
Online Appendix for Myopia and Anchoring

By George-Marios Angeletos and Zhen Huo∗

The materials in this online appendix are organized as follows: Section A contains the proofs
of propositions in the main text. The next two sections extend the main theoretical results in
two different environments; Section B adds public signals and Section C introduces idiosyncratic
fundamentals. Section D contains various results that complement the analysis of inflation with
incomplete information in the main text. Section E contains the model details in the HANK appli-
cation with incomplete information. Section F and Section G apply our observational equivalence
result in the contexts of investment and asset prices, respectively. Section H generalizes the main
insights in an environment with more flexible fundamental and signal processes. Section I shows
how the observational equivalence result is modified when allowing the fundamental to be driven
by multiple shocks. Section J contains proofs for additional propositions in this appendix.

A. Proofs of Propositions in Main Text

Proof of Proposition 1

The proof follows from the main text.

Proof of Proposition 2

As a preliminary step, we look for the fundamental representation of the signals. Define τη = σ−2
η

and τu = σ−2 as the reciprocals of the variances of, respectively, the innovation in the fundamental
and the noise in the signal. (In the main text, we have normalized ση = 1.) The signal process can
be rewritten as

xi,t = M(L)

[
η̂t
ûi,t

]
, with M(L) =

[
τ
− 1

2
η

1
1−ρL τ

− 1
2

u

]
.

Let B(L) denote the fundamental representation of the signal process. By definition, B(L) needs
to be an invertible process that satisfies the following requirement

(A1) B(L)B(L−1) = M(L)M′(L−1) =
τ−1
η + τ−1

u (1− ρL)(L− ρ)

(1− ρL)(L− ρ)
.

This condition implies that

B(L) = τ
− 1

2
u

√
ρ

λ

1− λL
1− ρL

,

where λ is the inside root of the numerator in the last term of equation (A1)

λ =
1

2

ρ+
1

ρ

(
1 +

τu
τη

)
−

√(
ρ+

1

ρ

(
1 +

τu
τη

))2

− 4

 .(A2)

The forecast of a random variable

ft = A(L)

[
η̂t
ûi,t

]
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can be obtained by using the Wiener-Hopf prediction formula:1

Ei,t[ft] =
[
A(L)M′(L−1)B(L−1)−1

]
+
B(L)−1xi,t.

Now we proceed to solve the equilibrium. Denote agents’ equilibrium policy function as

ai,t = h(L)xi,t

for some lag polynomial h(L). The aggregate outcome can then be expressed as follows:

at = h(L)ξt =
h(L)

1− ρL
ηt.

In the sequel, we verify that the above guess is correct and characterize h(L).
Consider the forecast of the fundamental. Note that

ξt =
[
τ
− 1

2
η

1
1−ρL 0

] [
η̂t
ûi,t

]
,

from which it follows that

Ei,t[ξt] = G1(L)xi,t, G1(L) ≡ λ

ρ

τu
τη

1

1− ρλ
1

1− λL
.

Consider the forecast of the future own and average actions. Using the guess that ait+1 = h(L)xi,t+1

and at+1 = h(L)ξt+1, we have

at+1 =
[
τ
− 1

2
η

h(L)
L(1−ρL) 0

] [
η̂t
ûi,t

]
, ai,t+1 − at+1 =

[
0 τ

− 1
2

u h(L)

] [
η̂t
ûi,t

]
,

and the forecasts are

Ei,t [at+1] = G2(L)xi,t, G2(L) ≡ λ

ρ

τu
τη

(
h(L)

(1− λL)(L− λ)
− h(λ)(1− ρL)

(1− ρλ)(L− λ)(1− λL)

)
,

Ei,t [ai,t+1 − at+1] = G3(L)xi,t, G3(L) ≡ λ

ρ

(
h(L)(L− ρ)

L(L− λ)
− h(λ)(λ− ρ)

λ(L− λ)
− ρ

λ

h(0)

L

)
1− ρL
1− λL

Now, turn to the fixed point problem that characterizes the equilibrium:

ai,t = Ei,t[ϕξt + βai,t+1 + γat+1]

Using our guess, we can replace the left-hand side with h(L)xi,t. Using the results derived above,
on the other hand, we can replace the right-hand side with [G1(L) + (β + γ)G2(L) + βG3(L)]xi,t.
It follows that our guess is correct if and only if

h(L) = G1(L) + (β + γ)G2(L) + βG3(L)

Equivalently, we need to find an analytic function h(z) that solves

h(z) = ϕ
λ

ρ

τu
τη

1

1− ρλ
1

1− λz
+

+ (β + γ)
λ

ρ

τu
τη

(
h(z)

(1− λz)(z − λ)
− h(λ)(1− ρz)

(1− ρλ)(z − λ)(1− λz)

)
1See Whittle (1963) for more details about Wiener-Hopf prediction formula.



+ β
λ

ρ

(
h(z)(z − ρ)

z(z − λ)
− h(λ)(λ− ρ)

λ(z − λ)
− ρ

λ

h(0)

z

)
1− ρz
1− λz

,

which can be transformed as
C(z)h(z) = d(z;h(λ), h(0))

where

C(z) ≡ z(1− λz)(z − λ)− λ

ρ

{
β(z − ρ)(1− ρz) + (β + γ)

τu
τη
z

}
d(z;h(λ), h(0)) ≡ ϕλ

ρ

τu
τη

1

1− ρλ
z(z − λ)− 1

ρ

(
τu
τη

λ(β + γ)

1− ρλ
+ β(λ− ρ)

)
z(1− ρz)h(λ)

− β(z − λ)(1− ρz)h(0)

Note that C(z) is a cubic equation and therefore contains with three roots. We will verify later that
there are two inside roots and one outside root. To make sure that h(z) is an analytic function, we
choose h(0) and h(λ) so that the two roots of d(z;h(λ), h(0)) are the same as the two inside roots
of C(z). This pins down the constants {h(0), h(λ)}, and therefore the policy function h(L)

h(L) =

(
1− ϑ

ρ

)
ϕ

1− ρδ
1

1− ϑL
,

where ϑ−1 is the root of C(z) outside the unit circle.

Now we verify that C(z) has two inside roots and one outside root. C(z) can be rewritten as

C(z) = λ

{
− z3 +

(
ρ+

1

ρ
+

1

ρ

τu
τη

+ β

)
z2 −

(
1 + β

(
ρ+

1

ρ

)
+
β + γ

ρ

τu
τη

)
z + β

}
.

With the assumption that β > 0, γ > 0, and β + γ < 1, it is straightforward to verify that the
following properties hold:

C(0) = β > 0

C(λ) = −λγ 1

ρ

τu
τη
< 0

C(1) =
τu(1− β − γ)

τηρ
+ (1− β)

(
1

ρ
+ ρ− 2

)
> 0

Therefore, the three roots are all real, two of them are between 0 and 1, and the third one ϑ−1 is
larger than 1.

Finally, to show that ϑ is less than ρ, it is sufficient to show that

C

(
1

ρ

)
=
τu(1− ρβ − ργ)

τηρ3
> 0.

Since C(ϑ−1) = 0, it has to be that ϑ−1 is larger than ρ−1, or ϑ < ρ.

Proof of Proposition 3

The equilibrium outcome in the hybrid economy is given by the following AR(2) process:

at =
ζ0

1− ζ1L
ξt,



where

(A3) ζ1 =
1

2ωfδ

(
1−

√
1− 4δωfωb

)
and ζ0 =

ϕζ1

ωb − ρωfδζ1
,

and δ ≡ β + γ. The solution to the incomplete-information economy is

at =

(
1− ϑ

ρ

)
ϕ

1− ρδ
1

1− ϑL
ξt.

To match the hybrid model, we need

(A4) ζ1 = ϑ and ζ0 =

(
1− ϑ

ρ

)
ϕ

1− ρδ
.

Combining (A3) and (A4), and solving for the coefficients of ωf and ωb, we infer that the two
economies generate the same dynamics if and only if the following two conditions hold:

ωf =
δρ2 − ϑ
δ(ρ2 − ϑ2)

,(A5)

ωb =
ϑ(1− δϑ)ρ2

ρ2 − ϑ2
.(A6)

Since δ ≡ β + γ and since ϑ is a function of the primitive parameters (σ, ρ, β, γ), the above two
conditions give the coefficients ωf and ωb as as functions of the primitive parameters, too.

It is immediate to check that ωf < 1 and ωb > 0 if ϑ ∈ (0, ρ), which in turn is necessarily true for
any σ > 0; and that ωf = 1 and ωb = 0 if ϑ = ρ, which in turn is the case if and only if σ = 0.

Proof of Propositions 4 and 5

To prove the comparative statics, we first show that ωf is decreasing in ϑ and ωb is increasing in
ϑ. This can be verified as follows

∂ωf
∂ϑ

=
−δ(ρ2 + ϑ2) + 2δ2ρ2ϑ

(δ(ρ2 − ϑ2))2
<
−δ(ρ2 + ϑ) + 2δρϑ

(δ(ρ2 − ϑ2))2
=
−δ(ρ− ϑ)2

(δ(ρ2 − ϑ2))2
< 0,

∂ωb
∂ϑ

=
ρ2(ρ2 + ϑ2 − 2δϑρ2)

(ρ2 − ϑ2)2
>
ρ2(ρ2 + ϑ2 − 2ϑρ)

(ρ2 − ϑ2)2
=

(
ρ

ρ+ ϑ

)2

> 0.

Now to prove Proposition 5, it is sufficient to show that ϑ is increasing in γ. Note that

C

(
1

ρ

)
=
τu(1− ρβ − ργ)

τηρ3
> 0 and C

(
1

λ

)
= −τu

τη

γβ

ρλ2
< 0.

By the continuity of C(z), it must be the case that C(z) admits a root between 1
ρ and 1

λ . Recall

from the proof of Proposition 2, ϑ−1 is the only outside root, and it follows that λ < ϑ < ρ. It also
implies that C(z) is decreasing in z in the neighborhood of z = ϑ−1, a property that we use in the
sequel to characterize comparative statics of ϑ.

Next, using the definition of C(z), namely

C(z) ≡ −z3 +

(
ρ+

1

ρ
+

1

ρ

τu
τη

+ β

)
z2 −

(
1 + β

(
ρ+

1

ρ

)
+
β + γ

ρ

τu
τη

)
z + β,



taking its derivative with respect to γ, and evaluating that derivative at z = ϑ−1, we obtain

∂C(ϑ−1)

∂γ
= − τu

ρτη
< 0.

Combining this with the earlier observation that ∂C(ϑ−1)
∂z < 0, and using the Implicit Function

Theorem, we infer that ϑ is an increasing function of γ.

Similarly, taking derivative with respect to τu, we have

∂C(ϑ−1)

∂τu
=

1

ρτη
ϑ−1(ϑ−1 − β − γ) >

1

ρτη
ϑ−1(1− β − γ) > 0.

Since τu = σ−2, we conclude that ϑ is also increasing in σ.

Proof of Proposition 6

Given the law of motion of the aggregate outcome at = ϕ
1−δρ

(
1− ϑ

ρ

)
1

1−ϑLξt, the average forecasts

of at+1 and at+2 can be obtained by applying the Wiener-Hopf prediction formula:

Et[at+1] =
ϕ

1− δρ

(
1− λ

ρ

)
1

1− ϑλ
ρ+ ϑ− ρϑ(L+ λ)

(1− ϑL)(1− λL)
ξt,

Et[at+2] =
ϕ

1− δρ

(
1− λ

ρ

)
1

1− ϑλ

(
ρ+ ϑ− ρϑ(L+ λ)

(1− ϑL)(1− λL)
(ϑ+ ρ)− ρϑ(1− ρϑλL)

(1− ϑL)(1− λL)

)
ξt.

The average forecast error and the average forecast revision are defined as

Errort ≡ at+1 − Et[at+1], Revisiont = Et[at+1]− Et−1[at+1],

and it follows that

Cov(Errort,Revisiont) =

(
ϕ

1− δρ

)2 λϑ2(ρ− λ)(1− ρϑ)(ρ+ ϑ− λρϑ)

ρ4(1− λ2)(ϑ− λ)2(1− λϑ)5

+

(
ϕ

1− δρ

)2 λ(λ− ρ)(ρ+ ϑ− λρϑ)(λρ+ λϑ− ρϑ− λ2ρϑ)

ρ2(1− λ2)(ϑ− λ)(1− λϑ)2

Var(Revisiont) =

(
ϕ

1− δρ

)2 (λ− ρ)2(ρ+ ϑ− λρϑ)2

ρ2(1− λ2)(1− λϑ)2
.

The moment KCG can be computed as

KCG =
Cov(Errort,Revisiont)

Var(Revisiont)
= λ

ϑ+ ρ− ρϑ(λ+ ϑ)− ρλϑ(1− λϑ)

(ρ− λ)(1− λϑ)(ρ+ ϑ− λρϑ)
,

which is the formula given in the Proposition.

Consider next the partial derivatives of KCG with respect to λ and ϑ:

(A7)
∂KCG

∂λ
=

(
θ4λ2ρ

(
λ2
(
ρ2 + 1

)
− 4λρ+ ρ2 + 1

)
− θ3

(
4λ3ρ3 + λ2

(
1− 6ρ2

)
+ ρ2

)
,

+θ2ρ
(
λ2
(
6ρ2 − 1

)
− 4λρ− ρ2 + 1

)
+ 2θρ2(1− 2λρ) + ρ3

)
(1− θλ)2(ρ− λ)2(θ + ρ− θλρ)2

.

(A8)
∂KCG

∂ϑ
= − θλ (2ρ(1− θλ) + θ)

(1− θλ)2(θ + ρ− θλρ)2



It is possible to verify that 0 < λ < ϑ < ρ < 1 implies

∂KCG

∂λ
> 0 >

∂KCG

∂ϑ
.

Because ϑ increases in γ and λ is invariant in γ, we immediately have that KCG is decreasing in γ,
as stated in the Proposition.

What remains is to prove that KCG is increasing in σ. This is complicated because σ has opposing
effects via λ and ϑ. The rest of the proof deals with this complication. Because the calculations
involved are highly cumbersome, we have done them with the help of the analytical tools in Math-
ematica.

