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A Data

The brands in our sample include Bud Light, Budweiser, Michelob, Michelob Light, Miller

Lite, Miller Genuine Draft, Miller High Life, Coors Light, Coors, Corona Extra, Corona

Extra Light, Heineken, and Heineken Light. Miller and Weinberg (2017) report that these

brands account for 68% of all unit sales of SAB Miller, Molson Coors, ABI, Modelo, and

Heineken. The most popular brands that are excluded are regional brands (e.g., Yuengling

Lager, Labatt Blue) or subpremium brands that sell at lower price points (e.g., Busch Light,

Natural Light, Busch, Keystone, Natural Ice). Many of the subpremium brands are owned

by ABI. Also excluded are some brands that enter or exit during the sample period (e.g.,

Budweiser Select, Bud Light Lime). Adding brands to the model would require re-estimation

of the RCNL demand model.

We restrict our attention to 6 packs, 12 packs, 24 packs, and 30 packs, the latter two

of which we combine in the construction of our products. Miller and Weinberg (2017) report

that these sizes account for 75% of all unit sales among the brands that we consider.
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We use the demographic draws of Miller and Weinberg (2017), which are from the

Public Use Microdata Sample (PUMS) of the American Community Survey, in the demand

model. The PUMS data are available annually over 2005–2011. Households are identified

as residing within specified geographic areas, each of which has at least 100,000 residents

based on the 2000 U.S. Census. The PUMS data are merged with the IRI scanner data by

matching on the counties that compose the IRI regions and the PUMS areas. There are 500

draws on households per region–year. Income is measured as total household income divided

by the number of household members.

Miller and Weinberg (2017) restrict attention to 39 of the 47 geographic regions in the

IRI academic database, dropping a handful of regions in which either few supermarkets are

licensed to sell beer or supermarkets are restricted to selling low-alcohol beer.1 The IRI data

are not intended to be fully representative of regions in the United States. Bronnenberg et

al. (2008, p. 746) states that

In practice, to protect the confidentiality of these chains, markets in which the

top grocery chain has more than 50% of the grocery market are omitted. This

reduces the coverage to 47 markets.

If the excluded regions feature more buyer power than those included in the sample, which

seems plausible given this inclusion rule, then the supermarkups we find might exceed the

national average. See the discussion in Section 3.6 for more on buyer power.

In our sample, we also exclude New Orleans and San Diego, leaving a total of 37

geographic regions in the data. The exclusion is due to a computational issue related to

the demographic draws. When we compute the fringe’s best responses to even very small

supermarkups, such as m = 0.01, we find that Modelo and Heineken respond by lowering

prices in New Orleans and San Diego, often by an order of magnitude more than the super-

markup. The magnitude and direction of this response—and note that prices are acting as

strategic substitutes here—makes any positive supermarkup unprofitable. We attribute this

outsize strategic substitutes response to poorly-performing demographic draws. In numerical

checks based on logit demand, which omits the impact of the demographic draws, we always

compute PLE that feature positive supermarkups (Appendix C.3). Consistent with this,

1The regions included in the Miller and Weinberg (2017) sample are Atlanta, Birmingham/Montgomery,
Boston, Buffalo/Rochester, Charlotte, Chicago, Cleveland, Dallas, Des Moines, Detroit, Grand Rapids,
Green Bay, Hartford, Houston, Indianapolis, Knoxville, Los Angeles, Milwaukee, Mississippi, New Orleans,
New York, Omaha, Peoria/Springfield, Phoenix, Portland in Oregon, Raleigh/Durham, Richmond/Norfolk,
Roanoke, Sacramento, San Diego, San Francisco, Seattle/Tacoma, South Carolina, Spokane, St. Louis,
Syracuse, Toledo, Washington D.C., and West Texas/New Mexico.
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the income draws of New Orleans and San Diego are much larger on average than nearly

all other regions, and also exhibit greater variance.2 Thus, we believe the computational

issue is due to the demand-side of the model and is not indicative of a broader supply-side

performance issue.

B Theoretical Matters

B.1 Slack Functions and the Timing Parameter

Here we provide a proof to Proposition 2. We show that a slack function with (1) deviation

profits being earned for one or more periods, (2) punishment occurring for a finite period of

time, and (3) some probability that the market ceases to exist can be restated in an equivalent

form with (i) deviation profits being earned for one period, (ii) punishment occurring by grim

trigger, and (iii) the market continuing to exist each period with probability one. Formally,

assumptions (1) - (3) give a region-specific contribution to the slack function of

g̃irt(mrt; ·) ≡
(
πPLirt (mrt; Ψt) +

φδ

1− φδ
πPLirt (m̃rt; Ψt)

)
−

(
τ1−1∑
s=0

(φδ)sπD,iirt (mrt; Ψt) +

τ1+τ2−1∑
s=τ1

(φδ)sπBirt(; Ψt) +
∞∑

s=τ1+τ2

(φδ)sπPLirt (m̃rt; Ψt)

)
,

which is equation (3). Because φ ≤ 1 and δ < 1, we have |φδ| < 1. Thus, the geometric

series can be simplified, giving

g̃irt(mrt; ·) ≡
1− (φδ)τ1

1− φδ

((
πPLirt (mrt; Ψt) +

(φδ)τ1 − (φδ)τ1+τ2

1− (φδ)τ1
πPLirt (m̃rt; Ψt)

)

−
(
πD,iirt (mrt; Ψt) +

(φδ)τ1 − (φδ)τ1+τ2

1− (φδ)τ1
πBirt(; Ψt)

))
.

