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D Omitted Proofs

D.1 Proofs for Appendix A

D.1.1 Proof of Lemma A.1

For the first point, note that for any f ∈ L1,

‖TCf‖ =

1ˆ

0

|TCf(x)|dx ≤
1ˆ

0

1ˆ

0

c(x′, x)|f(x′)|dx′dx =

1ˆ

0

|f(x′)|dx′ = ‖f‖ <∞.

Thus, TC : L1 → L1. Moreover, since TC is clearly linear, the above ensures that it is also
continuous.

For the second point, consider f ∈ I. Since C is assortative, TCf(x) ≥ TCf(x′) for all
x ≥ x′, so that TCf is weakly increasing. To show that TCf is absolutely continuous, note that
for each x, x′ ∈ (0, 1),

TCf(x) =

ˆ 1

0

c(y, x)f(y)dy =

ˆ 1

0

(ˆ x

x′
c2(y, z)dz + c(y, x′)

)
f(y)dy

=

ˆ x

x′

ˆ 1

0

c2(y, z)f(y)dydz + TCf(x′),

where c2 denotes the partial derivative of c with respect to the second argument, which ex-
ists almost everywhere by the absolute continuity assumption on c. Thus TCf is absolutely
continuous with (TCf)′(z) =

´ 1

0
c2(y, z)f(y)dy for each z.

Finally, for the third point, fix any f ∈ L1 and γ ∈ (−1, 1). Then for any τ > τ ′,

‖
τ∑
t=0

γt(TC)tf −
τ ′∑
t=0

γt(TC)tf‖ ≤
τ∑

t=τ ′+1

|γ|t‖(TC)tf‖ ≤
τ∑

t=τ ′+1

|γ|t‖f‖ ≤ |γ|
τ ′+1

1− γ
‖f‖,

which vanishes as τ ′ →∞. Thus, the sequence is Cauchy. Since the space L1 is complete, this
yields the desired result.

D.1.2 Proof of Lemma A.3

%m-order: It is clear from the definition that %m is reflexive and transitive; moreover, by
Lemma A.2, %m is linear. To check that %m is continuous, take sequences fn → f, gn → g in
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I such that fn %m gn for each n. For any y ∈ (0, 1), we have

|
ˆ 1

y

f(x)dx−
ˆ 1

y

fn(x)dx| ≤
ˆ 1

y

|f(x)− fn(x)|dx ≤ ‖f − fn‖ → 0

and likewise |
´ 1

y
g(x)dx −

´ 1

y
gn(x)dx| → 0. Since

´ 1

y
fn(x)dx ≥

´ 1

y
gn(x)dx and

´ 1

0
fn(x)dx =´ 1

0
gn(x)dx for each n, this implies

´ 1

y
f(x)dx ≥

´ 1

y
g(x)dx and

´ 1

0
f(x)dx =

´ 1

0
g(x)dx. Thus,

f %m g by Lemma A.2.
To verify that %m is isotone, take any f, g ∈ I such that f %m g and set h := f − g. Note

that
´ 1

0
h(x)dx =

´ 1

0
TCh(x)dx = 0. It suffices to show that

´ 1

y
TCh(x)dx ≥ 0 for all y ∈ (0, 1).

To see this, note that
´ 1

y
TCh(x)dx is given by

ˆ 1

y

ˆ 1

0

h(z)c(z|x)dzdx =

ˆ 1

0

ˆ 1

y

c(z|x)dxh(z)dz =

ˆ 1

0

(1− C(y|z))h(z)dz

= −
ˆ 1

0

∂1− C(y|z)

∂z

ˆ z

0

h(z′)dz′dz +

[
(1− C(y|z))

ˆ z

0

h(z′)dz′
]1

0

=

ˆ 1

0

∂C(y|z)

∂z

ˆ z

0

h(z′)dz′dz ≥ 0,

where the second equality uses
´ 1

y
c(z|x)dx =

´ 1

y
c(x|z)dx = 1 − C(y|z), the third holds by

integration by parts (using absolute continuity of c), the fourth uses
´ 1

0
h(z)dz = 0, and the

final inequality uses
´ z

0
h(z′)dz′ ≤ 0 (by f %m g) and assortativity of C.