Because λ is a monotone transformation of σ, we can re-express ϑ as function of λ and take the
total derivative of KCG with respect to λ instead of its total derivative with respect to σ. That is,
we seek to prove dKCG

dλ > 0, where

(A9)
dKCG

dλ
=
∂KCG

∂λ
+
∂KCG

∂ϑ

∂ϑ

∂λ
,

∂KCG
∂λ and ∂KCG

∂ϑ are the partial derivatives obtained above, and ∂ϑ
∂λ is the derivative of ϑ with respect

to λ implied by the solution for ϑ. The latter derivative is obtained by re-expressing the cubic in
(17) in terms of λ in place of σ and applying the Implicit Function Theorem. In particular, we first
re-write the cubic as follows:

(A10) ρ(1− βθ)(θ − λ)(1− θλ)− γθ2(ρ− λ)(1− λρ) = 0.

We then apply the Implicit Function Theorem to obtain

(A11)
∂ϑ

∂λ
=

ρ(βθ − 1)
(
θ2 − 2θλ+ 1

)
+ γθ2

(
−2λρ+ ρ2 + 1

)
ρ (β (3θ2λ− 2θ (λ2 + 1) + λ)− 2θλ+ λ2 + 1)− 2γθ (λ2ρ− λ (ρ2 + 1) + ρ)

.

Next, we solve (A10) for γ:

(A12) γ = Γ(θ;λ, β, ρ) ≡ ρ(1− βθ)(θ − λ)(1− θλ)

θ2(ρ− λ)(1− λρ)
.

This identifies the value of γ that induces as an equilibrium any given value form ϑ in the admissible
range [λ, ρ). Replacing this value for γ into (A11) allows us to re-express the latter as follows:

(A13)
∂ϑ

∂λ
=

θ
(
λ2 − 1

)
(βθ − 1)

(
θ2ρ− θ

(
ρ2 + 1

)
+ ρ
)

(λ− ρ)(λρ− 1) (βθ3λ− θ (βλ+ λ2 + 1) + 2λ)
.

Combining the above with (A7), (A8), and (A9), we obtain the following result:

(A14)
dKCG

dλ
=



βλ5ρ4θ6 + βλ3ρ4θ6 − 5βλ4ρ3θ6 − βλ2ρ3θ6 + βλ5ρ2θ6 + 5βλ3ρ2θ6 − βλ4ρθ6 − βλ2ρθ6
−3βλ4ρ4θ5 + βλ2ρ4θ5 + 3βλ3ρ3θ5 + βλ2θ5 + 3βλ4ρ2θ5 − 2βλ2ρ2θ5 − 3βλ3ρθ5 − λ6ρ4θ4
−βλ5ρ4θ4 − 2λ4ρ4θ4 + 4βλ3ρ4θ4 − λ2ρ4θ4 − 2βλρ4θ4 + βλ3θ4 + 5λ5ρ3θ4 + 3βλ4ρ3θ4 + 8λ3ρ3θ4

−3βλ2ρ3θ4 − λρ3θ4 − λ6ρ2θ4 − βλ5ρ2θ4 − 8λ4ρ2θ4 − 2βλ3ρ2θ4 − 4λ2ρ2θ4 + 2βλρ2θ4 + ρ2θ4

+λ5ρθ4 − βλ4ρθ4 + 3λ3ρθ4 + 5λ5ρ4θ3 + 3βλ4ρ4θ3 + 2λ3ρ4θ3 − 2βλ2ρ4θ3 + λρ4θ3 − 2λ3θ3

−13λ4ρ3θ3 − 7βλ3ρ3θ3 − 6λ2ρ3θ3 + 4βλρ3θ3 + ρ3θ3 + λ5ρ2θ3 + βλ4ρ2θ3 + 7λ3ρ2θ3 + βλ2ρ2θ3

+2λρ2θ3 + 2λ4ρθ3 + βλ3ρθ3 + λ2ρθ3 − βλρθ3 − ρθ3 − 9λ4ρ4θ2 − 3βλ3ρ4θ2 − λ2ρ4θ2 + 17λ3ρ3θ2

+5βλ2ρ3θ2 + λρ3θ2 − 6λ2ρ2θ2 − 2βλρ2θ2 − 2ρ2θ2 − 2λ3ρθ2 + 2λρθ2 + 7λ3ρ4θ + βλ2ρ4θ + λρ4θ
−11λ2ρ3θ − βλρ3θ − ρ3θ + 4λρ2θ − 2λ2ρ4 + 2λρ3


(1− θλ)(1− λρ) (βλθ3 − λ2θ − βλθ − θ + 2λ) (ρ− λ)2(λρθ − θ − ρ)2

The proof is then completed by verifying that both the numerator and the denominator are positive.

Consider first the denominator and note that this is a decreasing linear function of β. It is



therefore positive if and only if β < θλ2+θ−2λ
θ3λ−θλ . Because the latter fraction is decreasing in θ, it is

bounded from below by the limit of this fraction as ϑ → ρ → 1. Because this limit is 1, which is
necessarily higher than β, we have that the denominator is necessarily positive.

Consider next the numerator. This, too, is a decreasing linear function of β. And it is positive if
and only if

β < β# ≡


θ4ρ

(
λ6
(
ρ3 + ρ

)
− λ5

(
5ρ2 + 1

)
+ 2λ4ρ

(
ρ2 + 4

)
− λ3

(
8ρ2 + 3

)
+ λ2ρ

(
ρ2 + 4

)
+ λρ2 − ρ

)
−θ3

(
λ5
(
5ρ4 + ρ2

)
+ λ4

(
2ρ− 13ρ3

)
+ λ3

(
2ρ4 + 7ρ2 − 2

)
+ λ2

(
ρ− 6ρ3

)
+ λρ2

(
ρ2 + 2

)
+ ρ

(
ρ2 − 1

))
+θ2ρ

(
9λ4ρ3 + λ3

(
2− 17ρ2

)
+ λ2ρ

(
ρ2 + 6

)
− λ

(
ρ2 + 2

)
+ 2ρ

)
−θρ2

(
7λ3ρ2 − 11λ2ρ+ λ

(
ρ2 + 4

)
− ρ
)

+ 2λρ3(λρ− 1)


θλ

 θ5λρ
(
λ3
(
ρ3 + ρ

)
− λ2

(
5ρ2 + 1

)
+ λρ

(
ρ2 + 5

)
− ρ2 − 1

)
− θ4λ

(
ρ2 − 1

) (
3λ2ρ2 − 3λρ− ρ2 + 1

)
−θ3

(
λ4
(
ρ4 + ρ2

)
+ λ3

(
ρ− 3ρ3

)
+ λ2

(
−4ρ4 + 2ρ2 − 1

)
+ 3λρ3 + 2ρ2

(
ρ2 − 1

))
+

θ2ρ
(
λ3
(
3ρ3 + ρ

)
+ λ2

(
1− 7ρ2

)
+ λ

(
ρ− 2ρ3

)
+ 4ρ2 − 1

)
+ θρ2

(
−3λ2ρ2 + 5λρ− 2

)
+ ρ3(λρ− 1)


To verify that the above is necessarily true, we return to condition (A12).

Recall that this condition gives the value of γ that induces a given θ as an equilibrium. Using
this, the primitive β + γ < 1 can be re-expressed as β + Γ(θ;λ, β, ρ) < 1, or equivalently

(A15) β < b∗ ≡ θ2λ2ρ+ θ2(−λ)ρ2 + θ2λρ− θ2λ+ θ2ρ− θλ2ρ− θρ+ λρ

θ3λρ− θ2λρ2 − θ2λ+ θλρ
.

We thus have that β < b∗ is necessarily satisfied. If we prove that b∗ ≤ β# is also satisfied, we are
done.

Let F (λ, ϑ, ρ) denote difference β#− b∗ as a function of (λ, ϑ, ρ); this function is obtained simply
by using the definitions of these thresholds. We have used Mathematica to verify numerically that F
takes non-negative values over the entire [0, 1]3 set, which itself necessarily contains the admissible
values of (λ, ϑ, ρ). We conclude that both the numerator and the denominator in (A14) are positive,
which means that KCG is increasing in λ (equivalently, in σ).

Proof of Proposition 7

The proof follows from the main text.

Proof of Proposition 8

See Appendix D4.

Proof of Proposition 9

Assume that all agents across groups share the same information structure by receiving a private
signal about the interest rate rt

xi,g,t = rt + ui,g,t, ui,g,t ∼ N (0, σ2).

We proceed with a guess-and-verify approach. The conjecture is that the law of motion of the
aggregate consumption ct is given by the following AR(2) process for some scalars b and ϑ ∈ (−1, 1),

ct =
b

(1− ϑL)(1− ρL)
ηt = b

ρ

ρ− ϑ
ξt − b

ϑ

ρ− ϑ
ζt.

where ξt ≡ 1
1−ρLηt and ζt ≡ 1

1−ϑLηt. To simplify the notation, denote αg ≡ mgφg and βg ≡ 1−mg.
Consider the individual best response in group g

ci,g,t = −Ei,g,t[rt] + bαg

(
ρ

ρ− ϑ
Ei,g,t[ξt]−

ϑ

ρ− ϑ
Ei,g,t[ζt]

)
+ βgEi,g,t[ci,g,t+1]



=
1

1− βgρ

(
−1 + bαg

ρ

ρ− ϑ

)
Ei,g,t[ξt]−

1

1− βgϑ
bαg

ϑ

ρ− ϑ
Ei,g,t[ζt].

Due to the fact that the signal structure is independent of their group identity, the average expec-
tation across the economy is the same as that within the group. The average forecasts of ξt and ζt
are given by

Et[ξt] =

(
1− λ

ρ

)
1

(1− ρL)(1− λL)
ηt,

Et[ζt] =

(
1− λ

ρ

)
1− ρλ
1− ϑλ

1

(1− ϑL)(1− λL)
ηt,

where λ is defined in equation (A2). It follows that the average action of group g is

cg,t =
1

1− λL

(
1− λ

ρ

){
1

1− βgρ

(
−1 + bαg

ρ

ρ− ϑ

)
1

1− ρL
− 1

1− βgϑ
bαg

ϑ

ρ− ϑ
1

1− ϑL

}
ηt.

The aggregate consumption is a weighted average of the actions across different groups

ct =
∑
g

πgcg,t,

=
1

1− λL

(
1− λ

ρ

){∑
g

πg
1

1− βgρ

(
−1 + bαg

ρ

ρ− ϑ

)
1

1− ρL
−
∑
g

πg
1

1− βgϑ
bαg

ϑ

ρ− ϑ
1

1− ϑL

}
ηt,

≡ 1

1− λL

(
1− λ

ρ

)
∆1 −∆2 − (ϑ∆1 − ρ∆2)L

(1− ρL)(1− ϑL)
,

where

∆1 =
∑
g

πg
1

1− βgρ

(
−1 + bαg

ρ

ρ− ϑ

)
,

∆2 =
∑
g

πg
1

1− βgϑ
bαg

ϑ

ρ− ϑ
.

To verify the conjecture, we need to make sure that the actual outcome follows the same AR(2)
process as the conjectured one. By matching coefficients, it has to be that

∆1 =
ρ− λ
ϑ− λ

∆2,(A16)

b =

(
1− λ

ρ

)
(∆1 −∆2).(A17)

Note that without informational frictions, the aggregate outcome is given by

ct = b∗ξt, with b∗ = −
∑

g πg
1

1−βgρ

1−
∑

g πg
αg

1−βgρ
.

The consumption under perfect information satisfies the standard Euler equation

ct = −ςrt + Et[ct+1],

where −ς ≡ (1− ρ)b∗.



Going back to the incomplete-information economy, it follows from (A16) and(A17) that the scale
b is given by

b =

(
1− ϑ

ρ

)
b∗,

and ϑ is the inside root of the following equation

C(z) = (1− zλ)(z − λ)ρ− z(1− λρ)(ρ− λ)
∑
g

πg
αg

1− βgz
.

Therefore, the aggregate consumption under incomplete information follows an AR(2) process,
which is the same as the baseline case. The particular form of the impact response captured by b
also permits the as-if representation, with ωf and ωb now being functions of {πg, φg,mg}.

For the two-group case, the variable ϑ is the inside root of the following condition by rewriting
C(z) as a polynomial equation

C̃(z) = (1− (1−m1)z)(1− (1−m2)z)(1− zλ)(z − λ)ρ− z(1− λρ)(ρ− λ)Q,

where
Q = π1m1φ1(1− (1−m2)z) + π2m2φ2(1− (1−m1)z).

Denote φ1 = φ, and by construction, we have φ2 = 1−π1φ
π2

. It follows that

∂Q

∂φ
= π1(m1 −m2)(1− z).

Note that

C̃(λ) = −λ(1− λρ)(ρ− λ)(π1m1φ1(1− (1−m2)λ) + π2m2φ2(1− (1−m1)λ)) < 0

C̃(1) = m1m2λ(1− ρ)2 > 0.

Therefore, ϑ ∈ (λ, 1) and C̃(z) is increasing in the neighborhood of ϑ. When m1 > m2, ∂Q∂φ |z=ϑ > 0.
It follows that ϑ is increasing in φ.

Proof of Proposition 10

We first show that if βg ∈ (0, 1) and the spectral radius of (I − β)−1γ is less than 1, then there
exists a unique equilibrium. Recall that the individual’s best response is

ai,g,t = ϕgEi,g,t[ξt] + βgEi,g,t[ai,g,t+1] +
n∑
j=0

γgkEi,g,t[aj,t+1] = ϕgEi,g,t

 1

1− βgL−1
ξt +

n∑
j=0

γgkL
−1

1− βgL−1
aj,t


The aggregate outcome for group g is then

ag,t = ϕgEg,t

 1

1− βgL−1
ξt +

n∑
j=0

γgkL
−1

1− βgL−1
aj,t

 .
By an abuse of notation, we have

at = Et
[
(I− βL−1)−1ϕξt + (I− βL−1)−1γL−1at

]
,



where Et denotes
[
E1,t . . . En,t

]′
. Denote ϕ̃ ≡ (I− βρ)−1ϕ and κ(L) ≡ (I− βL−1)−1γL−1. The

aggregate outcome at has the following representation

at = ϕ̃Et [ξt] + Et
[
κ(L)ϕ̃Et [ξt]

]
+ Et

[
κ(L)Et

[
κ(L)ϕ̃Et[ξt]

]]
+ . . .

