
ONLINE APPENDIX

Screening and Selection: The Case of Mammograms

by Einav, Finkelstein, Oostrom, Ostriker, and Williams

A Coding mammograms and outcomes in claims data

We follow Segel et al. (2017) in coding the incidence of screening mammograms (hereafter “mammograms”)

and the results of those mammograms in the HCCI claims data.

We code a woman as having a screening mammogram on a given date if she has a claim with ICD-9

procedure code V76.12 or CPT codes 77057 or G0202 on that date, but no claims for any other mammo-

gram within the previous 12 months and no prior claims for breast cancer treatment.1 Previous work has

documented that claims-based measures of mammogram rates tend to be lower than mammogram rates in

self-reported survey data. For example, Freeman et al. (2002) document this pattern in Medicare data, and

Cronin et al. (2009) document similar evidence in a study of Vermont women. Consistent with these studies,

Appendix Figure A.1 documents the age profile of the annual screening mammogram rate, as measured by

both the Behavioral Risk Factor Surveillance System (BRFSS) survey and the algorithm described above

using the HCCI claims data. Between ages 39 and 41, the mammogram rate jumps by approximately the

same amount—25 percentage points—by both measures, but the survey data describe mammogram rates as

being approximately 10 to 20 percentage points higher than the claims data rate at all ages. Of course, the

samples are not perfectly comparable, as the BRFSS sample is of all women with health insurance (public

or private) from 2002-2012, while our final HCCI sample consists of women privately insured by Aetna,

Humana or United from 2009-2011.

We code the outcome of a screening mammogram as negative if there are no subsequent claims for

either follow-up testing or breast cancer treatment within the next 12 months. We code the outcome as

a false positive if there is at least one claim for follow-up testing in the following three months (i.e. a

subsequent mammogram, a breast biopsy, a breast ultrasound, or other radiologic breast testing) in the

following three months, but no claims for breast cancer treatment in the next 12 months. We code the

outcome of a mammogram as true positive if, within 12 months following the mammogram, there is at least

one claim for breast cancer. We consider a woman to have a subsequent mammogram if she has a claim

with ICD-9 procedure code V76.12 or CPT codes 77057 or G0202. A woman has a breast biopsy if she has

a claim with ICD-9 procedure code 85.11, 85.12, 85.20, or 85.21 or CPT codes 19100, 19101, or 19120. A

breast ultrasound is coded with ICD-9 procedure code 88.73 or CPT code 76645. Radiologic breast testing is
1Segel et al. (2017) focused on data from 2003-2004, so used the CPT code 76092. In 2007 this code was replaced by 77057. In

addition, Hubbard et al. (2015) identify CPT code G0202 as indicating a screening mammogram claim. Segel et al. (2017) provide
codes for “other” (non-screening) mammograms, which we omit.
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coded with ICD-9 procedure code 87.35, 87.36, 87.73, or 88.85 or CPT codes 76003, 77002, 76095, 77031,

76086, 76087, 76088, 77053, 77054, 76355, 76360, 76362, 77011, 77012, 77013, 76098, 76100, 76101,

76102, 76120, 76125, 76140, 76150, 76350, or 76365. Breast cancer is coded with ICD-9 procedure code

233.0, V103.0, or 174.0 through 174.9 or CPT code 19160, 19162, 19180, 19200, 19220, 19240, 19301,

19303, 19305, 19307, 38740, or 38745. The codes used to identify these claims are provided in Appendix

Table A.1, along with their references.

The linked SEER-Medicare data allow us to cross validate this claims-based coding process against

cancer diagnoses in the cancer registry. The results are very encouraging. Appendix Tables A.2 and A.3

describe the concordance of true positive mammograms as coded using this algorithm with actual diagnoses

as recorded in the SEER-Medicare data. For those who were diagnosed with breast cancer and had a mam-

mogram in the year of diagnosis, 99.6% of mammograms were coded as true positive using our algorithm.

Meanwhile, 93% of mammograms for women who were never diagnosed with breast cancer were nega-

tive, while 5.8% were false positives. Most women with true positive mammograms were diagnosed with

breast cancer in the year of or the year following the mammogram, while 84% of those without true positive

mammograms were never diagnosed and a further 14% were not diagnosed until more than 1 year after

the mammogram (2% were diagnosed in the year following the mammogram, but none in the year of the

mammogram).

B Non-cancer characteristics of compliers, always-takers, and never-takers

We examine the non-cancer characteristics of those who do and do not receive mammograms, by age. To

do so, we draw on two data sources: the HCCI data on privately insured women from 2009-2011, and data

from the Behavioral Risk Factor Surveillance System Survey (BRFSS) for even years 2000-2012, restricted

to women with health insurance (public or private). The HCCI data allow us to code whether or not the

woman had a Pap test or a flu shot in the prior year, as well as total health care spending in the prior year

and the number of emergency room (ER) visits in the prior year. The BRFSS data allow us to observe

(contemporaneous) measures of flu shots and Pap tests, as well as other health behaviors. Specifically, we

follow Chetty et al. (2016) and measure whether the woman currently smokes, has BMI greater than 30, and

exercises in the past month, and we follow Kowalski (2019) and measure mean BMI, whether the woman

uses birth control, and whether the woman uses oral contraception. We also include several additional

health behaviors: whether the woman always wears a seat belt, her number of alcoholic drinks in the prior

month, and whether she has a personal doctor. Finally, we measure some basic demographics of the women

including income, education, employment, marital status, and whether she lives in an urban, suburban, or

rural area.

Appendix Figures A.3, A.4, and A.5 show age-specific mean characteristics for the overall population

and the subset of women who receive mammograms. The figures also super-impose results from a simple

linear regression discontinuity estimate at age 40 for those who get mammograms. Specifically, we estimate
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(A.1) yi = γ0 + γ1ãi + γ2I (ãi > 0)+ γ3ãiI (ãi > 0)+ γ4mi + γ5ãimi + γ6miI (ãi > 0)+ γ7ãimiI (ãi > 0)+ εi,

where yi is a health behavior or demographic characteristic for woman i, ãi = ai− 40 is woman i’s age

in years relative to age 40, I (ãi > 0) is an indicator for whether woman i’s age is greater than 40, mi is

an indicator for whether woman i received a mammogram, and εi is a normally distributed error term.

We estimate the regression on women aged 35-50, excluding women aged 40 from the regression. The

regression allows for the outcome yi to vary linearly in age, and for a level change and a slope change at age

40. It also allows these patterns to flexibly vary between those who receive a mammogram and those who

do not.