%d-order: It is clear from the definition that %d is reflexive, transitive, and linear. To check
that it is continuous, take sequences fn → f and gn → g in I such that fn %d gn for each n. By
standard results (e.g., Theorem 13.6 in Aliprantis and Border (2006)), we can find subsequences
(fnk)k∈N, (gnk)k∈N such that fnk(x) → f(x) and gnk(x) → g(x) for almost all x ∈ (0, 1). This
implies f(x) − f(x′) ≥ g(x) − g(x′) for almost all x ≥ x′, which ensures f %d g since f and g
are continuous.

To show that %d is isotone, first consider any bounded f, g ∈ I such that f %d g. Since f
and g are absolutely continuous, there exist integrable functions f ′, g′ : (0, 1) → R such that
f(x) = f(0) +

´ x
0
f ′(y) dy and g(x) = g(0) +

´ x
0
g′(y) dy for all x ∈ (0, 1). Then, for any x ≥ x′

and C ∈ C, integration by parts yields

TCf(x)− TCf(x′) =

ˆ 1

0

f(y)(c(y|x)− c(y|x′))dy

= −
ˆ 1

0

f ′(y)(C(y|x)− C(y|x′))dy + [f(y)(C(y|x)− C(y|x′))]10

= −
ˆ 1

0

f ′(y)(C(y|x)− C(y|x′))dy ≥ −
ˆ 1

0

g′(y)(C(y|x)− C(y|x′))dy

= −
ˆ 1

0

g′(y)(C(y|x)− C(y|x′))dy + [g(y)(C(y|x)− C(y|x′))]10

=

ˆ 1

0

g(y)(c(y|x)− c(y|x′))dy = TCg(x)− TCg(x′).
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Here, the inequality holds because the fact that f %d g and f, g ∈ I implies f ′(y) ≥ g′(y) ≥ 0
for almost all y ∈ (0, 1).

Next, consider arbitrary f, g ∈ I such that f %d g. By defining bounded functions

fn(x) =


f( 1

n
) if x ∈ (0, 1

n
)

f(x) if x ∈ [ 1
n
, n−1

n
]

f(n−1
n

) if x ∈ (n−1
n
, 1)

gn(x) =


g( 1

n
) if x ∈ (0, 1

n
)

g(x) if x ∈ [ 1
n
, n−1

n
]

g(n−1
n

) if x ∈ (n−1
n
, 1)

(21)

for each n ∈ N, we obtain fn %d gn for each n and fn → f, gn → g. For any C ∈ C, since
TC is a continuous operator, this implies TCfn → TCf and TCgn → TCg. Thus, TCf %d TCg
by continuity of %d, as we already know that TCfn %d TCgn from the previous part of the
proof.

D.1.3 Proof of Lemma A.4

The base case t = 0 holds because of the following result by Ryff (1963): Call a linear operator
T : L1 → L1 an S-operator if f %m Tf for all F ∈ I. The representation theorem in Ryff
(1963) implies that T is an S-operator if there exists some measurable function K : [0, 1]2 → R
such that Tf(x) = d

dx

´ 1

0
K(x, y)f(y)dy for all f ∈ L1 and almost every x and the following

conditions are met: (1) K(0, y) = 0 for all 0 ≤ y ≤ 1; (2) essupyV (K(·, y)) < ∞, where V (·)
denotes the total variation and essup the essential supremum; (3)

´ 1

0
K(x, y)f(y)dy is absolutely

continuous in x for all f ∈ L1; (4) x =
´ 1

0
K(x, y)dy; (5) x1 < x2 =⇒ K(x1, ·) ≤ K(x2, ·); and

(6) K(1, y) = 1 for all y ∈ [0, 1].
Since C ∈ C, it is easy to see that TC satisfies these conditions with K(x, y) := C(x | y) for

all x, y, so that TC is an S-operator. Thus, f %m TCf , proving the base case. The inductive
step then follows from isotonicity of %m (Lemma A.3).

D.2 Proofs for Appendix C

D.2.1 Proof of Proposition C.1

Let µ := EF [θ]. Consider strategy profiles gαa and gαc of assortativity neglect and correct agents
expressed as functions of quantiles. Write gα := αgαa + (1− α)gαc . In an α-ANE, we must have

gαa (x) = F−1(x) + (β + γ)TCg
α(x), gαc (x) = F−1(x) + γTCg

α(x) + β

ˆ 1

0

gα(y)dy

for each x ∈ (0, 1). Since gα = αgαa + (1− α)gαc , it follows that

gα(x) = F−1(x) + (γ + αβ)TCg
α(x) + (1− α)β

ˆ 1

0

gα(y)dy
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for each x, which implies
´ 1