The aggregate outcome has a unique solution if the power series above is a stationary process or
the variance of ag,t is bounded for all g.

Note that: (1) Var(Et[X]) ≥ Var(Et[Et+k[X]]) for k ≥ 0; (2) Var(aX + bY ) ≤ (a
√

Var(X) +

b
√

Var(Y ))2. To show the variance of ag,t is bounded, it is sufficient to show that
∑∞

k=0 κ
k(1) is

bounded. Since κ(1) = (I− β)−1γ, if the spectral radius of (I− β)−1γ is less than 1,
∑∞

k=0 κ
k(1)

is bounded and at is stationary.

Now we show that the aggregate outcomes have to be a linear combination of n different AR(2)
processes. The signal for agents in group g is

xi,g,t = M(L)

[
η̂t
ûi,g,t

]
, with M(L) =

[
1

1−ρL τ
− 1

2
g

]
.

Similar to the proof of Proposition 2, let Bg(L) denote the fundamental representation of the signal
process, which is given by

Bg(L) = τ
− 1

2
g

√
ρ

λg

1− λgL
1− ρL

,

where λg is

λg =
1

2

ρ+
1

ρ
(1 + τg)−

√(
ρ+

1

ρ
(1 + τg)

)2

− 4

 .
Denote the policy rule of agents in group g as hg(L), and the law of motion of the aggregate outcome

in group g is ag,t =
hg(L)
1−ρLηt. Agents need to forecast the fundamental, their own future action, the

aggregate outcomes in each group, which are given by

Ei,g,t[ξt] =
λgτg

ρ(1− ρλg)
1

1− λgL
xi,g,t,

Ei,g,t [ak,t+1] =
λgτg
ρ

(
hk(L)

(1− λgL)(L− λg)
− hk(λg)(1− ρL)

(1− ρλg)(L− λg)(1− λgL)

)
xi,g,t,

Ei,g,t [ai,g,t+1 − ag,t+1] =
λg
ρ

(
hg(L)(L− ρ)

L(L− λg)
− h(λg)(λg − ρ)

λg(L− λg)
− ρ

λg

hg(0)

L

)
1− ρL
1− λgL

xi,g,t.

Using the best response, the fixed point problem is

hg(L)xi,g,t = ϕg
λgτg

ρ(1− ρλg)
1

1− λgL
xi,g,t + βg

λg
ρ

(
hg(L)(L− ρ)

L(L− λg)
− hg(λg)(λg − ρ)

λg(L− λg)
− ρ

λg

hg(0)

L

)
1− ρL
1− λgL

xi,g,t

+
∑
k

γg,k
λgτg
ρ

(
hk(L)

(1− λgL)(L− λg)
− hk(λg)(1− ρL)

(1− ρλg)(L− λg)(1− λgL)

)
xi,g,t

+ βg
λgτg
ρ

(
hg(L)

(1− λgL)(L− λg)
− hg(λg)(1− ρL)

(1− ρλg)(L− λg)(1− λgL)

)
xi,g,t.

The system of equation in terms of h(L) is

A(L)h(L) = d(L),



where

A(L) = diag

{
L(L− λg)(1− λgL)

}
− β diag

{
λg
ρ

(L− ρ)(1− ρL) +
λgτg
ρ

L

}
− diag

{
λgτg
ρ

L

}
γ,

and

dg(L) =ϕg
λgτg

ρ(1− ρλg)
L(L− λg)− βg(L− λg)(1− ρL)hg(0)

−

(
βghg(λg)

(
λg − ρ
ρ

+
λgτg

ρ(1− ρλg)

)
+

λgτg
ρ(1− ρλg)

∑
k

γg,khk(λg)

)
L(1− ρL).

The solution is given by

h(L) =
adj A(L)

det A(L)
d(L).

Utilizing the identify that

λg +
1

λg
= ρ+

1

ρ
+

1

ρσ2
g

,

the matrix A(L) can be simplified to

A(L) =diag

{
− λgL

(
L−

(
ρ+

1

ρ
+

1

ρσ2
g

)
L+ 1

)}
+ β diag

{
λg

(
L−

(
ρ+

1

ρ
+

1

ρσ2
g

)
L+ 1

)}
− diag

{
λgτg
ρ

L

}
γ.

The roots of det A(z) is the same as the roots of

C(z) = det

(
(δ − γ − Iz) diag

{
z2 −

(
ρ+

1

ρ
+

1

ρσ2
g

)
z + 1

}
− z diag

{
1

ρσ2
g

}
γ

)
.

Note that the degree of det A(L) is 3n. Denote the inside roots of det A(L) as {ζ1, . . . , ζn1} and
the outside roots as {θ−1

1 , . . . , θ−1
n2
}. Because agents cannot use future signals, the inside roots have

to removed. Note that the number of free constants in d(L) is 2n:

(A18) {hg(0)}ng=1, and

{
βghg(λg)

(
λg − ρ
ρ

+
λgτg

ρ(1− ρλg)

)
+

λgτg
ρ(1− ρλg)

∑
k

γg,khk(λg)

}n
g=1

.

With a unique solution, it has to be the case that the number of outside roots is n. Also note that
by Cramer’s rule, hg(L) is given by

hg(L) =
det
[
A1(L) . . . Ag−1(L) d(L) Ag(L) . . . An(L)

]
det A(L)

.

The degree of the numerator is 3n − 1 as the highest degree of dg(L) is 1 degree less than that
of Ag,g(L). By choosing the constants in equation (A18), the 2n inside roots will be removed.
Therefore, the 2n constants are solutions to the following system of linear equations:2

det
[
A1(ζi) . . . Ag−1(ζi) d(ζi) Ag(ζi) . . . An(ζi)

]
= 0, for i = 1, . . . , n.

2The set of constants that solve the system of equations for hg(L) also solves that for hj(L) where i 6= g. This is because
{ζi}ni=1 are the roots of the determinant of A(L), leaving the vectors in A(ζi) being linearly dependent.



After removing the inside roots in the denominator, the degree of the numerator is n − 1 and the
degree of the denominator is n. As a result, the solution to hg(L) takes the following form

hg(L) =
1

Πn
k=1(1− ϑkL)

n∑
k=1

ψ̃g,kL
k−1 =

n∑
k=1

ψg,k

(
1− ϑk

ρ

)
1

1− ϑkL
.

In the special case where β = 0 and σg = σ, we have

at = ϕEt[ξt] + γEt[at+1].

Denote the eigenvalue decomposition of γ as

γ ≡ Q−1ΛQ,

where Λ = diag{µ1, . . . , µn} is a diagonal matrix, and where δg is the g-th eigenvalue of γ. It
follows that

Qat = QϕEt[ξt] + ΛEt[Qat+1].

Denote ãt ≡ Qat. Because Λ is a diagonal matrix, it follows that ãg,t is independent of ãj,t for g 6= j,
and ãg,t satisfies Proposition 2. The degree of complementarity for ãg,t is µg, and the corresponding
ϑg is the reciprocal of the outside root of the following quadratic equation:

Cg(z) = −z2 +

(
ρ+

1

ρ
+

1

ρσ2
+ βg

)
z −

(
1 + βg

(
ρ+

1

ρ

)
+
βg + µg
ρσ2

)
.

Because at is a linear transformation of ãt, they share the same AR roots.

Proof of Proposition 11

Now we move to show there exists ωf and ωb in the complete-information model to rationalize
the incomplete-information model solution. In the incomplete-information economy, the average
action in group g, ag,t, is given by

ag,t =

n∑
k=1

ψg,k

(
1− ϑk

ρ

)
1

1− ϑkL
ξt.

Let θk,t ≡
(

1− ϑk
ρ

)
1

1−ϑkLξt, and it follows that

ag,t =
n∑
k=1

ψg,kθk,t.

Denote Q, Λ, and D as

Q ≡

ψ1,1 . . . ψ1,n
...

. . .
...

ψn,1 . . . ψn,n

 , Λ ≡

ϑ1

. . .

ϑn

 , D ≡

1− ϑ1
ρ

...

1− ϑn
ρ

 .
The vector that collects θk,t can be written as

θt ≡

θ1,t
...
θn,t

 = Λθt−1 + Dξt,



and the vector at that collects ag,t is

at = Qθt = QΛQ−1at−1 + QDξt.

Define A ≡ QΛQ−1 and B ≡ QD, we have

(A19) at = Aat−1 + Bξt.

In the perfect-information hybrid model, the law of motion of at follows

at = ϕξt + ωfδEt[at+1] + ωbat−1.

If (A19) is a solution to the perfection-information hybrid model, it has to be that

Aat−1 + Bξt = ϕξt + ωfδ

(
ρBξt + A(Aat−1 + Bξt)

)
+ ωbat−1.

By method of undetermined coefficients, we have

ωfδ(ρB + AB) = B−ϕ,
ωb = A(I− ωfδA).

Note that the dimension of B−ϕ is n× 1 and the dimension of ωf is n× n. As a result, ωf is not
uniquely determined.

B. The Role of Public Information

Throughout the main analysis, we have assumed that the noise is entirely idiosyncratic. We have
thus assumed away, not only correlated errors in expectations, but also the coordination afforded
when agents condition their behavior on noisy but public information (Morris and Shin, 2002).
In this appendix, we accommodate these possibilities by letting agents observe a public signal in
addition to their private signals. We first explain how this modifies our observational equivalence
result. We then explain how this matters for our mapping between the theory and the expectations
evidence.

B1. Solution with a Public Signal

In addition to the private signal xi,t = ξt + ui,t considered so far, a public signal of the form

(B1) zt = ξt + εt,

where ui,t ∼ N (0, σ2
u) and εt ∼ N (0, σ2

ε ) are, respectively, idiosyncratic and aggregate noises.
We next let σ−2 ≡ σ−2

u + σ−2
ε measure the overall precision of the available information about

the fundamental and χ ≡ σ−2
ε

σ−2
u +σ−2

ε
the fraction of it that reflects public information, or common

knowledge.3

PROPOSITION 12: In the extension with public signals described above, the following properties
are true.

3It is worth emphasizing that a “public signal” in the theory represents a piece of information that is not only available in
the public domain but also common knowledge: every agent observes and acts on it, every agent knows that every other agent
observes and acts on it, and so on. Such a signal is therefore at odds with the primary motivation of our paper. It may also
not have an obvious empirical counterpart. For instance, aggregate statistics could be effectively observed with idiosyncratic
noise due to rational inattention. Nevertheless, the incorporation of a perfect, common-knowledge public signal allows us to
shed additional light on the mechanics of the theory as well as on its empirical implications.



(i) The equilibrium outcome is given by

at = aξt + vt,

where aξt is the projection of at on the history of ξt and vt is the residual.

(ii) aξt satisfies Propositions 2 and 3, modulo the replacement of the cubic seen in condition (17)
with the following:

(B2) C(z) ≡ −z3 +

(
ρ+

1

ρ
+

1

ρσ2
+ (δ − γ)

)
z2 −

(
1 + (δ − γ)

(
ρ+

1

ρ

)
+
δ − γχ
ρσ2

)
z + (δ − γ) .

(iii) Provided γ > 0, ϑ is decreasing χ and, therefore, both ωf and ωb get closer to their frictionless
counterparts as χ increases.

(iv) The residual νt follows an AR(1) process with innovation εt, the noise in the public signal.

Part (i) expresses the equilibrium outcome as the sum of two components: a “fundamental com-
ponent,” defined by the projection of at on the history of ξt; and a residual, itself measurable in the
history of εt, the aggregate noise.

Part (ii) verifies that all our earlier results extend to the fundamental component here. In other
words, although the aggregate outcome is now contaminated by noise, our earlier results continue
to characterize its impulse response function (IRF) with respect to the fundamental. Part (ii) also
provides the modified cubic that pins down ϑ (and, thereby, the distortions ωf and ωb). The old
cubic is readily nested in the new one by setting χ = 0.

Part (iii) highlights that, holding σ constant, an increase in χ maps to a smaller ϑ and, thereby,
to smaller distortions, but only if γ > 0; if instead γ = 0, χ is irrelevant. To understand why,
note that an increase in χ for given σ means a substitution of private for public information. This
maps to a smaller and less persistent wedge between first- and higher-order beliefs holding constant
the dynamics of the first-order beliefs. By the same token, the PE effect of any given innovation
remains unchanged, but its GE effect, which is non-zero if and only if γ 6= 0, is enhanced and gets
closer to its frictionless, representative-agent counterpart.

In a nutshell, a higher χ represents an increase in the degree of common knowledge, which in
turn amounts to making GE considerations more salient. Clearly, this is a direct extension of the
logic developed in our baseline analysis. But what is its empirical content? In particular, does our
baseline specification biases upwards the documented distortions by fixing χ at its lowest possible
value? As illustrated next, once the theory is required to match relevant evidence on expectations,
the incorporation of public information (χ > 0) may actually translate to higher distortions than
those predicted by our baseline specification (χ = 0).

Part (iv) makes it clear that the residual νt is itself an AR(1) transformation of the noise in the
public signal. This means that, unlike the fundamental component, the residual does not exhibit
hump-shape dynamics.

We find this property is intriguing. If one looks at the response of inflation to either identified
monetary shocks (Christiano, Eichenbaum and Evans, 2005; Romer and Romer, 2004) or to the
shock that accounts for most of the business cycle volatility in unemployment, output, or the
output gap (the MBC shock in Angeletos, Collard and Dellas (2020)), one finds a hump shape. But
if one looks at the residual, which the DSGE literature captures with a markup shock, then one
sees no hump shape. From this perspective, the introduction of public information helps the theory
generate a “residual” in inflation that is of the same type as that found in the data. And it helps
reconcile why one sees a hump shape in one dimension but not in another.

B2. Revisiting the Mapping from KCG to (ωf , ωb)

Ceteris paribus, the addition of public information reduces the documented distortions by in-
creasing the degree of common knowledge. But it also reduces the predictability of the average



forecasts errors. The relevant question is therefore how the accommodation of public information
affects the lessons we draw in this paper under the requirement that the theory continues to match
the available evidence on expectations.