We use the resulting estimates to implement the Abadie (2002; 2003) approach to characterizing compli-

ers and never-takers. For example, women who obtained a mammogram without a recommendation provide

estimates of characteristics for always-takers. Since women who obtain a mammogram with the recommen-

dation at age 40 include both compliers and always-takers, we can use estimates of the always-taker sample

and the share of compliers to back out the characteristics of compliers. Similarly, women who do not obtain

a mammogram after age 40 provide estimates of characteristics for never-takers. As in equation (2) in the

main text, we assume that there are no defiers; that is, we assume that there are no women who would obtain

a mammogram without the recommendation at age 39 but would not get screened with the recommendation

at age 40.

More formally, we first calculate the population fraction of always-takers, never-takers, and compliers,

by estimating the following regression

(A.2) mi = η0 +η1ãi +η2I (ãi > 0)+η3ãiI (ãi > 0)+ζi,

where all variables are defined as in equation (A.1), and ζi is a normally distributed error term. The popula-

tion fraction of always-takers at age 40 is then given by the fraction of women who receive a mammogram

without the recommendation, πAT = η̂0, and the population fraction of compliers is given by the change in

the fraction of women who receive a mammogram at age 40, πC = η̂2. Finally, given our assumptions, the

population fraction of never-takers is given by πNT = 1−πC−πAT .

With the population shares of each group, we can now estimate the group-specific mean for each char-

acteristic. Let fg (y) denote the mean for characteristic y at age 40 for each group g ∈ {AT,NT,C}, where

AT are the always-takers, NT are the never-takers, and C are the compliers. We then compute fg (y) at age

40 using the above estimates. For example, for always-takers, we use the predicted values from equation

(A.1) by setting mi = 1, ãi = 0, I (ãi > 0) = 0 to obtain fAT (y) = γ̂0 + γ̂4. Similarly, for never-takers, we

set mi = 0, ãi = 0, I (ãi > 0) = 0 to obtain fNT (y) = γ̂0. Computing the mean of y for compliers, fC (y),

requires some arithmetic. Women who receive a mammogram with the recommendation are either always-

takers or compliers. Therefore, the mean of y for women who received a mammogram with a recommen-

dation, denoted by fT (y), is equal to πAT
πAT+πC

fAT (y) + πC
πAT+πC

fC (y). We can estimate fT (y) from equa-
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tion (A.1) by setting mi = 1, ãi = 0, I (ãi > 0) = 1 to obtain fAT (y) = γ̂0 + γ̂2 + γ̂4 + γ̂6. We then compute

fC (y) = [ fT (y)(πAT +πC)−πAT fAT (y)]/πC.

In Figure 4 in the main text we present the results from this exercise by reporting the ratios of charac-

teristics for compliers relative to never-takers, fC (y)/ fNT (y) , and for compliers relative to always-takers,

fC (y)/ fAT (y). Standard errors are constructed using a bootstrap with 100 repetitions clustered at the age

level.

C Clinical model: the Erasmus model

We use the Erasmus model to generate estimates of the underlying onset rate by age of cancer and cancer

type, as well as the evolution of (untreated) cancers. We adjust the model to better match certain key

moments of the SEER data. This (modified) Erasmus data, together with assumed parameters from the

mammogram decision model (specifically, equations (1) and (2) in the main text) and the observed policy

recommendation (40 and above), generates an age-specific share of women who are screened, as well as the

tumor characteristics (in-situ and invasive rates) conditional on getting screened, which we then attempt to

match by method of moments to the observed data on the age-specific share of women who are screened

and the tumor characteristics conditional on getting screened.

As described in the main text, the Erasmus model is one of seven models developed for the Cancer

Intervention and Surveillance Modeling Network (CISNET) as part of a project decomposing breast cancer

mortality reductions from 1975-2000 into effects from the dissemination of mammography versus the de-

velopment of advanced treatment techniques (Clarke et al. 2006). Each of the groups participating in the

project wrote a model of breast cancer incidence and mortality in the US over this time period and then

compared the mortality rates under scenarios with and without mammography and advanced treatment. For

convenience, we focus on one of these models, the Erasmus model (Tan et al., 2006).

In what follows we describe our implementation of the Erasmus model. This implementation directly

follows Tan et al. (2006), with all the assumptions we describe being theirs. We then describe the calibration

changes we make to the model based on some of our own external data and assumptions.

C.1 Model details

Tumor incidence

The model allows us to simulate a cohort of women i, each with a year of birth bi and a year of death from

other causes di which is randomly determined and dependent on the year of birth. Specifically, it assumes

that in each year y the probability that a person born in year b (such that y ≥ b) dies of causes other than

breast cancer is Qb
y . A woman’s year of death is defined as the lesser of 110 and the first year in which a

random draw from a uniform distribution on [0,1] falls below Qb
y . It assumes that no woman dies from other

causes before age 30.

The model further assumes that there exists a probability Cb that any woman from cohort b will get

cancer before age 85. It defines age ab
y = y−b as the age in year y of a woman born in year b and assumes
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that for every cohort b and year y such that 20 ≤ ab
y ≤ 85 there exists Sa, the probability that a woman

experiences tumor onset at age a conditional on eventually getting cancer. For each woman i with any

cancer, we can therefore construct the year of tumor onset ti as the lesser of the year in which she turns 85

and the first year in which a random draw from a uniform distribution on [0, 1] falls below Sy−bi .

Tumor type and in-situ characteristics

At onset, cancer type is defined to be either an invasive tumor or one of three types of non-invasive tumors.

Invasive tumors are assigned a minimum size and other tumor characteristics (as described in Appendix

Table A.4) at onset and immediately begin growing. Non-invasive tumors are also known as ductal car-

cinoma in-situ (DCIS), which we refer to in the text as in-situ, and they can be one of three types: (a)

DCIS-regressive tumors eventually disappear without causing any harm; (b) DCIS-invasive tumors eventu-

ally transform into a harmful invasive tumor but do no harm in the meantime; and (c) DCIS-clinical tumors

do no harm but are eventually clinically detected. The model assumes that the outcome of each DCIS tumor

(regression, invasion, or detection) occurs wi years after onset, where wi is generated by random draws from

an exponential distribution with mean W . None of the three types of DCIS tumors can be clinically detected

during the duration of this “dwell time,” but they can be screen-detected with a screening-year-specific prob-

ability Ey if screening occurs. The type of tumor is defined at onset subject to age-specific probabilities Ia

(invasive), Va (DCIS-invasive), Ra (DCIS-regressive), and Ca (DCIS-clinical) such that Ia+Va+Ra+Ca = 1.

Values for these and other Erasmus parameters are given in Appendix Table A.5.

For DCIS tumors that become invasive, onset of invasive disease is defined as the moment when the

tumor size reaches the minimum value of the screening threshold diameter; this threshold varies with the

woman’s age as well as over time (to reflect improvements in screening technology). The dwell time for

DCIS tumors was calibrated in the MISCAN breast cancer model based on the duration from onset of DCIS

to the 1975 screening threshold diameter.

