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A Datasets

A.1 CHA Dataset and Sample Selection

The Cambridge Housing Authority maintains a database of applicants and tenants to manage its

programs and comply with HUD regulations. The dataset used in this paper is based on an extract

made on February 26th, 2016. It contains anonymized records of all applicants for Cambridge public

housing who were active on a waiting list between October 1st, 2009 and February 26th, 2016. This

includes households who submitted an application after October 1st 2009, as well as households who

applied earlier and were still on the waiting list on that date.

For each applicant, I observe household characteristics, development choices, and the timing and

outcome of all events during the application process. Household characteristics include family size;

the age, gender, race, and ethnicity of each household member; zip code of current residence; and

self-reported household income. The data also record whether an applicant had priority. Development

choices and waiting list events come from a time-stamped status log that records the status of each

application over time. This includes the applicant’s initial application date; the date it joined each

waiting list; the date it was sent a final choice letter, and if it responded, its final choice; and the date

the applicant was o↵ered an apartment. I also observe the date and reason if a household was removed

from the waiting list.

From the application data, I construct several objects that allow me to interpret development

choices. I infer the set of developments for which each applicant was eligible based on household

structure and application date.1 I observe waiting times for applicants who were o↵ered apartments,

both from initial application and from the date the applicant made its final choice. I also infer the

information each applicant received in their final choice letter by computing the applicant’s list position

on the date the CHA sent the letter. Further details on these and other data processing steps are

provided in the replication archive.

A.2 American Community Survey

The American Community Survey (ACS) publishes anonymized, household-level micro-data covering

1 percent of the U.S. population each year. The years 2010-2014 form a 5 percent sample of U.S.

households. The survey collects detailed information on each household’s structure, geography, and

economic and demographic characteristics. Data can be downloaded at https://usa.ipums.org/

usa-action/variables/group.

The ACS contains key household-level information that determines whether a household would

likely have been eligible to appear in the applicant sample, which contains households with priority

for 2 and 3 bedroom apartments in Cambridge Family Public Housing. Beginning with the universe of

1To reduce waiting time uncertainty, CHA merged four small waiting lists with larger lists in 2013. As a result, an applicant’s initial
choice set depended on their application date.
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ACS households living in the state of Massachusetts, I first determine whether each household lived or

worked in Cambridge.2 Cambridge has its own city code since its population is greater than 100,000.

The CITY field identifies whether each household lives in Cambridge, and place of work for each

working household member comes from the PWPUMA00 field. To determine a household’s bedroom

size, I apply the rule used by the CHA based on the age and gender of each household member and

their relation to the household head. I also identify whether households would have been eligible for

the Elderly/Disabled or the Family Public Housing program based on the age of the oldest household

member. For households composed of three or more generations, I create separate households for the

elderly members and the younger members.3 For income eligibility, I divide the household’s total

income by the Area Median Income for their household size and survey year. Other characteristics of

eligible ACS households, such as the race, ethnicity, and gender of the household head, are determined

using ACS demographic variables.

2There are tens of thousands of households with veteran status in Massachusetts, so veteran status is not counted to determine
which households would have had priority for Family Public Housing in Cambridge. Only a small number of applicants have veteran
status, and most already live in Cambridge.

3According to the CHA, it is common for Family Public Housing applicants to apply with a two-generation subset of their current
multi-generational household.
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B Robustness Checks for Final Choice Analysis

For the evidence of responsiveness to waiting time information in Section IIC to be valid, position

information provided to applicants when they make their final choice should be uncorrelated with

their preferences, conditional on first-stage decisions. While di�cult to test directly, the data rule

out two possibilities that would suggest this condition is violated. First, conditional on an applicant’s

initial choice, the position information they receive at final choice is not significantly correlated with

demographic or economic characteristics. Any selection into the final choice stage based on preferences

would have to be a function of unobservables. Second, in contrast to the final choice analysis, initial

choices are not predicted by list lengths on the specific date a household applied. This suggests that

applicants were not aware of short- or medium-term fluctuations in list lengths before they received

their final choice letters.

B.1 Testing for Selection in Final Choice Analysis

This section tests whether final choice positions are correlated with observed applicant characteristics.

The idea is analogous to a test for balance between treatment and control group characteristics in a

randomized controlled trial. Here, the analysis faces two complications. First, because each applicant

selected their final choice set in the first stage, the test must condition on initial choices. Second, the

“treatment” is multi-dimensional because each applicant learns up to three list positions at the final

choice stage.

I therefore test whether each pair of list positions in the applicant’s final choice letter predicts the

applicant’s characteristics. Let Ci denote applicant i’s initial choice, p a pair of developments j, k 2 Ci,

and Zi an applicant characteristic. I run an ordinary least squares regression with one observation for

each applicant and pair of developments in a final choice letter:

Zi = ↵p,Ci
+ �p,Ci

xij
xik

+ ✏ip (17)

The predictors include choice set, pair interaction dummies and the ratio of applicant i’s positions on

lists j and k. This ratio can have a di↵erent relationship with the dependent variable for each choice

set, pair interaction. One can interpret the ratio as a relative price; a higher value means that the

applicant faces a longer continued wait for development j relative to development k. To test whether

certain types of applicants systematically receive di↵erent position information at final choice, captured

by these relative prices, I perform a joint F-test of the hypothesis �p,Ci
= 0 8p, Ci.

Table 9 shows that final choice list positions are not significantly predictive of most applicant charac-

teristics. Panel A constructs the relative price using list position, while Panel B uses expected continued

waiting time. The first two characteristics – application date and final choice letter date – are strongly

predicted by final choice positions. These relationships are to be expected, and they demonstrate that
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the regressions have su�cient power to reject the null hypothesis. The correlation between application

date and position information is consistent with the fact that some lists are becoming longer relative

to others over the sample period. The correlation between final choice date and position information

would occur for purely mechanical reasons, even without trends in relative list lengths over time. If an

applicant receives a final choice letter early compared to others who made the same initial choice, one

of the lists must be unusually short.

Among the other characteristics, only number of children and number of household members, which

are highly (and mechanically) correlated, have F-test p-values below .05. Importantly, characteris-

tics that are important predictors of applicant behavior in the structural model, including household

race/ethnicity and annual income, are not correlated with position information conditional on initial

choices. If applicants were selecting into the final choice stage based on their development preferences,

one would expect selection to be correlated with these characteristics. The absence of a correlation

supports interpreting the final choice regressions in Section IIC as revealing a causal response of final

choices to waiting time information.

B.2 Testing for Responsiveness of Initial Choices to List Position

To test for responsiveness of initial choices to list position, I construct a dataset similar to the one used

for the final choice analysis in Section IIC. Specifically, for each applicant, I determine the position

they would be on the waiting list for each development if they included that development in their

initial choice. I then test whether each development is more likely to be selected on dates when that

development’s waiting list is short relative to those of other developments. Conducting this analysis

separately for each development deals with the fact that an applicant may select multiple developments

in their initial choice.

Define yij = 1{j 2 Ci} to be an indicator for whether applicant i selected development j as part

of their initial choice, and let xij be the position number the applicant would have had on list j if

they selected it (regardless of whether they did). Each applicant has characteristics Zi. I estimate the

following regression equation for each development j:

yij = ↵ij + Z0
i��� +

X

k 6=j

�jk
xik
xij

+ ✏ij (18)

Equation 18 allows the probability development j is selected to depend on the ratio between the length

of list j and list k for every other development k. This specification captures the idea that relative

list lengths should matter for applicants’ decisions, and also allows applicant characteristics to predict

their choices.

