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O.1 Properties of Fréchet Random Variables

Definition O.1 (Fréchet). A random variable, Z, has a Fréchet distribution if there exists a scale

parameter T > 0 and shape parameter θ > 0 such that P [Z ≤ z] = e−Tz
−θ .

Lemma O.1. If Z is Fréchet with shape θ > 0, then its scale is T ≡ − lnP[Z ≤ 1].

Proof. − lnP[Z ≤ 1] = − ln e−T = T .

Let Γ(x) ≡
∫∞

0 tx−1e−tdt denote the Gamma function.

Lemma O.2. If Z is Fréchet with scale T and shape θ > 1, then E[Z] = Γ(1− 1/θ)T 1/θ.

Proof. E[Z] =
∫∞

0 zθTz−θ−1e−Tz
−θ

dz =
∫∞

0 t−1/θe−tdtT 1/θ = Γ(1− 1/θ)T 1/θ.

Definition O.2 (Copula). A function C : [0, 1]N → [0, 1] is a copula if there exists a random

vector (U1, . . . , UN ) on [0, 1]N such that C(u1, . . . , uN ) = P [U1 ≤ u1, . . . , UN ≤ uN ] for each

(u1, . . . , uN ) ∈ [0, 1]N .

Given a random vector (Z1, . . . , ZN ), its copula is

C(u1, . . . , uN ) ≡ P [F1(Z1) ≤ u1, . . . , FN (ZN ) ≤ uN ]

where Fi(z) ≡ P[Zi ≤ z] for each i = 1, . . . , N .

Definition O.3 (Max-Stable Copula). A copulaC : [0, 1]N → [0, 1] is max-stable ifC(u1, . . . , uN ) =

C(u
1/m
1 , . . . , u

1/m
N )m for any m > 0 and all (u1, . . . , uN ) ∈ [0, 1]N .
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Definition O.4 (Correlation Function). A function G : RN+ → R+ is a correlation function if

exp[−G(− lnu1, . . . , uN )] is a max-stable copula.

Lemma O.3 (Correlation Function Properties). Let G : RN+ → R+ be a correlation function.

Then:

1. G is homogenous of degree one.

2. G is unbounded, G(x1, . . . , xN )→∞ as xo →∞ for any i = 1, . . . , N .

3. If the mixed partial derivatives of G exist and are continuous up to order N , then the o’th

partial derivative of G with respect to o distinct arguments is non-negative if o is odd and

non-positive if o is even.

4. G(0, . . . , 0, 1, 0, . . . , 0) = 1.

Proof. Let G : RN+ → R+ be a correlation function. Then there exists a max-stable copula,

C : [0, 1]N → [0, 1], such that

G(x1, . . . , xN ) ≡ − lnC(e−x1 , . . . , e−xN ).

Recall that for a max-stable copula,

C(u1, . . . , uN ) = C(u
1/m
1 , . . . , u

1/m
N )m

for all m > 0 and (u1, . . . , uN ) ∈ [0, 1]N .

We first show that G is homogenous of degree one. Fix (x1, . . . , xN ) ∈ RN+ and λ > 0. We

have

G(λx1, . . . , λxN ) = − lnC(e−λx1 , . . . , e−λxN )

= − lnC((e−x1)λ, . . . , (e−xN )λ)

= − lnC(e−x1 , . . . , e−xN )λ

= −λ lnC(e−x1 , . . . , e−xN )

= λG(x1, . . . , xN )

where the third equality uses the fact that C is a max-stable copula. Therefore, G is

homogenous of degree one.

The unboundedness property follows from the limiting properties of copulas. Fix i. Then,

lim
xi→∞

e−G(x1,...,xN ) = lim
xi→∞

C(e−x1 , . . . , e−xN ) = 0
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Therefore, limxi→∞G(x1, . . . , xN ) =∞ as desired.

The sign-switching property simply follows from the non-negativity of joint probability

density functions. If the mixed partial derivatives of G exist and are continuous up to

order N , then for any integer M ≤ N and distinct integers nm for m = 1, . . . ,M we have

∂MC(u1, . . . , uN )

∂un1 , . . . , ∂unM

=
∂M exp [−G(− lnu1, . . . ,− lnuN )]

∂un1 , . . . , ∂unM

= − exp [−G(− lnu1, . . . ,− lnuN )]
∂MG(− lnu1, . . . ,− lnuN )

∂un1 , . . . , ∂unM

= exp [−G(x1, . . . , xN )]
∂MG(x1, . . . , xN )

∂xn1 , . . . , ∂xnM

∣∣∣∣
x1=− lnu1,...,xN=− lnu1

(−1)M−1∏M
m=1 unm

Since C is a copula, its mixed partial derivatives must be non-negative if they exist. Then

the mixed partial derivative of the correlation function is

∂MG(x1, . . . , xN )

∂un1 , . . . , ∂unM
= (−1)M−1

M∏
m=1

e−xnm
∂MC(u1, . . . , uN )

∂un1 , . . . , ∂unM

∣∣∣∣
u1=e−x1 ...uN=e−xN

e(x1,...,xN ),

which is non-negative for odd M and non-positive for even M .

Definition O.5 (Max-Stable Multivariate Fréchet). A random vector, (Z1, . . . , ZN ), has a

max-stable multivariate Fréchet distribution if there exists a shape parameter θ > 0 such that for

any αi ≥ 0 with i = 1, . . . , N the random variable maxi=1,...,N αiZi has a Fréchet distribution

with shape parameter θ.

Lemma O.4. A vector (Z1, . . . , ZN ) is max-stable multivariate Fréchet if and only if there exists

θ > 0, scale parameters {Ti}Ni=1, and a correlation function, G, such that

P [Z1 ≤ z1, . . . , ZN ≤ zN ] = exp
[
−G(T1z

−θ
1 , . . . , TNz

−θ
N )
]
. (O.1)

Proof. (Sufficiency) Suppose (Z1, . . . , ZN ) is max-stable multivariate Fréchet. Then by Definition

O.1, there exists a θ such that, for each i, Zi = maxn=1,...,N 1{i = n}Zn is Fréchet with shape

θ. By Definition O.5, there is then {Ti}Ni=1 such that P[Zi ≤ z] = exp(−Tiz−θ) ≡ Fi(z) for

each i = 1, . . . , N .

Additionally, letting zi > 0 for i = 1, . . . , N , we have maxi=1,...,N Zi/zi Fréchet with shape

θ and some scale. In particular, by Lemma O.1, its scale is

− lnP
[

max
i=1,...,N

Zi/zi ≤ 1

]
= G(T1x

−θ
1 , . . . , TNz

−θ
N )
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where

G(x1, . . . , xN ) ≡ − lnP
[

max
i=1,...,N

(xi/Ti)
1/θZi ≤ 1

]
.

Therefore,

P [Z1 ≤ z1, . . . , ZN ≤ zN ] = P [Z1/z1 ≤ 1, . . . , ZN/zN ≤ 1]

= P
[

max
i=1,...,N

Zi/zi ≤ 1

]
= P

[
max

i=1,...,N
Zi/zi ≤ t

]∣∣∣∣
t=1

= e−G(T1z
−θ
1 ,...,TNz

−θ
N )t−θ

∣∣∣
t=1

= e−G(T1z
−θ
1 ,...,TNz

−θ
N )

We now show that G is a correlation function. To do so, we show that the copula of

(Z1, . . . , ZN ),

C(u1, . . . , uN ) ≡ P [F1(X1) ≤ u1, . . . , FN (XN ) ≤ uN ]

= P
[
X1 ≤ F−1

1 (u1), . . . , XN ≤ F−1
N (uN )

]
= exp

[
−G(T1F

−1
1 (u1)−θ, . . . , TNF

−1
N (uN )−θ)

]
= exp [−G(− lnu1, . . . ,− lnuN )] ,

is max-stable.

Next, let m > 0 and fix a (u1, . . . , uN ) ∈ [0, 1]N . We have

C(u
1/m
1 , . . . , u

1/m
N ) = exp

[
−G(m−1 lnu−1

1 , . . . ,−m−1 lnu−1
N )
]

= P
[

max
i=1,...,N

(m−1 lnu−1
i /Ti)

1/θZi ≤ 1

]
= P

[
max

i=1,...,N
(lnu−1

i /Ti)
1/θZi ≤ m1/θ

]
= exp

[
−G(− lnu1, . . . ,− lnuN )m−1

]
= C(u1, . . . , uN )1/m.

where the second to last line follows from maxi=1,...,N (lnu−1
i /Ti)

1/θZi being distributed

Fréchet with scaleG(− lnu1, . . . ,− lnuN ) and shape θ. Therefore, we haveC(u1, . . . , uN ) =

C(u
1/m
1 , . . . , u

1/m
N )m, so C is a max-stable copula and G is a correlation function.

(Necessity) Let Ti > 0 for each i = 1, . . . , N , and letG : RN+ → R+ be a correlation function.

Suppose that (Z1, . . . , ZN ) satisfies

P[Z1 ≤ z1, . . . , ZN ≤ zN ] = exp
[
−G(T1z

−θ
1 , . . . , TNz

−θ
N )
]
.
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Let (α1, . . . , αN ) ∈ RN+ and consider the distribution of maxi=1,...,N αiZi,

P
[

max
i=1,...,N

αiZi ≤ t
]

= P[α1Z1 ≤ z, . . . , αNZN ≤ t]

= P[Z1 ≤ t/α1, . . . , ZN ≤ t/αN ]

= exp
[
−G(T1α

θ
1t
−θ, . . . , TNα

θ
N t
−θ)
]

= exp
[
−G(T1α

θ
1, . . . , TNdα

θ
N )t−θ

]
,

where the last equality uses the homogeneity of G. Therefore, maxi=1,...,N αiZi is Fréchet

with scale parameter Gd(T1α
θ
1, . . . , TNα

θ
N ) and shape θ. As a result, we conclude that

(Z1, . . . , ZN ) is max-stable multivariate Fréchet.

Lemma O.5. Let (Z1, . . . , ZN ) be max-stable multivariate Fréchet with scale parameters {Ai}Ni=1,

shape α, and correlation function G : RN+ → R+. Then, for any Bi ≥ 0 i = 1, . . . , N and β > 0,

maxi=1,...,N BiZ
β
i is Fréchet with scale G(A1B

α/β
1 , . . . , ANB

α/β
N ), and shape α/β.

Proof.

P
[

max
i=1,...,N

BiZ
β
i ≤ t

]
= P

[
Z1 ≤ (t/B1)1/β, . . . , ZN ≤ (t/BN )1/β

]
= exp

[
−G(A1(t/B1)−α/β, . . . , AN (t/BN )−α/β)

]
= exp

[
−G(A1B

α/β
1 , . . . , ANB

α/β
N )t−α/β

]
.