Invasive tumor characteristics

The model assumes that the fundamental characteristic of invasive tumors is their year-dependent size sy
i .

For all invasive tumors, it defines s0
i (the size in the year of onset) to be equal to 0.01 cm. It is assumed that

all invasive tumors grow exponentially. Tumor size in year y is therefore given by s0
i (1+gi)

y where gi is the

individual-specific growth rate (drawn from a lognormal distribution at tumor onset). It further assumes that

diagnosis depends on tumor size and the individual’s “screen detection diameter” ray
i (drawn at the time of

screening from an age- and detection-year-specific Weibull distribution) and “clinical diagnosis diameter”

ci (log normally distributed and set at tumor onset). If the woman undergoes screening, the tumor can be

detected if sy
i > ri. Alternatively, if the tumor grows so large that sy

i > ci, the woman will certainly detect it

due to the appearance of clinical symptoms. Tumor size also determines mortality: if a woman diagnoses

her tumor before it reaches its “fatal diameter” fi (drawn at onset from a year-specific Weibull distribution),

she will receive treatment and survive, but if not, she will die regardless of treatment.

The model defines for each invasive tumor the length of time the woman will survive after the tumor

reaches its fatal diameter, called the “survival duration since fatal diameter” and denoted ui (log normally
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distributed). It assumes that if the tumor has not been clinically detected by the time 0.9*ui years have

passed since the fatal diameter was reached, it will be clinically detected due to distant metastases at that

time.

Finally, it assumes that the growth rate gi, clinical diagnosis diameter ci, and survival duration ui are

correlated with coefficients ρgc, ρgu, and ρcu. The variables described in this section (sy
i ,r

ay
i , fi gi,ci,ui) ,

combined with the woman’s age and the year of initiation, fully specify the course of the disease for an

invasive tumor, subject to potential screening regimens.

C.2 Parameterizing the Erasmus model

We begin by choosing certain population-specific parameters required as inputs for the Erasmus model: the

other-cause death probability, the overall tumor incidence, and the tumor incidence by age. As in Tan et al.

(2006), the other-cause death probability follows the approach of Rosenberg (2006). However, we adjusted

the tumor incidence parameters (overall cohort incidence and quadratic incidence by age) that are given in

Tan et al. (2006) in order to match the SEER data’s share of diagnoses that are in-situ and invasive for those

under 40 and over 40. After establishing these population-specific parameters, we simulate individual life

histories under a no-screening assumption, and use the tumor sizes and types to determine the population

cancer rate by age.

Other-cause death probability

Following Rosenberg (2006), we computed probability of death due to other causes as the difference be-

tween the all-cause mortality and breast cancer specific mortality. We obtained all-cause mortality for ages

0-110 and years 1933-2010 from the Human Mortality Database. Using breast cancer death totals from

the National Center for Health Statistics and female population totals from the Human Mortality Database,

we calculated breast-cancer-specific mortality for ages 0-110 and years 1959-2010. To impute values for

previous years, we assumed that the age-specific breast cancer mortality rate in any year before 1958 was

equal to the rate in 1958. We combined these data to calculate non-breast-cancer mortality rates for all years

between 1933 and 2010.

Age profile of cancer incidence

The Erasmus model provided a CDF of tumor incidence in 5-year increments, implying a step function of

yearly incidence that produces spikes in tumor onset within a cohort every 5 years (see Appendix Table A.6,

first column reproduced from Tan et al. (2006), based on estimates of US population in 1975). We con-

structed a smoothed CDF of tumor incidence by fitting to the Erasmus CDF using a constrained polynomial

(quadratic) fit: y = ax2 +bx+ c. We fitted a,b,c, the start age xstart (at which the CDF should be zero), and

the end age xend (at which the CDF should be one). Restrictions included:

ax2
start +bxstart + c = 0
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ax2
end +bxend + c = 1

2axstart +b≥ 0

The values that minimize the error ∑(ŷ−y)2 across each of the fourteen ages in Appendix Table A.6 are

xstart = 24, xend = 85, a = 0.000268, b =−0.01282, c = 0.15327. We assume that the incidence before age

24 is 0. The fit is shown in Appendix Figure A.7.

Adjusting cancer incidence rates

Tan et al. (2006) calculate cumulative tumor incidence by birth cohort based on observed (i.e. diagnosed)

incidence in the US from 1975-1979. Implicitly, this assumes that all tumors are diagnosed. It will therefore

miss any undiagnosed tumors. Not surprisingly, therefore, when we use the original Erasmus parameters and

our calibrated screening policy described below, the model substantially under-predicts observed diagnoses.

To rectify this, we allowed the cohort tumor incidence to vary with a multiplicative shift α which uniformly

affects each cohort’s tumor incidence.

We calibrate α as follows. We define the parameters θ = (α, pscrninv, pscrndcis) where pscrninv is the

probability of a mammogram conditional on having an invasive tumor and pscrninsitu is the probability

of a mammogram conditional on having an in-situ tumor. We then estimate θ by maximum likelihood.

Specifically, we maximize the log likelihood of observing SEER tumor types (1973-2013, for women 25-

34). The model’s original incidence and the incidence multiplicatively shifted by α are plotted against the

SEER diagnosis rates in Appendix Figure A.8. We also plot the model’s diagnosis rates with no screening;

with the multiplicative shift this roughly matches with the SEER diagnosis levels.

C.3 Visual representation and results from Erasmus model: underlying cancer rate

The first panel of Appendix Figure A.9 visualizes the Erasmus model using a flow chart. The second panel

shows example sequences of progression for each of the four types of tumors, in the absence of screening.

The first two rows show the progress of DCIS-regressive and DCIS-clinical tumors, which are harmless

and differ only in their behaviors at the end of their dwell time: DCIS-regressive tumors disappear, while

DCIS-clinical tumors are detected clinically, for example at a routine physical exam. If these tumors are

screened, they will be diagnosed with a probability equal to the “sensitivity” as described in Appendix Table

A.5. Likewise, before it switches to its invasive phase, the DCIS-invasive tumor can also be detected by a

screening mammogram in the same way. After it becomes invasive, the DCIS-invasive tumor (row 3) and the

invasive tumor (row 4) can only be detected if the size exceeds the year- and age-specific screening diameter

of the year in which it is screened. If a woman’s tumor is screened (or clinically diagnosed) before it reaches

the fatal diameter, her life is saved, but if not, she will eventually die, regardless of detection or treatment in

later years. In most cases, when a woman’s tumor reaches the fatal diameter without being diagnosed, she

will be clinically diagnosed before death. The flow chart omits deaths due to other causes.
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Appendix Figure A.10 plots the share of women in each of five categories when the Erasmus model

is calculated with no screening. The calculation is based on birth cohorts from 1950-1975, and focuses

on women aged 30-50 in 2000-2005. At any given age, the share of women with detectable invasive or

DCIS cancer is substantially smaller than the share of women who have already been diagnosed clinically,

indicating that there is a small window of time during which a cancer can be screened before it is clinically

detected.