If we set η such that

η =
(φδ)τ1 − (φδ)τ1+τ2

1− (φδ)τ1+τ2
,

then we see that g̃irt = ((1 − (φδ)τ1)/(1 − φδ))girt. Let ψ = (1 − (φδ)τ1)/(1 − φδ). Sum-

ming across regions, this also implies that g̃it = ψgit. Because |φδ| < 1, we have ψ > 0.

2Variance is relevant because prices tend to be strategic substitutes only with enough consumer hetero-
geneity (or “demand curvature”). Miller and Weinberg (2017, Table A.2 in the Online Appendix) shows
that New Orleans and San Diego each have HHIs that are comparable to other regions in the data.
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Furthermore, if τ1 = 1, then ψ = 1.

QED

B.2 The Leader’s Constrained Maximization Problem

In this appendix, we derive the first order conditions that characterize the solution to the

leader’s constrained maximization problem. The Lagranian is given by

L =
∑
r∈R

πPL1rt (mrt; Ψt) +
∑
j∈C

λjgjt(mt; η, m̃t,Ψt),

where λj is the Lagrange multiplier for the IC constraint of firm j. This gives a series of

first order conditions of the form

∂L

∂mrt

=
∂πPL1rt (mrt; Ψt)

∂mrt

+ λk

(
∂gkt(mt; η, m̃t,Ψt)

∂mrt

)
= 0 ∀r ∈ R,

where firm k has the IC constraint that binds. The derivative of the slack function for

coalition member k with respect to the supermarkup for region r is

∂gkt(mt; η, m̃t,Ψt)

∂mrt

= −∂π
D,k
krt (mrt; Ψt)

∂mrt

+
∂πPLkrt (mrt; Ψt)

∂mrt

.

Plugging in for this derivative and then rearranging the first order condition for region R

gives

λk =

∂πPL
1Rt(mRt;Ψt)

∂mRt

∂πD,k
kRt(mRt;Ψt)

∂mRt
− ∂πPL

kRt(mRt;Ψt)

∂mRt

.

Substituting into the other first order conditions gives

∂π1rt(mrt;Ψt)
∂mrt

∂πD,k
krt (mrt;Ψt)

∂mrt
− ∂πPL

krt(mrt;Ψt)

∂mrt

=

∂πPL
1Rt(mRt;Ψt)

∂mRt

∂πD,k
kRt(mRt;Ψt)

∂mRt
− ∂πPL

kRt(mRt;Ψt)

∂mRt

for all other regions r ∈ R \ {1}.

C Numerical Matters

In this appendix we describe the methods we use for imputation and simulation, under

the assumption that prices are generated by a constrained PLE. We assume knowledge of
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the timing parameter, η. We focus mainly on the baseline model, which features a single

supermarkup for each region and IC constraints that pool across regions. We also discuss

alternative models with (i) separate supermarkups for small and large product sizes, and (ii)

IC constraints that do not pool across regions. For the purposes of this appendix section,

assume that firm 1 is the leader and that firm k has the binding constraint. This is without

loss of generality—the leader and the binding firm could be any of the coalition firms, and

could even be the same firm. We also drop time subscripts for notational brevity, as neither

imputation nor simulation require multiple periods.

C.1 Imputation with the Baseline Model

We start with the case in which the leader selects a single supermarkup for each region.

The solution to the leader’s constrained maximization problem requires that the vector of

supermarkups, m = (m1,m2, . . . ,mR), satisfies the following equations:

gk(m; η) ≡
R∑
r=1

(
1

1− η
πPLkr (mr)− πD,kkr (mr)−

η

1− η
πBkr

)
= 0 (C.1)

hr(mr,mR) ≡
∂πPL

1r (mr)

∂mr

∂πD,k
kr (mr)

∂mr
− ∂πPL

kr (mr)

∂mr

−
∂πPL

1R (mR)

∂mR

∂πD,k
kR (mRt)

∂mRt
− ∂πPL

kR (mRt)

∂mRt

= 0 (C.2)

where (C.2) applies to regions r = 1, . . . , R − 1. Equation (C.1) can be obtained from

equations (5) and (6) after applying the rational expectations assumption. This is a system

with R nonlinear equations and R unknowns.

In principle, a solution could be obtained using off-the-shelf algorithms, such as an

equation solver (e.g., fsolve in Matlab) or a minimizer (e.g., fminsearch in Matlab). However,

that approach appears to be computationally prohibitive in our application, for two reasons.