In our benchmark, which abstracts from public information, the CG coefficient uniquely identifies
the value of σ, which in turn pins down the pair (ωf , ωb), or equivalently the equilibrium dynamics.
Now that we have added a public a signal, the CG coefficient and the equilibrium dynamics alike
depend on two unknown parameters, the precisions τx ≡ σ−2

u and τz ≡ σ−2
ε of, respectively, the

private and the public information. As a result, we loose point identification but preserve set
identification: only certain pairs of τz and τx are consistent, under the lens of the theory, with the
evidence in CG. Furthermore, because the theoretical value of KCG converges to zero as the public
information becomes sufficiently precise, the estimated value of KCG puts an upper bound on τz.

4

Figure B1 illustrates the implications of these properties for the documented distortions within the
context of our application to inflation (Section VI). On the horizontal axis, we let τz vary between
zero (our benchmark) and the aforementioned bound. For each τz in this range, we find the value
of τx that matches the point estimate of KCG provided in CG and report the implied values for ωf
and ωb.

For the application under consideration, the upper bound on τz turns out to be quite low. This is
because evidence in CG points towards considerable predictability in average forecast errors, which
in turn requires a significant departure from common knowledge. What is more, the distortions
increase as we raise τz within the admissible range. That is, once the theory is disciplined with the
relevant evidence, the incorporation of public information reinforces the documented distortions.

Figure B1. The Role of Public Information

Similar points apply if we let for an endogenous public signal of the form zt = at + εt, which in
the application under consideration can be thought of as statistic of inflation contaminated with
measurement error.5 Similar to the exogenous-information case, matching the CG moment puts
an upper bound on the informativeness of this signal. Different from the exogenous-information
case, this informativeness is now endogenous to the actual inflation dynamics. This introduces an

4That is, the set of the admissible values for the pair (τx, τz) can be expressed as

S(KCG) = {(τx, τz) : τz ≤ T (KCG) and τx = f(τz ,KCG)} ,

where KCG is the CG moment, T (·) is a function that gives corresponding upper bound on τz , and f(·) is a function that gives
the value of τx that lets the theory match this moment for any given τz below the aforementioned bound.

5This specification is close to that studied in Nimark (2008). The main difference is that the theory is herein disciplined by
the evidence in Coibion and Gorodnichenko (2015).



additional fixed point problem, which can only be solved numerically. But as illustrated in Figure D1
in Appendix D3, the main message goes through.

C. Idiosyncratic Shocks and Micro- vs Macro-level Distortions

The various adjustment costs assumed in the DSGE literature are supposed to be equally present
at the macroeconomic and the microeconomic level. But this is not true. For instance, the macroe-
conomic estimates of the habit in consumption obtained in the DSGE literature are much larger
than the corresponding microeconomic estimates (see Havranek, Rusnak and Sokolova, 2017, for a
metanalysis).

Consider next the menu-cost literature that aims at accounting for the microeconomic data on
prices (Golosov and Lucas Jr, 2007; Midrigan, 2011; Alvarez and Lippi, 2014; Nakamura and Steins-
son, 2013). Different “details” such as the number of products that are simultaneously re-priced
and the so-called selection effect matter for how steep the effective Philips curve is, but do not help
generate the requisite sluggishness in inflation that the DSGE literature captures with the ad hoc
Hybrid NKPC.

A similar point applies to the literature that aims at accounting for the lumpiness of investment at
the plant level (Caballero and Engel, 1999; Bachmann, Caballero and Engel, 2013): this literature
has not provided support for the kind of adjustment costs to investment employed in the DSGE
literature.

In sort, whether one goes “downstream” from DSGE models to their microeconomic implications
or “upstream” from the more realistic, fixed-cost models used to account for the microeconomic
data to their macroeconomic implications, there is a pervasive gap between micro and macro.

Our result that the distortions increase with the importance of GE considerations contributes
towards filling this micro-to-macro gap. When an individual responds to aggregate shocks, she has
to predict the responses of others and align hers with theirs. To the extent that GE considerations
are strong enough, this generates a feedback loop from sluggish expectations to sluggish outcomes
and back. When instead an individual responds to idiosyncratic shocks, this mechanism is muted.
Furthermore, agents may naturally have much more information about idiosyncratic shocks than
about aggregate shocks both because of decentralized market interactions (Lucas, 1972) and be-
cause of rational inattention Maćkowiak and Wiederholt (2009). It follows that the documented
distortions may loom large at the macroeconomic time series even if they appear to be small in the
microeconomic time series.

We illustrate this point in the rest of this appendix by adding idiosyncratic shocks to our frame-
work. The optimal behavior of agent i now obeys the following equation:

(C1) ai,t = Ei,t[ϕξi,t + βai,t+1 + γat+1],

where
ξi,t = ξt + ζi,t.

and where ζi,t is a purely idiosyncratic shock. We let the latter follow a similar AR(1) process as
the aggregate shock: ζi,t = ρζi,t−1 + εi,t, where εi,t is i.i.d. across both i and t.6

We then specify the information structure as follows. First, we let each agent observe the same
signal xi,t about the aggregate shock ξt as in our baseline model. Second, we let each agent observe
the following signal about the idiosyncratic shock ζi,t :

zi,t = ζi,t + vi,t,

where vi,t is independent of ζi,t, of ξt, and of xi,t.
Because the signals are independent, the updating of the beliefs about the idiosyncratic and the

aggregate shocks are also independent. Let 1− λ
ρ be the Kalman gain in the forecasts of the aggregate

6The restriction that the two kinds of shocks have the same persistence is only for expositional simplicity.



fundamental, that is,

Ei,t[ξt] = λEi,t−1[ξt] +

(
1− λ

ρ

)
xi,t.

Next, let 1− λ̂
ρ be the Kalman gain in the forecasts of the idiosyncratic fundamental, that is,

Ei,t[ζi,t] = λ̂Ei,t−1[ζi,t] +

(
1− λ̂

ρ

)
zi,t.

It is straightforward to extend the results of Section III.C to the current specification. It can thus
be shown that the equilibrium action is given by the following:

ai,t =

(
1− λ̂

ρ

)
ϕ

1− ρβ
1

1− λ̂L
ζi,t +

(
1− ϑ

ρ

)
ϕ

1− ρδ
1

1− ϑL
ξt + ui,t,

where ϑ is determined in the same manner as in our baseline model and where ui,t is a residual
that is orthogonal to both ζi,t and ξt and that captures the combined effect of all the idiosyncratic
noises in the information of agent i. Finally, it is straightforward to check that ϑ = λ when γ = 0;
ϑ > λ when γ > 0; and the gap between ϑ and λ increases with the strength of the GE effect, as
measured with γ.

In comparison, the full-information equilibrium action is given by

a∗i,t =
ϕ

1− ρβ
ζi,t +

ϕ

1− ρδ
ξt.

It follows that, relative to the full-information benchmark, the distortions of the micro- and the
macro-level IRFs are given by, respectively,(

1− λ̂

ρ

)
1

1− λ̂L
and

(
1− ϑ

ρ

)
1

1− ϑL
.

The macro-level distortions is therefore higher than its micro-level counterpart if and only if ϑ > λ̂.
As already mentioned, it is natural to assume that λ̂ is lower than λ, because the typical agent

is likely to be better informed about, allocate more attention to, idiosyncratic shocks relative to
aggregate shocks. This guarantees a lower distortion at the micro level than at the macro level even
if we abstract from GE interactions (equivalently, from higher-order uncertainty). But once such

interactions are taken into account, we have that ϑ remains higher than λ̂ even if λ̂ = λ. That
is, even if the first-order uncertainty about the two kind of shocks is the same, the distortion at
the macro level may remain larger insofar as there are positive GE feedback effects, such as the
Keynesian income-spending multiplier or the dynamic strategic complementarity in price-setting
decisions of the firms.

In short, the mechanism identified in our paper is distinct from the one identified in Maćkowiak and
Wiederholt (2009) and employed in subsequent works such as Carroll et al. (2020) and Zorn (2018),
but the two mechanisms complement each other towards generating more pronounced distortions
at the macro level than at the micro level. The two mechanisms are combined in recent work by
Auclert, Rognlie and Straub (2020).

D. Application to Inflation: Micro-foundations and Additional Results

D1. Derivation of Incomplete-Information NKPC

The original derivations of the incomplete-information versions of the Dynamic IS and New Key-
nesian Philips curves seen in conditions (8) and (9) can be found in Angeletos and Lian (2018).



Those derivations are based in an extension of the New Keynesian model that incorporates a va-
riety of idiosyncratic and aggregate shocks so as to noise up the information that consumers and
firms may extract from the perfect observation of concurrent prices, wages, and other endogenous
outcomes. Here, we offer a simplified derivation that bypasses these “details” and, instead, focuses
on the essence. To economize, we do so only in the context of the NKPC, which is the application
we push quantitatively. We also use this as an opportunity to point out a mistake in the variant
equations found in Nimark (2008) and Melosi (2016).

Apart for the introduction of incomplete information, the micro-foundations are the same as
in familiar textbook treatments of the NKPC (e.g., Gaĺı, 2008). There is a continuum of firms,
each producing a differentiated commodity. Firms set prices optimally, but can adjust them only
infrequently. Each period, a firm has the option to reset its price with probability 1 − θ, where
θ ∈ (0, 1); otherwise, it is stuck at the previous-period price. Technology is linear, so that the real
marginal cost of a firm is invariant to its production level.

The optimal reset price solves the following problem:

P ∗i,t = arg max
Pi,t

∞∑
k=0

(χθ)kEi,t
{
Qt|t+k

(
Pi,tYi,t+k|t − Pt+kmct+kYi,t+k|t

)}

subject to the demand equation, Yi,t+k =
(
Pi,t
Pt+k

)−ε
Yt+k, where Qt|t+k is the stochastic discount

factor between t and t + k, Yt+k and Pt+k are, respectively, aggregate income and the aggregate
price level in period t + k, Pi,t is the firm’s price, as set in period t, Yi,t+k|t is the firm’s quantity
in period t+ k, conditional on not having changed the price since t, and mct+k is the real marginal
cost in period t+ k.

Taking the first-order condition and log-linearizing around a steady state with no shocks and zero
inflation, we get the following, familiar, characterization of the optimal rest price:

(D1) p∗i,t = (1− χθ)
∞∑
k=0

(χθ)kEi,t[mct+k + pt+k].

We next make the simplifying assumption that the firms observe that past price level but do not
extract information from it. Following Vives and Yang (2017), this assumption can be interpreted
as a form of bounded rationality or inattention. It can also be motivated on empirical grounds:
in the data, inflation contains little statistical information about real marginal costs and output
gaps—it’s dominated by the residual, or what the DSGE literature interprets as “markup shocks.”
This means that, even if we were to allow firms to extract information from past inflation, this would
make little quantitative difference, provided that we accommodate an empirically relevant source
of noise. Furthermore, as we show in the end of Section VI, our observational-equivalence result
remains a useful approximation of the true equilibrium in extension that allow for such endogenous
information.

With this simplifying assumption, we can restate condition (D1) as

(D2) p∗i,t − pt−1 = (1− χθ)
∞∑
k=0

(χθ)kEi,t[mct+k] +
∞∑
k=0

(χθ)kEi,t[πt+k],

Since only a fraction 1− θ of the firms adjust their prices each period, the price level in period t is
given by pt = (1− θ)

∫
p∗i,tdi+ θpt−1. By the same token, inflation is given by

πt ≡ pt − pt−1 = (1− θ)
∫ (

p∗i,t − pt−1

)
.



Combining this with condition (D2) and rearranging, we arrive at the following expression:

(D3) πt = κ
∞∑
k=0

(χθ)kEt [mct+k] + χ(1− θ)
∞∑
k=0

(χθ)kEt [πt+k+1] .

where κ ≡ (1−χθ)(1−θ)
θ . This is the same as condition 25 in the main text.

When information is complete, we can replace Et[·] with Et[·], the expectation of the representative
agent. We can then use the Law of Iterated Expectations to reduce condition (D3) to the standard
NKPC. When instead information is incomplete, the Law of Iterated Expectations does not apply at
the aggregate level, because average forecast errors can be auto-correlated, and therefore condition
(D3) cannot be reduced to the standard NKPC.

As explained in the main text, condition (D3) involves extremely complex higher-order beliefs
and precludes a sharp connection to the data—and this is where the toolbox provided in this paper
comes to rescue.

Let us now explain the two reasons why the incomplete-information NKPC seen in condition (D3)
is different from that found in Nimark (2008) and Melosi (2016). The first reason is that, while we
let firms observe the current-period price level, these papers let them observe only the past-period
price level. Clearly, this difference vanishes as the time length of a period gets smaller. The second,
and most important, reason is a mistake, which we explain next.

Take condition (D1) and rewrite it in recursive form as follows:

p∗i,t = (1− χθ)Ei,t[mct + pt] + (χθ)Ei,t[p∗i,t+1].

Aggregate this condition yields a term of the form
∫
Ei,t[p∗i,t+1]di, the average expectation of the

own reset price, in the right-hand side. And this is where the oversight occurs: the aforementioned
term is inadvertently replaced with the average expectation of the average reset price.

In more abstract terms, this is like equating
∫
Ei,t[ai,t+1]di with

∫
Ei,t[at+1]di. If this were true,

we could have readily aggregated condition (4) to obtain the following equation:

at = ϕEt[ξt] + δEt+1[at+1].

Relative to condition (5), this amounts to dropping the expectations of the aggregate outcome a
horizons k ≥ 2, or restricting β = 0. But this is not true. Except for knife-edge cases such as
that of an improper prior, incomplete information implies that the typical agent forms a different
expectation about his own actions than the actions of others, which means that∫

Ei,t[ai,t+1]di 6=
∫

Ei,t[at+1]di.

and the aforementioned simplification does not apply.

D2. Decomposition of PE and GE in Figure 3

This appendix describes the construction of the dotted red line in Figure 3, that is, the counter-
factual that isolates the PE channel. This builds on the decomposition between PE and GE effects
first introduced in in Section III.A.