Table 10 presents F-statistics and p-values from a test of the joint hypothesis �jk = 0 8k for each

development j. In Panel A, which controls for list lengths but not applicant characteristics, three
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developments have p-values below 0.05. Only one development has a p-value below 0.05 once applicant

characteristics are included in Panel B. There is therefore little evidence of responsiveness to list

position at the initial choice stage. These patterns contrast starkly with the clear response to position

information at final choice. They are also consistent with institutional facts about the Cambridge

Mechanism. The CHA did not make list length information readily available to new applicants, and

although an applicant could call the CHA and ask for its position number on each list after it applied,

few did so.

In addition to validating the final choice analysis by ruling out a particular source of selection

into the final choice stage, Table 10 also motivates the information structure in the development choice

model. Applicants do not behave as though they know the length of each list when they apply; instead,

their initial choices are consistent with a common prior based on a steady state distribution of waiting

times, while their final choices show updating based on the specific position information in their final

choice letters.
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C Details of Estimation Procedure and Counterfactual Simulations

C.1 Distribution of Eligible Households

The first decision an eligible household makes is whether to apply for public housing at all. Estimating

application rates requires the distribution of characteristics among all households that could have

applied for Cambridge public housing during the sample period. This includes households that did

apply and also eligible non-applicants – eligible households that did not apply and were not already

Cambridge public housing applicants or tenants at the beginning of 2010. The CHA dataset contains

information on households who applied during the sample period, but not on households which could

have applied but did not. Survey data can identify households whose characteristics made them

eligible for Cambridge public housing. However, some eligible households were already Cambridge

public housing tenants, and others were on the waitlist but applied before 2010. These households

were not potential applicants during the sample period, and survey data do not distinguish them from

households that could have applied.

The ACS publishes a 5 percent sample of U.S. households covering 2010 through 2014, the same

period covered by the CHA applicant dataset. It contains information on household structure and

economic and demographic characteristics that determine eligibility and priority for Cambridge public

housing – in particular, whether each ACS household lives or has a member working in Cambridge;

whether it meets the income and asset tests; and whether its household structure qualifies it for a two

or three bedroom apartment in Family Public Housing.

I estimate the probability that each eligible household surveyed in the ACS appears in the CHA

dataset, either as a tenant or as a past or current applicant, as a parametric function of household

characteristics. The parameters are estimated by minimum distance using a probit link function

and moments based on the characteristics of the households in the CHA dataset. One minus each

probability is an estimate of the probability that the corresponding ACS household could have applied

for Cambridge public housing during the sample period, but did not. Using these probabilities, I

draw a sample of eligible non-applicants and combine it with the applicant sample. This procedure is

consistent with a model in which households become eligible for public housing once, choose whether to

apply, and exit the waitlist or tenancy when they are no longer eligible. Though this model abstracts

from the possibility that households might re-apply for public housing, it captures the key idea that

households with higher values of living in public housing should be more likely to apply.

To formally describe the minimum distance estimator, ACS households are indexed by b = 1, ..., B

and have observed household characteristics Zb. The ACS assigns each surveyed household a weight

wb based on household b’s inverse probability of being sampled. In other words, wb is the expected

number of households that b represents. The estimator chooses a parameter vector ✓✓✓ACS . Denote

statistics from the Cambridge dataset by mmmdata, and denote the contribution of each ACS household
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to the same statistics by mmmb. The minimum distance estimator solves

min
✓✓✓ACS

(mmmACS(✓✓✓ACS)�mmmdata)
0(mmmACS(✓✓✓ACS)�mmmdata)

where

mmmACS(✓✓✓ACS) ⌘
BX

b=1

p(Zb,✓✓✓ACS)wbmmmb

p(Z,✓✓✓) = �(Z0✓✓✓)

C.2 Waiting Time Beliefs

This section provides details of the simulation-based procedure to estimate applicant beliefs using

knowledge of the Cambridge Mechanism and waiting list data.

C.2.1 Cambridge Mechanism

Between 2010 and 2014, Cambridge ran its public housing waiting lists according to the following

algorithm. Calendar time is indexed t = 1, ..., T . Waiting lists are indexed by j = 1, ..., J , where a list

corresponds to a specific bedroom size apartment (2 or 3 bedrooms) in a specific development. List j

represents Sj apartments. Applicants are indexed i = 1, ..., N , vacancies by ⌫ = 1, ..., V . Applicant i has

an arrival date ti and a latent departure date ri, and makes initial choice Ci. Vacancy ⌫ occurs on date

t⌫ on list j⌫ . For each list j, there is a sequence of trigger and batch size policies {(Lj,k,Kj,k)}Kk=1 for

sending final choice letters. If fewer than Lj,k applicants on list j have made a final choice, Cambridge

sends final choice letters to the next Kj,k applicants on list j who have not yet made a final choice.

The pair (Lj,k+1,Kj,k+1) become the next trigger and batch policy for list j. pij is applicant i’s list j

position in its final choice letter, computed as the total number of applicants on list j with an earlier

application date and time on the date the letter is sent. Finally, the coe�cients for the final choice

model are (�, {⇠j}Jj=1).

The simulation of the Cambridge Mechanism begins at t = 0 with empty lists, no vacant units, and

an initial trigger and batch policy (Lj,1,Kj,1) for each list. The following occurs in each period t:

(i) Each applicant i with arrival date ti = t is added to the lists in its initial choice set (j 2 Ci).

(ii) Each vacancy ⌫ with t⌫ = t is o↵ered to the first applicant on list j⌫ who has made a final choice.

Applicant i is housed in j⌫ and removed from the waiting list. If no applicants are available, the

vacancy is pushed to next period (t⌫ is moved to t⌫ + 1).

(iii) For each list j, if the number of applicants who are on list j and have made their final choice is

less than the current trigger Lj,k, the following steps occur:

(a) Cambridge sends final choice letters to the first Kj,k applicants on list j who have not made

their final choice. Applicant i is told their positions {pij}j2Ci
on each list in their initial

choice set.
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(b) Applicant i responds to the final choice letter if ri � t.

(c) If i responds, they make a final choice f 2 Ci which may depend on their list positions.

(d) If i does not respond, they are removed from all lists m 2 Ci.

(e) The next trigger and batch policy, (Lj,k+1,Kj,k+1), is drawn for next period

Otherwise, (Lj,k,Kj,k) is held for the next period.

(iv) Each applicant with ri = t who has already made their final choice is removed from the list.

C.2.2 Structure of Simulation Inputs

Given this structure, outcomes in the Cambridge Mechanism are determined by apartment vacancies,

arrival and departure dates of applicants, initial and final choices of applicants, and the CHA’s policy

for sending final choice letters. Vacancies, applicant arrivals and departures, and initial choices do not

depend on the state of the waitlist and are modeled as independent, exogenous processes; however,

the CHA’s policy for sending final choice letters and the final choices of applicants do depend on the

current state of the waitlist.