Using the calibrated other-cause death probabilities and incidence rates, we solve the Erasmus model

assuming that there is no screening for birth years 1950-1975. We restrict to years 2000-2005 and ages

30-50, producing a set of individual life-histories that can be categorized in every year as dead due to breast

cancer, dead due to other causes, clinically diagnosed, currently undiagnosed invasive cancer, currently

undiagnosed DCIS, or no cancer. (We consider invasive cancer that is too small to be detectable, and

regressed DCIS tumors, to be the same as “no cancer.”)

We take the “population cancer rate” at each age, or the share of women who have a tumor by a certain

age, from the Erasmus model. The Erasmus model assumes that cancers can only be detected by mammo-

gram once they have reached a certain size, so we assume the screening diameter is 1.09 cm—the average

screen-detectable size in the Erasmus model—and count the share of women with detectable invasive can-

cer as the share of women with tumors above that size in the Erasmus model. We also count 80% of the

women with DCIS tumors, under the assumption in the Erasmus model that about 80% of technically “de-

tectable” in-situ tumors will be detected in any given year. We do not count DCIS-regressive tumors after

they have regressed, and after a DCIS-invasive tumor has transitioned to an invasive tumor we determine its

detectability based on the rules for invasive cancers.2

D Estimation of mammogram model

We estimate our model of mammogram demand by method of moments. The moments are generated from

the Erasmus model combined with our model of screening decisions. We first use the Erasmus model to

generate cancer incidence and tumor growth under a no-screening assumption, as described above. Specifi-

cally, we simulate a panel of ten million women born between 1910 and 1974. We start at age 20 and model

cancer incidence and tumor growth using the Erasmus model, assuming no screening. We use the tumor

sizes and types to determine the population cancer rate by age.

Then, for a given set of parameters αo,γo,δ o,αr,γr,δ r, we apply the mammogram decision model (by

age and recommendation status) to the cancer rate age profile from the Erasmus model to generate the main

moments by age.

Although the model is static, it does have a dynamic element in it, as we calculate the model-generated

moments only for the women who were not diagnosed with cancer in previous years, or those who did not

2Note that this leads to an unintuitive model behavior in which DCIS tumors are detectable at smaller sizes than invasive tumors.
In the Erasmus model, invasive tumors are initialized at 0.01 mm and are not considered screen-detectable (by us) until they reach
1.09 cm. DCIS-invasive tumors are initialized at the screening threshold of the year and age in which they become invasive. Since
this is sometimes smaller than 1.09 (1.09 is just the average of the distribution of screening thresholds in 2010), the model could
simulate a DCIS-invasive tumor which is detectable for several years, then becomes undetectable, then becomes detectable again.
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die (from breast cancer or other causes) prior to the given age. To do this, we must make an assumption about

what fraction of clinically-diagnosed women under the no-screening assumption overlaps with the screen-

diagnosed population when the mammogram decision model is applied. One extreme would be to assume

that there is no overlap (perfect negative correlation between clinical and screen diagnosis), so that if 0.01

of the population were clinically-diagnosed under the no-screening assumption, and 0.02 of the population

were screen-diagnosed for a given set of parameters, a total of 0.03 of the women would be diagnosed with

cancer. We chose to make the other assumption, that there was perfect positive correlation between clinical

and screen diagnosis. In this case, if 0.01 of the population were clinically-diagnosed and 0.02 were screen-

diagnosed, only 0.02 of the women would be diagnosed with cancer. This likely produces an underestimate

of the effects of screening, because it minimizes the number of women who are diagnosed each year.

With this simulated population of women, an assumed value of parameters associated with the mam-

mogram decisions with and without recommendation (equations (1) and (2) in the main text) and the ob-

served policy recommendation (40 and above), the model generates an age-specific share of women who are

screened, and the tumor characteristics (in-situ and invasive rates), conditional on getting screened.

As mentioned in the main text (footnote 17), the in-situ rate moment differs from Figure 3a in the main

text. Figure 3a shows the in-situ rate of all diagnosed cancers that appear in the SEER database, but the

moment we match with the model is the in-situ rate of screen-detected cancers. Cancers that are clinically

diagnosed are highly unlikely to be in-situ, so the SEER value likely underestimates the true value of share

in-situ for screening mammogram-diagnosed cancers. We adjust the SEER moment at each age using Bayes’

rule:

P(M)∗P(insitu|M)+(1−P(M))∗P(insitu| ∼M) = P(insitu),

where M is the event that a diagnosed tumor was screen-detected. We assume that P(M), the share of

diagnoses detected by screening mammogram, is 0.2 for ages 35-39 and 0.34 for ages 40-49 (following

Roth et al. (2011)). We assume that P(insitu| ∼ M) = 0.08, following Ernster et al. (2002). P(insitu) is

given by the SEER moments in Figure 3a, allowing us to back out P(insitu|M), our object of interest, which

is the moment we actually match. The results for P(insitu|M) for ages 40-49 range from 52% to 55%, which

is in line with the 56% reported in this age group by Ernster et al. (2002).

With our 48 moments in hand (16 moments for each of three types), we then search for the parameters

that minimize the (weighted) distance between these generated moments and the observed moments. We

apply a linear weight that decreases on each side of age 40, so that the weight on moments associated with

ages 39 and 41 is 10/11 of the weight on the age 40 moment, the weight on moments associated with ages

38 and 42 is 9/11 of the weight on the age 40 moment, and so on. To achieve a reasonable fit, we also

weight the moments by the inverse of their standard deviation. We chose 2,000 random starting values in

the parameter space defined as follows:

α
o ∈ [−10,10],γo ∈ [−0.2,0.2],δ o

insitu ∈ [−2,2], δ
o
invasive ∈ [−2,2]

α
r ∈ [−2,2],γr ∈ [−0.2,0.2],δ r

insitu ∈ [−2,2],δ r
invasive ∈ [−2,2]
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and applied the Nelder-Mead algorithm to each of these starting vectors. We then iteratively applied the

Nelder-Mead algorithm to the best starting value to further minimize the objective function.