Using condition (D3), the incomplete-information inflation dynamics can be decomposed into two
components: the belief of the present discounted value of real marginal costs, ϕ

∑∞
k=0 β

kEt[mct+k];
and the belief of of the present discounted value of inflation, γ

∑∞
k=0 β

kEt[πt+k+1]. The same



decomposition can also be applied when agents have perfect information:

(D4) π∗t = ϕ
∞∑
k=0

βkEt [mct+k|mct]︸ ︷︷ ︸
complete-info PE component

+ γ
∞∑
k=0

βkEt
[
π∗t+k+1|mct

]
︸ ︷︷ ︸
complete-info GE component

.

A natural question is which component contributes more to the anchoring of inflation as we move
from the complete to incomplete information.

To answer this question, we define the following auxiliary variable:

(D5) π̃t = ϕ
∞∑
k=0

βkEt [mct+k]︸ ︷︷ ︸
incomplete-info PE component

+ γ
∞∑
k=0

βkEt
[
π∗t+k+1|mct

]
︸ ︷︷ ︸
complete-info GE component

.

The difference between π∗t and π̃t measures the importance of beliefs about real marginal costs, and
the difference between π̃t and πt measures the importance of beliefs about inflation.

The dotted red line in Figure 3 corresponds to π̃t. Clearly, most of the difference between complete
and incomplete information is due the anchoring of beliefs about future inflation. Or, to put it in
terms of our discussion of PE and GE effects, most of the action is through the GE channel.

The logic behind this finding can be understood by computing the GE multiplier that is hidden
inside the standard NKPC. Let µ∗ be the ratio of the GE component to the PE component under
complete information, that is, the ratio of the two terms seen in condition (D4). This identifies the
GE multiplier; the total effect is 1 +µ∗ times the PE effect. Straightforward calculation shows that

µ∗ =
ρχ(1− θ)

1− χρ
≈ 6.4.

That is, even in the familiar, complete-information benchmark, the expectations of future inflation
are 6.4 times more important than the expectations of future real marginal costs in driving actual
inflation. This in turn helps explains why most of the informational friction works through the GE
channel, or the anchoring of the expectations of inflation, as seen in Figure 3 in the main text.

D3. Adding Public Information

In Section VI, we quantified the effects of the informational friction assuming away public infor-
mation. Here, building on the insights developed in Appendix B, we illustrate how that exercise has
provided a conservative estimate of the effects that are obtained once we add public information.
We further show that this point is reinforced if the public information is endogenous.

We thus consider two cases: an exogenous public signal of the form zt = mct + noise, and an
endogenous public signal of the form zt = πt + noise, namely a noisy statistic of inflation. The first
case affords an analytical characterization, along the lines of Appendix B; the second case requires
a numerical approximation but, as shown below, only reinforces our message.7

Figure D1 compares the IRF of inflation to innovations in the real marginal cost under three
information structures, all required to match the regression coefficient KCG estimated in CG. The
blue, solid line corresponds to our benchmark, which abstracts from public information. As ex-
plained in Appendix B, once we allow for a public signal, there is a range of admissible values for
its precision, each one mapping to a different pair (ωf , ωb), or a different IRF. The red, dashed line
in the figure gives the IRF that is obtained when the public signal is exogenous and its precision is
the maximal one consistent with KCG. The area between this line and the benchmark line spans all
the admissible parameterizations of the exogenous-information case. Finally, the black, dotted line

7We thank an anonymous referee for suggesting these explorations.



Figure D1. IRF of Inflation, Exogenous vs Endogenous Information

gives the IRF that obtains when the public signal is endogenous and its precision equals the appro-
priate upper bound. The area between this line and the benchmark line spans all the admissible
parameterizations of the endogenous-information case.

The main takeaways are twofold. First, the exogenous-information setting provides a useful
analytical tool to understand the more realistic but less tractable endogenous-information case.
Second, the accommodation of public information, exogenous or endogenous, only reinforces the
quantitative findings once the theory is disciplined by the available evidence on expectations.8

D4. Market Concentration

In the environment where each market consists only a finite number of firms, the (log-linearized)
individual firm’s optimal reset price is characterized as below.

LEMMA D.1: The optimal reset price of individual firm i in market m follows

(D6) p∗i,m,t = (1−χθ)
∞∑
k=0

(χθ)kκEi,m,t[mct+k]+(1−χθ)
∞∑
k=0

(χθ)kEi,m,t[αNpm−i,t+k+(1−αN )pt+k],

where αN is given by

αN =
N(ψ − 1)(ψ − ε)

ψ (N2(ψ − 1)− (N − 1)ψ) + (N − 2)ψε+ ε2
.

In condition (D6), χ, θ, and κ are the same parameters as in the baseline NKPC setup, while
αN ∈ (0, 1) is a new scalar which summarizes how much a firm’s pricing strategy depends on the
prices of its competitors relative to the aggregate price level. It is easy to verify that ψ > 1 and
ψ > ε suffices for αN to be decreasing in N. And in the special case in which ψ =∞, which amounts
to a Cournot-like game for each market, we have more simply that αN = 1/(2N).

The economy-wide inflation can be obtained by aggregating the above condition across markets,
which leads to a modified version of our incomplete-information NKPC.

8A third, subtler takeaway is that the endogenous public signal contributes to more persistence than the exogenous one. We
find this intriguing and we suspect it is because inflation moves more sluggishly than the fundamental, thus slowing down the
learning. Nimark (2008) also hypothesizes that endogenous signals add persistence. The logic is, however, complicated by the
fact that, as we vary the form of the signal, we adjust its precision to make sure that theory keeps matching the CG moment.



LEMMA D.2: The aggregate inflation rate follows
(D7)

πt = κ
∞∑
k=0

(
χθ

1− (1− θ)αN

)k
Et[mct+k] +

χ(1− θ)(1− αN )

1− (1− θ)αN

∞∑
k=0

(
χθ

1− (1− θ)αN

)k
Et[πt+k+1].

For our purposes, the key observation is that αN is decreasing in N, or decreasing in market
concentration. Intuitively, as N →∞ and the firm becomes infinitesimally small not only vis-a-vis
the entire economy but also vis-a-vis its own market, the firm only care to set a price in proportion to
its nominal marginal cost, which itself is driven by the aggregate price level. That is, as N →∞, αN
approaches 1, condition (D7) reduces to condition (25), and we recover the case studied before. But
when N is finite, a new consideration emerges: when a firm raises its price, it depresses its market
share. This effect scales up with market concentration, explaining why higher market concentration
maps to a higher αN , or a higher consideration for local conditions relative to aggregate conditions.

Under complete information, this consideration is of no consequence for the aggregate inflation
dynamics: when an aggregate shock to the real marginal cost occurs, a typical firm expects both its
immediate competitors and the rest of the economy to respond in tandem, so it makes no difference
how much firms care about the former versus the latter. But when information is incomplete,
and under the plausible assumption that firms know more about their immediate competitors than
about the rest of the economy, the aforementioned consideration amounts to reducing the extent of
higher-order uncertainty and its footprint on the inflation dynamics.

These points are evident from condition (D7). Mapping this condition to our framework yields

γ =
χ(1− θ)(1− αN )

1− (1− θ)αN
and β =

χθ

1− (1− θ)αN
= χ− γ.

That the sum β + γ equals χ means that, with complete information, inflation continues to obey
the standard NKPC (πt = κmct + χEtπt+1) and is invariant to market concentration. That γ
increases with αN means that higher market concentration maps to a smaller degree of strategic
complementarity and thereby to a smaller ϑ in the incomplete-information outcome. Applying our
observational-equivalence result then yields Proposition 8.

E. Heterogeneity à la HANK

In this Appendix we detail the micro-foundations of the HANK application considered in Section
VII. As described in the main text, households are heterogeneous in terms of mortality risk, as-
sociated MPC, and exposure to business cycles. They can trade annuities, so as to insure against
mortality risk, but are precluded from trading more sophisticated assets such as GDP futures, so
that we can bypass the complications of endogenous information aggregation. We also let firms’
profits be taxed by the government, and distributed to consumers in proportion to labor income and
regardless of age. This makes sure that consumers of all types and ages hold zero financial wealth
in steady state. And we shut down the distribution effects of interest-rate shocks by appropriate
fiscal transfers, as explained shortly.

Consider a consumer i, of type g, born in period τ . Taking into account the mortality risk, her
expected lifetime utility at birth is given by

∞∑
t=τ

(χ$g)
t−τ log (Ci,g,t;τ ) ,

where Ci,g,τ ;t denotes her consumption in period t (conditional on survival) and χ ∈ (0, 1) is the



subjective discount factor. Her budget constraint, on the other hand, is given by

Ci,g,τ ;t + Si,g,τ ;t =
Rt−1

$g
Si,g,τ ;t−1 + (Yt)

φg + Tg,t, ∀τ ≥ t

where Si,g,t;τ denotes savings in terms of the annuity, Yt denotes aggregate income, Tg,t denotes
a group-specific lump-sum transfer, and φg parameterizes the elasticity of group g’s income with
respect to aggregate income.

We henceforth work with the log-linearized solution around a steady state in which there are no
shocks, χRt = 1, and Ct = Yt = Y ∗, where Y ∗ is the natural rate of output.9 We use lower-case
variables to represent log-deviations from the steady state (e.g., rt ≡ logRt − logχ−1), with the

exception that si,g,τ ;t and τg,t stand for, respectively,
Si,g,τ ;t
Y ∗ and

Tg,t
Y ∗ as their steady-state values are

zero. We can then express the optimal expenditure of a consumer in group g as follows:

ci,g,τ,t =(1− χ$g)

(
1

χ$g
si,g,τ,t−1 + Ei,t[Tg,t]

)
− χωg

∞∑
j=0

(χ$g)
jEi,t[rt+j ](E1)

+ (1− χ$g)φg

∞∑
j=0

(χ$g)
jEi,t[yt+j ]

where Tg,t ≡
∑∞

j=0(χ$g)
jτg,t+j captures the present discounted value of transfers.

The average consumption of group g in period t is given by

cg,t ≡ (1− ωg)
∞∑
j=0

($g)
j

∫
ci,g,t−j,tdi.

Aggregating (E1) across all consumers of any given group g, we get

cg,t = (1− χωg)
(

1

χ
sg,t−1 + Et[Tg,t]

)
− χωg

∞∑
j=0

(χωg)
jEt[rt+j ](E2)

+ (1− χωg)φg
∞∑
j=0

(χωg)
jEt[yt+j ].

Similarly, by aggregating the budget constraints of all consumers in group g, and taking into account
how the annuities effectively redistribute wealth from deceased to surviving agents, we get the
following group-level budget constraint:

cg,t + sg,t =
1

χ
sg,t−1 + φgyt − τg,t,

where sg,t is the saving of group g.

Market clearing imposes yt = ct, or equivalently st = 0, where ct ≡
∑

g πgcg,t and st ≡
∑

g πgsg,t.

We close the model by specifying a rule for fiscal policy (more on this below) and by treating the
real interest rate as an exogenous AR(1) process, with persistence ρ. As mentioned in the main
text, this amounts to studying the aggregate-demand effects of a monetary policy that targets such
a process for the real interest rate. Alternatively, one can assume that prices are infinitely rigid, in
which case rt coincides with the nominal rate (the policy instrument) and its innovations can be

9To simplify the exposition, we suppress the production side of the economy and the determination of the flexible-price
outcomes. The details can be filled in the usual way; let technology be linear in labor and assume constant aggregate productivity
to get a time-invariant natural rate of output.



interpreted monetary shocks.

Let us now fill in the details of fiscal policy. For the analysis in the main text, we let the transfers
be such that following condition is satisfied in every period:∑

g

πg(1− χωg)sg,t +
∑
g

πgEt[Tg,t] = 0,(E3)

When all groups have the same MPC (i.e., ωg = ωg′ for all g, g′), this condition is trivially satisfied
with Tg,t = 0 for all g, t. When instead different groups have different MPCs, this condition requires
that fiscal policy offsets the interaction of MPC heterogeneity with wealth inequality. In particular,
a sufficient condition for (E3) to hold is that Et[Tg,t] = (1 − χωg)sg,t for all g, t. And since sg,t is
measurable in the history of the aggregate shock alone, the transfers do not have to be conditioned
on the consumers’ age or idiosyncratic histories.

As long as condition (E3) is satisfied, we can aggregate condition (E2) across groups to obtain
the economy-wide aggregate consumption as follows:

ct =
∑
g

πg

{
− χωg

∞∑
j=0

(χωg)
jEt[rt+j ] + (1− χωg)φg

∞∑
j=0

(χωg)
jEt[yt+j ]

}
(E4)

Combining this with market clearing, or ct = yt, we infer that the equilibrium process of aggregate
income (and aggregate consumption) in this economy is the same as the solution of a network where
the best response of group g is given by

yg,t = −χωg
∞∑
j=0

(χωg)
jEt[rt+j ] + (1− χωg)φg

∞∑
j=0

(χωg)
jEt[yt+j ].

and where yt =
∑

g πgyt,g. Note that cg,t, the actual consumption of group g, may differ from yg,t, the

auxiliary variable introduced above. This will indeed be the case whenever Et[Tg,t] 6= (1− χωg)sg,t
for some g and some t. Still, as long as (E3) is satisfied, the economy-wide outcomes are determined
in the manner described above—and coincide with those reported in the main text.

This completes the details behind Figure 4. Consider next what happens when condition (E3)
is violated and, as a result, wealth inequality can feed into the aggregate dynamics. In particular,
impose Tg,t = 0 for all g, t. If all groups had the same MPC, (E3) and (E4) would still hold; but then
the heterogeneity in business-cycle exposure would also not matter. The interesting case is when
fiscal policy is inactive and, in addition, there is joint heterogeneity in the business-cycle exposure
and the MPC. This case is studied in Figure 5 in the main text.

F: Application to Investment

A long tradition in macroeconomics that goes back to Hayashi (1982) and Abel and Blanchard
(1983) has studied representative-agent models in which the firms face a cost in adjusting their
capital stock. In this literature, the adjustment cost is specified as follows:

(F1) Costt = Φ

(
It

Kt−1

)
where It denotes the rate of investment, Kt−1 denotes the capital stock inherited from the previous
period, and Φ is a convex function. This specification gives the level of investment as a decreasing
function of Tobin’s Q. It also generates aggregate investment responses that are broadly in line with
those predicted by more realistic, heterogeneous-agent models that account for the dynamics of
investment at the firm or plant level (Caballero and Engel, 1999; Bachmann, Caballero and Engel,



2013; Khan and Thomas, 2008).10

By contrast, the DSGE literature that follows Christiano, Eichenbaum and Evans (2005) and
Smets and Wouters (2007) assumes that the firms face a cost in adjusting, not their capital stock,
but rather their rate of investment. That is, this literature specifies the adjustment cost as follows:

(F2) Costt = Ψ

(
It
It−1

)
As with the Hybrid NKPC, this specification was adopted because it allows the theory to generate
sluggish aggregate investment responses to monetary and other shocks. But it has no obvious
analogue in the literature that accounts for the dynamics of investment at the firm or plant level.