Lemma O.6. Let (Z1, . . . , ZN ) be max-stable multivariate Fréchet with scale parameters {Ti}Ni=1,

shape θ, and continuously differentiable correlation function G : RN+ → R+. Then

1. P
[
Zi = maxi′=1,...,N Zi′

]
= TiGi(T1,...,TN )

G(T1,...,TN ) where Gi(x1, . . . , xN ) ≡ ∂G(x1, . . . , xN )/∂xi;

2. P
[
Zi ≤ z | Zi = maxi′=1,...,N Zi′

]
= P [maxi=1,...,N Zi ≤ z] .
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Proof. We first prove part 1. We have, for Gi(x1, . . . , xN ) = ∂G(x1, . . . , xN )/∂xi,

P
[

max
i′=1,...,N

Zi′ ≤ z and Zi = max
i′=1,...,N

Zi′

]
= P

[
Zj ≤ z and Zi ≤ Zi′ ,∀i′ 6= i

]
=

∫ z

0

∂

∂t
P
[
Zi′ ≤ z, ∀i′ 6= i, and Zi ≤ t

]∣∣
z=t

dt =

∫ z

0

∂

∂zi
e−G(T1z

−θ
1 ,...,TNz

−θ
N )
∣∣∣
z1=t,...,zN=t

dt

=

∫ z

0
e−G(T1z

−θ
1 ,...,TNz

−θ
N )Gi(T1z

−θ
1 , . . . , TNz

−θ
N )Tiθz

−θ−1
i

∣∣∣
z1=t,...,zN=t

dt

=

∫ z

0
e−G(T1,...,TN )t−θGi(T1, . . . , TN )Tiθt

−θ−1dt

=
TiGi(T1, . . . , TN )

G(T1, . . . , TN )

∫ z

0
e−G(T1,...,TN )t−θG(T1, . . . , TN )θt−θ−1dt

=
TiGi(T1, . . . , TN )

G(T1, . . . , TN )
e−G(T1,...,TN )z−θ .

Let z →∞ to get P
[
Zi = maxi′=1,...,N Zi′

]
= TiGi(T1,...,TN )

G(T1,...,TN ) .

Finally, part 2 follows from the previous results:

P
[

max
i′=1,...,N

Zi′ ≤ z | Zi = max
i′=1,...,N

Zi′

]
=

P
[
maxi′=1,...,N Zi′ ≤ x and Zi = maxi′=1,...,N Zi′

]
P
[
Zi = maxi′=1,...,N Zi′

]
=

TiGi(T1,...,TN )
G(T1,...,TN ) e−G(T1,...,TN )z−θ

TiGi(T1,...,TN )
G(T1,...,TN )

= e−G(T1,...,TN )z−θ = P
[
max
i
Zi ≤ z

]
.

O.2 Models in the GEV Class

We present applications that extend the Ricardian model of trade in EK to many sectors

(Caliendo and Parro, 2015), multinational production (Ramondo and Rodríguez-Clare,

2013), domestic geography (Ramondo et al., 2016), and global value chains (Antràs and

de Gortari, 2020). We also present the case of mixed CES. All of these models deliver a

GEV import demand system.

O.2.1 Many Sectors

Assume that each country is composed of multiple sectors, s = 1, . . . , S, each composed of

a continuum of goods. As in Caliendo and Parro (2015), assume that productivity for good

v in sector s is a random draw distributed independent Fréchet within each sector across
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origins, with sector-specific shape εs and scale Ãso. As in French (2016), further assume

that consumers in each destination d have CES preferences over sectoral aggregates with

elasticity θ̄ > 0. The sectoral composite good aggregates goods CES with elasticity ηs,

where ηs−1 > εs. Given trade costs τsod, the share of destination d’s expenditure on goods

from origin o and sector s is

πsod =

(
τsod

Wo
Aso

Psd

)−εs (
Psd
Pd

)−θ̄
, (O.2)

where Aso ≡ Ã1/εs
so , P−εssd ≡

∑N
o′=1

(
Aso′τso′d

W ′o
Aso′

)−εs
, and P−θ̄d ≡

∑
s P
−θ̄
sd .

This multi-sector model is isomorphic to a model where consumers have CES preferences

over a continuum of goods and productivity is correlated within each sector across origins,

as the sectoral gravity model presented in Section 4.1. Suppose that productivity for good

v in sector s is a random vector drawn from a multivariate max-stable Fréchet distribution

with scale parameter Tsod, shape θ, and sector-level correlation function

Gsd(x1, . . . , xN ) =

(
N∑
o=1

x1/(1−ρs)
o

)1−ρs

, (O.3)

where ρs measures the degree of correlation across origin countries in each sector. Sectoral

expenditure shares are

πsod =

(
T
−1/θ
sod Wo

Psd

)− θ
1−ρs (Psd

Pd

)−θ
, (O.4)

where P
− θ

1−ρs
sd ≡

∑N
o=1(T

−1/θ
sod Wo)

− θ
1−ρs , and P−θd =

∑
s P
−θ
sd . This import demand system

matches (O.2) for T 1/θ
sod = τsod/Aso, θ/(1 − ρs) = εs, and θ = θ̄. The first term on the right-

hand side of (O.4)—and (O.2)—-is expenditure within sector s and is CES with elasticity

θ/(1 − ρs) — εs in (O.2). The second term refers to between-sector expenditure and is

also CES with elasticity θ — θ̄ in (O.2). If we further restrict θ → 0, the between-sector

expenditure share become a constant – this is the case of a between-sector Cobb-Douglas

aggregator.

Input-Output Linkages. Assume that each sector s combines domestic labor and a domestic

aggregate input to produce sectoral tradable good v. The production function is Cobb-

Douglas with 1 − αso ∈ [0, 1] the labor share in sector s and country o. The aggregate

input used by sector s combines the composite sectoral good of each sector according to

7



∏
s′M

αss′o
s′o , with

∑
s′ αss′o = αso. In turn, Mso is a CES aggregator of the sectoral good v,

Mso = (

∫ 1

0
m

ηs−1
ηs

so (v)dv)
ηs
ηs−1 ,

with ηs > 1 and mso(v) denoting the amount of v used in the production of intermediate

goods in country o and sector s. Consumers in country d have CES preferences over the

composite sectoral good Csd, with elasticity of substitution θm > 0. Csd aggregates sectoral

goods according to a CES function with elasticity of substitution σms > 1.

The cost of the domestic input bundle in country o for sector s is given by

cso = AsW
1−αso
o

∏
s′

P
αss′o
s′o ,

with As > 0 and Ps′o the CES price index associated with the composite sectoral good.

Finally, productivity for good v produced in o by s to deliver to d is Zsod, and distributed

within each sector as an independent Fréchet with shape σms and scale Tmsod.

The sectoral expenditure shares are given by

πsod =
(Pmsod)

−σms∑N
o′=1(Pmso′d)

σms

[∑N
o′=1(Pmso′d)

−σms
] θ
σms

∑S
s′=1

[∑N
o′=1(Pmso′d)

−σm
s′
] θ
σm
s′

with Pmsod ≡ (Tmsod)
−1/θmcso.

(O.5)

Specializing (O.5) to the domestic pair, πsdd, and after some algebra, we get the expression

for the gains from trade in (31).

O.2.2 Multinational Production

Assume that productivity is specific to a good, a location of production, and the home

country of the technology, j. Productivity for each home country j across locations of

production o has a CES correlation function as in (O.3), with s replaced by j. In this

application, the parameter ρj measures correlation across production locations for firms

with home country j.

The expenditure share on goods produced in o for d with technologies from j is

πjod =

(
Pjod
Pjd

)− θ
1−ρj

(
Pjd
Pd

)−θ
, (O.6)

where Pjod ≡ T
−1/θ
jod Wo, and Pjd ≡ (

∑N
o=1 P

− θ
1−ρj

jod )−
1−ρj
θ . The factor demand system in

(O.6) matches the one in the model of multinational production in Ramondo and Rodríguez-
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Clare (2013) for ρj = ρ and T−1/θ
jod = τodhjo/Aj .

O.2.3 Multiple Regions

Assume that each country n is composed ofRn regions. Denote productivity in region r by

Zrnd(v). Productivity across regions within a country is symmetric multivariate max-stable

Fréchet with correlation parameter ρn and scale Trnd, while productivity is independent

across countries. The within-country correlation function is

Gnd(x1, . . . , xRn) =

(
Rn∑
r=1

x1/(1−ρn)
r

)1−ρn

. (O.7)

Workers are mobile across regions within a country and the country wage is Wn. For

import price index Prnd = γT
−1/θ
rnd Wn, the trade share from region r in n into destination d

is

πrnd =

(
Prnd
Pnd

)− θ
1−ρn P−θnd∑

n′ P
−θ
n′d

with Pnd =

(
Rn∑
r′=1

P
− θ

1−ρn
r′nd

)− 1−ρn
θ

. (O.8)

The first fraction on the right-hand side of (O.8) is the probability of importing from region

r in country n conditional on importing from some region in country n, while the second

fraction is the probability of importing from country n into d.

Because regions are unique to countries, country-level productivity—which for each good

it is just the maximum across regions within each country—is independent with scale

Tnd =
(∑Rn

r=1 T
1/(1−ρn)
rnd

)1−ρn
. In turn, the country-level factor demand system is CES,

πnd =

Rn∑
r=1

πrnd =
TndW

−θ
n∑

n′ Tn′dW
−θ
n′

.

By assuming that ρn = 0, for all n = 1, . . . , N , this case matches the one in Ramondo et al.

(2016) .

O.2.4 Global Value Chains

We now show that the model of global value chains in Antràs and de Gortari (2020)

generates a GEV demand system. That is, it has the same macroeconomic implications

as a model without global value chains, but where productivity follows a multivariate

max-stable Fréchet distribution with an appropriately chosen correlation function.

Assume that production is done in K stages, k = 1, . . . ,K, where k = K is the final stage

of production (e.g., assembly), takes the Cobb-Douglas form, and labor is the only factor
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of production. Let ` = [`(1), . . . , `(K)] index a path of locations across production stages.

The unit cost of the input bundle used for goods produced following the production path

` is given by

c` = W`(K)

K−1∏
k=1

(
W`(k)

W`(K)

)αk
,

with αk > 0 and
∑K−1

k=1 αk < 1. The unit cost of good v is c`/Z`d(v). The variable Z`d(v)

denotes the marginal product of the input bundle when good v is produced along ` and

delivered to d. This variable is distributed independent θ-Fréchet across ` with scale T`d.

The likelihood of a particular production path ` destined to country d is given by

π`d =
T`dc

−θ
`∑

`′ T`′dc
−θ
`′

. (O.9)

This factor demand share matches the one in Antràs and de Gortari (2020) for T`d =

τ−θ`(K),dT
1−

∑K−1
k=1 αk

`(K)

∏K−1
k=1 (τ`(k),`(k+1))

−θαkTαk`(k) where τij is an iceberg cost of transporting

goods from country i to country j, and Ti is a productivity index for country i. Aggregate

trade shares from country o to d are obtained by summing π`d over production paths with

last production stage in country o—i.e., `(K) = o.

A macro model where productivity is multivariate max-stable Fréchet with scale T`d, shape

θ, and correlation function given by

Gd(x1, · · · , xN ) =
∑
`

x`(K)

K−1∏
k=1

(
x`(k)

x`(K)

)αk
,

implies a factor demand system equivalent to the the one in the model with global value

chains.

O.2.5 Mixed CES

Consider a mixed-CES demand system (such as in Adao et al., 2017):

πod =

∫
RM

∫ ∞
0

eβ
′GeoodW−σo∑M

o′=1 e
β′Geoo′dW−σo′

F (dσ,dβ)

where F is a cumulative distribution function on R+ × RM and Geood ∈ RM denotes a

vector of some bilateral variables (e.g. distance between the origin and destination, or

dummy variables that allow for random effects).