The first is that solving a nonlinear system of equations is inherently slow if there are many

parameters. We have 37 regions, and thus 37 parameters, which is enough to make the search

difficult even with fast function evaluations. The second reason is that function evaluation

is quite slow. For any candidate m̃, Proposition 1 must be applied to recover marginal costs

and Bertrand prices. Then, with marginal costs in hand, deviation prices must be computed.

Finally, the derivatives in (C.2) must be obtained numerically, so many of the steps must be

repeated. Even with streamlined code and using multiple processors, we have been unable

to make substantial progress with this approach.

Instead, we develop an approach to imputation that better exploits the economics of
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the model to obtain solutions. Notice that any candidate parameter vector can be expressed

m̃ = (m̃R, ∆̃m), where ∆̃m = (∆̃m1, . . . , ∆̃mR−1) and ∆̃mr ≡ m̃r − m̃R. The vector m̃

thus contains the supermarkup that applies to region R and the supermarkup differences

between region R and the other regions. Our strategy involves solving for m̃R holding fixed

∆̃m, then solving for ∆̃m holding fixed m̃R. Repeating this multiple times, we are able to

reliably find a solution that satisfies all the first order conditions to any arbitrary degree of

accuracy. Specifically, the steps are:

1. Set ∆̃m
(0)

=
−→
0 . Search for the m̃R that solves (C.1). We use fminsearch in Matlab

with a tolerance of 1e-4.3 Each evaluation of the loss function requires a number of

numerical steps, so the search is nontrivial. However, it is feasible nonetheless because

there is only one unknown. At the solution, the IC constraint binds, but the dispersion

of supermarkups across regions is sub-optimal. Denote the solution m̃
(0)
R

(
∆̃m

(0)
)

.

2. Find the ∆̃m that solves (C.2), holding fixed m̃
(0)
R

(
∆̃m

(0)
)

. At the solution, the disper-

sion of supermarkups across regions is optimal but an IC may no longer bind. Denote

the solution ∆̃m
(1)
(
m̃

(0)
R

)
. The direct approach of solving for the R− 1 supermarkup

differences based on the R− 1 nonlinear equations (e.g., with Matlab’s fminsearch) is

computationally prohibitive. However, consider the RHS of (C.2):

∂πPL
1r (mr)

∂mr

∂πD,k
kr (mr)

∂mr
− ∂πPL

kr (mr)

∂mr

−
∂πPL

1R (mR)

∂mR

∂πD,k
kR (mRt)

∂mRt
− ∂πPL

kR (mRt)

∂mRt

The second ratio is invariant to ∆̃m, which does not affect profit in region R. The

denominator of the first ratio increases in mr = mR + ∆mr because increasing the

supermarkup raises deviation profit more than price leadership profit. Similarly, the

numerator of the first ratio decreases with mr because of diminishing returns to in-

creasing the supermarkup. Thus, the value of h(mr) can be adjusted up or down in

predictable ways by changing ∆̃mr. We apply the following sub-routine:

(a) Set i = 1. Obtain hir from (C.2), evaluating at ∆̃m
i

= ∆̃m
(0)

and m̃
(0)
R

(
∆̃m

(0)
)

,

and do so for each r = 1, . . . , R− 1.

(b) Update ∆̃m
i+1

r = ∆̃m
i

r + φ× sign (hi) for some sufficiently small step φ.

3The tolerance is not unit-free, but given the slack function values we obtain away from the optimum
(e.g., Figure 4), the tolerance of 1e-4 is quite tight. Using an even tighter tolerance does not affect results.
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(c) Obtain hi+1
r , evaluating at ∆̃m

i+1

r and m̃
(0)
R

(
∆̃m

(0)
)

, for each r = 1, . . . , R− 1.

(d) Repeat (b) and (c) until a convergence criterion is satisfied. One option is to

formulate the criterion as maxr=1,...,R−1(|hr|) < ε, for some small ε.

This reliably obtains the solution if the step size φ is not too large. The algorithm

makes imputation feasible because a single function evaluation allows for all of the

parameters to be adjusted simultaneously, and we find that computational time scales

roughly linearly with the number of supermarkups. However, more work is needed

because (C.1) may no longer hold.

3. Search for the m̃R that solves (C.1), holding fixed ∆̃m
(j)
(
m̃

(j−1)
R

)
, as in step 1. Denote

the solution m̃
(j)
R

(
∆̃m

(j)
)

.

4. Find the ∆̃m that solves (C.2), holding fixed m̃
(j)
R

(
∆̃m

(j−1)
)

, as in step 2. Denote the

solution ∆̃m
(j+1)

(
m̃

(j)
R

)
.

5. Iterate on steps 3 and 4, using progressively tighter tolerances in step 4. We iterate

eight times. The final tolerance is such that no hr is more than 0.0001 percent different

than hR.