In the sequel, we set up a model of aggregate investment with two key features: first, the adjust-
ment cost takes the form seen in condition (F1); and second, the investments of different firms are
strategic complements because of an aggregate demand externality. We then augment this model
with incomplete information and show that it becomes observationally equivalent to a model in
which the adjustment cost takes the form seen in condition (F2). This illustrates how incomplete
information can merge the gap between the different strands of the literature and help reconcile the
dominant DSGE practice with the relevant microeconomic evidence on investment.

Let us fill in the details. We consider an AK model with costs to adjusting the capital stock. There
is a continuum of monopolistic competitive firms, indexed by i and producing different varieties of
intermediate investment goods. The final investment good is a CES aggregator of intermediate
investment goods. Letting Xi,t denote the investment good produced by firm i, we have that the
aggregate investment is given by

It =

[∫
X

σ−1
σ

i,t

] σ
σ−1

.

And letting Qi,t denote the price faced by firm i, we have that the investment price index is given
by

Qt =

[∫
Q1−σ
i,t

] 1
1−σ

.

A representative final goods producer has perfect information and purchases investment goods to
maximize its discounted profit

max
{Kt,It}

∞∑
t=0

χtE0

[
exp(ξt)AKt −QtIt − Φ

(
It
Kt

)
Kt

]
,

subject to
Kt+1 = Kt + It.

Here, the fundamental shock, ξt, is an exogenous productivity shock to the final goods production,

and Φ
(
It
Kt

)
Kt represents the quadratic capital-adjustment cost. The following functional form is

assumed:

Φ

(
It
Kt

)
=

1

2
ψ

(
It
Kt

)2

.

Let Zt ≡ It
Kt

denote the investment-to-capital ratio. On a balanced growth path, this ratio and the
price for the investment goods remain constant, i.e., Zt = Z and Qt = Q. The log-linearized version

10These works differ on the importance they attribute to heterogeneity, lumpiness, and non-linearities, but appear to share
the prediction that the impulse response of aggregate investment is peaked on impact. They therefore do not provide a micro-
foundation of the kind of sluggish investment dynamics featured in the DSGE literature.



of the final goods producer’s optimal condition around the balanced growth path can be written as

(F3) Qqt + ψZzt = χEt
[
Aξt+1 +Qqt+1 + ψZ(1 + Z)zt+1

]
.

When the producers of the intermediate investment goods choose their production scale, they may
not observe the underlying fundamental ξt perfectly. As a result, they have to make their decision
based on their expectations about fundamentals and others’ decisions. Letting

max
Xi,t

Ei,t [Qi,tXi,t − cXi,t] ,

subject to

Qi,t =

(
Xi,t

It

)− 1
σ

Qt.

Define Zi,t ≡ Xi,t
Kt

as the firm-specific investment-to-capital ratio, and the log-linearized version of
the optimal choice of Xi,t is

zi,t = Ei,t [zt + σqt] .

In steady state, the price Q simply equals the markup over marginal cost c,

Q =
σ

σ − 1
c,

and the investment-to-capital ratio Z solves the quadratic equation

Q+ ψZ =χ

(
A+Q+ ψZ + ψZ2 − 1

2
ψZ2

)
.

Frictionless Benchmark. If all intermediate firms observe ξt perfectly, then we have

zi,t = zt + σqt

Aggregation implies that zi,t = zt and qt = 0. It follows that zt obeys the following Euler condition:

zt = ϕξt + δEt [zt+1]

where

ϕ =
ρχA

ψZ
and δ = χ(1 + Z).

Incomplete Information. Suppose now that firms receive a noisy signal about the fundamental
ξt as in Section II. Here, we make the same simplifying assumption as in the NKPC application.
We assume that firms observe current zt, but preclude them from extracting information from it.
Together with the pricing equation (F3), the aggregate investment dynamics follow

zt =
ρχA

ψZ

∞∑
k=0

χkEt[ξt+k] + χZ

∞∑
k=0

χkEt[zt+k+1]

The investment dynamics can be understood as the solution to the dynamic beauty contest studied
in Section II by letting

ϕ =
ρχA

ψZ
, β = χ, and γ = χZ.

It is then immediate that when information is incomplete, there exist ωf < 1 and ωb > 0 such that



the equilibrium process for investment solves the following equation:

zt = ϕξt + ωfδEt[zt+1] + ωbzt−1.

Finally, it straightforward to show that the above equation is of the same type as the one that
governs investment in a complete-information model where the adjustment cost is in terms of the
investment rate, namely a model in which the final good producer’s problem is modified as follows:

max
{Kt,It}

∞∑
t=0

χtE0

[
exp(ξt)AKt −QtIt −Ψ

(
It

Ĩt−1

)
It

]
,

where Ĩt is the aggregate investment.

G: Application to Asset Prices

Consider a log-linearized version of the standard asset-pricing condition in an infinite horizon,
representative-agent model:

pt = Et[dt+1] + χEt[pt+1],

where pt is the price of the asset in period t, dt+1 is its dividend in the next period, Et is the
expectation of the representative agent, and χ is his discount factor. Iterating the above condition
gives the equilibrium price as the expected present discounted value of the future dividends.

By assuming a representative agent, the above condition conceals the importance of higher-order
beliefs. A number of works have sought to unearth that role by considering variants with heteroge-
neously informed, short-term traders, in the tradition of Singleton (1987); see, for example, Allen,
Morris and Shin (2006), Kasa, Walker and Whiteman (2014), and Nimark (2017). We can capture
these works in our setting by modifying the equilibrium pricing condition as follows:

pt = Et[dt+1] + χEt[pt+1] + εt,

where Et is the average expectation of the traders in period t and εt is an i.i.d shock interpreted as
the price effect of noisy traders. The key idea embedded in the above condition is that, as long as
the traders have different information and there are limits to arbitrage, asset markets are likely to
behave like (dynamic) beauty contests.

Let us now assume that the dividend is given by dt+1 = ξt + ut+1, where ξt follows an AR(1)
process and ut+1 is i.i.d. over time, and that the information of the typical trader can be represented
by a series of private signals as in condition (13).11 Applying our results, and using the fact that
ξt = Et[dt+1], we then have that the component of the equilibrium asset price that is driven by ξt
obeys the following law of motion, for some ωf < 1 and ωb > 0:

(G1) pt = Et[dt+1] + ωfχEt[pt+1] + ωbpt−1,

where Et[·] is the fully-information, rational expectations. We thus have that asset prices can display
both myopia, in the form of ωf < 1, and momentum, or predictability, in the form of ωb > 0.

Although they do not contain such an observational-equivalence result, Kasa, Walker and White-
man (2014) have already pointed out that incomplete information and higher-order uncertainty can
help explain momentum and predictability in asset prices. Our result offers a sharp illustration of
this insight and blends it with the insight regarding myopia.

11Here, we are abstracting from the complications of the endogenous revelation of information and we think of the signals
in (13) as convenient proxies for all the information of the typical trader. One can also interpret this as a setting in which
the dividend is observable (and hence so is the price, which is measurable in the dividend) and the assumed signals are the
representation of a form of rational inattention. Last but not least, we have verified that the solution with endogenous information
can be approximated very well by the solution obtained with exogenous information.



In the present context, the latter insight seems to challenge the asset-price literature that empha-
sizes long-run risks: news about the long-run fundamentals may be heavily discounted when there
is higher-order uncertainty. Finally, our result suggests that both kinds of distortions are likely to
be greater at the level of the entire stock market than at the level of the stock of a particular firm
insofar as financial frictions and GE effects cause the trades to be strategic complements at the
macro level even if they are strategic substitutes at the micro level, which in turn may help ratio-
nalize Samuelson’s dictum (Jung and Shiller, 2005). We leave the exploration of these—admittedly
speculative—ideas open for future research.

We conclude by iterating that the exact form of condition (G1) relies on assuming away the role
of the equilibrium price as an endogenous public signal. This may be an important omission for
certain counterfactuals. But as indicated by the exercise conducted at the end of Section VI, the
quantitative implications may be similar provided that the theory is disciplined with the relevant
evidence on expectations.

H. Robustness of Main Insights

Although our observational-equivalence result depends on stringent assumptions about the process
of the fundamental and the available signals, it encapsulates a few broader insights, which in turn
justify the perspective put forward in our paper.

The broader insights concerning the role of incomplete information and especially that of higher-
order uncertainty can be traced in various previous works, including Angeletos and Lian (2018),
Morris and Shin (2006), Nimark (2008), and Woodford (2003). But like our paper, these earlier
work rely on strong assumptions about the underlying process of the fundamental, as well as about
the information structure.

In this appendix, we relax completely the restrictions on the stochastic process for the fundamen-
tal. We then use a different, flexible but not entirely free, specification of the information structure
to obtain a close-form characterization of the dynamics of the equilibrium outcome and the en-
tire belief hierarchy. Our exact observational equivalence result is lost, but a generalization of the
insights about myopia, anchoring and higher-order beliefs obtains.

Setup. We henceforth let the fundamental ξt follow a flexible, possibly infinite-order, MA process:

(H1) ξt =
∞∑
k=0

ρkηt−k,

where the sequence {ρk}∞k=0 is non-negative and square summable. Clearly, the AR(1) process
assumed earlier on is nested as a special case where ρk = ρk for all k ≥ 0. The present specification
allows for richer, possibly hump-shaped, dynamics in the fundamental, as well as for “news shocks,”
that is, for innovations that shift the fundamental only after a delay.

Next, for every i and t, we let the incremental information received by agent i in period t be given
by the series {xi,t,t−k}∞k=0, where

xi,t,t−k = ηt−k + εi,t,t−k ∀k,

where εi,t,t−k ∼ N (0, (τk)
−2) is i.i.d. across i and t, uncorrelated across k, and orthogonal to the

past, current, and future innovations in the fundamental, and where the sequence {τk}∞k=0 is non-
negative and non-decreasing. In plain words, whereas our baseline specification has the agents
observe a signal about the concurrent fundamental in each period, the new specification lets them
observe a series of signals about the entire history of the underlying past and current innovations.

Although this specification may look exotic at first glance, it actually nest sticky information as
a special case. We will verify this momentarily. It also preserves two key features of our baseline
setting: it allows information to be incomplete at any given point of time; it lets more precise
information and higher levels of common knowledge to be obtained as time passes.



Still, the present specification differs from our baseline one in two respects. First, it “orthogonal-
izes” the information structure in the sense that, for every t, every k, and every k′ 6= k, the signals
received at or prior to date t about the shock ηt−k are independent of the signals received about
the shock ηt−k′ . Second, it allows for more flexible learning dynamics in the sense that the precision
τk does not have to be flat in k: the quality of the incremental information received in any given
period about a past shock may either increase or decrease with the lag since the shock has occurred.

The first property is essential for tractability. The pertinent literature has struggled to solve
for, or accurately approximate, the complex fixed point between the equilibrium dynamics and the
Kalman filtering that obtains in dynamic models with incomplete information, especially in the
presence of endogenous signals; see, for example, Nimark (2017). By adopting the aforementioned
orthogonalization, we cut the Gordian knot and facilitate a closed-form solution of the entire dy-
namic structure of the higher-order beliefs and of the equilibrium outcome.12 The second property
then permits us, not only to accommodate a more flexible learning dynamics, but also to disentan-
gle the speed of learning from level of noise—a disentangling that was not possible in Section III
because a single parameter, σ, controlled both objects at once.

Dynamics of Higher-Order Beliefs. The information regarding ηt−k that an agent has accu-
mulated up to, and including, period t can be represented by a sufficient statistic, given by

x̃ki,t =
k∑
j=0

τj
πk
xi,t−j,t−k,

where πk ≡
∑k

j=0 τj . That is, the sufficient statistic is constructed by taking a weighted average of
all the available signals, with the weight of each signal being proportional to its precision; and the
precision of the statistic is the sum of the precisions of the signals. Letting λk ≡ πk

σ−2
η +πk

, we have

that Ei,t[ηt−k] = λkx̃
k
i,t, which in turn implies Et[ηt−k] = λkηt−k and therefore

(H2) Et [ξt] = Et

[ ∞∑
k=0

ρkηt−k

]
=

∞∑
k=0

f1,kηt−k, with f1,k = λkρk.

The sequence F1 ≡ {f1,k}∞k=0 = {λkρk}∞k=0 identifies the IRF of the average first-order forecast to
an innovation. By comparison, the IRF of the fundamental itself is given by the sequence {ρk}∞k=0 .
It follows that the relation of the two IRFs is pinned down by the sequence {λk}∞k=0, which describes
the dynamics of learning. In particular, the smaller λ0 is (i.e., the less precise the initial information
is), the larger the initial initial gap between the two IRFs (i.e., a larger the initial forecast error).
And the slower λk increases with k (i.e., the slower the learning over time), the longer it takes for
that gap (and the average forecast) to disappear.

These properties are intuitive and are shared by the specification studied in the rest of the paper.
In the information structure specified in Section III, the initial precision is tied with the subsequent
speed of learning. By contrast, the present specification disentangles the two. As shown next, it
also allows for a simple characterization of the IRFs of the higher-order beliefs, which is what we
are after.

Consider first the forward-looking higher-order beliefs. Applying condition (H2) to period t + 1

12Such an orthogonalization may not square well with rational inattention or endogenous learning: in these contexts, the
available signals may naturally confound information about current and past innovations, or even about entirely different kinds
of fundamentals. The approach taken here is therefore, not a panacea, but rather a sharp instrument for understanding the
specific friction we are after in this paper, namely the inertia of first- and higher-order beliefs. The possible confusion of different
shocks is a conceptual distinct matter, outside the scope of this paper.



and taking the period-t average expectation, we get

F2
t [ξt+1] ≡ Et

[
Et+1 [ξt+1]

]
= Et

[ ∞∑
k=0

λkρkηt+1−k

]
=
∞∑
k=0

λkλk+1ρk+1ηt−k

Notice here, agents in period t understand that in period t+1 the average forecast will be improved,
and this is why λk+1 shows up in the expression. By induction, for all h ≥ 2, the h-th order, forward-
looking belief is given by

(H3) Fht [ξt+h−1] =
∞∑
k=0

fh,kηt−k, with fh,k = λkλk+1...λk+h−1ρk+h−1.