To derive this demand system from a Ricardian model with max-stable multivariate Fréchet
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productivity, we use a CNCES correlation function, as in (6), but let K →∞:

Gd(x1, . . . , xN ) =

∞∑
k=1

(
N∑
o=1

(ωkodxo)
1

1−ρk

)1−ρk

(O.10)

where for each o = 1, . . . , N we have ωkod ≥ 0 for each k = 1, 2, . . . and
∑∞

k=1 ωkod = 1.

Assume that productivity when delivering to d is distributed multivariate max-stable Fréchet

across origins with shape θ, scales of {Tod}No=1, and correlation function as in (O.10). The

implied demand system is

πod =
∞∑
k=1

(T ∗kodWo)
−σk∑N

o′=1(T ∗ko′dWo′)−σk

[∑N
o′=1(T ∗ko′dWo′)

−σk
] θ
σk

∑∞
k′=1

[∑N
o′=1(T ∗k′o′dWo′)−σk′

] θ
σk′

where σk ≡ θ/(1− ρk) and T ∗kod ≡ ωkodTod.

Next, we add some additional structure to T ∗kod and consider the limit as θ → 0. Assume

that there exists sequences of βk ∈ RM and µk ≥ 0 for k = 1, 2, . . . such that
∑∞

k=1 µk = 1

and T ∗kod = e−β
′
kGeood/σkµ

−1/θ
k . Then

πod =
∞∑
k=1

eβ
′
kGeoodW−σko∑N

o′=1 e
β′kGeoo′dW−σko′

[∑N
o′=1 e

β′kGeoo′dW−σko′

] θ
σk µk∑∞

k=1

[∑N
o′=1 e

β′
k′Geoo′dW

−σk′
o′

] θ
σk µk′

Letting θ → 0 we get

πod →
∞∑
k=1

eβ
′
kGeoodW−σko∑N

o′=1 e
β′kGeoo′dW−σko′

µk =

∫
RM

∫ ∞
0

eβ
′GeoodW−σo∑N

o′=1 e
β′Geoo′dW−σo′

P (dσ,dβ)

for

P (σ, β) ≡
∞∑
k=1

1{σ ≤ σk, β ≤ βk}µk

Note that since P is an empirical distribution function on R+ × RM , and it can arbitrarily

approximate F . As a consequence, this limiting case corresponds to a mixed-CES import

demand system.

O.3 GEV Approximation

Proposition O.1 (GEV Approximation). Let {Zod(v)}No=1 have any multivariate distribution

whose marginals have finite moment of order η− 1 > 0. Denote the import demand system implied
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by the Ricardian model with productivity distributed the same as {Zod(v)}No=1 by {πod(P1d, . . . , PNd)}No=1.

Then, for any compact K ⊂ RN+1
+ and any ε > 0, there exists a GEV import demand system

captured by a θ and Gd such that

sup
(P1d,...,PNd)∈K

∣∣∣∣∣πod(P1d, . . . , PNd)−
P−θod G

d
o(P

−θ
1d , . . . , P

−θ
Nd)

Gd(P−θ1d , . . . , P
−θ
Nd)

∣∣∣∣∣ < ε ∀o = 1, . . . , N.

Proof. First, the set of varieties from o imported to d is {v ∈ [0, 1] |Wo/Zod(v) = mino′Wo′/Zo′d(v)}
and for any variety in this set, expenditure is

Xd(v) =

(
Wo/Zod(v)

Pd

)1−η
Xd.

Any v not in this set must get imported from a different origin. The price index is

Pd =

[∫ 1

0

(
min
o′

Wo′/Zo′d(v)

)1−η
dv

] 1
1−η

,

so that we can write the expenditure share as

πod ≡
∫ 1

0

Xd(v)

Xd
1

{
Wo/Zod(v) = min

o′
Wo′/Zo′d(v)

}
dv

=

∫ 1
0 (Wo/Zod(v))1−η1 {Wo/Zod(v) = mino′Wo′/Zo′d(v)}dv∫ 1

0 (mino′Wo′/Zo′d(v))1−η dv

=
E
[
(Wo/Zod(v))1−η1 {Wo/Zod(v) = mino′Wo′/Zo′d(v)}

]
E
[
(mino′Wo′/Zo′d(v))1−η

] .

Define import price indices as

Pod =

[∫ 1

0
(Wo′/Zo′d(v))1−η dv

] 1
1−η

= Wo/Z̄od,

for Z̄od ≡
[∫ 1

0 Zo′d(v)η−1dv
] 1
η−1 . Then

πod =
E
[
(PodZ̄od/Zod(v))1−η1

{
PodZ̄od/Zod(v) = mino′ Po′dZ̄o′d/Zo′d(v)

}]
E
[(

mino′ Po′dZ̄o′d/Zo′d(v)
)1−η]

≡ πod(P1d, . . . , PNd).

We need to show that there exists a correlation function that approximates this import

demand system. The proof is similar to the proof of Theorem 1 in Dagsvik (1995), differing

in the functional form of the demand system to be approximated.
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Consider an approximating GEV import demand system that comes from multiplying

productivity by independent Fréchet noise. Specifically, replace productivity by the random

vector {γ−1Zod(v)Uod(v)}No=1 where Uod(v) is some θ-Fréchet noise with unit scale that is

independent across o and independent of {Zod(v)}No=1 with γ = Γ
(
θ+1−η
θ

) θ
1−η . Under this

modified productivity distribution, potential import prices arePod(v) = γWo/(Zod(v)Uod(v))

and {Pod(v)1−η}No=1 | {Zod}No=1 is θ/(η−1)-Fréchet with scale (γ−1Zod(v)/Wo)
θ and independent

across o by Lemma O.2. As a consequence, Pd(v)1−η | {Zod}No=1 is θ/(η − 1)-Fréchet and

has scale
∑N

o=1(γ−1Zod(v)/Wo)
θ. The associated price level is

Pd =
{
E
[
E
(
Pd(v)1−η | {Zod(v)}No=1

)]} 1
1−η

= E

Γ

(
θ + 1− η

θ

)( N∑
o=1

(γ−1Zod(v)/Wo)
θ

) η−1
θ


1

1−η

= E

( N∑
o=1

(Zod(v)/Z̄od)
−θP−θod

) η−1
θ


1

1−η

= Gd(P−θ1d , . . . , P
−θ
Nd; θ)−

1
θ ,

for

Gd(x1, . . . , xN ; θ) ≡

E(∑
o

(Zod(v)/Z̄od)
θxo

) η−1
θ


θ
η−1

.

Note that Gd(0, . . . , 0, 1, 0, . . . , 0; θ) =
[
E(Zod(v)/Z̄od)

η−1
] θ
η−1 = 1.

This price level is identical to assuming that productivity is θ-Fréchet with scale Z̄θod and

correlation function Gd. It also approximates the true price level. In particular,

Pd =

E(∑
o

(Zod(v)/Wo)
θ

) η−1
θ


1

1−η

θ→∞→
[
E
(

max
o
Zod(v)/Wo

)η−1
] 1

1−η
=

[
E
(

min
o
Wo/Zod(v)

)1−η
] 1

1−η
.

That is, the price level implied by either multiplying by θ-Fréchet noise or by assuming θ-

Fréchet productivity with this correlation function converges point-wise to the price level

associated with the true productivity distribution.
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The implied GEV import demand system is

P−θod G
d
o(P

−θ
1d , . . . , P

−θ
Nd; θ)

Gd(P−θ1d , . . . , P
−θ
Nd; θ)

=

E
[(∑

o′(Zo′d(v)/Wo′)
θ
) η−1

θ
−1

(Zod(v)/Wo)
θ

]
E (
∑

o′(Zo′d(v)/Wo′)θ)
η−1
θ

θ→∞→
E
[
(Wo/Zod(v))1−η1 {Wo/Zod(v) = mino′Wo′/Zo′d(v)}

]
E
[
(mino′Wo′/Zo′d(v))1−η

]
=

E
[
(Wo/Zod(v))1−η1

{
PodZ̄od/Zod(v) = mino′ Po′dZ̄o′d/Zo′d(v)

}]
E
[(

mino′ Po′dZ̄o′d/Zo′d(v)
)1−η]

= πod(P1d, . . . , PNd).

That is, the implied GEV import demand system converges point-wise to the true demand

system. The remainder of the proof is identical to Dagsvik (1995). To establish uniform

convergence on K ⊂ RN+1
+ compact, note that if (P1d, . . . , PNd) 7→

P
−θj
od Gdo(P

−θj
1d ,...,P

−θj
Nd ;θj)

Gd(P
−θj
1d ,...,P

−θj
Nd ;θj)

converges as j → ∞ then there exists a positive sequence {θk}∞k=1 that diverges such that

(P1d, . . . , PNd) 7→
P
−θk
od Gdo(P

−θk
1d ,...,P

−θk
Nd ;θk)

Gd(P
−θk
1d ,...,P

−θk
Nd ;θk)

is monotone and converges as k → ∞. Then,

since πod(P1d, . . . , PNd) is continuous, we can apply Theorem 7.13 in Rudin et al. (1964) to

establish uniform convergence.

O.4 Exact Hat-Algebra

We now show how to apply exact hat-algebra methods to solve for a change from the

current (observed) equilibrium to any counterfactual equilibrium. First, we define the

model’s equilibrium.

Definition O.6 (Competitive Equilibrium). Given endowments {Lo}No=1, trade imbalances

{TBd}Nd=1, scale parameters {Tod}No,d=1, and correlation functions {Gd}Nd=1, a competitive equilibrium

consists of wages {Wo}No=1, and expenditure shares {πod}No,d=1 such that

1. Expenditure shares satisfy

πod =
TodW

−θ
o Gdo(T1dW

−θ
1 , . . . , TNdW

−θ
N )

Gd(T1dW
−θ
1 , . . . , TNdW

−θ
N )

;

2. The labor market in o clears

WoLo =

N∑
d=1

πodXd; and
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3. The resource constraint in each destination d holds

WdLd ≡ Yd = Xd + TBd.

GEV factor demand systems satisfy strict gross substitutability. As a result, the existence

and uniqueness of the equilibrium follows from standard results in general equilibrium

theory, as proved next.

Proposition O.2 (Existence and Uniqueness). Assume that expenditure in each country is

always strictly positive, productivity is distributed multivariate θ-Fréchet, and markets are perfectly

competitive. Then, there exists a competitive equilibrium. The equilibrium is unique up to the choice

of numeraire.

Proof. Define the excess demand function E : RN+ → RN as satisfying

Eo(W) = −WoLo +
N∑
d=1

πod(WdLd − TBd) for each o = 1, . . . , N.

Since productivity is multivariate θ-Fréchet, by Lemma O.3, Gd is a correlation function.

As a result, we must have πod > 0 for any finite competitiveness indices.

The implication is that the excess demand system satisfies strict gross substitutability. For

each o = 1, . . . , N and each n 6= o we have

∂Eo(W)

∂Wn
=

N∑
d=1

∂

∂Wn

TodW
−θ
o Gdo
Gd

(WdLd − TBd)

=
N∑
d=1

TodW
−θ
o

Gd

(
Gdon −

GdoG
d
n

Gd

)
︸ ︷︷ ︸

≤0

(WdLd − TBd)︸ ︷︷ ︸
=Xd>0

∂P−θNd
∂Wn︸ ︷︷ ︸
<0

+
TonW

−θ
o Gno
Gd

Ln

≥ P−θon G
n
o

Gd
Ln = πonLn > 0.