6. Repeat step 3.

The final step prioritizes (C.1) over (C.2) in the imputation routine. However, the iterations

in step 5 ensure that it does not substantially affect whether (C.2) is satisfied. In our baseline

imputations, no hr is more than 0.001 percent different than hR. This imputation procedure

can be parallelized at various point to take advantage of multiple processors. With the

computer resources we have used, implementation has been feasible, but slow. Given that

we use 500 consumer draws in the RCNL demand model, we expect that implementation

with logit or nested logit demand models—which do not require numerically integrating over

consumer draws—would be approximately 500 times faster.

C.2 Imputation with Alternative Assumptions

Size-Specific Supermarkups

We now consider the case in which the leader sets two supermarkups: one that applies to 6

and 12 packs, and another that applies to 24 packs. There are 2R supermarkups that must
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be recovered. Denote the supermarkups for the 6 and 12 packs as m1 = (m1
1,m

1
2, . . . ,m

1
R)

and the markups for the 24 packs as m2 = (m2
1,m

2
2, . . . ,m

2
R). An evaluation of the leader’s

Lagrangian provides the following first order conditions:

gk(m
1,m2; η) ≡

R∑
r=1

(
1

1− η
πPLkr (m1

r,m
2
r)− π

D,k
kr (m1

r,m
2
r)−

η

1− η
πBkr

)
= 0

h1
r(m

1
r,m

1
R,m

2
r,m

2
R) ≡

∂πPL
1r (m1

r,m
2
r)

∂m1
r

∂πD,k
kr (m1

r,m
2
r)

∂m1
r

− ∂πPL
kr (m1

r,m
2
r)

∂m1
r

−
∂πPL

1R (m1
R,m

2
R)

∂m1
R

∂πD,k
kR (m1

R,m
2
R)

∂m1
Rt

− ∂πPL
kR (m1

R,m
2
R)

∂m1
Rt

= 0

h2
r(m

1
r,m

1
R,m

2
r,m

2
R) ≡

∂πPL
1r (m1

r,m
2
r)

∂m2
r

∂πD,k
kr (m1

r,m
2
r)

∂m2
r

− ∂πPL
kr (m1

r,m
2
r)

∂m2
r

−
∂πPL

1R (m1
R,m

2
R)

∂m1
R

∂πD,k
kR (m1

R,m
2
R)

∂m1
Rt

− ∂πPL
kR (m1

R,m
2
R)

∂m1
Rt

= 0

An important detail is that the second ratios in the expressions for h1 and h2 are identical,

and involve differentiating with respect to m1
R. Thus, there are R − 1 equations available

for h1 but R equations available for h2. Combining with the binding slack function (i.e.,

gk(m
1,m2; η) = 0) there are 2R equations, and the supermarkups are exactly identified.

The imputation algorithm we use to recover the supermarkups tracks that provided in

Appendix C.1. We use m̃1
R as the base supermarkup off of which we calculate supermarkup

differences, so that ∆̃m1
r = m̃1

r−m̃1
R and ∆̃m2

r = m̃2
r−m̃1

R. With size-specific supermarkups,

there are twice as many supermarkups, so the computation time is approximately double

that of the baseline model.

It is theoretically possible that a solution to the set of 2R equations provided above (i.e.

an interior solution) does not exist. This could occur if searching for a solution under the

assumption that i is the binding firm generates gj(m
1,m2; η) < 0 (i.e., that the IC constraint

is violated for firm j), but searching for a solution using j as the binding firm generates

gi(m
1,m2; η) < 0.4 Restated loosely, one coalition firm might prefer higher supermarkups

for smaller package sizes, and another coalition firm might prefer higher supermarkups for

larger package sizes. This does not occur in our application because the relative shares of

the coalition firms are similar for the smaller and larger package sizes.

4Our code does not require the binding firm to be specified ex ante, although doing so speeds computation
by reducing the number of numerical derivatives that must be calculated.
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Independent Regions

The baseline model connects the regions through the IC constraint in the leader’s maxi-

mization problem. It is also possible to proceed under the assumption that each region is

completely independent. In this alternative version of the model, deviation in any single

region is followed by punishment in that region, rather than punishment in all regions. The

leader has region-specific constrained maximization problems:

m∗rt(η) = arg max
mrt≥0

πPL1rt (mrt) s.t. girt(mrt; η) ≥ 0 ∀i ∈ C (C.3)

where girt(mrt; η) is as defined in equation (6). Under the assumption of a constrained PLE,

the solution can be found by searching for the supermarkup for which

gkrt(mrt; η) = 0 (C.4)

where k is the coalition firm with the least slack. As the numerical search involves one

equation, one unknown, and a well-behaved loss function, a solution can be found quickly.

In practice, one distinction with this version of the model is that the identity of the binding

firm is region-specific—in some regions Miller or ABI have the binding IC constraint.