The increasing components in the product λkλk+1...λk+h−1 seen above capture the anticipation of
learning. We revisit this point at the end of this section.

The set of sequences Fh = {fh,k}∞k=0, for h ≥ 2, provides a complete characterization of the IRFs

of the relevant, forward-looking, higher-order beliefs. Note that
∂E[ ξt+h|ηt−k]

∂ηt−k
= ρk+h−1. It follows

that the ratio
fh,k

ρk+h−1
measures the effect of an innovation on the relevant h-th order belief relative

to its effect on the fundamental. When information is complete, this ratio is identically 1 for all k
and h. When, instead, information is incomplete, this ratio is given by

fh,k
ρk+h−1

= λkλk+1...λk+h−1.

The following result is thus immediate.

PROPOSITION 13: Consider the ratio
fh,k

ρk+h−1
, which measures the effect at lag k of an innovation

on the h-th order forward-looking belief relative to its effect on the fundamental.
(i) For all k and all h, this ratio is strictly between 0 and 1.
(ii) For any k, this is decreasing in h.
(iii) For any h, this ratio is increasing in k.
(iv) As k →∞, this ratio converges to 1 for any h ≥ 2 if and only if it converges for h = 1, and

this in turn is true if and only if λk → 1.

These properties shed light on the dynamic structure of higher-order beliefs. Part (i) states that,
for any belief order h and any lag k, the impact of a shock on the h-th order belief is lower than
that on the fundamental itself. Part (ii) states that higher-order beliefs move less than lower-order
beliefs both on impact and at any lag. Part (iii) states that that the gap between the belief of any
order and the fundamental decreases as the lag increases; this captures the effect of learning. Part
(iv) states that, regardless of h, the gap vanishes in the limit as k →∞ if and only if λk → 1, that
is, if and only if the learning is bounded away from zero.

Sticky information. We now verify the claim made in the main text that the assumed infor-
mation structure nests sticky information la Mankiw and Reis (2002).

Each agent updates her information set with probability 1− q ∈ (0, 1) in each period. When she
updates, she gets to see the entire state of Nature. Otherwise, her information remains the same as
in the previous period.

Consider now an arbitrary innovation ηt in some period t. A fraction 1 − q of the population
becomes aware of it immediately and hence Et[ηt] = (1 − q)ηt. A period later, an additional (1 −
q)q fraction becomes aware of it and hence Et+1[ηt] = (1 − q2)ηt. And so on. It follows that
sticky information la Mankiw and Reis (2002) is nested in the present setting under the following
restriction on the sequence {λk} :

λk = 1− qk.



Furthermore, under this interpretation, endogenizing the frequency 1−q with which agents update
their information maps merely to endogenizing the sequence {λτ}∞τ=0. Conditional on it, all the
results presented in the sequel remain intact. This hints to the possible robustness of our insights
to endogenous information acquisition, an issue that we however abstract from: in what follows, we
treat {λτ}∞τ=0 as exogenous.

Myopia and Anchoring. To see how these properties drive the equilibrium behavior, we hence-
forth restrict β = 0 and normalize ϕ = 1. As noted earlier, the law of motion for the equilibrium out-

come is then given by at = Et[ξt]+γEt[at+1], which in turn implies that at =
∑∞

h=1 γ
h−1Fht [ξt+h−1] .

From the preceding characterization of the higher-order beliefs Fht [ξt+h−1], it follows that

(H4) at =

∞∑
k=0

gkηt−k, with gk =

∞∑
h=1

γh−1fh,k =

{ ∞∑
h=1

γh−1λkλk+1...λk+h−1ρk+h−1

}
.

This makes clear how the IRF of the equilibrium outcome is connected to the IRFs of the first-
and higher-order beliefs. Importantly, the higher γ is, the more the dynamics of the equilibrium
outcome tracks the dynamics higher-order beliefs relative to the dynamics of lower-order beliefs. On
the other hand, when the growth rate of the IRF of the fundamental

ρk+1

ρk
is higher, it also increases

the relative importance of higher-order beliefs.13

We are now ready to explain our result regarding myopia. For this purpose, it is best to abstract
from learning and focus on how the mere presence of higher-order uncertainty affects the beliefs
about the future. In the absence of learning, λk = λ for all k and for some λ ∈ (0, 1). The
aforementioned formula for the IRF coefficients then reduces to the following:

gk =

{ ∞∑
h=1

(γλ)h−1ρk+h−1

}
λ.

Clearly, this the same IRF as that of a complete-information, representative-economy economy in
which the equilibrium dynamics satisfy

(H5) at = ξ′t + γ′Et[at+1],

where ξ′t ≡ λξt and γ′ ≡ γλ. It is therefore as if the fundamental is less volatile and, in addition,
the agents are less forward-looking. The first effect stems from first-order uncertainty: it is present
simply because the forecast of the fundamental move less than one-to-one with the true fundamental.
The second effect originates in higher-order uncertainty: it is present because the forecasts of the
actions of others move even less than the forecast of the fundamental.

This is the crux of the forward-looking component of our observational-equivalence result (that
is, the one regarding myopia). Note in particular that the extra discounting of the future remains
present even if when if control for the impact of the informational friction on first-order beliefs.
Indeed, replacing ξ′t with ξt in the above shuts down the effect of first-order uncertainty. And yet,
the extra discounting survives, reflecting the role of higher-order uncertainty. This complements
the related points we make in Section III.E.

So far, we shed light on the source of myopia, while shutting down the role of learning. We next
elaborate on the robustness of the above insights to the presence of learning and, most importantly,
on how the presence of learning and its interaction with higher-order uncertainty drive the backward-

13The last point is particularly clear if we set ρk = ρk (meaning that ξt follows an AR(1) process). In this case, the initial
response is given by

g0 =

∞∑
h=1

(γρ)h−1λ0λ1 . . . λh−1,

from which it is evident that the importance of higher-order beliefs increases with both γ and ρ. This further illustrates the
point made in Section III.D regarding the role of the persistence of the fundamental.



looking component of our observational-equivalence result.
To this goal, and as a benchmark for comparison, we consider a variant economy in which all

agents share the same subjective belief about ξt, this belief happens to coincide with the average
first-order belief in the original economy, and these facts are common knowledge. The equilibrium
outcome in this economy is proportional to the subjective belief of ξt and is given by

at =
∞∑
k=0

ĝkηt−k, with ĝk =
∞∑
h=1

γh−1λkρk+h−1.

This resembles the complete-information benchmark in that the outcome is pined down by the
first-order belief of ξt, but allows this belief to adjust sluggishly to the underlying innovations in ξt.

By construction, the variant economy preserves the effects of learning on first-order beliefs but
shuts down the interaction of learning with higher-order uncertainty. It follows that the comparison
of this economy with the original economy reveals the role of this interaction.

PROPOSITION 14: Let {gk} and {ĝk} denote the Impulse Response Function of the equilibrium
outcome in the two economies described above.

(i) 0 < gk < ĝk for all k ≥ 0

(ii) If ρk
ρk−1

≥ ρk+1

ρk
and ρk > 0 for all k > 0, then

gk+1

gk
>

ĝk+1

ĝk
for all k ≥ 0

Consider property (i), in particular the property that gk < ĝk. This property means that our econ-
omy exhibits a uniformly smaller dynamic response for the equilibrium outcome than the aforemen-
tioned economy, in which higher-order uncertainty is shut down. But note that the two economies
share the following law of motion:

(H6) at = ϕEt[ξt] + γEt[at+1].

Furthermore, the two economies share the same dynamic response for Et[ξt]. It follows that the
response for at in our economy is smaller than that of the variant economy because, and only
because, the response of Et[at+1] is also smaller in our economy. This verifies that the precise role
of higher-order uncertainty is to arrest the response of the expectations of the future outcome (the
future actions of others) beyond and above how much the first-order uncertainty (the unobservability
of ξt) arrests the response of the expectations of the future fundamental.

A complementary way of seeing this point is to note that gk satisfies the following recursion:

(H7) gk = f1,k + λkγgk+1.

The first term in the right-hand side of this recursion corresponds to the average expectation of the
future fundamental. The second term corresponds the average expectation of the future outcome
(the actions of others). The role of first-order uncertainty is captured by the fact that f1,k is lower
than ρk. The role of higher-order uncertainty is captured by the presence of λk in the second term:
it is as if the discount factor γ has been replaced by a discount factor equal to λkγ, which is strictly
less than γ. This represents a generalization of the form of myopia seen in condition (H5). There,
learning was shut down, so that that λk and the extra discounting of the future were invariant in
the horizon k. Here, the additional discounting varies with the horizon because of the anticipation
of future learning (namely, the knowledge that λk will increase with k).

Consider next property (ii), namely the property that

gk+1

gk
>
ĝk+1

ĝk
.

This property helps explain the backward-looking component of our observational-equivalence result
(that is, the one regarding anchoring).



To start with, consider the variant economy, in which higher-order uncertainty is shut down. The
impact of a shock k + 1 periods from now relative to its impact k periods from now is given by

ĝk+1

ĝk
=
λk+1

λk

∑∞
h=0 γ

hρk+h+1∑∞
h=0 γ

hρk+h
>

∑∞
h=0 γ

hρk+h+1∑∞
h=0 γ

hρk+h
.

The inequality captures the effect of learning on first-order beliefs. Had information being perfect,

we would have had
ĝk+1

ĝk
=
∑∞
h=0 γ

hρk+h+1∑∞
h=0 γ

hρk+h
; now, we instead have

ĝk+1

ĝk
>
∑∞
h=0 γ

hρk+h+1∑∞
h=0 γ

hρk+h
. This means

that, in the variant economy, the impact of the shock on the equilibrium outcome can build force
over time because, and only because, learning allows for a gradual build up in first-order beliefs.14

Consider now our economy, in which higher-order uncertainty is present. We now have

gk+1

gk
>
ĝk+1

ĝk

This means that higher-order uncertainty amplifies the build-up effect of learning: as time passes,
the impact of the shock on the equilibrium outcome builds force more rapidly in our economy than
in the variant economy. But since the impact is always lower in our economy,15 this means that the
IRF of the equilibrium outcome is likely to display a more pronounced hump shape in our economy
than in the variant economy. Indeed, the following is a directly corollary of the above property.

COROLLARY 1: Let the variant economy display a hump-shaped response: {ĝk} is single peaked
at k = kb for some kb ≥ 1. Then, the equilibrium outcome also displays a hump-shaped response:
{gk} is also single peaked at k = kg. Furthermore, the peak of the equilibrium response is after the
peak of the variant economy: kg ≥ kb necessarily, and kg > kb for an open set of {λk} sequences.

To interpret this result, think of k as a continuous variable and, similarly, think of λk, ĝk, and gk
as differentiable functions of k. If ĝk is hump-shaped with a peak at k = kb > 0, it must be that
ĝk is weakly increasing prior to kb and locally flat at kb. But since we have proved that the growth
rate of gk is strictly higher than that of ĝk, this means that gk attains its maximum at a point kg
that is strictly above kb. In the result stated above, the logic is the same. The only twist is that,
because k is discrete, we must either relax kg > kb to kg ≥ kb or put restrictions on {λk} so as to
guarantee that kg ≥ kb + 1.

Summing up, learning by itself contributes towards a gradual build up of the impact of any given
shock on the equilibrium outcome; but its interaction with higher-order uncertainty makes this build
up even more pronounced. It is precisely these properties that are encapsulated in the backward-
looking component of our observational equivalence result: the coefficient ωb, which captures the
endogenous build up in the equilibrium dynamics, is positive because of learning and it is higher
the higher the importance of higher-order uncertainty.

Multiple Fundamental Shocks. So far, we have focused on the case where there is a single
fundamental shock. Now we extend the analysis to a case where multiple fundamental shocks are
present. On one hand, we will show that relative to the frictionless benchmark, when these shocks
cannot be perfectly separated, agents may overact to some of these shocks and underact to the
others when we focus on the PE effects, as in Lucas (1976). On the other hand, we will show that
higher-order uncertainty, which exclusively related to the GE effects, still results in distortions in
the form of myopia and anchoring relative to its complete-information counterpart.

Suppose that the best response is

ai,t = Ei,t[φ1ξ
1
t + φ2ξ

2
t ] + γEi,t[at+1],

14This is easiest to see when ρk = 1 (i.e., the fundamental follows a random walk), for then ĝk+1 is necessarily higher than

ĝk for all k. In the AR(1) case where ρk = ρk with ρ < 1, ĝk+1 can be either higher or lower than ĝk, depending on the balance
between two opposing forces: the build-up effect of learning and the mean-reversion in the fundamental.

15Recall, this is by property (i) of Proposition 14.



where the two fundamental shocks are driven by two different innovations η1
t and η2

t

ξ1
t =

∞∑
k=0

ρ1
kη

1
t−k, and ξ2

t =

∞∑
k=0

ρ2
kη

2
t−k.

We assume that agents do not observe separate signals about the innovations to the two fundamental
shocks, but only a sum of them, i.e.,

xi,t,t−k = η1
t−k + η2

t−k + εi,t,t−k ∀k.

This signal structure is the same as before if agents only care about the sum ηt ≡ η1
t + η2

t , and it
follows that

Et[ηt−k] = λk.

where the sequence of λk is defined in a similar way as before. The average expectations on each of
the aggregate innovations is given by

Et[η1
t−k] = $1λk, and Et[η2

t−k] = $2λk,

where the weights φ1 and φ2 depend on the relative volatility of η1
t versus η2

t , satisfying $1 +$2 = 1.