0
gα(y)dy = µ

1−β−γ by integrating both sides over x. Moreover,
iterating the above equation we obtain

gα(x) =
∑
t≥0

(γ + αβ)t(TC)tF−1(x) +
(1− α)βµ

(1− γ − αβ)(1− β − γ)
,

where the convergence of the RHS can be shown as in the proof of Lemma 1. Note that this
uniquely determines gα for any α. By the best-response conditions, we obtain

gαa (x) = F−1(x) + (β + γ)TCg
α(x)

= F−1(x) + (β + γ)
∑
t≥1

(γ + αβ)t−1(TC)tF−1(x) +
(β + γ)(1− α)βµ

(1− γ − αβ)(1− β − γ)
,

gαc (x) = F−1(x) + γTCg
α(x) + β

ˆ 1

0

gα(y)dy

= F−1(x) + γ
∑
t≥1

(γ + αβ)t−1(TC)tF−1(x) +
(1− α(β + γ)) βµ

(1− γ − αβ)(1− β − γ)

for each x, yielding (18)-(19). Then the claim gαa %d g
α
c and the comparative statics with respect

to α can be verified using linearity and continuity of %d.

D.2.2 Proof of Proposition C.2

Write P = (F,C). Consider any PANE s with
´
a dĜθ(a) absolutely continuous in θ. Then

s(θ) = θ+β
´
a dĜθ(a)+γEP [s(θ′)|θ] for each θ. Thus, s is the Nash equilibrium in environment

(F̃ , C, β̃, γ), where β̃ = 0 and F̃−1(x) = F−1(x) + β
´
a dĜF−1(x)(a) for each x (note that

F̃ ∈ F , as
´
adĜθ(a) is increasing and absolutely continuous in θ). Since F̃ is more dispersive

than F (and the global complementarity parameter does not affect Nash action dispersion by
Proposition 4), Proposition 3 implies that Gs,P is more dispersive than the Nash global action
distribution in environment (P, β, γ).

D.2.3 Details for Example C.1

Fix any ρ̂ ∈ [0, ρ]. We verify that, for the expressions in Example C.1, s∗ is a PANE and
(P̂θ, ŝθ) are associated coherent perceptions. Let x := 1

1−γρ−β ρ−ρ̂
1−ρ̂

and x̂ := 1
1−γρ̂ , so that s∗(θ) =

x(θ − µ) + µ
1−β−γ and ŝθ(θ

′) = x̂(θ′ − µ̂θ) + µ̂θ
1−β−γ for all θ, θ′. Since P (·|θ) is distributed

N (ρθ + (1 − ρ)µ, (1 − ρ2)σ2), θ’s true local action distribution Ls
∗,P
θ is distributed N (xρ(θ −

µ)+ µ
1−β−γ , x

2(1−ρ2)σ2). Since P̂θ(·|θ) is distributed N (ρ̂θ+(1− ρ̂)µ̂θ, (1− ρ̂2)σ̂2), θ’s perceived

local action distribution Lŝθ,P̂θθ is distributedN (x̂ρ̂(θ−µ̂θ)+ µ̂θ
1−β−γ , x̂

2(1−ρ̂2)σ̂2). Thus, condition
1(a) of coherency can be verified by observing that, by construction, the mean and variance of
Ls
∗,P
θ and Lŝθ,P̂θθ are equal.
To verify condition 2, note that, by construction, θ’s perceived strategy profile ŝθ is the

Nash equilibrium in society P̂θ = (µ̂θ, σ̂
2, ρ̂) (see Example 1).

Finally, we verify that s∗ is a PANE with perceived global action distributions Ĝθ = Ĝŝθ,P̂θ ,
as required by condition 1(b). Note first that, by construction, s∗(θ) = ŝθ(θ) for all θ. Thus,
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conditions 1(a) and 2 imply that s∗(θ) ∈ BRθ(Ĝ
ŝθ,P̂θ , Ls

∗,P
θ ). It remains to check that Ĝŝθ,P̂θ

is FOSD-increasing in θ. This holds because Ĝŝθ,P̂θ is distributed N ( µ̂θ
1−β−γ , x̂

2σ̂2) and because
ρ̂ ≤ ρ ensures that µ̂θ is increasing in θ.

D.2.4 Proof of Proposition C.3

We only consider Nash equilibrium, as ANE at (P, β, γ) corresponds to Nash equilibrium at
(P, 0, β + γ). Let µ := EF [θ] and, for each x ∈ (0, 1), define

h(x) :=
∑
t≥0

γt(TC)tF−1(x) +
βµ

(1− γ)(1− β − γ)
,

which is a well-defined function in L1 as |γ| < 1. Following the same argument as in the proof
of Lemma 1, the strategy profile defined by sNE(θ) = h(F−1(θ)) for each θ is the unique Nash
equilibrium and satisfies (6).