E Counterfactual simulations of mammogram model

Our counterfactuals analyze the impact of changing the recommendation age as well as the selection re-

sponse. In both cases, we first model the underlying onset rate of cancer and the evolution of cancers using

the Erasmus model described in Section III.B and Appendix C. Since we are interested in analyzing the im-

pact of potential future recommendation changes, we apply the most recent year’s value of any time-varying

parameters of the Erasmus model. In practice, this means we use the breast-cancer-specific and non-breast-

cancer mortality for 2010, the scale parameter for fatal diameter β
y
F from 1975 (see Appendix Table A.5),

the screening sensitivity Ey from 2000, the screening diameter scale parameters from 2000 (see Appendix

Table A.7), and the tumor incidence for the 1970 cohort (see Appendix Table A.8). We simulate this model

for 10 million women’s life histories, and in particular from ages 35-50.

We then apply the screening decision as described in Section III.B for each women and year. The

baseline model uses the parameter values given in Table 2 in the main text, with the recommendation applied

starting at age 40. We change the age of the recommendation in Table 3 and the selection parameters δ r in

Table 4.

In all counterfactuals that retain the age-40 recommendation (i.e. the ones that aim to isolate a counter-

factual selection responses), we specify that the age-specific mammogram rates must be the same as in the

baseline specification, while the type of women who respond to the recommendation is allowed to change.

This allows the counterfactuals to consider only differences in selection, not levels. After imposing the

counterfactual selection coefficients, we add an age-specific constant so that the age-specific mammogram

rates are unchanged relative to the baseline. In all counterfactuals that both use the age-45 recommendation

(i.e. the ones that consider a counterfactual policy recommendation) and impose alternative selection pat-

terns, we make a similar adjustment so that the age-specific mammogram rates match those produced by the

age-45 counterfactual with the baseline estimated selection parameters. The screening decisions along with

underlying natural history in the Erasmus model determine whether a given mammogram screen results in

a negative test, a false positive, or true positive based on the cancer type of the screened woman.

The Erasmus model parameters also reveal whether a mammogram detects a cancer early enough to

prevent breast-cancer-related morality. If an invasive tumor is detected before it reaches the fatal diameter

(see Appendix Table A.5 on Erasmus parameters), the person survives to die of natural causes. If the invasive

tumor is detected after the tumor is larger than the fatal diameter, the person dies of breast cancer after

some stochastic period determined by survival duration parameters (see Appendix Table A.5 on Erasmus

parameters). Breast cancer related mortality is driven by invasive tumors; in-situ tumors are only fatal if

they progress to an invasive tumor.

To estimate total spending under different counterfactuals, we first calculated in the HCCI data, the

total age-specific spending in the twelve months following no mammogram, a negative mammogram, a

false positive mammogram, and a true positive mammogram. At each age, each simulated woman falls into
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one of these categories. We add up the spending for a given woman across ages 35-50 based on her relevant

mammogram outcomes in each year. For example, suppose a woman had a true positive mammogram at age

42, and no mammograms at any other age. We would add the average spending in the HCCI data for women

with no mammograms for ages 35-41, the average spending for a woman in the twelve months following

a true positive mammogram at age 42, and the average spending for women with no mammograms at ages

43-50. Note that the screening decision only applies to women who are alive and have never been diagnosed

with breast cancer; once a women receives a true positive diagnosis she is no longer screened.

F Sensitivity analysis

We explore the robustness of our estimates to changing features of our clinical model. In particular, we

focus on statistics that can be compared with other sources, such as the share of in-situ tumors that become

invasive, and the share of tumors that are non-malignant. We undertake three types of sensitivity analysis.

First, we consider assumptions about the underlying incidence rate of cancer. As discussed in Section III.B,

in our baseline analysis we adjusted upward the original Erasmus estimates of the underlying incidence rate

of cancer to match the US population, rather than the combination of Swedish and US data on which it was

originally calibrated (see Appendix C); in our first sensitivity analysis, we undo this adjustment and use the

original Erasmus incidence assumptions.

Second, we consider assumptions about the share of in-situ tumors that will become invasive if not

treated. The Erasmus model implies that almost two-thirds of in-situ tumors will become invasive if not

treated; a review of the literature suggests that this is on the high end of model estimates, which range

from 14% to 60% (Burstein et al., 2004). We therefore examine two specifications that test sensitivity to

decreasing the share of in-situ tumors that become invasive. Specifically, the Erasmus model assumes that

62.5% of in-situ tumors will become invasive, while alternative estimates suggest that the fraction of DCIS

tumors that would become invasive is 14% (Eusebi et al., 1994) or 28% (Page et al., 1982). In these checks,

we also shift the tumor type distribution to match these estimates at age 40. This sensitivity proportionally

reduces the share of DCIS-invasive tumors at all ages, and proportionally increases the share of tumors that

are DCIS-regressive and DCIS-clinical at all ages. The share of invasive tumors remains the same.

Finally, we consider assumptions about the share of tumors that are non-malignant. Non-malignant

refers to tumors that have no potential to be invasive and therefore would never result in a breast cancer

mortality. Specifically, in our natural history model, recall that there are invasive tumors as well as three

types of non-invasive tumors (also known as DCIS or in-situ): DCIS-regressive, DCIS-clinical and DCIS-

invasive. The invasive and DCIS-invasive tumors are referred to as “malignant” due to their potential to cause

harm, while the DCIS-regressive and DCIS-clinical tumors will never become invasive and are therefore

referred to as “non-malignant.” The Erasmus model’s parameters (see Appendix Table A.9) imply that 3-

9% of all tumors are non-malignant.3 In contrast, estimates of over-diagnosis, or the diagnosis of a cancer

that would not harm a woman in her lifetime, vary from <5% to >30% (American Cancer Society, 2017).

3The share of cancer that is in situ of any kind (DCIS-clinical, DCIS-regressive, or DCIS-invasive) with no screening is ap-
proximately 15% at age 35 and 9% at age 50 (see Appendix Figure A.6). The age gradient is because some of the DCIS invasive
becomes invasive and some of the DCIS regressive regresses.
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Compared to other models, the Erasmus model seems to have a low estimate of non-malignancy, or

equivalently a high estimate of the share of cancer that is invasive or could become invasive. Therefore, each

of our sensitivity analysis decreases the amount of invasive or potentially invasive tumors. Specifically, in

an alternate natural history model (Fryback et al., 2006), the share of tumors with “non-malignant potential”

was 42%. Alternate estimates of over-diagnosis are provided by three trials in which women in the control

group were not invited to be screened at the end of the active trial period. In a meta-analysis, estimates of

the excess incidence was 19% when expressed as a proportion of the cancers diagnosed during the active

screening period (Marmot et al., 2013). We therefore increase the share of non-malignant tumors from

approximately 8% at age 40 to (separately) 19% and 42% at age 40. In each of these sensitivity analyses, we

increase the share of DCIS-regressive and DCIS-clinical at all ages in a proportional shift so that the share

of non-malignant tumors at age 40 is either 19% or 42%. We separately decrease the share of tumors that

are invasive or DCIS-invasive by a proportional shift so that the total tumor types sum to 100%.