The first inequality in the second line follows from the differentiability restriction on the

correlation function. The final strict inequality follows from πon > 0. Given that the excess

demand function is homogenous of degree one and satisfies strict gross substitutability,

we can apply Proposition 17.F.3 of Mas-Collell et al. (1995) to establish existence and

uniqueness.

Next, we solve for the equilibrium using exact hat-algebra methods (see Costinot and

Rodrìguez-Clare, 2014). As a first step, we use the results in Section 3.2 in the paper to

solve for correlation-adjusted trade shares, given the structure of Gd and data on bilateral
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expenditure,

πod = π̃odG
d
o(π̃1d, . . . , π̃Nd).

In the second step, for a given counterfactual shock, such as {T̂od}No,d=1, for d 6= o, we solve

for {Ŵo}No=1 from

ŴoYo =
N∑
d=1

π̂odπod(ŴdYd − TBd) for each o = 1, . . . , N,

where

π̂odπod =
T̂odŴ

−θ
o π̃odG

d
o(T̂1dŴ

−θ
1 π̃1d, . . . , T̂NdŴ

−θ
N π̃Nd)

Gd(T̂1dŴ
−θ
1 π̃1d, . . . , T̂NdŴ

−θ
N π̃Nd)

,

and L̂o = T̂Bd = 1. Since the equilibrium is unique (up a normalization), we can use a

tâtonnement process to solve for the equilibrium following Alvarez and Lucas (2007).

After solving for the equilibrium change in wages, we can directly compute the equilibrium

change in the price level as

P̂d =
γGd(T̂1dŴ

−θ
1 T1dW

−θ
1 , . . . , T̂NdŴ

−θ
N TNdW

−θ
N )−

1
θ

Pd
.

Since π̃od = Tod(γWo/Pd)
−θ and Gd is homogenous of degree one,

P̂d = Gd(T̂1dŴ
−θ
1 π̃1d, . . . , T̂NdŴ

−θ
N π̃Nd)

− 1
θ .

O.5 Homothetic Expenditure

As an alternative to CES expenditure shares, consider preferences that imply homothetic

expenditure-share functionals, Pd(·) 7→ πd(Pd(·); v) for each v ∈ [0, 1]. Then,

∀v ∈ [0, 1] Xd(v) = πd(Pd(·); v)Xd,

for given deterministic total expenditure,Xd. This specification assumes that consumers in

d have homothetic preferences, and they do not have preferences over where they purchase

goods. Each expenditure-share functional must satisfy∫ 1

0
πd(Pd(·); v)dv = 1 and ∀v ∈ [0, 1] πd(Pd(·); v) ≥ 0,
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for any realization of Pd(·). Additionally, we need to restrict the collection of expenditure-

share functionals such that a law of large numbers holds on subsets of the continuum.

Formally, for each Borel B ⊂ [0, 1] with positive measure, we need to have that∫
B
πd(Pd(·); v)dv = E

[∫
B
πd(Pd(·); v)dv

]
.

This assumption states that the left-hand side is deterministic. For example, it holds if

consumers have unrestricted preferences over CES bundles of varieties.

Then, aggregate expenditure shares only reflect import probabilities. Letting Pod(v) ≡
Wo/Zod(v), we have

Xod =

∫
Vod

Xd(v)dv =

∫
Vod

πd(Pd(·); v)Xddv = E
[∫

Vod

πd(Pd(·); v)dv
]
Xd

= E
[∫ 1

0
πd(Pd(·); v)1{v ∈ Vod}dv

]
Xd =

∫ 1

0
E [πd(Pd(·); v)1{v ∈ Vod}] dvXd

=

∫ 1

0
E
[
πd

(
min
o′

Po′d(·); v
)
1

{
Pod(v) = min

o′
Po′d(v)

}]
dvXd

=

∫ 1

0
E
[
πd

(
min
o′

Po′d(·); v
)
| Pod(v) = min

o′
Po′d(v)

]
P
[
Pod(v) = min

o′
Po′d(v)

]
dvXd

=

∫ 1

0
E
[
πd

(
min
o′

Po′d(·); v
)
| Pod(v) = min

o′
Po′d(v)

]
dvP

[
Pod(v) = min

o′
Po′d(v)

]
Xd

=

∫ 1

0
E
[
πd

(
min
o′

Po′d(·); v
)]

dvP
[
Pod(v) = min

o′
Po′d(v)

]
Xd

= E
[∫ 1

0
πd(Pd(·); v)dv

]
P
[
Pod(v) = min

o′
Po′d(v)

]
Xd = P

[
Pod(v) = min

o′
Po′d(v)

]
Xd,

where we use the fact that πd(Pd(·); v) ≥ 0 and Tonelli’s Theorem to justify interchanging

the integration and expectation operators. The key step in this derivation is moving P [Pod(v) = mino′ Po′d(v)]

outside of the integral over v. This step is justified because Pod(v) is i.i.d. over v (so that

the import probability is the same across varieties). If the distribution of productivity were

not i.i.d. over v, then the composition of demand over sub-intervals would matter. For

instance, if Pod(v) were i.i.d. within v ∈ Vs where {Vs}Ns=1 is a partition of [0, 1], we would

end up with an expression of the form Xod =
∑

s P [Pod(v) = mino′ Po′d(v) | V ∈ Vs]µsdXd

where µsd ≡
∫
Vs
πd(Pd(·); v)dv. In this way, complementarity coming from preferences

would lead to complementarity in the factor demand system between, but not within,

groups.
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O.6 Evidence on Departures from IIA

We estimate various specifications of a sectoral gravity-type equation and find evidence

that the sectoral gravity model (SGM) is misspecified and that our latent-factor model

(LFM) is consistent with correlation patterns observed in the expenditure data.

To estimate these gravity specifications, we use more aggregate sectoral categories. Rather

than 4-digit SITC sectors (denoted by s), as for the LFM estimates in the paper, we use 14

aggregate sectoral categories from the World Input-Output Database (WIOD), denoted by

j. For comparison purposes, when needed, we can always aggregate our LFM estimates

at 4-digit SITC to the WIOD sectoral aggregates.

Adding a time subscript t to the denote years in the period 1999-2007, we estimate the

following specification:

πjodt ≡
Xjodt

Xdt
= exp

[
D1
jot +D2

jdt +D3
jod +

(
βj + α′Geood

)
ln tjodt + δ′Ijodt

]
νjodt. (O.11)

The variable tjodt is a tariff index for sector j.1 D1
jot, D

2
jdt and D3

jod are sector-origin-time,

sector-destination-time, and sector-origin-destination fixed effects, respectively. Geood includes

bilateral variables, such as geographical and income distance between the origin and destination.

We include interactions of these variables with tariffs to allow the own-price elasticity to

vary across origins within a sector. The variable Ijodt includes three indices that capture

potential departures from IIA.

To construct the indices, we use correlation patterns of expenditure observed in the data,

shown in Figures O.1b, O.1c, and O.1d. The figures use sector-origin-destination expenditure

shares averaged over time, and sort sectors by WIOD classification code and countries by

GDP per capita.

Figure O.1a is shown for comparison purposes and depicts correlation in expenditure

shares across destinations, for each sector-origin pair. This figure shows that most correlation

arises within a country across sectors, but we also observe correlation between origins

across sectors.

Our first index of exposure to third-party tariffs exploits correlation in expenditure across

destinations between two origins, after aggregating sectors at the origin-destination level
1 We aggregate the COMTRADE tariff data to the WIOD aggregate sector level as follows. We use our

model-based aggregation procedure to compute the aggregate applied tariff and total trade value in the
COMTRADE data by SITC code, exporter, importer, and year. The model implies that when latent factors
correspond to WIOD sectors, the within-WIOD-sector factor weights correspond to global expenditure shares.
Then, up to a first order approximation around zero tariffs, WIOD sector-level tariff indices are equal to a
weighted average of underlying 4-digit SITC tariffs using these global expenditure shares as weights. We use
these global expenditure weighted tariff averages for WIOD sector-level tariffs.
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Figure O.1: Correlation Matrices for Expenditure Shares. WIOD sectoral data.

(a) Origin-sector-destination (b) Origin-destination

(c) Origin-sector (d) Sector

Notes: Each entry shows expenditure correlations: (O.1a) across destinations between a sector-origin pair;
(O.1b) across destinations between two origins, COrigin - Geo

oo′ ; (O.1c) across sectors between two origins,
C

Origin-Sectors
oo′ ; and (O.1d) across origins between two sectors, CSectors

jj′ . Axes are sorted by WIOD classification
code for sectors and/or GDP per capita for countries. j refers to a WIOD sectoral category.

(to remove correlation induced by sectoral export patterns).

I
Origin-Geo
jodt =

∑
o′ 6=o

C
Origin - Geo
oo′ ln tjo′dt. (O.12)

C
Origin - Geo
oo′ are the entries in Figure O.1b and reveal correlation patterns that are highly

geographic and related to income levels — in fact, “geography” explains 95 percent of the

variation observed in Figure O.1a. This index increases for country o when tariffs rise in

other countries with similar shares of destination expenditure.

Our second index uses correlation between two origins induced by their exporting sectors.

In this case, we first average over destinations and compute sector-origin level expenditure

relative to worldwide expenditure in the sector (so that correlation between two origins
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reflects similarity in comparative advantage).

I
Origin-Sector
jodt =

∑
o′ 6=o

C
Origin-Sector
oo′ ln tjo′dt. (O.13)

COrigin−Sectoroo′ are the entries in Figure O.1c, and show that correlation primarily arises

between exporters of similar income. This index increases for country o with tariffs in

other countries with similar sectoral export shares.

Our final index is constructed based on correlation in expenditure between sectors within

exporters. In this case, we use correlation in sector-origin level expenditure relative to the

origin’s total expenditure.

ISector
jodt =

∑
j′ 6=j

CSector
jj′ ln tj′odt. (O.14)

CSectorjj′ denotes the entries in Figure O.1d, which are identical across countries. They show

that, for instance, sectors related to more sophisticated manufacturing goods, such as

“Electrical and Optical Equipment” (12) and “Transport Equipment” (13) are correlated

with each other, as are sectors related to commodities, such as “Agriculture, Hunting,

Forestry and Fishing” (1) and “Mining and Quarrying” (2). This index increases with

tariffs on an origin in a different but correlated sector, and will allow us to detect patterns

of cross-sector substitution within an origin country.

Table O.1 presents PPML estimates of (O.11). If the SGM is correctly specified, we should

find that α = δ = 0 in (O.11). If the CES model is correctly specified, we should further

find that elasticities are the same across sectors.

In column 1, we restrict the sectoral elasticities to be common across sectors and exclude

additional covariates. The coefficient on tariffs corresponds to a structural estimate of the

ACR model where ρk = 0 for all k in equation (19) in the paper. In this case, α = δ = 0 and

βj = −θ = −2.63 for all j.2

In columns 2 to 5, we allow for βj to be heterogenous across sectors. The estimates in

column 2 correspond to structural estimates of the SGM where βj = −σj , with σj 6= σj′ ,

for j 6= j′, and α = δ = 0. Not surprisingly, these estimates imply an average of 2.7, almost

identical to the estimate in column 1.3 The Wald test strongly rejects that elasticities are

equal across sectors.