To show the “moreover” part, note that

h =
∑
t≥0

γ2tT 2t
C (F−1 + γTCF

−1) +
βµ

(1− γ)(1− β − γ)
.

Since γ > −1, the additional assumption on P implies that F−1 +γTCF
−1 is strictly increasing.

Therefore, h, and hence sNE, is strictly increasing.

D.2.5 Proof of Proposition C.4

We first show that, analogously to the relationship between %MA and %m (Lemma B.1), the
strongly more-assortative order %SMA is the “dual order” of the dispersiveness order %d:

Lemma D.1. Fix any C1, C2 ∈ C. Then C1 %SMA C2 if and only if TC1f %d TC2f for all
f ∈ I.

Proof. For the “only if” part, suppose that C1 %SMA C2. First consider any bounded f ∈ I.
Then there exists an integrable function f ′ : (0, 1)→ R that is nonnegative almost everywhere
such that f(x) = f(0) +

´ x
0
f ′(y)dy for all x ∈ (0, 1). Thus, for any x ≥ x′, integration by parts

yields

TC1f(x)− TC1f(x′) =

ˆ 1

0

f(y)(c1(y|x)− c1(y|x′))dy

= −
ˆ 1

0

f ′(y)(C1(y|x)− C1(y|x′))dy + [f(y)(C1(y|x)− C1(y|x′))]10

= −
ˆ 1

0

f ′(y)(C1(y|x)− C1(y|x′))dy ≥ −
ˆ 1

0

f ′(y)(C2(y|x)− C2(y|x′))dy

= −
ˆ 1

0

f ′(y)(C2(y|x)− C2(y|x′))dy + [f(y)(C2(y|x)− C2(y|x′))]10

=

ˆ 1

0

f(y)(c2(y|x)− c2(y|x′))dy = TC2f(x)− TC2f(x′),
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where the inequality holds because f ′(y) ≥ 0 for almost all y. Hence, TC1f %d TC2f .
Next take an arbitrary f ∈ I. Define the sequence of bounded functions (fn) as in (21),

so that fn → f . By the previous observation, we have TC1fn %d TC2fn for each n. Since
TC1fn → TC1f and TC2fn → TC2f by continuity of TC1 and TC2 , continuity of %d then yields
TC1f %d TC2f .

For the “if” part, we prove the contrapositive. Suppose that C1 is not strongly more assor-
tative than C2. That is, there exist y and x > x′ such that

C2(y|x)− C2(y|x′) < C1(y|x)− C1(y|x′) ≤ 0.

Since C1 and C2 admit densities, the above inequality holds throughout some interval (y1, y2) 3
y. Define f ∈ I by f(z) =

´ z
0
f ′(y′)dy′ for all z, where f ′ is an integrable function given by

f ′(y′) = 1 for y′ ∈ (y1, y2) and f ′(y′) = 0 for all y′ 6∈ (y1, y2). Using the same integration by
parts argument as above, we obtain

TC1f(x)− TC1f(x′) = −
ˆ
f ′(y)(C1(y|x)− C1(y|x′))dy

< −
ˆ
f ′(y)(C2(y|x)− C2(y|x′))dy = TC2f(x)− TC2f(x′).

Thus, TC1f %d TC2f fails.

Proof of Proposition C.4. Note that Nash and ANE strategies are monotone by the as-
sumption on Pi (Proposition C.3). We prove each part only for Nash, as the ANE at (P, β, γ)
is the Nash at (P, 0, β + γ). For each f, g ∈ I, write f %dil g iff f %m g + α for some constant
function α. This order inherits linearity, isotonicity, and continuity from %m. Note that for
F,G ∈ F , F is a dilation of G iff F−1 %dil G

−1; moreover, the %dil order is implied by the %d

order.
Second part: Let β := β1 = β2, γ := γ1 = γ2, C := C1 = C2. The proof of Proposition 3
carries over to the case γ ≥ 0, so we focus on the case γ < 0. Since β only shifts the action
mean without affecting the dilation order, we also assume β = 0 without loss.