For each sensitivity analysis, we first reproduce the Erasmus model natural history with the appropri-

ate adjustments. We then re-estimate the mammogram decision model using the same data moments (see

Figure 5 in the main text) and the women simulated using the revised natural history model. To construct

counterfactuals, we apply the new parameter estimates to the revised natural history model. Qualitatively,

we can anticipate the impact of these changes: reducing the overall incidence of cancer, reducing the share

in-situ that will transition to invasive, and increasing the share non-malignant all serve to make screening

less effective, and therefore delaying screening becomes less consequential.

The results are summarized in Appendix Table A.10. As we emphasized in the main text, the details of

the model are critical for the quantitative results, and indeed the mortality levels vary considerably compared

to the baseline model in all specifications. In addition, the mortality cost of delaying the recommendation

falls. This occurs for two reasons. First, conditional on the same mammogram decision model estimates,

screening is less effective with fewer malignant tumors. Therefore, delaying screening is less costly. In

addition, changing the share of tumors that are non-malignant affects the estimation of δ r
in−situ as shown

in Appendix Table A.11. In these sensitivity checks, δ r
in−situ is lower than in the baseline estimates. This

occurs because the natural history model now has more in-situ tumors. One of the moments we match is

the share of in-situ tumors among diagnoses. In order to observe the same amount of in-situ diagnoses with

more underlying in-situ tumors, we must be screening fewer in-situ women and more invasive women. The

magnitude of this selection change depends on the magnitude of the change in the sensitivity specification;

the last specification is the most aggressive in increasing the in-situ tumor share. Since the women who

chose to get screened due to the recommendation now have fewer in-situ tumors (which could potentially

become invasive), screening is less effective as well.

More importantly, we also examine how these sensitivity analyses affect our selection results, and here

we find that the qualitative conclusions are quite robust. In all cases except one (the incidence shift, reported

in row (1) of Appendix Table A.10), moving from the estimated selection to no selection (or consistent

selection) has a large (relative) effect on the number of women who die by age 50. The intuition is as in the

baseline model. Under the estimated selection, the women who select into the recommendation are healthier

and less likely to have invasive or in-situ cancer. Therefore, the cost of delaying the recommendation (in
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terms of lives lost) is low. If there were no selection, the women who responded to the recommendation

would be more likely to have cancer than in the estimated selection specification. Thus, delaying the rec-

ommendation would have a higher cost in terms of an increase in deaths. Finally, if there were consistent

selection, the women who chose to get screened due the recommendation would be more likely to have

cancer. In this case, the recommendation would be highly effective and delaying screening would be very

costly in terms of mortality. The one exercise for which this result does not hold is the incidence shift, since

in this case the re-estimated mammogram decision model has one different parameter sign. As shown in

Appendix Table A.11, in this case δ r
in−situ is positive, implying recommendation-induced positive selection.
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Figure A.1: Mammogram rate in survey and claims data, by age
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Notes: This figure shows the share of women who received a screening mammogram each year, by age. Source for survey data:
Behavioral Risk Factor Surveillance System Survey (BRFSS), even years 2000-2012, restricted to women with health insurance
(public or private). Source for claims data: HCCI data from 2008-2012, for mammograms between 2009-2011. Mammograms are
coded in the HCCI claims data using the algorithm described in Segel et al. (2017). Mammograms are coded in the BRFSS data
based on self-reports. The approximately 15-ppt discrepancy between surveyed and observed mammogram rates is consistent with
the finding of Cronin et al. (2009), who document that self-reported screening rates overstated actual screening rates by 15 to 27
percentage points in a study of Vermont women.
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Figure A.2: Mammogram outcomes and health care spending by age
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(a) Mammogram Results Conditional on Mammogram
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(b) Health care spending by mammogram outcome and age

Notes: Sample is limited to the set of privately insured woman-years from the private insurance claims data who had a mammogram.
N = 7,373,302 woman-years. For each age (measured by the age at the beginning of the calendar year), panel A shows the share
with each mammogram outcome. Panel B focuses only on the women-years with mammograms and shows subsequent 12-month
spending separately based on mammogram outcome; error bars reflect 95% confidence intervals.
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Figure A.3: Health and demographic characteristics prior to mammogram by age [Health Behaviors, HCCI]
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Notes: Sample is insurance claims data on a set of privately insured woman-years from 2008-2012, for mammograms between
2009-2011. The x-axis plots the women’s age at the time of the mammogram. In each panel, we report mean of a given outcome
for women who received a mammogram at that age in solid dots. As described in Appendix B, we estimate equation (A.1) and
plot the linear best-fit line for women who obtained a mammogram separately for ages below and above 40, while excluding age
40. We also plot the average share of all women with a given outcome in the dashed line. The outcome in panel (a) is an indicator
for getting any flu shot in the 12 months prior to a mammogram. Panel (b) is an indicator for getting any Pap test in the 12 months
prior to a mammogram. Panel (c) presents average total spending in the 12 months prior to the mammogram, not including the
mammogram date. Panel (d) presents average number of emergency room visits in the 12 months prior to a mammogram. For those
without a mammogram, we draw a reference date from the distribution of actual mammograms in that year. All reference dates are
set to be the first of the given month. N = 7,373,302 woman-years.
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Figure A.4: Health and demographic characteristics prior to mammogram by age [Health Behaviors,
BRFSS]
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Notes: Figure replicates Appendix Figure A.3 for alternate health and demographic outcomes; see notes for Figure A.3 for imple-
mentation details. Sample is the Behavioral Risk Factor Surveillance System Survey (BRFSS), even years 2000-2012, restricted to
women with any health insurance. Panel (a) is an indicator for receiving any flu shot in the prior 12 months. Panel (b) is an indicator
for getting any Pap test in the prior 12 months. Panel (c) is an indicator for whether the respondent currently smokes. Panel (d) is
the BMI of the respondent, computed based on the respondent’s reported weight and height. Panel (e) is an indicator for a body
mass index (BMI) over 30. Panel (f) is an indicator for whether the respondent participated in any physician activities for exercise
in the prior month. Panel (g) is an indicator for using birth control, either for the respondent or their partner. Panel (h) is an indicator
for using oral contraceptives. Panel (i) is an indicator for always wearing a seatbelt. Panel (j) is the mean number of drinks in the
prior month, computed based on the number of days the respondent reported drinking and the average drinks consumed per day of
drinking. Panel (k) is an indicator for whether the respondent has one person they think of as their personal doctor or health care
provider. N = 382,627.
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Figure A.5: Health and demographic characteristics prior to mammogram by age [Demographics, BRFSS]
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Notes: Figure replicates Appendix Figure A.3 with additional outcomes; see notes for Figure A.3 for implementation details.
Sample is the Behavioral Risk Factor Surveillance System Survey (BRFSS), even years 2000-2012, restricted to women with any
health insurance. Panel (a) is the average income of women who obtained a mammogram. All women in the top bin of $75,000
or above are top coded at that income. Panel (b) is an indicator for whether the income was above the median income of $50,000.
Panel (c) is a binary indicator for whether the highest year of education completed included some college or technical school. Panel
(d) is an indicator for whether the metropolitan status code was “in the center of an MSA.” Panel (e) is an indicator for whether the
metropolitan status code was “outside the city center of an MSA but inside the county containing the MSA” or “inside a suburban
county of the MSA.” Panel (f) is an indicator for whether the metropolitan status code was “not in an MSA.” Panel (g) is an indicator
for whether the respondent was currently employed for wages for self-employed. Panel (h) is a binary indicator for whether the
respondent is currently married. N = 382,627.
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Figure A.6: Erasmus model predictions for share with cancer and share in-situ (no screening)
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Notes: Figure presents the share with any cancer and the share of cancer in-situ in the Erasmus model, with no screening.
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Figure A.7: Fitted tumor incidence by age
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Notes: Figure presents the smoothed CDF of tumor incidence by age, fitted to the original Erasmus incidence in 5-year intervals.
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Figure A.8: Multiplicative incidence adjustment
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(b) Incidence multiplicatively shifted by α