• Apartment Vacancies: Vacancies occur independently on each list at poisson rates. Vacancy

rates were unusually low during the period of study; according to the CHA, the long-run vacancy

rate per apartment is approximately once every 10 years. The vacancy rate of list j is set to

0.1 ⇤ Sj .

• Applicant Arrivals and Exogenous Departures: applicants arrive according to a poisson

process with rate ↵. Each applicant becomes unresponsive immediately with probability a0, and

departs at an exponential annual rate a1 thereafter. I estimate these parameters by non-linear

least squares.

• Initial Choices: applicant i makes an initial choice Ci ⇢ {1, ..., J}, |Ci|  3 upon arrival.

Since applicants do not know the state of the waitlist when they apply, their initial choices are

independent of the current state. Each Ci is therefore drawn independently from the empirical

distribution in the CHA dataset.

• Final Choice Letters: For each list j, there is a sequence of trigger and batch size policies

{(Lj,l,Kj,l)}Ll=1 for sending letters. Each (Lj,l,Kj,l) is drawn independently from the empirical

distribution for list j in the Cambridge dataset. After batch l of final choice letters is sent for list

j, (Lj,l+1,Kj,l+1) becomes the next trigger and batch policy.

• Final Choices: I use a reduced form model to capture the sensitivity of the final choice to

position information. Given initial choice Ci, applicant i selects list j 2 Ci with probability

exp(�pij + ⇠j)P
m2Ci

exp(�pim + ⇠m)

where pim is applicant i’s position on list m and ⇠m is a fixed e↵ect for list m.
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Given estimated parameters, I draw sequences of inputs and run the Cambridge Mechanism for

500 years. Sequences of apartment vacancies and applicant arrival and departure dates are drawn

independently. Each applicant’s departure date equals its arrival date with probability a0 and otherwise

follows an exponential distribution with mean 1
a1

years after the arrival date. The applicant’s initial

choice is drawn with replacement from the empirical distribution. Finally, I draw a random number

for each applicant that determines which final choice it will make given the choice probabilities implied

by its list positions. Waiting times converged after about 10 years. I used the last 480 years of the

simulation to construct beliefs.

C.2.3 Constructing Beliefs from Simulation Outputs

The simulation produces the state of all Cambridge waiting lists every day for 480 years. To estimate

the relevant distributions governing beliefs, I consider what would have happened to an additional

applicant arriving on each simulation date, for each sequence of choices the applicant could have made.

To estimate {GC(SC ,PC)}C2C , the distribution of final choice states after making each initial choice

C, I sample 1000 dates t1, ..., t1000 from the simulation. For every C, I compute the date sC and position

vector pC that an applicant who applied on date ts would have received, for s = 1, ..., 1000. These

states – {(ssC ,ps
C)}s=1,...,1000 – form an empirical probability measure ĜC .

Constructing beliefs {Fj,C(. | pC)}j,C,pC
for continued waiting time at final choice is more compli-

cated. There are over 1800 possible (j, C) initial and final choice combinations, and for each combina-

tion, each position vector pC induces a di↵erent continued waiting time distribution. Even using the

simulation results, there is a limit to how flexibly these distributions can be estimated. My approach is

to specify a hierarchical parametric model for the continued waiting time distribution. I assume that

continued waiting time follows a beta distribution

Tj | j, C,pC ⇠ Beta(↵j,C(pC),�j,C(pC))

whose parameters depend flexibly on choices j and C and parametrically on positions pC . For a (j, C)

pair with |C| = 3, the position vector pC enters the beta distribution parameters as

↵j,C(pC) = exp{⇡1p1 + ⇡2 log(p1) + ⇡3 log(p2) + ⇡4 log(p3)}

�j,C(pC) = exp{⇡5p1 + ⇡6 log(p1) + ⇡7 log(p2) + ⇡8 log(p3)}

where the ⇡ parameters are (j, C)-specific. p1 is the position on list j, and p2 and p3 are the other

positions. I found that this parametric specification did a good job fitting the distribution of realized

waiting times from the simulation. The range of each beta distribution is [0, dmaxTj,Ce].
The hierarchical parameters of each beta distribution are estimated as follows: for computational

speed, I take a 5 percent sample of application dates from the simulation denoted {td}d=1,...,D. For

each initial choice C, I calculate the position vector an applicant would have received in their final
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choice letter, as well as the continued waiting time for each list. From this dataset of position vectors

and continued waiting times {pC,d, tC,d}d=1,...,D, ⇡ and the upper bound of the support of the beta

distribution for each j 2 C are estimated by maximum likelihood.

C.3 Development Preferences

C.3.1 Moments

To estimate the parameter vector ✓✓✓ = {⇢,���, g(.),���,���,�⌘}, I match the following sets of moments:

• Application rates by income and demographics. I use the following indicator variables for Zi: a

dummy equal to 1 for all households; annual household income in the ranges of [X,X+10, 000] for

X in $10,000 intervals from $0 to $50,000; household head is black, and hispanic; the household

currently lives in Cambridge; the youngest household member is under age 10; the household

qualifies for three bedrooms; and household income is below $20,000. I also match the rate at which

all households and households earning $0-$20,000 and $20,000-$40,000 select three developments

in their initial choice.

• Development shares: there is one moment for the initial choice share of each of the thirteen

developments.

• Covariances between applicant characteristics and characteristics of their initial development

choices. I match the rates at which Cambridge residents select developments in their current

neighborhood of residence, and the covariance between chosen development size and whether the

household head is hispanic, the household requires three bedrooms, and the household’s youngest

member is less than 10 years old.

• Means and Variances of chosen development characteristics within and between applicants. Each

of these moments is constructed for development size (# units) and whether the development is

in North, East, or Central Cambridge. For households that do not apply, all moments are zero.

• Means and variances of chosen waiting times within and between applicants, by income and

demographics. The first and second waiting time moments are interacted with household income

bins for $0-$20,000, $20,000-40,000, and $40,000+.

• The final choice moments used are:

– The fraction of eligible households who made a final choice:

m(q)
i = 1{fi 6= ;}

– The mean expected continued waiting time of final choices, given an applicant’s position

information:

m(q)
i = 1{fi 6= ;}tfi
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– The relative price index, as an expected continued waiting time ratio, of the final choice

compared to other developments in each applicant’s choice set. If C = {j, k,m}, and the

expected continued waiting times for the developments are {tj , tk, tm}, then the relative price

index for development j is defined

Rj,C =
1

2


tj
tk
/r̄jk,C +

tj
tm

/r̄jm,C

�

where r̄jk,C is the mean continued waiting time ratio between developments j and k for

applicants who made a final choice from choice set C. The resulting moments are

m(q)
i = 1{fi 6= ;}Rfi,Ci

, 1{fi 6= ;}1{Rfi,Ci
> 1};

The relative price index captures whether an applicant faced a high or a low “price” for its

final choice fi, compared to other applicants who made their final choice from the same choice

set Ci. This isolates the natural experiment created by the Cambridge Mechanism, where

applicants who made the same initial choices are given di↵erent waiting time information

when they make their final choices.

– The average and maximum di↵erence in expected continued waiting time between the chosen

and alternative developments:

m(q)
i = 1{fi 6= ;}

✓
tfi �

1

2
[tk + tm]

◆
, 1{fi 6= ;} (tfi �min{tk, tm}) .