For each i = 1, 2, define an operator Γi : I → I by Γif = F−1
i + γTCF

−1
i + γ2T 2

Cf for each
f ∈ I. Note that Γi(·) is increasing, as (1 + γTC)F−1

i is increasing by the assumption on Pi.
We make two preliminary observations:

1. For i = 1, 2, Γif %dil Γig whenever f %dil g.
This follows from isotonicity of %dil.

2. Γ1f %dil Γ2f for each f ∈ I.
To see this, note that F−1

1 %d F
−1
2 implies F−1

1 − F−1
2 ∈ I. Thus,

F−1
1 − F−1

2 %m TC(F−1
1 − F−1

2 ) %dil −γTC(F−1
1 − F−1

2 ),

where the first comparison uses Lemma A.4 and the second uses −1 < γ ≤ 0. Therefore,
F−1

1 + γTCF
−1
1 %dil F

−1
2 + γTCF

−1
2 , and thus Γ1f %dil Γ2f for each f ∈ I.

Now, fix any f ∈ I. Let
gi :=

∑
t≥0

γtT tCFi = lim
t→∞

Γti(f).
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This is the inverse cdf of GNE
i , as sNEi is increasing. By induction, we show that Γt1f %dil Γt2f for

all t. The base case t = 1 holds by the second observation above. Moreover, if Γt−1
1 f %dil Γt−1

2 f ,
then

Γt1f %dil Γ2Γt−1
1 f %dil Γt2f

holds by observations 1-2. Given this, g1 %dil g2 follows by continuity of %dil.
First part: Let F := F1 = F2, β := β1 = β2, γ := γ1 = γ2. The proof of Proposition 2 carries
over to the case γ ≤ 0, so we focus on the case γ < 0. Since β only shifts the action mean without
affecting the dilation order, we also assume β = 0 without loss. Let gi :=

∑
t≥0 γ

tT tCiF
−1; this

is the inverse cdf of GNE
i since sNEi is monotone.

For each i = 1, 2 and any f ∈ L1, the linearity of the operators T tCi implies

(1− γiTCi)
∑
t≥0

γtiT
t
Ci
f =

∑
t≥0

(γtiT
t
Ci

)(1− γiTCi)f = f, (22)

where 1 denotes the identity operator. Observe that

g2 =
∑
t≥0

γtT tC2
F−1 =

∑
t≥0

γtT tC2
(1− γTC1)g1,

where the second equality uses (22) with i = 1 and f = F−1. Likewise,

g1 =
∑
t≥0

γtT tC2
(1− γTC2)g1,

by the second equality in (22) with i = 2 and f = g1. This shows that g1 and g2 correspond to the
inverse cdfs of the Nash action distributions in two modified environments that share a common
interaction structure C2 and complementarity parameters (0, γ) and have type distributions F̃1

and F̃2 with inverse cdfs F̃−1
1 := (1 − γTC2)g1 and F̃−1

2 := (1 − γTC1)g1, respectively. Since
g1 ∈ I, γ < 0, and C1 %SMA C2, Lemma D.1 implies F̃−1

2 %d F̃
−1
1 .

Given this, the arguments in part 2 above imply that g2 %dil g1, provided we can show
that (1 + γTC2)F̃

−1
i is increasing for i = 1, 2 (which ensures that the corresponding operators

Γi(·) in the two modified societies are increasing). For i = 2, note that (1 + γTC2)F̃
−1
2 :=

(1 + γTC2)(1 − γTC1)g1 = (1 + γTC2)F
−1 by (22), which is increasing by the assumption on

P2 and since γ > −1. For i = 1, note that (i) (1 − γ2T 2
C1

)g1 = (1 + γTC1)F
−1 is increasing

(by the assumption on P1 and since γ > −1), and (ii) γ2T 2
C1
g1 %d γ

2T 2
C2
g1 since C1 %SMA C2

(Lemma D.1). Combining (i) and (ii) yields that (1+ γTC2)F̃
−1
1 := (1− γ2T 2

C2
)g1 is increasing,

as required.
Third part: Let F := F1 = F2, C := C1 = C2. The proof of Proposition 4 carries over to the
case γi ≥ 0 for i = 1, 2. Thus, by the transitivity of the dilation order, we can focus on the case
γi ≤ 0 for i = 1, 2. Since β only shifts the action mean without affecting the dilation order, we
also assume β1 = β2 = 0 without loss. Let gi :=