Notes: Figure presents the simulated incidence and diagnosis rates compared with the SEER diagnosis rates. These are presented
for both the original incidence in panel (a), and for the incidence shifted by α in panel (b). This simulation assumes no screening.
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Figure A.9: Erasmus model
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Notes: Panel (a) shows the flow chart of a tumor’s natural history according to the Erasmus model. Panel (b) shows example
sequences of progression for each different type of tumor, in the absence of screening.
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Figure A.10: Cancer histories in Erasmus model
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Notes: Figure shows the share of women in different categories when the Erasmus model is run without screening for birth cohorts
1950-1975, and focuses on years 2000-2005. The categories represented are “Dead Other Causes” (died due to other causes), “Dead
Breast Cancer” (died due to breast cancer), “Alive Dxed” (alive and with clinically diagnosed cancer), “Alive Dtctbl - Invasive”
(alive and with detectable but not yet detected invasive cancer), and “Alive Dtctbl - DCIS” (alive and with detectable but not yet
detected DCIS cancer). The remainder of the population is cancer-free or has invasive or DCIS cancer that is too small to be
detectable yet.
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Table A.1: Codes used to identify claims

Event Code type CPT Codes ICD-9 Codes

Screening mammogram CPT procedure 77057*, G0202** V76.12
Breast biopsy CPT procedure 19100, 19101, 19120 85.11, 85.12, 85.20, 85.21

Breast ultrasound CPT procedure 76645 88.73**
Radiologic breast testing CPT procedure 76003, 77002*, 76095, 77031*, 76086,

76087, 76088, 77053*, 77054*, 76355,
76360, 76362, 77011*, 77012*, 77013*,

76098, 76100, 76101, 76102, 76120,
76125, 76140, 76150, 76350, 76365

87.35, 87.36, 87.73, 88.85

Breast cancer treatment CPT procedure 19160, 19162, 19180, 19200, 19220,
19240, 19301**, 19303**, 19305**,

19307**, 38740, 38745

233.0, V103.0, 174.0-174.9

* indicates this code was not provided by Segel et al. (2017) but is the post-2007 analog of such a code. See
http://provider.indianamedicaid.com/ihcp/Bulletins/BT200701.pdf.
** indicates this code was provided by Hubbard et al. (2015) rather than Segel et al. (2017).
Notes: This table provides the codes used to define mammograms in the HCCI and SEER-Medicare claims data. “CPT codes” are
also known as “HCPCS codes.”

Table A.2: Results of mammograms by diagnosis

Diagnosed in SEER-Medicare

Yes No

Negative 0.001 0.226
False Positive 0.001 0.014
True Positive 0.501 0.002

No Mammogram 0.497 0.759

N 80,408 3,327,642

Notes: This table summarizes the outcomes of mammograms for SEER-Medicare women who are diagnosed with breast cancer
in that year (column 1) and not diagnosed with breast cancer in that year (column 2). Breast cancer diagnoses are recorded in the
SEER linked data. Mammogram outcomes (negative, false positive, true positive, and no mammogram) are coded using the Segel
et al. (2017) algorithm as described in Appendix A. We restrict to those who were diagnosed between 2007 and 2013. Sample
includes both 65+ and disabled.
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Table A.3: Diagnosis status by true positive result

True positive mammogram
(Conditional on screened)

Time of Diagnosis Yes No

Prior to mammogram 0.001 0.000
In year of mammogram 0.722 0.000

In year following mammogram 0.145 0.022
More than 1 year after mammogram 0.016 0.142

Never diagnosed 0.116 0.836

N 55,799 952,292

Notes: This table summarizes the time of diagnosis in the linked SEER data for women who were coded as having a true positive
mammogram in the SEER-Medicare data. We restrict this analysis to women who received a screening mammogram in the SEER-
Medicare data, as coded in the Segel algorithm as described in Appendix A. For these women, we use the SEER-Medicare claims
and the Segel algorithm to determine whether the woman had a true positive mammogram. We then compare the timing of this
claims-related diagnosis with the SEER diagnosis, if any occurred. The rows refer to the year the woman was coded as having
breast cancer in the SEER linked data. Source: SEER-Medicare data, diagnoses between 2007-2013.