C.3.2 Simulation Procedure

The method of simulated moments estimates E(mi | Zi,✓✓✓) in the following steps:

(i) For each sampled household i and simulation draws s = 1, ..., S,

(a) Draw preference shocks {⌘is,⌫⌫⌫is, ✏✏✏is}.

(b) For each possible initial choice C, draw the date and position information of the final choice

(sCis,p
C
is), drawn from the distribution GC(SC ,PC).

(c) Draw an exogenous departure time using the attrition model. This determines whether the

simulated applicant makes a final choice for a given final choice date sCis.

(ii) For each proposed value of ✓✓✓ and each (i, s),

(a) Compute vis according to equation 10 given zi, ✓✓✓, and the simulation draws.

(b) Compute the optimal initial choice Cis according to equation 4 given vis, the discount factor

⇢, and waiting time beliefs.

(c) If the exogenous departure date is after the final choice date, compute the applicant’s final

choice according to equation 3 given preferences and beliefs.
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(d) Construct the conditional expectations

Ê(mi | zi,✓✓✓) =
1

S

SX

s=1

mis(✓✓✓)

and form moment conditions.

The one non-standard component of the simulation comes from the applicant’s two-stage decision

problem. Di↵erent parameter values ✓✓✓ will lead a simulated applicant to make di↵erent initial choices,

inducing a di↵erent distribution over final choice states. I draw one final choice state for each possible

initial choice and hold these draws fixed across candidate parameter values.

C.3.3 Objective Function and Optimization

Because the moments used in estimation are highly correlated, the optimal weight matrix performed

poorly. The estimator failed to match moments key for identifying value of assistance parameters and

the discount factor, such as overall application rates and the mean waiting times of initial development

choices. Instead, I use a diagonal weight matrix with elements inversely proportional to the sampling

variance of the corresponding moment functions. I also placed additional weight on application rates,

means and variances of chosen waiting times, and final choice moments.

Minimizing the objective function was challenging because the objective function is discontinuous

and not guaranteed to be convex. Fortunately, Monte-Carlo simulations suggested that a combination

of global and local search consistently found a global minimum close to the true parameters. I used

the following procedure: I first used MATLAB’s fmincon function, approximating the gradient by

finite di↵erences. I found that iteratively decreasing the finite di↵erence minimum step size, using the

previous solution as a starting value, helped to ensure that the estimator searched widely while also

finding a local minimum. At each local minimum, I used MATLAB’s patternsearch algorithm to ensure

that an exact local minimum was attained and to search for other local minima. I used several starting

values covering a range of parameters. To limit numerical instability, the variance of each random

coe�cient was constrained to be less than one million.

C.3.4 Inference

The standard errors in Table 6 account for sampling error in the choices of eligible households and

simulation error in constructing the simulated moments. They do not correct correct for statistical

error in the minimum distance procedure used to estimate the distribution of eligible households, or

for statistical error in the estimated distributions governing applicant beliefs.

The asymptotic variance of the method of simulated moments estimator is

(G0AG)�1G0A⌦⌦⌦AG(G0AG)�1 ,
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where G = E[r✓gi(✓0)], ⌦⌦⌦ = E[gi(✓0)gi(✓0)0], and A is the symmetric positive-definite weight matrix

used in estimation. For a consistent estimate of G, I evaluate the gradient of the moment functions at

✓̂✓✓:

Ĝ =
1

N

NX

i=1

r✓ĝi(✓̂✓✓) .

Variance in the moment functions comes from two components: sampling error in applicant choice

features mi, and simulation error in Ê[mi | zi,✓✓✓]:

⌦⌦⌦ = ⌦⌦⌦m +
1

S
⌦⌦⌦s .

The empirical variance of the moment functions evaluated at ✓̂✓✓ provides a consistent estimate of ⌦⌦⌦m:

⌦̂⌦⌦m =
1

N

NX

i=1

ĝi(✓̂✓✓)ĝi(✓̂✓✓)
0 .

⌦⌦⌦s can be estimated consistently by

⌦̂⌦⌦s =
1

N

NX

i=1

1

S � 1

SX

s=1

(mis(✓̂✓✓)� m̂i(✓̂✓✓))(mis(✓̂✓✓)� m̂i(✓̂✓✓))
0 ,

where

m̂i(✓̂✓✓) =
1

S

SX

s=1

mis(✓̂✓✓) .

The variance estimate is

(Ĝ0AĜ)�1Ĝ0A

✓
⌦̂⌦⌦m +

1

S
⌦̂⌦⌦s

◆
AĜ(Ĝ0AĜ)�1 .

C.4 Counterfactual Simulations

C.4.1 Computational Details

To compute counterfactual equilibria, I draw one sequence of applicant arrivals along with their de-

parture dates, characteristics, and payo↵s, and one sequence of apartment vacancies. For the arrival

sequence, I first draw a sequence of characteristics of potential applicants from the distribution esti-

mated in Section IVA, and then draw flow payo↵s given those characteristics using the estimates from

Specification (3) of the structural model. Apartment vacancies and exogenous departure dates are

drawn from the same distributions used to construct beliefs in Section IVB.

These sequences are used to compute counterfactual allocations under all mechanisms. In computing

features of the equilibrium and allocation, the first 20 years are discarded to allow the waiting list to

approach steady state. All applicants are eligible for all 13 public housing developments, and all waiting

lists remain open during the entire simulation. This abstracts from temporary list closures (which do

occur in practice) in order to focus on the long-run e↵ects of choice and priority in steady state.
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To compute equilibria of lottery mechanisms allowing choice, I search for a fixed point between

applicants’ choices and the implied weights {wj,C( '(yi))}j=1,...,J
C2C'

. The algorithm works as follows.

Iteration q begins with a vector of proposed weights w(q). The following steps then occur:

1. Each applicant’s optimal choice is calculated when the applicant believes weights are given by

w(q).

2. The waiting list is run, yielding predicted weights w(q)0 with distance D(q) = kw(q)0 � w(q)k.
To calculate the predicted weights, I consider the experience of one additional applicant on each

possible application date in the simulation (after the 20-year burn-in period). For each possible

choice C, list j, and priority group  , I calculate the waiting time for list j, Tj , and the indicator

1{Tj  mink2C Tk} for whether a development j apartment would arrive before any other devel-

opment in C if the applicant arrived on that particular date. The weights are then calculated

using the sample analog of equation 14:

w(q)0

j,C ( ) ⌘ 1

⇢

X

d2D
e�⇢ tj,d( ) ⇤ 1

⇢
tj,d( ) = min

k2C
tk,d( )

�
,

where tj,d( ) is the waiting time for an applicant in priority group  arriving on date d, and D is

the set of application dates averaged over in the simulation. Thus, as in section IVB, expectations

are constructed from the empirical distribution of waiting times generated by the simulation. This

method has the benefit of fully accounting for transition dynamics as the number and types of

applicants in the queue fluctuate over time.

3. Weights are updated as a convex combination of the proposed and implied weights:

w(q+1) = �(q)w(q0) + (1� �(q))w(q) .

The factor � determines how aggressively the weights are updated. If � = 1, then the weights implied

by applicant choices (w(q)0) are taken as the new proposal. If � = 0, the weights are not updated at

all. I began with �(0) = 1 and lowered it by 50 percent each time the Euclidean distance between

the proposed and implied o↵er rates was higher than in the previous iteration (D(q+1) > D(q)). This

algorithm converged quickly, requiring no more than 50 iterations before implied o↵er rates were less

than 0.1% di↵erent than proposed rates in every mechanism. While multiple equilibria are theoretically

possible under some of the development choice systems considered in the paper, I did not find evidence

of multiplicity.