C.3 Numerical Evidence on Imputation

Under the maintained assumptions, it is possible to recover marginal costs from data on

prices and quantities given knowledge of demand, the identity of coalition firms, the timing

parameter, and whether IC constraints bind. We conduct a numerical experiment to confirm

that our coding approach accomplishes this in practice. To do this, we consider 100 markets

and, in each, take the following steps:

1. Data Generation: Randomly draw the number of firms using equal probabilities for

4, 5, . . . , 10 firms. Assume logit demand generated by indirect utility uij = −pj+ξj+εij.
Randomly draw each product’s quality ξj independently from a uniform distribution

with support over [1,2]. Draw each product’s marginal cost ωj independently from a

uniform distribution with support over [0,1]. Assume that the first two firms are in

the coalition and the third firm is in the fringe. Randomly assign all other firms to the

coalition with probability 0.50 and to the fringe with probability 0.50.

2. Equilibrium Computation: Compute the solution to the constrained maximization
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problem of the leader (firm 1), for each of the timing parameters η = 0.2, 0.3, . . . , 0.8,

using the fmincon function in Matlab. This obtains the prices, quantities, and super-

markups that arise in the PLE, as well as the Lagrangian. Let the IC constraints bind

if the Lagrangian exceeds 1e-3.

3. Imputation Algorithm: Given the PLE prices and quantities, the identity of coali-

tion firms, the timing parameter, and whether the IC constraints bind, recover the

marginal costs using the fminsearch function in Matlab. This involves considering a

candidate supermarkup, applying Proposition 1 to recover the implied marginal costs

and Bertrand prices, evaluating either the slack functions at the observed PLE prices

(with binding IC constraints) or the leader’s profit function at the observed PLE prices

(otherwise), and iterating to convergence.

Given each set of data generated in step 1, the PLE that we recover in step 2 features

a positive supermarkup. The question is whether the marginal costs in the generated data

and those from step 3 (imputation) align. Given the 100 markets, seven timing parameters,

and the random draw on the number of firms, we obtain a total of 4,725 marginal costs,

corresponding to 6.75 firms per market, on average. We find that 93.81% of the imputed

marginal costs are within 0.1% of the data, and 98.86% of the imputed marginal costs

are within 1% of the data. Thus, the numerical experiment corroborates that our coding

approach accurately recovers marginal costs.

C.4 Simulation

We simulate the baseline model using methods similar to those we use in calibration. For

the merger simulations, we maintain the assumption pooled regions in the IC constraints, so

methods track Appendix C.1. The same first order conditions (equations (C.1) and (C.2))

apply, albeit with a modified mapping of products to firms. We also use the same algorithm

to recover the supermarkups. For the examination of multimarket contact, we compare

the baseline calibration results to those obtained by simulating outcomes with independent

regions. Thus, methods track the approach provided in Appendix C.2.

The main difference between calibration and simulation pertains to how the profit

terms that appear in the first order conditions are calculated. With calibration, we apply

Proposition 1 to recover marginal costs and Bertrand prices for each candidate supermarkup

vector, and then compute deviation prices and obtain the profit terms. With simulation, we

hold the marginal costs fixed at the level obtained from calibration. We compute Bertrand
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prices and profit, which is invariant to the supermarkup. Then, for each candidate super-

markup, we compute the implied price leadership and deviation prices given the marginal

costs, and then obtain the profit terms.

D Results with Alternative Assumptions

D.1 Overview

In the baseline model, we assume that there is a single supermarkup that applies to all

coalition products in a region, that IC constraints are pooled across markets, and that ABI

is the pricing leader. The first assumption is a matter of expediency, as computation time

increases in the number of supermarkups that must be imputed. The second assumption

can be justified on the basis that price leadership is more profitable for the leader with

pooled IC constraints. The third assumption is based on the qualitative evidence. In this

section, we revisit these assumptions and demonstrate that our main results are robust to

reasonable alternatives. In particular, we examine the following three alternative modeling

assumptions:

1. Size-specific supermarkups. We assume that ABI sets two supermarkups in each region:

one that applies to 6 and 12 packs, and another that applies to 24 packs. We make this

distinction in part based on the observation that there is stronger import competition

for the smaller package sizes (e.g., see Table 2).

2. Independent regions. We assume that ABI sets the supermarkup in each region subject

to region-specific IC constraints. Thus, multimarket contact has no bearing on the

prices that can be sustained in the PLE, and regions can be considered independently.

3. MillerCoors is the leader. We assume that MillerCoors solves the constrained maxi-

mization problem laid out in the text.

For the first two of these scenarios, we impute the supermarkups and marginal costs

under the alternative models, using techniques that are described in Appendix C.2. As

in the baseline model, imputation requires the timing parameter to be specified ex ante.

However, different assumptions imply different marginal costs, so it is possible distinguish

ex post. We use the same marginal cost function as the baseline model, and also apply

the same identifying assumption, namely that β1 = 0. We examine Bertrand competition,

unconstrained PLE, and (initially) constrained PLE with η = 0.25 and η = 0.30. Based on
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these results, we project the timing parameter that would bring the estimate of β1 closest

to zero, and obtain an additional set of results for that timing parameter.

