}}) = BR_{\theta'}(L^{\hat{s}_{\theta},\hat{P}_{\theta}}_{\theta}, L^{\hat{s}_{\theta},\hat{P}_{\theta}}_{\theta}) = BR_{\theta'}(L^{s,P}_{\theta}, L^{s,P}_{\theta})$. Moreover, $\hat{P}_{\theta} = \hat{F}_{\theta} \times \hat{F}_{\theta}$ and observational consistency imply $\hat{F}_{\theta}(\hat{s}^{-1}_{\theta}(a)) = L^{\hat{s}_{\theta},\hat{P}_{\theta}}_{\theta}(a) = L^{s,P}_{\theta}(a)$ for each a, which yields $\hat{F}_{\theta}(\theta') = L^{s,P}_{\theta}(\hat{s}_{\theta}(\theta'))$ for each θ' . Thus, $(\hat{P}_{\theta}, \hat{s}_{\theta})$ coincides with the perceptions in the first paragraph.

D.2.7 Proof of Proposition C.6

Consider any monotone ANE s^{AN} and any Nash equilibrium s^{NE} . For any types $\theta > \theta'$, the fact that ψ and ϕ are monotone yields

$$s^{AN}(\theta) - s^{AN}(\theta') = \phi(\theta) - \phi(\theta') + \psi(L_{\theta}^{s^{AN}, P}) - \psi(L_{\theta'}^{s^{AN}, P}) \ge \phi(\theta) - \phi(\theta') = s^{NE}(\theta) - s^{NE}(\theta') > 0,$$

where the first inequality holds because $L_{\theta}^{s^{AN},P}$ FOSD-dominates $L_{\theta'}^{s^{AN},P}$ (by monotonicity of s^{AN} and assortativity of P). Thus, $G^{s^{AN},P}$ is more dispersive than $G^{s^{NE},P}$.