C.4.2 Additional Development Choice Systems

The PHAs surveyed in Table 8 use development choice systems that fall into four additional categories

other than Limited Choice and No Choice:
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• Choose Any Subset: C = 2{1,...,J}. Applicants may choose any subset of developments, as in

Boston and San Antonio.

• Choose All or One: C = {{1}, ..., {J}, {1, ..., J}}. Applicants may either wait for their pre-

ferred development or take the first available o↵er from any development. This choice system

approximates the policies used in Philadelphia, Baltimore, and Newark.

• Choose Neighborhood: C = {Cnorth, Ceast, Ccentral}. Applicants choose a neighborhood from

which to receive an apartment o↵er. Importantly, an applicant cannot choose to wait for their

most preferred development.

• Choose All or Neighborhood: C = {Cnorth, Ceast, Ccentral, {1, ..., J}}. Applicants may either

choose a neighborhood or receive the first o↵er city-wide. Chicago uses this development choice

system for Family Public Housing.

In all of these systems, the applicant is o↵ered the first available apartment from any development

in their chosen set C.

Table 16 presents counterfactual simulations for these four choice systems, along with Choose One

and No Choice, under Equal Priority. As expected, these systems produce allocations that are be-

tween Choose One and No Choice in terms of e�ciency and redistribution. Choose Any Subset and

Choose All or One, which allow applicants to select several developments as a hedge against waiting

time uncertainty, have modest e↵ects on the allocation. This is because in equilibrium, waiting time

uncertainty is small relative to di↵erences in average waiting times across developments. Applicants

that choose several developments are very likely to be housed in the development with the shortest ex-

pected waiting time, and would have picked that development under Choose One. In contrast, Choose

Neighborhood and Choose All or Neighborhood, which allow applicants to choose their neighborhood

but not a specific development, do impact assignments. Each neighborhood contains at least three de-

velopments, so some applicants reject o↵ers, lowering match quality and improving targeting relative

to Choose One. However, these mechanisms achieve higher match quality than No Choice by giving

applicants some choice over where they might be assigned.
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D Robustness to Alternative Modeling Assumptions

The estimation procedure outlined in sections III and IV and implemented in section V relies on a

particular model of applicants’ decision rule, beliefs, and underlying utility functions. This section

checks whether the main findings in the paper are sensitive to the specific assumptions made about

these objects. It repeats the analysis in the paper under four departures from the baseline model. In the

first, applicants use a simpler heuristic to make their first-stage development choices, relaxing the degree

of applicant sophistication in the main analysis. The second departure explores belief heterogeneity by

assuming that half of applicants are completely naive, simply choosing their preferred developments

without considering waiting time, while the remainder are sophisticated. The third departure assumes

that applicants’ beliefs follow the empirical distribution of waiting times in the data. Finally, the fourth

alternative model assumes a minimum level of housing expenditure; this is motivated by the empirical

fact that higher-income households spend a lower fraction of their incomes on rent.

The rest of this section describes the four alternative models in more detail and then presents the

main results. While the quantitative results di↵er somewhat across these specifications, the trade-o↵

between e�ciency and redistribution is qualitatively robust. The full set of parameter estimates and

counterfactual predictions are omitted for brevity, but the author is happy to provide additional details

upon request.

D.1 Alternative Models

This section details how each model is implemented in estimation and counterfactuals.

D.1.1 A Simpler First-Stage Decision Rule

In the benchmark development choice model, applicants anticipate that they will receive new infor-

mation in the final choice stage, and understand that this generates a portfolio choice problem at the

initial choice stage. This decision rule and belief structure entail a high degree of sophistication in a

socioeconomically disadvantaged population.

This section repeats the analysis in the paper assuming that applicants do not consider the full

complexity of the portfolio choice problem generated by the Cambridge Mechanism. Instead, in the

initial choice stage applicants use a heuristic: they consider the value of applying for each development

on its own and select the developments with the highest expected value according to this criterion.

This heuristic choice rule rules out certain types of sophisticated behavior. For example, in a portfolio

choice problem it can be optimal to select a development for its option value – even if it has a longer

expected waiting time and is therefore much less likely to be eventually chosen than another slightly

less desirable development, it may yield a greater increase in the value of the applicant’s portfolio. It

may also be optimal to omit a development in order to delay the timing of the final choice stage and

obtain a more precise measure of continued waiting time.
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Formally, at the initial choice stage applicants form beliefs about the marginal distribution of

waiting times for each development j. Let Gj(t) denote the believed probability that the waiting time

for development j is less than t years. At the final choice stage, applicants form beliefs in the same way

as in the sophisticated model, taking all list positions p into account when predicting the continued

waiting time for development j. Let Fj,C(t | p) denote the probability that continued waiting time for

development j is less than t years given current list positions p. At final choice, the applicant solves

the problem defined in equation 3, just as in the sophisticated model. At initial choice, the applicant

solves a di↵erent problem than the one defined in equation 4:

max
C2{0,1,...,J}3

X

j2C
E
⇥
e�⇢T

⇤
(vij � vi0) (19)

= max
C2{0,1,...,J}3

X

j2C

Z
1

⇢
e�⇢T (vij � vi0)dGj(T ) . (20)

In estimation, the distributions Gj and Fj,C come from the same simulation that generated the belief

distributions used for the main estimates. Therefore, beliefs are consistent across the two stages of

choice in the sense that they are generated by a simulation that respects the structure of the Cambridge

Mechanism. However, those beliefs are now inputs to a decision rule that is suboptimal because of the

heuristic employed in the first stage.

I estimate the specifications in Section V under the simpler decision rule using the same procedure

as in section IV. The only di↵erence is the decision rule and belief objects used to predict a simulated

applicant’s development choices in the method of simulated moments procedure. Then, I re-solve for

counterfactual equilibria under alternative mechanisms using estimates obtained under specification

(3) with the simpler decision rule.

D.1.2 Applicant Confusion

It is also possible that some applicants are confused about the application process and do not strategize

at all. The estimates in the paper might interpret applicants’ limited responsiveness to waiting time as

evidence that applicants are patient and have very heterogeneous preferences, when in fact applicants

are impatient but confused.4 With the data available, one cannot distinguish preference heterogeneity

from arbitrary confusion or belief heterogeneity. However, one natural type of heterogeneity to explore

is that some fraction of applicants are sophisticated, while the remainder are non-strategic and simply

choose their preferred development without considering waiting time. Non-strategic behavior would be

a reasonable response to confusion about waiting times and the structure of the Cambridge Mechanism,

and it would also rationalize the observed responsiveness to waiting time information with greater

4I thank an anonymous referee for pointing out this form of potential bias.
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impatience. I therefore explore how the fraction of non-strategic applicants would a↵ect the trade-o↵

between e�ciency and redistribution in waitlist design.