Columns 3-5 add tariff interactions and our indices. In this case, tjodt is deflated by the

sector mean because the inclusion of sector-destination-time fixed effects absorbs that variation.
2This estimate is in the range estimated in the literature using sectoral data and the restriction to a uniform

coefficient across sectors and countries (e.g. Boehm et al., 2021).
3The sectoral estimates are in the range of the sectoral elasticities estimated in Caliendo and Parro (2015).
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Table O.1: Sectoral Gravity Model and Specification Tests. PPML.

Dep. variable πjodt ≡ Xjodt/Xdt

(1) (2) (3) (4) (5)

β -2.63***
(0.221)

β̄ =
∑J
j βj/J -2.70*** -9.07*** -2.49*** -8.07***

(0.233) (1.676) (0.261) (1.679)
lnDistod × ln t̄jodt 0.99*** 0.87**

(0.293) (0.293)
| lnYot − lnYdt| × t̄jodt 1.40** 0.92*

(0.442) (0.439)
I

Origin-Geo
jodt 0.79** 0.28

(0.265) (0.271)
I

Origin-Sector
jodt -0.005 -0.08

(0.057) (0.058)
ISector
jodt 1.13*** 0.79***

(0.175) (0.173)
| lnYot − lnYdt| No No Yes No Yes

Deviance 7.025 7.003 6.908 6.940 6.886
Degrees of Freedom† 7,814 7,827 7,830 7,830 7,833

Null Hypothesis βj = β α = 0 δ = 0 α = δ = 0
χ2 49.025 55.612 58.777 73.666
Degrees of Freedom 13 2 3 5
P-Value 0.0 0.0 0.0 0.0

Notes: Estimates of (O.11). Number of observations = 121,086. j refers to a WIOD sectoral category. Distod =
distance between origin o and destination d. Yot = GDP per capita in o at time t. t̄jodt denotes tjodt relative to
the sectoral mean. IOrigin-Geo

jodt , IOrigin-Sector
jodt , and ISector

jodt are defined in (O.12), (O.13), and (O.14). All specifications
include j× o× t, j×d× t, and j× o×d fixed effects. For columns 2-5 the average tariff coefficient across sectors
is reported, with estimates by sector from column 2 reported in Table O.5. †: Model’s degrees of freedom. Last
panel shows results of Wald tests for the null hypothesis that: sectoral elasticities are equal (column 2); and the
tariff interactions as well as all indices are jointly insignificant (columns 3 to 5). Standard errors clustered at the
sector-origin-destination level are in parenthesis, with levels of significance denoted by *** p < 0.001, and ** p <
0.01 and * p<0.05.
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The coefficients on the tariff interactions are interpreted relative to the sectoral average.

Column 3 shows that both interactions are significant, suggesting that the own-price elasticity

becomes more inelastic when geographical and income distance between an origin and

destination increases. This column’s Wald test strongly rejects the SGM prediction of a

constant own-price elasticity within each sector.

Column 4 includes our three indices of exposure to third-party tariffs and directly tests

the SGM prediction that IIA holds within each sector. While our indices of “geographic”

(IOrigin-Geo
jodt ) and cross-sector (ISector

jodt ) exposure to third-party tariffs are positive and significant,

the index of cross-origin sectoral exposure (IOrigin-Sector
jodt ) is not. The insignificance of this

index paired with the significance of the sectoral index suggests that departures from

IIA operate through sectoral similarity within exporters rather than through similarity in

sectoral comparative advantage between exporters. Note that, in column 5, IOrigin-Geo
jodt is

no longer significant after tariff interactions are also included, suggesting that this index

indeed captures departures from IIA related to bilateral geographic factors. The Wald

tests for both columns 4 and 5 strongly reject that these indices and interactions are jointly

insignificant, providing evidence that the SGM is misspecified.

The results in Table O.1 also suggest that the LFM is on the right track. The insignificance

of the index of cross-country sectoral exposure to third-party tariffs, together with the

significance of the index of cross-sector exposure, suggests that departures from IIA are

associated with patterns of cross-origin substitution within a sector rather than with within-

origin cross-sector expenditure patterns — that is, it is reasonable to assume that latent

factors are re-grouping sectors, not exporters. Moreover, because the index of cross-sector

exposure to third-party tariffs is based on global correlation expenditure patterns across

sectors, our findings suggest that it is reasonable to focus on a latent-factor structure where

factor weights are common across countries, for each sector. This is precisely what our

LFM identifying assumption does — countries load on sectors through common weights

λsk.

We provide further reduced-form support for the LFM assumption in equation (21) in the

paper by performing a principal-component analysis that predicts πjodt based on decompositions

of the average expenditure share across destinations d. The principal-component structures

are: πOPC
jodt =

∑K
k=1 λ

OPC
ok φOPC

kjdt (origins load on latent sector-destination specific factors);

and πSPC
jodt =

∑K
k=1 λ

SPC
jk φSPC

kodt (sectors load on latent origin-destination specific factors). The

factor weights λOPC
ok are the right eigenvalues of the matrix of average expenditure across

destinations, while λSPC
jk are the left eigenvalues of that matrix. The first four eigenvectors

explain 96.2 percent of the variation in average cross-destination expenditure. Given the

factors weights, we solve for φOPC
kjdt and φSPC

kodt. Their predicted values explain, respectively,

19.9 and 90.7 percent of the variation in πjodt. This analysis reveals that a structure where
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Table O.2: LFM Selection: Likelihood Ratio Test. Extended results.

Number of factors, K 1 2 3 4 5 6 7 8 14r 14

R2 4-d SITC expenditure 0.725 0.79 0.804 0.826 0.835 0.938 0.937 0.936 0.998 0.973
within odt 0.092 0.158 0.197 0.24 0.266 0.306 0.334 0.362 0.379 0.456

R2 WIOD expenditure 0.722 0.788 0.803 0.825 0.836 0.938 0.938 0.936 1.000 0.973
within dt 0.479 0.665 0.658 0.666 0.681 0.873 0.891 0.875 1.000 0.932
within jdt 0.849 0.885 0.901 0.912 0.920 0.957 0.955 0.955 1.000 0.971
within odt 0.221 0.382 0.458 0.521 0.614 0.657 0.693 0.673 1.000 0.787

Deviance 377,451 333,999 310,594 292,161 278,379 266,955 256,823 248,288 260,822 210,554
Degrees of Freedom† 9,436 18,872 28,308 37,744 47,180 56,616 66,052 75,488 121,873 132,104

Null Hypothesis 1 2 3 4 5 6 7 - 7 14r

χ2 43,452 23,405 18,433 13,783 11,423 10,133 8,535 - 46,269 50,268
Degrees of Freedom 9,436 9,436 9,436 9,436 9,436 9,436 9,436 - 66,052 10,231
P-value 0.0 0.0 0.0 0.0 0.0 0.0 1.0 - 1.0 0.0

Notes: Results from estimating (29) with K = 1, . . . , 8; 14. Number of observations = 5,528,764. j refers to a
WIOD sectoral category, while s refers to a 4-digit SITC sector. K = 14r refers to a specification with 14 factors
but restricted factor weights as in the sectoral gravity model (SGM). †: Model’s degrees of freedom. Last panel
shows likelihood ratio tests comparing specifications across columns.

sectors load on (a few) origin-destination-time specific latent factors through common

weights captures the data better than a structure where origins load on sector-destination-

time specific latent factors.

O.7 Fit and Validation Tests for LFM

We provide additional evidence on the fit of the LFM. Our estimated model fits the expenditure

data very well if we aggregate sectors from 4-digit SITC to the WIOD level, as shown in

Table O.2. To compare the fit of LFM with the SGM, we estimate an LFM model with

K = 14, which are the same number of sectors used in Table O.1 for SGM. The likelihood-

ratio test shows that this model is not significantly different from our baseline estimate of

LFM with K = 7. That said, although K = 14 is statistically indistinguishable from the

LFM with K = 7, it is significantly different from LFM with K = 14 plus Λ constrained

to match the restrictions of SGM at the WIOD sector level, which we denote by K = 14r.4

This result provides further evidence that the SGM is misspecified. Indeed, it is notable

that despite exactly fitting the data at the WIOD sectoral level (by construction) and using

almost twice as many parameters, the deviance ofK = 14r is higher than LFM withK = 7.

As a validation test of our LFM estimates, in Table O.3, we go back to the same gravity-type

regressions as in Table O.1 adding the prediction for sectoral (WIOD-aggregate) expenditure

from LFM. Are the tariff interactions and the indices capturing departures from IIA still

significant? That is, does LFM capture the patterns in the data that SGM could not capture?

4Formally, let j(s) be the WIOD sector that the 4-digit SITC sector s belongs to. The restriction is that
λsk = 0 if j(s) 6= k.
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Table O.3: Latent-Factor Model (LFM) and Specification Tests. PPML.

Dep. variable πjodt ≡ Xjodt/Xdt

(1) (2) (3) (4) (5) (6)

ln π̂LFM
jodt 1.01*** 0.982*** 0.982*** 0.981*** 0.981***

(0.006) (0.01) (0.01) (0.01) (0.01)
ln π̂LFM

jodt − ln π̂U,LFM
jodt -0.526***

(0.082)
lnDistod × ln t̄jodt 0.873** 0.025 0.021 0.004

(0.293) (0.131) (0.133) (0.131)
| lnYot − lnYdt| × ln t̄jodt 0.915* 0.3 0.232 0.081

(0.439) (0.212) (0.216) (0.216)
I

Origin-Geo
jodt 0.277 -0.058 -0.121 -0.126

(0.271) (0.143) (0.157) (0.153)
I

Origin-Sector
jodt -0.084 -0.024 -0.028 -0.033

(0.058) (0.032) (0.033) (0.032)
ISector
jodt 0.793*** 0.288*** 0.257** 0.145

(0.173) (0.082) (0.084) (0.086)
SGM Variables No Yes Yes Yes Yes Yes
| lnYot − lnYdt| No Yes Yes No Yes Yes
Deviance 53.66 6.886 2.961 2.959 2.959 2.951
Degrees of Freedom† 2 7,833 7,831 7,831 7,834 7,835

Null Hypothesis LFM α = δ = 0 α = 0 δ = 0 α = δ = 0 α = δ = 0
χ2 2.757 73.666 4.34 12.342 13.111 3.97
Degrees of Freedom 1 5 2 3 5 5
P-Value 0.097 0.0 0.114 0.006 0.022 0.554

Notes: Estimates of (O.11) augmented by LFM predictions. Number of observations = 121,086. j refers to a WIOD
sectoral category. Column 2 corresponds to column 5 in Table O.1. ln π̂LFM

jodt = LFM prediction for lnπjodt. ln π̂U,LFM
jodt

is the prediction under uniform 4-digit SITC tariffs within each factor. Distod = distance between o and d. Yot =

GDP per capita in o at time t. t̄jodt = tjodt relative to the sectoral mean. I
Origin-Geo
jodt , IOrigin-Sector

jodt , and ISector
jodt are

defined in (O.12), (O.13), and (O.14). SGM variables refers to sector-specific coefficients for log tariffs, and j × o× t,
j × d× t, and j × o× d fixed effects. †: Model’s degrees of freedom. Last panel shows results of Wald tests for the
null hypothesis that: the coefficient on ln π̂LFM

jodt is one (column 1), the tariff interactions and all indices are jointly
insignificant (column 2 to 6). Standard errors clustered at the sector-origin-destination level are in parenthesis, with
levels of significance denoted by *** p < 0.001, and ** p < 0.01 and * p<0.05.