For the third scenario, we hold fixed the marginal costs that we obtain in the baseline

model and simulate a new equilibrium under the counterfactual assumption that MillerCoors

is the leader. The simulation methodologies are described in Appendix C.2.

D.2 Results

The calibration results generated with the alternative models are summarized in Appendix

Tables G.1 and G.2. They are broadly consistent with the results from the baseline model

(Table 3). With each of the alternative models, Bertrand and unconstrained PLE are re-

jected. The timing parameters that best satisfy the identifying assumption of β1 = 0 are 0.25

and 0.27, respectively. The average supermarkups also are similar to those of the baseline

model, so our main results are robust to some of the modeling specifics.

We now discuss the alternative models in greater detail. First, consider the model

with size-specific supermarkups. The results of Table G.1 indicate that supermarkups are

slightly higher for 24 packs than for 6 and 12 packs, a finding that is consistent with Modelo

and Heineken have a smaller presence for the largest package sizes. However, the differences

are not great. For example, in fiscal year 2007, we find an average supermarkup of 1.12

for the smaller package sizes and 1.23 for the larger package sizes. This suggests that the

baseline model might be a good approximation even if the richer (and more computationally

demanding) model with is correct.

Appendix Figure G.1 provides some scatter plots to explore this further. Panel A shows

that, in the alternative model, there is a high degree of correlation between the region-year

specific supermarkups for the smaller and larger package sizes. Thus, regions that have high

supermarkups for one size group also have high supermarkups for the other group. Next,

Panel B shows that the average of the region-year supermarkups in the alternative model

(vertical axis) is highly correlated with the region-year supermarkups from the baseline model

(horizontal axis). Together, Panels A and B indicate that the alternative model is similar to

the baseline model in terms of the supermarkups that they imply. In principle, the models

could nonetheless be distinguished on the basis that they produce (somewhat) different

marginal costs. However, Panel C plots the marginal costs—there is enough similarity that

distinguishing the models would be difficult in practice.

We now turn to the alternative model with independent regions, such that IC con-

straints are not pooled and multi-market contact does not matter for the results. As the
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IC constraints in the alternative model are (on average) the same as the IC constraints

in the baseline model, it is perhaps not surprising that the supermarkups are also simi-

lar on average. More interesting is in how supermarkups are set across regions. With the

baseline model, dispersion across regions satisfies first order conditions reflecting how the

region-specific supermarkups affects (i) the leader’s profit and (ii) the binding firm’s incen-

tive to deviate. With the alternative model, the region-supermarkups reflect the maximum

supermarkup that can be sustained given the binding firm’s IC constraint.

We compare the results for the two models in Appendix Figure G.2, using a series of

scatter plots. Panels A and B show the region-specific supermarkups in fiscal years 2007

and 2010, respectively. In the earlier fiscal year, there are noticeable differences between the

models, but these mostly disappear in the later fiscal year. We believe this change reflects the

greater symmetry among the coalition firms that exists after the Miller/Coors merger. If the

interests of the leader and the binding firm tend to align, then there appears to be less scope

for multi-market contact to affect results. Panel C shows the marginal costs that obtain

with the two models. There are some minor differences for the less costly products (i.e., the

domestic products) but also a high degree of correlation overall. Again, this variation could

in principle distinguish the models, but in practice it appears insufficient to generate reliable

results. Thus, in our view, the obtained marginal costs do not provide a good statistical

basis for preferring one model over the other.

Finally, in Appendix Figure G.3, we plot the supermarkups from the baseline model,

in which ABI is the pricing leader, against those obtained from a counterfactual simulation

in which we let MillerCoors be the leader. The fiscal year for the comparison is 2010. As

shown, the supermarkups do not depend much on the identity of the leader, as the dots are

clustered around the 45◦ line. This is another implication of the overall symmetry between

ABI and MillerCoors in the latter part of our sample.

E The Demand System

Here we sketch the Miller and Weinberg (2017) random coefficients nested logit (RCNL)

model of demand. Suppose we observe r = 1, . . . , R regions over t = 1, . . . , T time periods.

Each consumer i purchases one of the observed products (j = 1, . . . , Jrt) or selects the outside

option (j = 0). The conditional indirect utility that consumer i receives from the inside good

j in region r and period t is

uijrt = xjβ
∗
i − α∗i pjrt + σDj + τDt + ξjrt + εijrt (E.1)
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where xj is a vector of observable product characteristics, pjrt is the retail price, σDj is

the mean valuation of unobserved product characteristics, τDt is the period-specific mean

valuation of unobservables that is common among all inside goods, ξjrt is a region-period

deviation from these means, and εijrt is a mean-zero stochastic term.

The observable product characteristics include a constant (which equals one for the

inside goods), calories, package size, and an indicator for whether the product is imported.

The consumer-specific coefficients are [α∗i , β
∗
i ]
′ = [α, β]′+ΠDi where Di is consumer income.