Formally, I assume that a fractionNS of applicants are non-strategic, while the remaining applicants

make their decisions as in the main analysis according to equations 3 and 4. Whether an applicant is

strategic is uncorrelated with their preferences. A non-strategic applicant simply chooses their preferred

development(s) at each stage in the application process without considering waiting time. At the final

choice stage, given choice set C, a non-strategic applicant solves

max
j2C

vij � vi0 . (21)

In the first stage, a non-strategic applicant chooses the three most preferred developments, or the

developments preferred to their outside option:

max
C2C

X

j2C
vij � vi0 . (22)

As in the main analysis, applicants apply if and only if some development is preferred to their outside

option.

This analysis also requires an assumption about the information structure and decision rules in

counterfactuals. To hold the information environment constant, I assume that the same fraction of

applicants are non-strategic in estimation and counterfactual exercises. Under Choose One, non-

strategic applicants simply list their preferred development. As in the main analysis, equilibrium

waiting time distributions are determined by the decisions of all applicants, including non-strategic

ones. The belief distributions used for estimation are the same as in the main analysis; because the

simulation of the Cambridge Mechanism relies on reduced-form policy functions, di↵erent information

assumptions will not a↵ect the simulation inputs, only how the structural model interprets those choice

patterns.

Section D.2 reports counterfactual results assuming half of applicants are non-strategic (NS = 0.5).

I have also run specifications withNS = 0.25 andNS = 0.75, though the results are omitted for brevity.

Consistent with the above intuition, the model estimates a higher discount rate (more impatience) when

a greater fraction of applicants are non-strategic. However, the estimated heterogeneity in match values

and values of assistance remains similar, as does the trade-o↵ between e�ciency and redistribution.

D.1.3 Beliefs Matching Empirical Waiting Time Distribution

As noted in Section VB, while the simulation of the Cambridge Mechanism broadly captures di↵erences

in waiting times across developments, the waiting times generated by the simulation do not perfectly

match those in the data. The estimates in the main paper assume that applicants’ beliefs are governed

by the simulation outputs in order to accommodate limited data on realized waiting times relative

to the dimensionality of sophisticated applicants’ beliefs. This section considers an alternative model
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of belief formation in which applicants’ beliefs are initially governed by the empirical waiting time

distributions observed in the data. This alternative assumption is attractive because it relies less on a

specific model of the CHA waitlist; instead, it assumes that applicants form beliefs based on experience.

Realized waiting times are something applicants could inquire about, if not directly observe.

In order to use the empirical initial waiting time distributions, the analysis makes two simplifica-

tions. First, applicants use the simpler first-stage decision rule defined in Section D.1.1, taking the

empirical marginal distribution of waiting times as the initial waiting time distribution G̃j(.) for each

development. This avoids estimating the joint distribution of waiting times across developments with

only a couple hundred observations. Second, the data are too sparse to estimate final choice distri-

butions F̃j,C(p) directly, so I still use the waiting time simulation to construct the continued waiting

time distributions. To make the second-stage distributions more consistent with the empirical waiting

time distributions in the first stage, I adjust vacancy rates so that the initial waiting time distributions

generated by the simulation are close to the empirical average for each development, while keeping the

other simulation inputs as in the main analysis. Since the goal of this exercise is to assess robustness

of the paper’s conclusions to alternative models of belief formation, the loss of internal consistency in

the beliefs model is less concerning.

The preference estimates obtained using beliefs {{G̃j} , {F̃j,C(Tj | p)}j,p}C2C are then used as inputs

to the counterfactual simulations.

D.1.4 Relaxing Homotheticity

The first three alternative models explore robustness to specific assumptions about applicants’ beliefs

and decision rules. The paper also makes assumptions about the structure of applicants’ underlying

utility functions, which is important for welfare analysis. The Cobb-Douglas structure assumed in

Section IVC implies that applicants spend a constant fraction of their income on housing, regardless

of their incomes. This is at odds with survey data, which consistently shows lower-income households

spending a larger fraction of their income on rent and other housing costs.

A natural way to accommodate non-homotheticity is to assume that households require a minimum

level of housing expenditure h. They then choose (c, h) outside of public housing to maximize

ũ(c, h;h) ⌘ � log c+ (1� �) log(h� h) . (23)

This utility function predicts that households in private market housing spend a lower fraction of

their incomes on rent as their income rises. For this reason, it has been used in recent structural

empirical work on housing (e.g. Sieg and Yoon (2020)). To accommodate a minimum required level of

housing consumption, the minimum consumption level is also adjusted to c + h, and the distribution

of ⌘ in equation 11 is modified accordingly:
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The remaining assumptions governing applicants’ beliefs and decision rules, as well as the equivalent

variation formula, are unchanged. The resulting preference estimates are inputs to counterfactual

simulations. The next section presents results for h ⌘ $10, 000, which is close to minimum level of

housing expenditure for any income group in the ACS (among likely eligible households). Similar

conclusions hold for h ⌘ $5, 000, and are omitted for brevity.

D.2 Results

Appendix Table 5 compares the equilibrium allocations under Choose One and No Choice for each

of the four alternative models. The qualitative trade-o↵s between e�ciency and redistribution are

similar across specifications. Moving from Choose One to No Choice lowers e�ciency by 28-39 percent

(compared to 35 percent in the baseline model) and leads to a loss of several thousand dollars of

equivalent variation per unit allocated. Doing so significantly increases redistribution; tenant incomes

fall by 13-17 percent (16 percent in the baseline model), and tenants’ outside options fall by 16-

22 percent (19 percent in the baseline model). The fraction of extremely high-need tenants also

significantly increases under all four alternative models. The other findings discussed in section VIB.1

also hold qualitatively. Moving to No Choice, the fraction of tenants assigned their first choice falls

dramatically; mean waiting times are shorter; and the degree of segregation across developments falls

as applicants exercise less choice over where they are assigned. The predicted characteristics of tenants

are similar to the baseline model in terms of observed income, race, and demographics.

There are some quantitative di↵erences in the results across models. Applicants are estimated to

be even more patient in when beliefs match the empirical waiting time distribution (columns 5-6).

Because of this, most applicants are assigned their first choice development under Choose One, and

almost all are assigned one of their top three choices. The loss in match quality, and therefore the overall

e�ciency loss from eliminating choice, is especially high. The welfare estimates also depend somewhat

on the structure of underlying utility. With a $10,000 minimum housing expenditure (columns 7-8),

many more applicants are predicted to be at their consumption minimum. Tenants’ outside options

are much worse than in other specifications, and the fraction of extremely high-need tenants is higher.

Tenants require smaller cash transfers to generate utility increases equivalent to those generated by their

assignments, and so equivalent variation per unit assigned and overall e�ciency are also significantly

lower than in other models. Nevertheless, under all four alternative models, the trade-o↵ between

e�ciency and redistribution exists and is quantitatively important.

Finally, Appendix Figure 5 compares social welfare under Choose One and No Choice for di↵erent
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levels of inequality aversion under each of the four alternative models. In all cases, a moderate to high

degree of inequality aversion is needed to justify eliminating choice under the CHA’s current priority

system, ranging from � ⇡ 1.7 when beliefs match the empirical waiting time distribution to � ⇡ 4

with $10, 000 minimum housing expenditure. In the former case, a social planner indi↵erent between

Choose One and No Choice would be willing to take about $3.20 from a $20,000 income household

in order to transfer $1 to a $10,000 income household (burning $2.20 in the process). No Choice

is especially e↵ective at increasing redistribution in this model because of applicants’ high degree of

patience; there is minimal targeting gain through applicants’ choice of waiting time under Choose One.