Overall, LFM succeeds in capturing those patterns: Both tariff interactions as well as the

origin-based indices are not significant, while the magnitude of the effect of the index

capturing cross-sector correlation, ISector
jodt , is reduced more than three-fold (column 5). This

index loses significance if we further control by the component of ln π̂LFM
jodt attributable to

dispersion in 4-digit SITC tariffs within each factor. This means that, if anything, the LFM

is predicting tariff effects that are too strong.

O.8 Alternative Estimation for the Parameter θ

The alternative estimation of the parameter θ exploits the structure of the import demand

system at the latent-factor level, and uses the estimates of those expenditure shares from

the LFM estimation procedure. We use a specification that relies on variation across factors
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Table O.4: Alternative Estimates of the Parameter θ. PPML.

Dep. variable Between-factor πBkodt

(1) (2) (3)
ln t∗kodt -1.168 -0.939* -0.935*

(1.763) (0.416) (0.416)
ln Ẑkodt Yes Yes No
k × ln Ẑkodt No No Yes
k × o× t Yes Yes Yes
d× t Yes Yes Yes
o× d Yes No No
k × o× d No Yes Yes

Observations 60,542 60,542 60,542
Degrees of freedom 57,347 58,307 58,301
Deviance 1,632 122.3 122.2
χ2 0.20 1.83 1.81
P-value 0.65 0.17 0.17

Notes: Estimates of (O.16). Robust standard errors in parenthesis, clustered by k × d, with levels of significance
denoted by *** p < 0.001, and ** p < 0.01 and * p<0.05. Last row reports Wald test of the null hypothesis that
estimates are not significantly different from 0.375, the baseline LFM estimate of θ.

and inferred within-factor relative prices from the LFM estimates.

Summing over origins o in (25) yields the between-factor expenditure share

πBkdt =

[∑N
o′=1(t∗ko′dtWo′t/Ako′dt)

−σk
] θ
σk

∑K
k′=1

[∑N
o′=1(t∗k′o′dtWo′t/Ak′o′dt)−σk′

] θ
σk′

≡
(
P ∗kdt
P ∗dt

)−θ
. (O.15)

Multiplying and dividing by (P ∗kodt)
−θ with P ∗kodt ≡ t∗kodtWot/Akodt yields

πBkdt =

(
t∗kodtWot/Akodt

Pdt

)−θ (
πWko′dt

)− θ
σk ,

where πWkodt = (P ∗kodt/P
∗
kdt)
−σk .

We estimate the parameter θ from the coefficient on the tariff index t∗kodt in

πBkdt = exp
(
−θ ln t∗kodt +D1

kot +D2
dt +D3

kod − θ ln Ẑ∗kodt

)
ukodt, (O.16)

where Ẑ∗kodt ≡
(
π̂Wkodt

)−1/σ̂k , and Dl, for l = 1, 2, 3, are fixed effects. Identification comes

from controlling for within-factor expenditure using our LFM estimates. The identification

assumption is that the error term (e.g. unobserved component of trade costs) is orthogonal

to the latent-factor tariff index conditional on the other covariates. We estimate this equation

by PPML. Results are gathered in columns 1-3 of Table O.4. The Wald test in the last row

indicates that estimates are statistically indistinguishable from our baseline estimate of
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θ = 0.375.

O.9 Data Construction

For our quantitative analysis, we use 4-digit SITC trade flow data and tariff data from the

United Nations COMTRADE Database. We also use trade flow data in aggregated sector

categories from the World Input-Output Database (WIOD). Gravity covariates are from

the Centre D’Études Prospectives et d’Informations Internationales (CEPII).

O.9.1 Map from SITC Codes to WIOD Sectors

The WIOD data allow us to compute the total value of trade between a sample of 40

countries across 35 sectors from 1995 through 2011. While the sector classification in this

dataset comes from aggregating underlying data classified according to the third revision

of the International Standard Industrial Classification (ISIC), the COMTRADE tariff data

are classified according to the second revision of the Standard International Trade Classification

(SITC). In order to merge these data sources, we construct a mapping that assigns SITC

codes to aggregates of WIOD sectors.

First, we match ISIC and SITC definitions using existing correspondences to Harmonized

System (HS) product definitions. These correspondences come from the World Bank’s

World Integrated Trade Solution (WITS).5 This merge matches 5,701 products out of 5,705

total HS products, creating a HS product dataset with 764 SITC codes and 35 ISIC codes.

Note that there are 925 SITC codes in the tariff data to be classified into WIOD sectors.

Next, we map the ISIC definitions in this merge to 25 aggregates of WIOD sectors. This

leaves products in the ISIC code 99 ("Goods n.e.c.") without a WIOD sector definition. This

results in a HS-product-level dataset with labels for the 25 WIOD aggregates and 764 SITC

codes.

At this point, there are two issues left to address: (1) classifying SITC codes that have

products in multiple WIOD sectors; and (2) classifying the SITC codes in the tariff data

that were either matched to ISIC code 99 or were not matched to any ISIC code. First, we

determine the most common WIOD sector classification (including "unclassified") at the

HS product level of each 4-digit SITC code within the merge. We re-classify all products

within an 4-digit SITC sector as belonging to the most common WIOD sector, and break

ties manually. This step resolves issue (1) and leaves us with 764 4-digit SITC codes

mapped to a unique WIOD sector, and 161 4-digit SITC codes left unclassified. Second,

5They are available at https://wits.worldbank.org/product_concordance.html.
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Table O.5: WIOD sectoral categories, SGM elasticities, and sectoral expenditure.

Code Name Sectoral elasticity Self-Trade Share Expenditure Share

1 Agriculture, Hunting, Forestry and Fishing 4.15 (0.433) 0.91 0.075
2 Mining and Quarrying 4.37 (1.598) 0.69 0.057
3 Food, Beverages and Tobacco 2.21 (0.199) 0.87 0.108
4 Textiles and Leather 1.81 (0.510) 0.64 0.043
5 Wood and Products of Wood and Cork 1.13 (0.668) 0.85 0.017
6 Pulp, Paper, Paper , Printing and Publishing 1.25 (0.492) 0.86 0.048
7 Coke, Refined Petroleum and Nuclear Fuel 4.01 (1.569) 0.87 0.058
8 Chemicals, Rubber, and Plastics 2.40 (0.511) 0.69 0.125
9 Other Non-Metallic Mineral 0.66 (0.499) 0.88 0.030

10 Basic Metals and Fabricated Metal 3.26 (0.463) 0.80 0.124
11 Machinery, Nec 2.83 (0.683) 0.61 0.071
12 Electrical and Optical Equipment 5.17 (1.568) 0.51 0.108
13 Transport Equipment 2.36 (0.759) 0.61 0.106
14 Manufacturing, Nec; Recycling 2.20 (0.493) 0.54 0.026

Notes: SGM = sectoral gravity model. Sectoral elasticity from estimating by PPML a sectoral gravity equation using
WIOD sectoral aggregation (see Online Appendix O.6). Standard errors clustered at the sector-origin-destination level
are in parenthesis. All coefficients are significant at the 0.01 level. Self-trade share calculated as sectoral self-trade relative
to total expenditure in the sector. Expenditure share calculated as sectoral expenditure relative to total expenditure.

we resolve issue (2) by refining the map by using the most common classification of HS

products within each 3-digit SITC code, again breaking ties manually. In this step, we only

use the most-common classification at the 3 digit level to classify previously unclassified

4-digit SITC codes, filling in the map. This step mostly resolves issue (2), leaving only

12 4-digit SITC codes unclassified. We complete the map by manually classifying the 12

remaining codes. This results in a map from 925 4-digit SITC codes to 25 WIOD aggregates.

O.9.2 Reconciling WIOD and COMTRADE Data

We drop those countries in WIOD with completely missing data in COMTRADE, and

aggregate the 35 WIOD sectors to the 25 aggregates in our concordance with 4-digit SITC

codes, and restrict the sample to 1999 through 2007. These restrictions leave a balanced

sample of 25 WIOD aggregates for 31 countries over 9 years.Finally, we keep the 14 WIOD

aggregates that correspond to traded goods. Table O.5 lists the sectors and their code.

We then turn to the COMTRADE data. First, we drop all countries not in our WIOD sample

and drop a few instances of self-trade that only appear in a few countries. We then merge

the data with WIOD data, scaling units of both datasets to be in thousands of US dollars,

and adding missing observations to fill in all possible pairs of the 925 SITC codes, 31 origin

countries, 31 destination countries, and 9 years.

Next, we compare the WIOD aggregate level expenditure implied by the COMTRADE

data to the values coming from WIOD in order to infer missing values and zeros in the
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underlying SITC-level expenditure data. On average, the two data sets match at the WIOD

aggregate level. However, there are some instances where WIOD aggregates are larger

than WIOD aggregates implied by COMTRADE, and some instances where they are smaller.

In the former case, we infer that there are true missing values in the COMTRADE data,

while in the later case we infer that the WIOD aggregates have missing underlying values

and the missing values in COMTRADE are actually zeros.

We adjust the data as follows. Conditional on having a zero in the corresponding WIOD

aggregate, 20.6 percent of SITC observations have a value in COMTRADE. The remaining

we infer to be true zeros rather than missing observations, so whenever the WIOD aggregate

is zero and a SITC value is missing, we set the SITC value to zero. Otherwise, we assume

that the WIOD data is incorrect and use the information in the COMTRADE data to fill

in the zeros in the WIOD. For observations where WIOD aggregates are positive, we

infer zeros and missing values in COMTRADE as follows. First, if the WIOD aggregate

value implied by COMTRADE is missing but the WIOD aggregate is positive, we treat

all the underlying SITC observations from COMTRADE as missing. Second, if the WIOD

aggregate is less than the WIOD aggregate implied by COMTRADE, we infer that the

WIOD data is incorrect, replace its value with the value implied by COMTRADE, and

treat all the SITC missing values underlying the aggregate as zeros. Finally, if the WIOD

aggregate is greater than the WIOD aggregate implied by COMTRADE, we infer that the

discrepancy is due to missing values in COMTRADE. As such, we leave all missing SITC-

level observations underlying the WIOD aggregate as true missing values. The resulting

dataset has 23.3 percent inferred missing SITC values and 25.4 percent inferred zeros, and

its WIOD aggregates are always greater than or equal to the aggregate of the underlying

SITC expenditure data. We observe no self-trade data in COMTRADE, so conditional on

self trade, all SITC values are missing. Among missing values, 13.9 percent are self trade

observations.

O.9.3 Tariff Interpolation

Although our estimation can handle missing expenditure values at the SITC-level, it requires

a full sample of tariff observations. We use the tariff measure in COMTRADE which is

the minimum of tariffs across underlying products. 49.1 percent of these tariff values are

missing including missing values associated with self-trade observations (which make up

3.2 percent of the data). Among those that are missing, 47.2 percent also have a missing

value for expenditure, indicating that about half of the missing tariff data comes from no

COMTRADE observation. Among observations with a non-missing value for expenditure,

33.8 percent of tariffs are missing. We interpolate SITC tariff data as follows. First, we
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use the minimum within each 4-digit SITC code (across origins within a destination-year)

to fill in missing values, which leaves 18.5 percent of observations missing. Second, we

interpolate using the minimum within each 3-digit SITC code (leaving 1.3 percent missing),

the minimum within each 2-digit SITC code (leaving 0.33 percent missing), and, finally, the

minimum within each 1-digit SITC code (leaving no missing values). Finally, we set self-

trade tariffs to zero.