Define two groups, g = 0, 1, such that group 1 includes the inside goods and group 0 is the

outside good. Then the stochastic term is decomposed according to

εijrt = ζigrt + (1− ρ)εijrt (E.2)

where εijrt is i.i.d extreme value, ζigrt has the unique distribution such that εijrt is extreme

value, and ρ is a nesting parameter (0 ≤ ρ < 1). Larger values of ρ correspond to less

substitution between the inside and outside goods. The quantity sold of good j in region r

and period t is

qjrt =
1

Nrt

Nrt∑
i=1

exp((δjrt + µijrt)/(1− ρ))

exp(Iigrt/(1− ρ))

exp(Iigrt)

exp(Iirt)
Mr (E.3)

where Iigrt and Iirt are the McFadden (1978) inclusive values, Mr is the market size of the

region, δjrt = xjβ+αpjrt +σDj + τDt + ξjrt, and µijrt = [pjrt, xj]
′ ∗ΠDi. The normalization on

the mean indirect utility of the outside good yields Ii0rt = 0. The inclusive value of the inside

goods is Ii1rt = (1 − ρ) log
(∑Jrt

j=1 exp((δjrt + µijrt)/(1− ρ))
)

and the inclusive value of all

goods is Iirt = log (1 + exp(Ii1rt)). We assume market sizes 50% greater than the maximum

observed unit sales within each region. Expressions for the price derivatives of demand are

supplied in Grigolon and Verboven (2014).

The parameters are estimated with GMM. The general approach follows the standard

nested fixed-point algorithm (Berry et al. (1995)), albeit with a modification to ensure a

contraction mapping in the presence of the nested logit structure (Grigolon and Verboven

(2014)). As demand estimation is not the primary focus of this article, we refer readers to

Miller and Weinberg (2017) for the details of implementation, a discussion of the identifying

assumptions, specification tests, and a number of robustness analyses.
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F Adding a Retail Sector

The baseline model assumes that brewers set prices to consumers. However, it is identical

to a model that incorporates a constant-markup retail sector (i.e., one that uses “cost-plus”

pricing). The reason is that retail markups and brewer marginal costs enter the model in

the same way. Although cost-plus pricing does not maximize retail profit, it may provide

a reasonable rule-of-thumb policy, and recent research provides some support for it using

scanner data similar to the IRI data that we use. In particular, DellaVigna and Gentzkow

(2019) shows that retail prices often do not respond to local demand shocks, and Butters

et al. (2020) documents that retail prices change one-for-one with local cost shocks (generated

by excise taxes). This combination would arise from cost-plus pricing.

With the constant-markup retail sector, the profit function of the brewer i takes the

form:

πi(p
w) =

∑
j∈Ji

(pwj −mcj)qj(pr(pw)) (F.1)

where pw and pr are the brewer and retail prices, respectively. (We have suppressed subscripts

for the region and period for simplicity). Retail prices are set according to pr = pw + µr

where µr is a vector of product-specific markups. Define µw ≡ pw − mc as the brewer

markup. Thus, we have pr = mc+ µw + µr. Now, as marginal costs are constant, profit can

be re-expressed as a function of brewer markups:

πi(µ
w) =

∑
j∈Ji

µwj qj(mc+ µw + µr) (F.2)

=
∑
j∈Ji

µwqj(µ
w + φ) (F.3)

where φ = mc+ µr is the combined retail markup and brewer cost. From the perspective of

the brewer, φ matters for profit but the allocation of φ between retail markup and brewer cost

does not. The static first order conditions, the slack functions, and the leader’s constrained

maximization problem all work with this profit function in various ways, and can be recast in

terms of brewer markups, yielding the same isomorphism. Thus, the baseline price leadership

model is equivalent to an alternative with cost-plus retail pricing.

Miller and Weinberg (2017, Appendix E) also consider a profit-maximizing retailer

in a model that is similar in some respects to the one used here, and find that supply-

side inferences about brewer markups are robust. In that setting, retail markups are not

constant, but they are close enough to constant that they affect brewer incentive in nearly
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the same way as a marginal cost shifter. Incorporating a profit-maximizing retailer into the

price leadership model would greatly complicate imputation, enough so that we believe it

would be prohibitive given the algorithms we employ.
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G Additional Tables and Figures

Table G.1: Model Selection with Size-Specific Supermarkups

Panel A: OLS Regression Results

Bertrand η = 0.25 η = 0.26 η = 0.30 Unconstrained

ABI×Post-Merger 0.657 0.009 -0.031 -0.210 0.504
(0.094) (0.118) (0.121) (0.122) (0.147)

Miller×Post-Merger 0.189 -0.480 -0.523 -0.711 -0.037
(0.074) (0.012) (0.099) (0.103) (0.133)

Coors×Post-Merger -0.067 -0.756 -0.798 -0.986 -0.278
(0.095) (0.110) (0.110) (0.117) (0.169)

Distance 0.22 0.231 0.232 0.237 0.331
(0.066) (0.066) (0.067) (0.068) (0.120)