In the latter case, the planner would be willing to burn $15 to make the same transfer, arguably an

extreme preference for redistribution. The proportional increase in redistribution is relatively small

with a minimum housing expenditure because so many tenants are near their consumption minimum

under Choose One.
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Table 8: Allocation Policies Used by Public Housing Authorities

Panel A: PHA's with Largest Public Housing Stock
New York City, NY 8,537,673 175,000 Mixed Limited Choice
Chicago, IL 2,704,958 21,150 Equal Limited or All
Philadelphia, PA 1,567,872 15,000 Equal Limited or All
Baltimore, MD 614,664 11,250 High SES Limited or All
Boston, MA 673,184 10,250 Equal Any Subset
Cleveland, OH (Cuyahoga Metro Area) 385,809 10,000 High SES Limited Choice
Miami, FL 453,579 9,400 Equal No Choice
Washington, D.C. * 681,170 8,350 -- --
Newark, NJ 281,764 7,750 High SES Limited or All
Los Angeles, CA 3,976,322 6,900 High SES No Choice
Seattle, WA 704,352 6,300 Low SES Limited Choice
Minneapolis, MN 413,651 6,250 Low SES No Choice
San Antonio, TX 1,492,510 6,200 Low SES Any Subset

Panel B: PHA's comparable to Cambridge, MA (2000-3000 public housing units, 100-200K population)
Cambridge, MA 110,650 2,450 Equal Limited Choice
Rochester, NY * 114,011 2,500 Equal No Choice
New Haven, CT 129,934 2,600 High SES Limited Choice
Columbia, SC 134,209 2,140 Equal No Choice
Dayton, OH 140,489 2,750 High SES Any Subset
Syracuse, NY * 143,378 2,340 High SES No Choice
Bridgeport, CT * 145,936 2,600 Equal --
Kansas City, KS 151,709 2,050 Mixed No Choice
Macon, GA * 152,555 2,250 High SES No Choice
Providence, RI 179,219 2,600 Equal No Choice
Worcester, MA * 184,508 2,470 Low SES No Choice
Augusta, GA * 197,081 2,250 Equal No Choice
Yonkers, NY 200,807 2,080 Equal Any Subset

City Population 
in 2016

Number of  
Public Housing 
Units in 2013

Priority 
System

Development 
Choice SystemPublic Housing Authority (PHA) Jurisdiction

Notes: Features of allocation mechanisms used by PHAs in 25 cities. PHAs were chosen based on city population and/or

the size of their public housing stocks. * indicates that the PHA’s administrative plan was not available online. In these

cases, information was gleaned from the PHA website and application forms. A High SES priority system favors households

above 30 percent of AMI, or which are economically self-su�cient or have a working member. A Low SES priority system

prioritizes households below 30 percent of AMI, or which are severely rent burdened or have been involuntarily displaced.

A Mixed priority system prioritizes some (but not all) households of both types, and an Equal priority system does not

prioritize households based on socioeconomic status. Under Limited Choice, applicants must choose a small number of

developments from which to receive o↵ers. Under Any Subset, applicants may choose any subset of the developments. Under

No Choice, applicants must accept the first available apartment in any development. Under Limited or All, applicants may

either commit to taking the first available apartment or select a limited number of developments. In Chicago, applicants for

Family Public Housing may select a specific neighborhood, but not developments within a neighborhood.
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Table 9: Final Choice Balance Tests

p-value F-statistic

Date of Application 0.000 2.32
Date of Final Choice Letter 0.000 3.00
Annual Income 0.796 0.92
Has Labor Income 0.991 0.78
Has Public Assistance Income 0.844 0.90
Lives in Cambridge 0.623 0.97
Works in Cambridge 0.102 1.13
# Household Members 0.000 1.45
# Earners 0.982 0.80
# Adults 0.138 1.11
# Children 0.002 1.33
White Household Head 0.891 0.88
Black Household Head 0.334 1.04
Hispanic Household Head 0.989 0.79
Age of Household Head 0.137 1.11
Male Household Head 0.132 1.11
# Children under Age 10 0.109 1.13

Date of Application 0.000 3.60
Date of Final Choice Letter 0.000 2.41
Annual Income 0.968 0.82
Has Labor Income 0.998 0.73
Has Public Assistance Income 0.892 0.88
Lives in Cambridge 0.540 0.99
Works in Cambridge 0.176 1.09
# Household Members 0.001 1.37
# Earners 0.993 0.78
# Adults 0.054 1.17
# Children 0.011 1.25
White Household Head 0.893 0.88
Black Household Head 0.858 0.89
Hispanic Household Head 0.984 0.80
Age of Household Head 0.064 1.16
Male Household Head 0.574 0.98
# Children under Age 10 0.070 1.15

Panel A: List Position

Panel B: Continued Waiting Time

Notes: F-statistics and p-values from a joint test of significance for regression coe�cients predicting applicant
characteristics as a function of relative list lengths at final choice. Panel A measures list length using list position
number, while Panel B uses expected continued waiting time. A di↵erent applicant characteristic is the dependent
variable in each row.
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Table 10: Testing for Responsiveness to List Position at Initial Choice

Development p-value F-statistic DF(1) DF(2)

Corcoran Park 0.517 0.981 57 1661
East Cambridge 0.033 1.373 59 1660
Jackson Gardens 0.679 0.905 59 1660
Jefferson Park 0.114 1.235 57 1661
Lincoln Way 0.440 1.018 59 1660
Mid Cambridge 0.002 1.647 59 1660
Newtowne Court 0.090 1.266 57 1661
Putnam Gardens 0.458 1.009 57 1661
River Howard Homes 0.327 1.075 59 1660
Roosevelt Low-Rise 0.114 1.236 57 1661
Washington Elms 0.041 1.358 57 1661
Woodrow Wilson 0.084 1.269 59 1660
Roosevelt Mid-Rise 0.494 0.982 30 1144

Corcoran Park 0.635 0.925 57 1641
East Cambridge 0.189 1.163 59 1640
Jackson Gardens 0.728 0.881 59 1640
Jefferson Park 0.175 1.177 57 1641
Lincoln Way 0.646 0.921 59 1640
Mid Cambridge 0.022 1.415 59 1640
Newtowne Court 0.243 1.127 57 1641
Putnam Gardens 0.262 1.115 57 1641
River Howard Homes 0.700 0.895 59 1640
Roosevelt Low-Rise 0.142 1.206 57 1641
Washington Elms 0.083 1.276 57 1641
Woodrow Wilson 0.101 1.246 59 1640
Roosevelt Mid-Rise 0.408 1.040 30 1125

Panel A: List Positions Only

Panel B: Applicant Covariates

Notes: F-statistics and p-values from tests for whether list positions predict applicants’ choices at initial applica-
tion. The sample is applicants in the structural estimation sample. For each development, the probability that each
applicant chose that development initially is predicted as a function of the length of each list in its choice set. The
F-statistic jointly tests for the significance of all coe�cients on list position. Panel B adds controls for household
income, race/ethnicity, and neighborhood of current residence if the household already lives in Cambridge.
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Table 11: Sample Size by Stage of Application Process

Households Who N

Are Predicted Eligible 6818
Made an Initial Choice 1725
Made a Final Choice 573
Received an Offer of Housing 163

Notes: Number of eligible households who made it to each stage of the application process. Households are
restricted to the sample used in estimation. Final choices and housing o↵ers occurred during the 2010-2014 sample
period.