O.10 Latent-Factor Model Estimation: Algorithm

We do not observe all sectors in (28). Additionally, we need to account for observed tariffs,

and simultaneously estimate of σk for k = 1, . . . ,K. The presence of missing data requires

to use an adjusted version of (29), which we describe in Section O.10.2. We solve this

adjusted problem using an extension of the multiplicative-update non-negative matrix

factorization (NMF) algorithm of Lee and Seung (1999, 2001) to accommodate covariates

and missing data, which we present in Section O.10.3.

O.10.1 Identification Conditions For NMF

Here, we present sufficient conditions from the literature on identification of non-negative

matrix factorizations—see Fu et al. (2019) for a survey. Given a non-negative matrix Π ∈
RS×M+ , any pair of matrices (Λ,Φ∗) with Π = ΛΦ∗, Λ ∈ RS×K+ , and Φ∗ ∈ RK×M+ is a non-

negative matrix factorization (NMF). A NMF is identified if it is unique up to permutation

and scaling of the columns of Λ and the rows of Φ∗. That is, the matrices of any other

factorization can be written as ΛR−1 and RΦ∗ where R is the product of a permutation

matrix with a strictly positive diagonal matrix.

The intuition for identification of NMF is geometric. The rows of Λ (or columns of Φ∗),

viewed as points in the factor space, RK+ , must be “spread out” in some sense that makes

enough of the non-negativity constraints bind such that permutations are the only possible

rotations of the factorization (with scale typically pinned down through some normalization).

Intuitively if the non-negativity constraints are slack, then there might be a rotation that

keeps all the constraints slack. In which case, the factorization would not be identified.

This idea is analogous to the role of sign restrictions limiting rotations of latent structural

shocks in structural VARs (Faust, 1998; Uhlig, 2005; Fry and Pagan, 2011; Arias et al., 2018).

It is useful to conceptualize the geometry using the cone generated by Λ′, cone(Λ′) = {Λ′x |
x ∈ RS+}, which is the subset of RK+ consisting of positive linear combinations of the rows

of Λ. When this cone is large enough within RK+ , any rotation other than a permutation

will violate non-negativity.
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The following result provides a stark example of this logic and has a clear economic interpretation

when the entries of Λ correspond to how each sector, s, loads on each factor, k. In particular,

it assumes that factors do not share sectors, forcing cone(Λ′) to entirely fill the positive

orthant.

Theorem O.1 (Ding et al. (2006)). If Λ is orthogonal so that Λ′Λ = I , then (Λ,Φ∗) is identified.

First, the diagonal of the orthogonality constraint normalizes the scale of each column of

Λ, removing the scale indeterminacy of the factorization. Second, the off-diagonal entries

force the columns of Λ to be mutually orthogonal. Since these columns have only non-

negative entries, there can never be an s such that λsk and λsk′ are both positive unless

k = k′, implying that each sector can only load on a single factor (although factors can

put weight on many sectors). In this case, sectors are partitioned into K groups which

correspond to the factors. That is, factors do not share sectors and the non-zero entries

of the columns of Λ contain the weights across sectors within each group. Indeed, this

type of restriction means that factors correspond to some aggregation of sectors—which is

precisely the assumption of a SGM model at that aggregated level. Under this economic

restriction, each row of Λ lies along an axis of RK+ —it is a scaled standard basis vector.

Geometrically, this means that the rows of Λ are maximally spread out in RK+ , implying

that cone(Λ′) = RK+ and only permutations preserve non-negativity.

Although this example clarifies the geometric intuition for why non-negativity constraints

can ensure identification, orthogonality of Λ is far from necessary. For instance, Donoho

and Stodden (2004) provide a much weaker sufficient condition, which in our context can

be interpreted as requiring that each factor is unique to at least one sector. In this case,

most sectors can be shared across factors (breaking the restriction of the SGM). However,

we still get the geometric result that cone(Λ′) = RK+ without requiring all rows of Λ to

correspond to scaled standard basis vectors.

One possible issue with this weaker assumption is that we may want to allow every sector

to use multiple factors. Huang et al. (2014) provide a much weaker condition that allows

for this possibility. It is based on the following notion of the rows of Λ being “spread out”

in RK+ .

Definition O.7 (Sufficiently Scattered). Λ ∈ RS×K+ is sufficiently scattered if:

1. C ≡ {x ∈ RK | x′1 ≥
√

(K − 1)x′x} ⊆ cone(Λ′).

2. cone(Λ′) ⊆ cone(R) does not hold for any orthonormal R except the permutation matrices.

To interpret the second-order cone, C, we can project it onto the unit simplex in RK+ . This

projection is the largest (K − 1 dimensional) sphere contained inside the simplex and it is
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tangent to each facet of the simplex. (For the K = 3 case, this projection is a circle on the

simplex that is tangent to each side of the simplex.) If the rows of Λ (after projection onto

the simplex) all were inside of this sphere, then they could be arbitrarily rotated without

ever hitting the non-negativity constraints. However, if there are rows of Λ that lie outside

of C, not all rotations become possible as they will eventually hit the facets of RK+ . When

Λ is sufficiently scattered, the rows of Λ are spread out enough relative to C to rule out all

rotations except permutations. The first condition implies that there are faces of cone(Λ′)

that intersect the faces of RK+ (ruling our small rotations), while the second is a regularity

condition that means that cone(Λ′) is large enough to not simply tangentially contain C
(ruling out large rotations, other than permutations).

This concept leads to the following sufficient condition for identification.

Theorem O.2 (Huang et al. (2014)). If Λ and Φ∗
′ are sufficiently scattered, then (Λ,Φ∗) is

identified.

If we view the rows of Λ (columns of Φ∗) as being drawn from some distribution with

full support on RK+ and a positive probability of zero entries (necessary for the facets

of cone(Λ′) to intersect the facets of RK+ ), then it becomes very likely that this sufficient

condition will hold as the number of rows (columns) get large. Indeed, Fu et al. (2019)

use numerical examples to show that we get identification with high probability as the

dimensions of the data get large for fixed K. In our context, this essentially means that we

assume that Λ and Φ∗ contain zeros, and we use highly disaggregate sectoral data across

many countries. Intuitively, each additional sector and country-pair adds additional non-

negativity constraints, further restricting possible rotations in the low dimensional factor

space, RK+ .

O.10.2 Accounting for Missing Data

The WIOD expenditure data occasionally have more expenditure than the total expenditure

across SITC 4-digit sectors within that WIOD aggregate. To model expenditure coming

from sources other than those in the SITC 4-digit data, we include a synthetic sector within

each SITC 4-digit aggregate. When the SITC 4-digit data match the WIOD data, there is

no expenditure on this synthetic sector. We then have 773 4-digit sectors plus 14 WIOD

synthetic sectors, where the former may be missing, and the latter are always observed. In

the following notation we do not differentiate between these sectors, so that S = 773 + 14.

Appending a t subscript to denote year, let Sjodt be the set of observed sectors for origin

o delivering to destination d at time t in WIOD aggregate j. We use data from WIOD to
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construct residual expenditure on unobserved sectors, which is

Rjodt =
∑

s∈S\Sjodt

K∑
k=1

t−σksod λsk
φ∗kod
πod

,

where S = {1, . . . , S}.

Since the sum of Poisson variables is also Poisson with scale equal to the sum of underlying

scale parameters, we can write the objective function in terms of an observed component

and residual component,

L =
∑
jodt

 ∑
s∈Sjodt

`

(
πsod
πod

,
K∑
k=1

t−σksod λsk
φ∗kod
πod

)
+ `

Rjodt, ∑
s∈S\Sjodt

K∑
k=1

t−σksod λsk
φ∗kod
πod

 .
The algorithm in the following section provides a method to minimize this function.

O.10.3 NMF with Covariates and Missing Data

The extensions of the multiplicative-update non-negative matrix factorization (NMF) algorithm

of Lee and Seung (1999, 2001) do not change the properties of the algorithm.

The data are (Xit, Zit) where i = 1, . . . , N is a (potential) unit of observation, while t =

1, . . . , T indexes cross sections. We assume that Xit | Zit is a Poisson random variable with

scale

X̂it =
K∑
k=1

Z−σkit λikφ
∗
kt

for some unknown parameters {σk,Λk,Φ∗k}Kk=1, with Λk ≡ (λ1k, . . . , λNk)
′ and Φ∗k ≡ (φ∗1k, . . . , φ

∗
Tk)
′.

We assume that all values of Zit are observed, but for each t there are some (but not all)

values of Xit that are unobserved. However, we also observe some aggregates that are

representative of each full cross section. For each i, there is a j(i) such that in every t we

observe

X̄jt ≡
N∑
i=1

1{j(i) = j}Xit.

Although we do not observe all the data at the i-level, we indirectly observe them via these

aggregates.

Let It denote the observations in cross-section t, and define the component of each aggregate

that is attributable to missing data—the residual component of the aggregate—as

Rjt ≡ X̄jt −
∑
i∈It

1{j(i) = j}Xit =
∑
i 6∈It

1{j(i) = j}Xit.
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Since the sum of Poisson random variables is Poisson with scale equal to the sum of the

underlying scales, we have thatRjt | X̂1t, . . . , X̂Nt is Poisson with scale R̂it =
∑

i 6∈It 1{j(i) =

j}X̂it.

In this setup, each X̂it contributes to explaining the observed data through a unique observation—

either because Xit is observed directly, or because it is unobserved and shows up in the

residual of a unique j. Define the group of potential observations that i is aggregated with

as Iit = {i} if i ∈ It and Iit = {i′ ∈ It | j(i′) = j(i)} if i 6∈ It. Then, define

Yit ≡
∑
i′∈Iit

Xi′t =

Xit if i ∈ It

Rj(i)t if i 6∈ It
and Ŷit ≡

∑
i′∈Iit

X̂i′t.

It is useful to define the “filled in” N × T data matrix, Y, with entries [Y]it = Yit and a

prediction matrix Ŷ with entries [Ŷ]it = Ŷit. When there is no missing data, this prediction

matrix can be written as

Ŷ =
K∑
k=1

Z−σk � (ΛkΦ
∗
k′),

where Z is the matrix of explanatory variables, [Z]it = Zit. In the case without explanatory

variables, set σk = 0 for all k), and get

E[Y] = Ŷ = [Λ1 . . .Λk][Φ
∗
1 . . .Φ

∗
k]
′.

That is, we have a matrix-factorization problem. Because all the data and parameters

are non-negative, it is a non-negative matrix factorization problem. The present model

generalizes this problem to incorporate missing data and explanatory variables with factor-

specific coefficients.

The Poisson deviance is

L =
T∑
t=1

∑
i∈It

`(Xit, X̂it) +
J∑
j=1

`

Rjt,∑
i 6∈It

1{j(i) = j}X̂it

 .
It is useful to re-write this expression as

L =

T∑
t=1

∑
i∈It

`(Xit, X̂it) +
∑
i 6∈It

`
(
Rj(i)t,

∑
i′ 6∈It 1{j(i

′) = j}X̂i′t

)
∑

i′ 6∈It 1{j(i′) = j}

 .
But then

L =

N∑
i=1

T∑
t=1

`(Yit, Ŷit)

Nit
, (O.17)
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where Nit = 1 if i ∈ It and Nit =
∑N

i′=1 1{j(i′) = j(i)} if i 6∈ It. Recall that `(x, x̂) ≡
2(x ln(x/x̂) − (x − x̂)) = 2(x̂ − x ln x̂ + x lnx − x) so that ∂`(x, x̂)/∂x̂ = 2(1 − x/x̂). The

derivative in λi′k is then

∂L
∂λi′k

= 2

N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

)
1{i′ ∈ Iit}Z−σki′t φkt

Nit
= 2

T∑
t=1

(
1− Yit

Ŷit

)
Z−σki′t φkt.