Table A.4: Tumor characteristics

Invasive DCIS
Size sy

i (cm) Dwell time wi (years)
Growth rate gi (1/years) *

Screen detection diameter ray
i (cm)

Clinical diagnosis diameter ci (cm) *
Fatal diameter fi (cm)

Survival duration since fatal ui (years) *

Note: This table lists the tumor characteristics for invasive and DCIS tumors. Starred variables (*) have correlated distributions;
see Appendix Table A.5. Parameter values listed in Appendix Tables A.4 to A.7 are taken from Tan et al. (2006) or the extended
CISNET description of the same model.
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Table A.5: Model parameters

All women Notation Values

Probability of death from other
causes

Qb
y Derived following Rosenberg (2006)

Probability of any breast cancer Cb Quadratic fit to Table A.8 plus further optimization
Age-specific probability of

onset (given any onset)
Sa Quadratic fit to values in Table A.6

Probability of invasive tumor
(given tumor onset)

Ia See Table A.9

Probability of DCIS tumor
sub-type (summing to 1 - Ia)

Va,Ra,Ca See Table A.9

Invasive Tumors

Mean of log of growth rate gi µG 0.062
SD of log of growth rate gi σG 0.87
Scale parameter for screen

detection ray
i

β
ay
R see Table A.7

Shape parameter for screen
detection ray

i

ηR 2.95

Mean of log of clinical
diagnosis diameter ci

µC 0.97

SD of log of clinical diagnosis
diameter ci

σC 0.63

Scale parameter for fatal
diameter fi

β
y
F Linear between 1915 and 1975 (0.8 in 1915; 4.0 in

1975); 4.0 after 1975
Shape parameter for fatal

diameter fi

ηF 0.95

Mean of log of survival duration
ui

µU 2.43

SD of log of survival duration ui σU 1.13
Correlation between gi and ci ρgc +0.41
Correlation between gi and ui ρgu -0.90
Correlation between ci and ui ρcu -0.43

DCIS Tumors

Mean of tumor dwell time wi
4 W 5.22 - (time to grow from 1975 to current year

screening diameter)
Screening sensitivity Ey Linear from 1975-2000 (0.4 in 1975, 0.8 in 2000)

and 0.8 from 2001-2010

Note: This table lists the parameters of the tumor growth model, along with their values where applicable.

4Dwell time wi (time from in-situ onset to invasive onset) is calculated by subtracting the time it takes the invasive tumor to
grow from the 1975 screening threshold to the current screening threshold from a random draw from an exponential distribution
with mean 5.22.
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Table A.6: Tumor incidence by age

Age Cumulative incidence Age Annual probability of incidence

25 0.002 20-24 0.0004
30 0.005 25-29 0.0006
35 0.021 30-34 0.0032
40 0.046 35-39 0.0050
45 0.105 40-44 0.0118
50 0.169 45-49 0.0128
55 0.233 50-54 0.0128
60 0.328 55-59 0.0190
65 0.436 60-64 0.0216
70 0.563 65-69 0.0254
75 0.707 70-74 0.0288
80 0.852 75-79 0.0290
85 1.00 80-85 0.0247

Note: This table shows the age distribution of the incidence of the onset of pre-clinical breast cancer (including ductal carcinoma
in-situ). Source: Tan et al. (2006); author’s calculations.

Table A.7: Screening diameter scale parameter

Parameter value for age and year screened
30-49 50-59 60-69 70-85

1975 2.2 1.7 1.3 1.0
(linear interpolation)

2000 1.5 1.1 0.9 0.6

Note: This table shows the age- and screening-year-dependent values of the scale parameter for the screening diameter Weibull
distribution. Linear interpolation is applied between years 1975 and 2000.
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Table A.8: Tumor incidence by birth cohort: original Erasmus values

Birth cohort Cumulative incidence

1900-04 0.122
1905-09 0.132
1910-14 0.141
1915-19 0.154
1920-24 0.169
1925-29 0.176
1930-34 0.182
1935-39 0.200
1940-44 0.220
1945-49 0.223
1950-54 0.204
1955-59 0.198
1960-64 0.193
1965-69 0.189

1970 0.187

Note: This table shows the cumulative probability (up to age 85) of the onset of pre-clinical breast cancer by birth cohort. Source:
Tan et al. (2006)

Table A.9: Tumor type distribution

Age at onset Invasive DCIS-invasive DCIS-regressive DCIS-clinical

20-34 0.76 0.15 0.03 0.06
35-79 (linear interpolation)
80-85 0.92 0.05 0.01 0.02

Note: This table shows the age-dependent proportions of incident tumor types. Linear interpolation is applied between ages 35 and
79.
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Table A.10: Sensitivity checks for impact of changing mammogram recommendation age from 40 to 45

Age 40 Age 45 Age 40 Age 45 Age 40 Age 45

Baseline Estimate 15.98 16.03 0.05 15.84 16.02 0.18 15.54 15.99 0.45

(1) Erasmus original level 10.66 10.68 0.02 10.67 10.68 0.01 10.65 10.68 0.03

Decrease share of in-situ tumors that become invasive:
(2) from 62.5% to 28% 15.20 15.22 0.02 15.06 15.21 0.15 14.78 15.18 0.41
(3) from 62.5% to 14% 14.89 14.90 0.01 14.75 14.89 0.14 14.48 14.86 0.39

Increase share of non-malignant tumors:
(4) from 6% to 19% 15.08 15.12 0.03 14.90 15.10 0.20 14.63 15.07 0.44
(5) from 6% to 42% 12.69 12.70 0.02 12.53 12.68 0.15 12.36 12.66 0.30

Decrease cancer incidence to:

C. Consistent SelectionA. Estimated Selection B. No Selection

Dead by age 50
(per 1,000 women)

Recommendation at
Diff

(per 1,000 women) (per 1,000 women)
Dead by age 50 Dead by age 50

Recommendation at
Diff

Recommendation at
Diff

Notes: Table reports model predictions under alternate sensitivity assumptions. The first three columns in the first row replicate
the results from Panel A of Table 4 in the main text, on the impact of changing the mammogram recommendation age from 40 to
45 based on the estimated selection patterns. We report only the impact on the death rate by age 50. The second three columns
replicate the results from Panel B of Table 4 where we instead assume “no selection” (i.e. we set δ r = δ o = 0.) The last set of
columns reflect Panel C of Table 4 where we assume “consistent selection” (i.e. we set δ requal to our estimates of δ o in Table
A.11). Each row tests the sensitivity of these estimates under alternate natural history assumptions, as discussed in Appendix F.

Table A.11: Sensitivity checks for parameter estimates

(1) (2) (3) (4) (5)
Baseline
Estimate Incidence 28% 14% 19% 42%

αo -5.21 -4.81 -5.20 -5.20 -4.67 -3.33
γo 0.10 0.09 0.10 0.10 0.09 0.05
δo

in-situ 0.36 1.15 0.36 0.36 0.09 -0.16
δo

invasive 1.13 10.89 1.13 1.13 1.15 1.58

αr 0.29 -0.06 0.26 0.26 0.03 -0.73
γr -0.03 -0.02 -0.02 -0.02 -0.02 0.00
δr

in-situ -0.01 0.58 -0.01 0.00 -0.55 -1.06
δr

invasive -4.67 22.28 -5.10 -12.80 -6.67 -13.67

Parameter

Sensitivity Checks

Share In-situ to Invasive Share Non-Malignant

Notes: Table shows the parameter estimates from the mammogram decision model under alternate sensitivity assumptions.
Specifics for each of the columns are discussed in Appendix F.
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