Table 12: Inputs to Waiting Time Simulation

Parameter Value

Panel A: Apartment Vacancies
Annual Vacancy Rate per Unit 0.10
Annual Vacancy Rate Total 108

Panel B: Applicant Arrivals and Departures
Daily Applicant Arrival Rate 0.945
Annual Applicant Arrival Rate 345
Instant Departure Probability 0.239
Annual Departure Rate 0.222

Panel C: Final Choice Model
List Position Coefficient -0.021
Fixed Effects

Corcoran Park 0.358
East Cambridge -0.162
Jackson Gardens 0.304
Jefferson Park -0.447
Lincoln Way 0.678
Mid Cambridge 0.241
Newtowne Court 0.073
Putnam Gardens -0.303
River Howard Homes 0.000
Roosevelt Low-Rise -0.597
Washington Elms -0.335
Woodrow Wilson -0.258
Roosevelt Mid-Rise -0.878
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Table 13: Coe�cient Estimates Predicting Probability in CHA Dataset

Income $0-$8,000 0.77 [ -0.56 , 14.75 ]
Income $8,000-$16,000 0.46 [ -0.8 , 19.95 ]
Income $16,000-$32,000 -0.35 [ -1.26 , 0.8 ]
Income $32,000-$48,000 -6.32 [ -15.63 , -1.73 ]
Income Above $48,000 -7.16 [ -19.92 , -2.52 ]
African American Household Head 4.38 [ 1.46 , 12.73 ]
Hispanic Household Head -1.36 [ -2.65 , 5.53 ]
Household lives in Cambridge -1.17 [ -2.24 , 3.38 ]

Point 
Estimate

90% Confidence 
Interval

Notes: Coe�cient estimates predicting the probability that an eligible household from the American Community Survey was

in the CHA dataset. The model uses a probit link function and is estimated by minimum distance. The point estimates use

the actual ACS 2010-2014 5 percent sample. The 90 percent confidence intervals are bootstrapped by re-sampling the ACS

with replacement and re-running the estimation procedure.

Table 14: Simulated Waiting Times from Initial Application

Development Mean S.D. Mean S.D.

Corcoran Park 3.06 0.97 2.85 1.57
East Cambridge 5.60 1.99 3.91 1.05
Jackson Gardens 6.79 1.63 2.39 1.47
Jefferson Park 1.15 0.52 1.79 1.23
Lincoln Way 4.26 1.25 3.54 --
Mid Cambridge 5.98 2.20 3.91 1.05
Newtowne Court 2.36 0.77 2.18 1.65
Putnam Gardens 3.67 1.04 2.62 2.10
River Howard Homes 6.73 2.16 3.91 1.05
Roosevelt Low-Rise 2.55 0.78 3.04 1.33
Washington Elms 2.58 0.78 3.01 2.03
Woodrow Wilson 4.65 1.70 1.98 0.64
Roosevelt Mid-Rise 5.65 2.12 1.88 0.09

Simulation Data

Notes: Realized waiting times are averaged across all applicants housed in each development during the simulation.
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Table 15: Parameter Estimates, Full

Annual Discount Rate 0.977 (0.011) 0.977 (0.008) 0.966 (0.009)

Development 1 Fixed Effect -0.071 (0.018) -0.079 (0.021) -0.077 (0.025)
Development 2 Fixed Effect -0.081 (0.024) -0.076 (0.032) -0.054 (0.034)
Development 3 Fixed Effect -0.070 (0.037) -0.058 (0.051) -0.058 (0.044)
Development 4 Fixed Effect -0.159 (0.023) -0.226 (0.022) -0.219 (0.048)
Development 5 Fixed Effect 0.056 (0.025) 0.069 (0.034) 0.067 (0.029)
Development 6 Fixed Effect 0.000 (0.021) 0.000 (0.036) -0.094 (0.055)
Development 7 Fixed Effect 0.122 (0.013) 0.118 (0.023) 0.108 (0.033)
Development 8 Fixed Effect -0.584 (0.093) -0.622 (0.078) -0.779 (0.079)
Development 9 Fixed Effect 0.008 (0.034) 0.040 (0.025) 0.084 (0.044)
Development 10 Fixed Effect 0.038 (0.01) 0.037 (0.02) 0.014 (0.022)
Development 11 Fixed Effect -1.169 (0.084) -1.399 (0.096) -1.401 (0.098)
Development 12 Fixed Effect 0.001 (0.023) 0.003 (0.032) 0.003 (0.026)
Development 13 Fixed Effect -0.023 (0.033) 0.002 (0.03) 0.046 (0.024)
S.D. Development Fixed Effects 0.352 0.415 0.432

Panel A: Value of Assistance
Head Is Black 0.933 (0.092) 0.838 (0.061) 0.839 (0.082)
Head Is Hispanic 0.032 (0.043) 0.138 (0.046) 0.083 (0.062)
Lives In Cambridge 0.528 (0.065) 0.384 (0.045) 0.381 (0.036)
Youngest Member < 10 Years 0.005 (0.041) -0.018 (0.037)
3 Bedroom Household 0.258 (0.047) 0.259 (0.053)
Household Income < $20,000 0.321 (0.068) 0.320 (0.059)
Log Of Observed Income 0.164 (0.08) 0.158 (0.058) 0.166 (0.066)
Log Of Observed And Unobserved Income -1.000 -- -1.000 -- -1.000 --
Scale of R.E. Unknown Income ($10,000) 1.115 (0.11) 1.115 (0.109) 1.090 (0.081)

Panel B: Match Values
Applicant and Development Same Neighborhood -0.137 (0.065) -0.196 (0.031) -0.193 (0.058)
Applicant Head Is Hispanic * Development Size 0.022 (0.033) 0.043 (0.043)
Youngest Member < 10 Years * Development Size 0.000 (0.016) -0.006 (0.021)
Household Income < $20,000 * Development Size 0.000 (0.022) -0.003 (0.021)
S.D. Unobserved Taste For Development Size 0.039 (0.011)
S.D. Unobserved Taste for North Cambridge 0.035 (0.019)
S.D. Unobserved Taste for East Cambridge 0.039 (0.013)
S.D. Idiosyncratic Shock 0.161 (0.013) 0.155 (0.01) 0.156 (0.015)

Richer Observed 
Heterogeneity

Unobserved Taste for 
Size and LocationBaseline Specification

(1) (2) (3)
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Figure 3: Locations of Cambridge Family Public Housing Developments
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Figure 4: Application Rates by Income

Notes: The estimated fraction of eligible households that applied for Family Public Housing in Cambridge between 2010 and

2014, by $10,000 income groups. For each group, the number of applicants is divided by the number of eligible households

as estimated in Section VA. The dotted lines give point-wise 90 percent confidence bands obtained from a bootstrap that

re-samples the set of eligible ACS households with replacement.

32



Figure 5: Welfare E↵ect of Eliminating Choice under Alternative Modeling Assumptions

(a) Simple First-Stage Decision Rule (b) 50% of Applicants Naive

(c) Beliefs Matching Empirical Waiting Time Distributions (d) $10,000 Minimum Housing Expenditure
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