We can therefore write the gradient in Λk as

∂L
∂Λk

= 2Z−σkΦ∗k − 2

(
Y

Ŷ
� Z−σk

)
Φ∗k,

where [Z]it = Zit and � denotes element-wise multiplication. The update multiplies the

existing value of Λk by the ratio of the negative component of the gradient to the positive

component,

Λk ← Λk �

(
Y
Ŷ
� Z−σk

)
Φ∗k

(Z−σk)Φ∗k
. (O.18)

Larger entries of Λk increase predicted values. When the current prediction is below the

observed value, this update increases Λk, thereby increasing the predicted values. Any

time we update Λk, we follow up by performing Φ∗k ← Φ∗k(1
′Λk), and Λk ← Λk/(1

′Λk),

where 1 denotes a vector of ones. This update has no effect on predictions and forces the

normalization
∑N

i=1 λik = 1.

Similarly, we get an updating rule for Φ∗k given by

Φ∗k ← Φ∗k �

(
Y
Ŷ
� Z−σk

)′
Λk

(Z−σk)′Λk
. (O.19)

Finally, the derivative in σk is

∂L
∂σk

= −2
N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

) ∑
i′∈Iit

Z−σki′t λi′kφ
∗
kt lnZi′t

Nit

= −2
N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

)
Z−σkit λikφ

∗
kt lnZit

= −21′
[
Z−σk � (ΛkΦ

∗
k′)� lnZ− Y

Ŷ
� Z−σk � (ΛkΦ

∗
k′)� lnZ

]
1.

The implied updating rule is

σk ← σk �
1′[Z−σk � (ΛkΦ

∗
k′)� lnZ]1

1′
[
Y
Ŷ
� Z−σk � (ΛkΦ

∗
k′)� lnZ

]
1
. (O.20)
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Using the proof technique in Lee and Seung (2001), one can show that (O.17) is monotonically

decreasing in any of (O.18), (O.19), and (O.20). To estimate the model, we sequentially

iterate on these updating rules until convergence. With no guarantee of finding the global

optimum, we repeat the algorithm from many random starting values and use the version

with the lowest value of (O.17) as our estimate.
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O.11 Additional Quantitative Results
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Table O.6: Factor Weights: Sharing and Similarity.

Pairs of Factors Pairs of 4-Digit SITC Sectors

Fraction of Sectors Shared Similarity Fraction of Factors Shared Similarity

Mean 0.74 0.05 0.746 0.374
Standard Deviation 0.056 0.035 0.19 0.301
Minimum 0.649 0.001 0.0 0.0
10th Percentile 0.667 0.011 0.429 0.026
Median 0.745 0.046 0.714 0.302
90th Percentile 0.799 0.108 1.0 0.848
Maximum 0.842 0.112 1.0 1.0

Notes: Sectors are 4-digit SITC sectors. Similarity refers to
∑
s λskλsk′/

√∑
s λ

2
sk

∑
s λ

2
sk′ in column 2, and to∑

k λskλs′k/
√∑

k λ
2
sk

∑
k λ

2
s′k in column 4.

Table O.7: Elasticity estimates: LFM with different number of factors.

Number of factors K

1 2 3 4 5 6 7 8

σ1 3.003 3.933 3.300 4.814 3.929 7.866 5.175 9.944
σ2 2.767 2.638 3.342 3.780 3.536 4.868 5.471
σ3 1.592 2.614 3.573 2.559 4.624 4.417
σ4 1.223 0.806 0.804 1.481 3.435
σ5 0.418 0.574 0.670 1.884
σ6 0.163 0.390 1.594
σ7 0.375 0.111
σ8 0.108
θ = mink σk 3.003 2.767 1.592 1.223 0.418 0.163 0.375 0.108
Average σk 3.003 3.350 2.510 2.998 2.501 2.584 2.512 3.371

Notes: Estimates of factor-level elasticities, σk, for latent-factor models (LFM) with K = 1,. . . , 8. In each case,
F1 is the factor with the highest elasticity, while FK is the one with the lowest, with θ = σK .
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Table O.8: Gains From Trade: Models’ Comparison.

Country Name Country Code Domestic share Gains from Trade
CES SGM SGM + IO LFM

Australia AUS 0.73 1.28 1.15 1.21 1.74
Austria AUT 0.39 1.43 1.59 2.03 5.59
Belgium BEL 0.17 1.97 2.56 4.79 28.69
Bulgaria BGR 0.45 1.36 1.45 1.97 4.26
Brazil BRA 0.90 1.04 1.04 1.07 1.10
Canada CAN 0.53 1.28 1.34 1.56 3.48
China CHN 0.90 1.04 1.03 1.09 1.14
Czech Republic CZE 0.45 1.36 1.37 1.97 2.39
Germany DEU 0.55 1.26 1.29 1.50 1.86
Denmark DNK 0.38 1.45 1.62 1.98 6.29
Spain ESP 0.63 1.19 1.22 1.40 1.57
Finland FIN 0.57 1.24 1.26 1.48 3.27
France FRA 0.59 1.22 1.26 1.46 1.99
Great Britain GBR 0.52 1.29 1.32 1.48 1.98
Greece GRC 0.57 1.24 1.32 1.49 2.78
Hungary HUN 0.37 1.47 1.54 2.30 7.36
India IND 0.88 1.05 1.06 1.10 1.26
Ireland IRL 0.43 1.38 1.45 1.72 2.96
Italy ITA 0.71 1.14 1.15 1.26 1.26
Japan JPN 0.86 1.06 1.06 1.13 1.30
Korea KOR 0.78 1.10 1.10 1.27 1.36
Mexico MEX 0.64 1.19 1.20 1.36 1.81
Netherlands NLD 0.28 1.63 1.73 2.19 11.38
Poland POL 0.58 1.23 1.28 1.51 2.51
Portugal PRT 0.52 1.29 1.35 1.66 2.90
Russia RUS 0.77 1.11 1.14 1.23 1.57
Slovakia SVK 0.33 1.53 1.59 2.39 3.67
Slovenia SVN 0.31 1.57 1.96 — 5.08
Sweden SWE 0.50 1.31 1.34 1.57 2.53
Turkey TUR 0.76 1.11 1.15 1.25 1.50
United States USA 0.76 1.11 1.12 1.19 1.46

Notes: Gains from trade = Real wages in the observed equilibrium relative to autarky real wages. Calculations
using estimates from latent-factor model (LFM), sectoral gravity model (SGM), SGM augmented by input-
output links (SGM + IO), and CES model as in ACR (CES). Year 2007.
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Figure O.2: Factor Weights: Two-Digit SITC Sectors.
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Notes: Estimates of factor weights across 4-digit SITC sectors, aggregated to 2-digit SITC sectoral level.
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Figure O.3: Similarity of Factor Use Across Two-Digit SITC Sectors.
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Live animals chiefly for food
Meat and preparations

Dairy products and birds' eggs
Fish, crustacean and molluscs, and preparations thereof

Cereals and cereal preparations
Vegetables and fruit

Sugar, sugar preparations and honey
Coffee, tea, cocoa, spices, and manufactures thereof

Feeding stuff for animals (not including unmilled cereals)
Miscellaneous edible products and preparations

Beverages
Tobacco and tobacco manufactures

Hides, skins and furskins, raw
Oil seeds and oleaginous fruit

Crude rubber (including synthetic and reclaimed)
Cork and wood

Pulp and waste paper
Textile fibres (not wool tops) and their wastes (not in yarn)

Crude fertilizer and crude minerals
Metalliferous ores and metal scrap

Crude animal and vegetable materials, nes
Coal, coke and briquettes

Petroleum, petroleum products and related materials
Gas, natural and manufactured

Animal oils and fats
Fixed vegetable oils and fats

Animal and vegetable oils and fats, processed, and waxes
Organic chemicals

Inorganic chemicals
Dyeing, tanning and colouring materials
Medicinal and pharmaceutical products

Oils and perfume materials; toilet and cleansing preparations
Fertilizers, manufactured

Explosives and pyrotechnic products
Artificial resins and plastic materials, and cellulose esters etc

Chemical materials and products, nes
Leather, leather manufactures, nes, and dressed furskins

Rubber manufactures, nes
Cork and wood, cork manufactures

Paper, paperboard, and articles of pulp, of paper or of paperboard
Textile yarn, fabrics, made-up articles, nes, and related products

Non-metallic mineral manufactures, nes
Iron and steel

Non-ferrous metals
Manufactures of metals, nes

Power generating machinery and equipment
Machinery specialized for particular industries

Metalworking machinery
General industrial machinery and equipment, nes, and parts of, nes

Office machines and automatic data processing equipment
Telecommunications, sound recording and reproducing equipment

Electric machinery, apparatus and appliances, nes, and parts, nes
Road vehicles

Other transport equipment
Sanitary, plumbing, heating, lighting fixtures and fittings, nes

Furniture and parts thereof
Travel goods, handbags and similar containers

Articles of apparel and clothing accessories
Footwear

Professional, scientific, controlling instruments, apparatus, nes
Photographic equipment and supplies, optical goods; watches, etc

Miscellaneous manufactured articles, nes
Animals, live, nes, (including zoo animals, pets, insects, etc)

Armoured fighting vehicles, war firearms, ammunition, parts, nes
Coin (other than gold coin), not being legal tender

Gold, non-monetary (excluding gold ores and concentrates)
Residual

Notes: Similarity refers to
∑
k λhkλh′k/

√∑
k λ

2
hk

∑
k λ

2
h′k and λhk is constructed from estimates of λsk. h refers to a

2-digit SITC sector, and s refers to a 4-digit SITC sector.
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Figure O.4: Expenditure Elasticities, US market: LFM vs SGM.

(a) ε̂o,o′,USA, LFM (b) ε̂o,o′,USA, SGM

Notes: Estimates of expenditure elasticities εo,o′,USA calculated using (30) and estimates from the latent-factor
model (LFM) and sectoral gravity model (SGM). Year 2007.

Figure O.5: Tariff effects, densities.
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Table O.9: Tariff effects, moments.

%∆ Real Wage Elasticity: LFM vs SGM

Domestic 3rd Party Total

Mean -4.08 15.86 17.88
Std. 44.02 45.89 40.72
Skewness 0.54 0.33 7.39
25th Pctl. -38.72 -16.98 7.63
50th Pctl. -8.72 18.87 15.34
75th Pctl. 25.59 43.48 26.75
90th Pctl. 56.01 68.29 43.70

Notes: Figure O.5 shows density plots of the percent difference in the components of (32) between the latent
factor model (LFM) and sectoral gravity model (SGM). Blue corresponds to the domestic wage effect, orange
corresponds to the third party effect, and purple shows the full effect. The direct tariff effect is identical between
the two models. Table O.9 shows moments of these densities. Year 2007.
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