Panel B: Other Statistics

Bertrand η = 0.25 η = 0.26 η = 0.30 η = 1.00

m6,12
2006 0 1.02 1.07 1.27 3.99

m24
2006 0 1.13 1.18 1.43 5.08

m6,12
2007 0 1.07 1.12 1.33 4.11

m24
2007 0 1.18 1.24 1.49 5.18

m6,12
2010 0 1.64 1.73 2.10 4.24

m24
2010 0 1.71 1.80 2.22 4.94

m6,12
2011 0 1.72 1.81 2.20 4.54

m24
2011 0 1.75 1.84 2.27 4.97

Marginal Costs < 0 0.001 0.005 0.006 0.010 0.163

Notes: Panel A summarizes results from OLS estimation of the marginal cost function. The marginal
costs are imputed using a model in which ABI selects one supermarkup for 6 and 12 packs, and another
for 24 packs. The IC constraints are pooled across regions. The intermediate timing parameters are
generated under the assumption that the (pooled) IC constraint binds. Regressors include indicators
for ABI brands, Miller brands, and Coors brands, in the fiscal years 2010 and 2011 (corresponding to
β1, β2, and β3), distance from the brewery to the region (β4), as well as product, region, and time fixed
effects. Standard errors are clustered at the region level and shown in parentheses. Panel B provides the
average supermarkups by fiscal year and by pack size, as well as the proportion of marginal cost values
which are negative.
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Table G.2: Model Selection with Independent Regions

Panel A: OLS Regression Results

Bertrand η = 0.25 η = 0.27 η = 0.30 Unconstrained

ABI×Post-Merger 0.657 0.087 0.012 -0.114 0.607
(0.094) (0.096) (0.097) (0.099) (0.147)

Miller×Post-Merger 0.189 -0.429 -0.508 -0.64 -0.017
(0.074) (0.068) (0.069) (0.070) (0.137)

Coors×Post-Merger -0.067 -0.698 -0.778 -0.911 -0.242
(0.095) (0.097) (0.098) (0.101) (0.173)

Distance 0.22 0.227 0.227 0.228 0.34
(0.066) (0.067) (0.067) (0.067) (0.120)

Panel B: Other Statistics

Bertrand η = 0.25 η = 0.27 η = 0.30 η = 1.00

m2006 0 1.11 1.22 1.39 4.51

m2007 0 1.14 1.25 1.43 4.65

m2010 0 1.64 1.82 2.11 4.63

m2011 0 1.7 1.89 2.19 4.79

Marginal Costs < 0 0.001 0.005 0.006 0.009 0.17

Notes: Panel A summarizes results from OLS estimation of the marginal cost function. The IC con-
straints are not pooled across regions. Regressors include indicators for ABI brands, Miller brands,
and Coors brands, in the fiscal years 2010 and 2011 (corresponding to β1, β2, and β3), distance from
the brewery to the region (β4), as well as product, region, and time fixed effects. The intermediate
timing parameters are generated under the assumption that the IC constraints bind. Standard errors
are clustered at the region level and shown in parentheses. Panel B provides the average supermarkups
by fiscal year, as well as the proportion of marginal cost values which are negative.
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Figure G.1: Size-Specific Supermarkups and the Baseline Model

Notes: Panel A plots the supermarkups imputed using the alternative assumption that, in each region,
the leader sets one supermarkup for 6 and 12 packs, and one supermarkup for 24 packs. Each dot is
a region-fiscal year combination and shows the values of the two supermarkups. Panel B is compares the
supermarkups imputed using this alternative assumption to those imputed using the baseline assumption of a
single supermarkup. Each dot is a region-fiscal year combination. The vertical axis is the mean supermarkup
in the two-supermarkup model. Panel C plots the marginal costs imputed using the alternative and baseline
assumptions. Each dot is a product-region-period combination. Each panel has a 45◦ line to assist with
interpretation.
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Figure G.2: Regional IC Constraints vs. the Baseline Model

Notes: Panel A plots the supermarkups imputed using the alternative assumption of regional IC constraints
for the fiscal year 2007, against those imputed using the baseline assumption of pooled IC constraints. Each
dot is a region. Panel B is identical except that it shows the fiscal year 2010. Panel C plots the marginal costs
imputed using the alternative and baseline assumptions. Each dot is a product-region-period combination.
Each panel has a 45◦ line to assist with interpretation.
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Figure G.3: Supermarkups with ABI and MillerCoors as Leader

Notes: The figure plots the supermarkups obtained from a counterfactual simulation in which MillerCoors
is the leader (veritcal axis) against the supermarkups obtained from the baseline model in which ABI is the
leader (horizontal axis). Each dot is a region in fiscal year 2010. The figure includes a 45◦ line.
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Figure G.4: Slack Functions in the Numerical Illustration

Notes: The figure illustrates joint identification of the timing parameter and a coordination friction, under
the augmented IC constraints discussed in Section ??. The implied friction is expressed as a proportion
of MillerCoors’ price leadership profit. The exercise is conducted for fiscal year 2010. With η = 0.45, the
magnitude of the friction is equivalent to 8.25% of MillerCoors’ profit in the PLE.
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