∑
t≥0 γ

t
iT

t
CF
−1; this is the inverse cdf of GNE

i

since sNEi is monotone. Observe that

g1 =
∑
t≥0

γt1T
t
CF
−1 =

∑
t≥0

γt1T
t
C(1− γ2TC)g2,
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where the second equality uses (22) with i = 1 and f = F−1. Likewise,

g2 =
∑
t≥0

γt1T
t
C(1− γ1TC)g2,

by the second equality in (22) with i = 1 and f = g2. This shows that g1 and g2 can be seen
as inverse cdfs of Nash action distributions in two modified environments that share a common
interaction structure C and complementarity parameters (0, γ1) and have type distributions F̃1

and F̃2 with inverse cdfs F̃−1
1 := (1 − γ2TC)g2 and F̃−1

2 := (1 − γ1TC)g2, respectively. Since
0 ≥ γ1 ≥ γ2, we have F̃−1

1 %d F̃
−1
2 .

Given this, the arguments in part 2 above imply that g1 %dil g2, provided we can show
that (1 + γ1TC)F̃−1

i is increasing for i = 1, 2 (which ensures that the corresponding operators
Γi(·) in the two modified societies are increasing). For i = 1, note that (1 + γ1TC)F̃−1

2 :=
(1 + γ1TC)(1 − γ2TC)g2 = (1 + γ1TC)F−1, which is increasing by the assumption on Pi and
γ1 > −1. For i = 2, note that (i) (1−γ2

2T
2
C)g2 = (1+γ2TC)F−1 is increasing (by the assumption

on Pi and since γ2 > −1), and (ii) γ2
2T

2
Cg2 %d γ

2
1T

2
Cg2 as 0 ≥ γ1 ≥ γ2. Combining (i) and (ii)

yields that (1 + γ1TC)F̃−1
1 := (1− γ2

1T
2
C)g2 is increasing, as required.

D.2.6 Proof of Proposition C.5

Fix any ANE sAN =: s and θ. For each θ′, set ŝθ(θ′) := BRθ′(L
s,P
θ , Ls,Pθ ) and F̂θ(θ

′) :=

Ls,Pθ (ŝθ(θ
′)), and let P̂θ := F̂θ × F̂θ. To verify observational consistency, note that Lŝθ,P̂θθ (a) =

F̂θ(ŝ
−1
θ (a)) = Ls,Pθ (a) for each a, where the first equality uses P̂θ = F̂θ×F̂θ and the inverse ŝ−1

θ is
well-defined and increasing by the surjectivity and monotonicity assumption on best-responses.
To verify the perceived best-response condition, note that, for each θ′,

ŝθ(θ
′) = BRθ′(L

s,P
θ , Ls,Pθ ) = BRθ′(L

ŝθ,P̂θ
θ , Lŝθ,P̂θθ ) = BRθ′(G

ŝθ,P̂θ , Lŝθ,P̂θθ′ ),

where the second equality uses observational consistency and the third uses non-assortativity
of P̂θ. Thus, (P̂θ, ŝθ) is a coherent assortativity neglect perception for type θ.

To show uniqueness, consider any coherent assortativity neglect perception (P̂θ = F̂θ ×
F̂θ, ŝθ) for θ. Then, for each θ′, the perceived best-response condition, non-assortativity of
P̂θ, and observational consistency imply ŝθ(θ′) = BRθ′(G

ŝθ,P̂θ , Lŝθ,P̂θθ′ ) = BRθ′(L
ŝθ,P̂θ
θ , Lŝθ,P̂θθ ) =

BRθ′(L
s,P
θ , Ls,Pθ ). Moreover, P̂θ = F̂θ × F̂θ and observational consistency imply F̂θ(ŝ−1

θ (a)) =

Lŝθ,P̂θθ (a) = Ls,Pθ (a) for each a, which yields F̂θ(θ′) = Ls,Pθ (ŝθ(θ
′)) for each θ′. Thus, (P̂θ, ŝθ)

coincides with the perceptions in the first paragraph.

D.2.7 Proof of Proposition C.6

Consider any monotone ANE sAN and any Nash equilibrium sNE. For any types θ > θ′, the
fact that ψ and φ are monotone yields

sAN(θ)−sAN(θ′) = φ(θ)−φ(θ′)+ψ(Ls
AN ,P
θ )−ψ(Ls

AN ,P
θ′ ) ≥ φ(θ)−φ(θ′) = sNE(θ)−sNE(θ′) > 0,

where the first inequality holds because Ls
AN ,P
θ FOSD-dominates Ls

AN ,P
θ′ (by monotonicity of

sAN and assortativity of P ). Thus, GsAN ,P is more dispersive than GsNE ,P .
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