First consider the case where γ = 0, that is, only the PE consideration is at work. The average
expectations about the fundamental are given by

Et
[
φ1ξ

1
t

]
= φ1$1

∞∑
k=0

λkρ
1
kηt−k = φ1$1

∞∑
k=0

λkρ
1
kη

1
t−k + φ1$1

∞∑
k=0

λkρ
1
kη

2
t−k,

Et
[
φ2ξ

1
t

]
= φ2$2

∞∑
k=0

λkρ
2
kηt−k = φ2$2

∞∑
k=0

λkρ
2
kη

1
t−k + φ2$2

∞∑
k=0

λkρ
2
kη

2
t−k.

In the absence of GE consideration and higher-order expectation, we can see that agents may overact
to some of the fundamental. Consider the response to innovation of the first fundamental, η1

t . In
the frictionless case, Et

[
ω1ξ

1
t

]
= ω1

∑∞
k=0 ρ

1
kη

1
t−k. The average expectation of ξ1

t under incomplete
information is modified in two ways: on one hand, it is attenuated by the terms {λkφ1}; on the
other hand, it also responds to η2

t due to informational frictions. The total effects could well be a
higher response overall.

Now we turn to the effects of the GE consideration and higher-order uncertainty with γ > 0. The
average higher-order expectations are given by

Fht
[
ω1ξ

1
t+h−1 + ω2ξ

2
t+h−1

]
=
∞∑
k=0

fh,kηt−k, with fh,k = λkλk+1...λk+h−1(ω1φ1ρ
1
k+h−1+ω2φ2ρ

2
k+h−1).

Here, we utilize the property that agents cannot separate η1
t from η2

t and the expectations can be
effectively written as functions of ηt.

Similar to the single-shock economy, the aggregate outcome can be written as
(H8)

at =

∞∑
k=0

gkηt−k, with gk =

∞∑
h=1

γh−1fh,k =

{ ∞∑
h=1

γh−1λkλk+1...λk+h−1(ω1φ1ρ
1
k+h−1 + ω2φ2ρ

2
k+h−1)

}
.

In contrast, with complete but imperfect information that shares the same first-order belief, the



aggregate outcome is

(H9) at =
∞∑
k=0

ĝkηt−k, with ĝk =

{ ∞∑
h=1

γh−1λk(ω1φ1ρ
1
k+h−1 + ω2φ2ρ

2
k+h−1)

}
.

Define ξ̂t as

ξ̂t ≡
∞∑
k=0

(ω1φ1ρ
1
k + ω2φ2ρ

2
k)ηt−k.

By replacing ξt by ξ̂t, the analysis on myopia and anchoring in Proposition 14 extends to the current
setting. Therefore, relative to the complete-information counterpart, the effects of additional myopia
and anchoring remain the same when there exist multiple fundamental shocks.

Two Forms of Bounded Rationality. We now shed light on two additional points, which were
anticipated earlier on: the role played by the anticipation that others will learn in the future; and
the possible interaction of incomplete information with Level-k Thinking.

To illustrate the first point, we consider a behavioral variant where agents fail to anticipate that
others will learn in the future. To simplify, we also set β = 0. Recall from equation (H3), when
agents are rational, the forward higher-order beliefs are

Fht [ξt+h−1] =
∞∑
k=0

λkλk+1...λk+h−1ρk+h−1ηt−k.

In the variant economy, by shutting down the anticipation of learning, the nature of higher-order

beliefs changes, as Ei,t
[
Et+k [ξt+q]

]
= Ei,t

[
Et [ξt+q]

]
for k, q ≥ 0, and the counterpart of Fht [ξt+h−1]

becomes

Eht [ξt+h−1] ≡ Et
[
Et[. . .Et [[ξt+h−1] . . .]

]
=
∞∑
k=0

λhkρt+h−1ηt−k.

Learning implies λk+1 > λk, and the anticipation of learning implies λkλk+1...λk+h−1 > λhk . As a
result, higher-order beliefs in the behavioral variant under consideration vary less than those under
rational expectations. By the same token, the aggregate outcome in this economy, which is given

at =
∞∑
h=1

γh−1Eht [ξt+h−1] ,

behaves as if the myopia and anchoring are stronger than in the rational-expectations counterpart.
In line with these observations, it can be shown that, if we go back to our baseline specification and
impose that agents fail to anticipate that others will learn in the future, Proposition 3 continues to
hold with the following modification: ωf is smaller and ωb is higher.

To illustrate the second point, we consider a variant that lets agents have limited depth of rea-
soning in the sense of Level-k Thinking. With level-0 thinking, agents believe that the aggregate
outcome is fixed at zero for all t, but still form rational beliefs about the fundamental. Therefore,
a0
i,t = Ei,t[ξt], and the implied aggregate outcome for level-0 thinking is a0

t = Et[ξt].
With level-1 thinking, agent i’s action changes to

a1
i,t = Ei,t[ξt] + γEi,t[a0

t+1] = Ei,t[ξt] + γEi,t
[
Et+1[ξt+1]

]
,

where the second-order higher-order belief shows up. By induction, the level-k outcome is given by

akt =

k+1∑
h=1

γh−1Fht [ξt+h−1] .



In a nutshell, Level-k Thinking truncates the hierarchy of beliefs at a finite order.
Compared with the rational-expectations economy that has been the focus of our analysis, the GE

feedback effects in both of the aforementioned two variants are attenuated, and the resulting as-if
myopia is strengthened. Furthermore, by selecting the depth of thinking, we can make sure that the
second variant produces a similar degree of myopia as the first one.16 That said, the source of the
additional myopia is different. In the first, the relevant forward-looking higher-order beliefs have
been replaced by myopic counterparts, which move less. In the second, the right, forward-looking
higher-order beliefs are still at work, but they have been truncated at a finite point.

I. Multiple Shocks

Our baseline specification has assumed that there is a single shock that drives the fundamental.
In this section, we extend our analysis in the direction of Kohlhas and Walther (2019) to include
both procyclical and countercyclical components, and show that a modified version of our main
result holds.

Consider the following best response, which is similar to our baseline specification:

(I1) yit = ϕEit[ζt] + βEit[yit+1] + γEit[yt+1].

But now allow the fundamental ζt to be driven by N different components:

ζt =

N∑
j=1

djt, with djt = κjξt + εj,t.

The common shock among different components, ξt, follows an AR(1) process:

ξt = ρξt−1 + ηt.

The component-specific shocks εj,t ∼ N (0, τ−1
j ) are i.i.d. across both j and t. The loading of

component j on ξt is κj , which could be both positive or negative, capturing for procyclical or
counter-cyclical components. Finally,

∑
j κj = 1.

In terms of the information structure, assume that each agent receives N private signals, one per
component:

xi,j,t = djt + ui,j,t, ui,j,t ∼ N (0, ω−1
j ).

This is the same structure considered in Kohlhas and Walther (2019), which leads to asymmetric
attention by allowing heterogeneity in ωj .

To see how this structure connects with our equivalence result, we turn to the following auxiliary
best response in which only the persistent shock ξt is pay-off relevant:

(I2) ait = ϕEit[ξt] + βEit[ait+1] + γEit[at+1].

This best response is exactly the same as our model. The aggregate outcome yt from condition (I1)
is related to the aggregate outcome at from condition (I2) in the following way:

yt = ϕ
∞∑
k=0

βkEt[ζt+k] + γ

∞∑
k=0

βkEt[yt+k+1]

= ϕ
N∑
j=1

Et[εj,t] +
∞∑
k=0

βkEt[ξt+k] + γ
∞∑
k=0

βkEt[yt+k+1]

16This follows directly from the fact that impact of effect of an innovation in the first variant is bounded between those of
the level-0 and the level-∞ outcome in the second variant.



= ϕ
N∑
j=1

Et[εj,t] + at,

where the last equality is due to that only the persistent shock ξt matters for yt+k in the future,
and the forecasts of the transitory shocks εj,t are zero. We conclude that

yt = at + ut,

where ut ≡ ϕ
∑N

j=1 Et[εj,t].

Consider how ut is determined. To this goal, let us first compute the forecast of the persistent
shock ξt. Since this object only involves the first-order belief, it is more convenient to consolidate
the N different signals into a single one

xi,t = ξt +
1

τ

N∑
j=1

κj(τ
−1
j + ω−1

j )−1(εj,t + ui,j,t) ≡ ξt + ui,t, ui,t ∼ N (0, τ−1),

where τ =
∑N

j=1 κ
2
j (τ
−1
j + ω−1

j )−1. That is, it is as if each agent observes a single signal, which
however contains both idiosyncratic and aggregate noise—a hybrid of the private and public signals
considered in Appendix B. Using this observation, we can compute the average forecast as follows:

Et[ξt] =

(
1− g

ρ

)
1

1− gL

N∑
j=1

κ2
j (τ
−1
j + ω−1

j )−1

τ
(ξt + κ−1

j εj,t),

or equivalently

(I3) Et[ξt] =

(
1− g

ρ

)
1

1− gL
(ξt + εt),

where g ≡ 1
2

[
ρ+ 1

ρ (1 + τ)−
√(

ρ+ 1
ρ (1 + τ)

)2
− 4

]
< ρ and εt ≡ 1

τ

∑N
j=1 κj(τ

−1
j + ω−1

j )−1εj,t.

Next, denote with λj ≡ ωj
τj+ωj

∈ (0, 1) the signal-to-noise ratio applied when inferring εj,t from ui,j,t.

The average forecast of the sum of component-specific shocks is given by

(I4)
N∑
j=1

Et[εj,t] =
N∑
j=1

λj(κjξt + εj,t − κjEt[ξt]) =
N∑
j=1

λjκj(ξt − Et[ξt]) +
N∑
j=1

λjεjt.

It follows that the determination of ut boils down to a pure forecasting problem spelled out by
equations (I3) and (I4).

Consider next the determination of at. As already mentioned, this obtains from the same best
responses as our model, with ξt been the sole fundamental. The information structure about it is
more complicated that in our baseline analysis, as agents observed signals contaminated with both
idiosyncratic and common noise. But a result similar to Proposition 12 in Appendix B applies.
That is,

at = aξt + νt,

where aξt , the fundamental component, obeys our observational equivalence result and vt, the resid-
ual, is an AR(1) driven by the “noise” (here, the combination of the εj,t’s). The only subtle difference
is in the precise cubic that pins down ϑ (and thereby ωf and ωb).



To complete the picture, consider the projection of yt on the history of ξt. This is given by

yξt =
ϕ̃

1− gL
ηt + aξt ,

where ηt is the innovation in ξt and ϕ̃ ≡ ϕ
∑N

j=1 λjκj
g
ρ . We thus have that the IRF of yt with

respect to ηt is the sum of the AR(2) corresponding to axt i and of the AR(1) given by the first
term above. Clearly, this term does not contribute to a hump-shape. Furthermore, it is likely to

be quantitatively less important than aξt for the following reason: aξt consists of all the PE and GE

effects across all the horizons, while ϕ̃
1−gLηt captures only a fraction of the total PE effects. For

instance, as explained in Appendix D2, in our inflation applications GE effects are about 7 times

as large as PE effects. This suggests that, in that context, the aξt term would easily overwhelm the
other term.

Let us conclude with the following comment. Kohlhas and Walther (2019) have used a model
of the type described above to show that asymmetric attention allocation to various components
of the outcome may help reconcile the form of belief over-reaction documented in their paper with
the form of belief under-reaction documented in CG. Our network extension in Section VIII allows
one to consider a multi-sector economy in which different sectors have different exposures to the
aggregate shock, either directly or indirectly via differential GE effects. This may provide a more
detailed micro-foundation for pro- and counter-cyclical components of economic activity, along the
lines suggested by the aforementioned paper. And it could help study the role of asymmetries in
GE feedbacks, similarly in spirit to what we do in our HANK application in Section VII.17

J. Additional Proofs

Proof of Lemma D.1, Lemma D.2, and Proposition 8

The demand schedule faced by an individual firm i in market m is given by

Yi,m,t =

(
Pi,m,t
Pm,t

)−ψ (Pm,t
Pt

)−ε
Yt,

where ψ and ε are within- and across-market elasticities of substitution, respectively. The price
index in market m and the aggregate price index are defined as

Pm,t =

 1

N

∑
j

P 1−ψ
j,m,t

 1
1−ψ

, Pt =

[∫
m
P 1−ε
m,t

] 1
1−ε

.

In the absence of nominal rigidity and informational frictions, an individual firm i in market m sets
its price to maximize its profit in the current period

max
Pi,m,t

Pi,m,tYi,m,t − PtC(Yt)Yi,m,t,

where C(Yt) is the marginal real cost which depends on the aggregate economic condition. Using
the following properties

∂Yi,m,t
∂Pi,m,t

= −ψYi,m,t
Pi,m,t

+ (ψ − ε)Yi,m,t
Pm,t

∂Pm,t
∂Pi,m,t

, and
∂Pm,t
∂Pi,m,t

=
1

N
Pψm,tP

−ψ
i,m,t,

17There, asymmetric GE feedbacks emerge because of heterogeneous MPCs and heterogeneous exposures of income to business-
cycle fluctuations.



the first-order condition is

(1− ψ)
Pi,m,t
Pt

+ ψC(Yt) =
ε− ψ
N

(
Pi,m,t
Pt
− C(Yt)

)(
Pi,m,t
Pm,t

)1−ψ
= 0.

We assume that C(Yt) = C exp(mct) where mct follows an AR(1) process

mct = ρmct−1 + ηt.

In steady state where mct = 0 and Pi,m,t = Pm,t = Pt, it follows that

C =
ψ − 1 + ε−ψ

N

ψ + ε−ψ
N

.

The log-linearized version of the first-order condition is

(1− ψ)(pi,m,t − pt) + ψCmct =
ε− ψ
N

(
pi,m,t − pt − Cmct + (1− C)(1− ψ)(pi,m,t − pm,t)

)
,

which leads to the following best response

pi,m,t = ϕmct + αNpm,t + (1− αN )pt,

where αN is given by

αN =
N(ψ − 1)(ψ − ε)

ψ (N2(ψ − 1)− (N − 1)ψ) + (N − 2)ψε+ ε2
.

Turn to the environment where there is nominal rigidity and incomplete information. The problem
of a firm that can reset its price becomes

max
Pi,m,t

∞∑
k=0

(χθ)kEi,m,t
[
Pi,m,tYi,m,t+k − Pt+kC(Yt+k)Yi,m,t+k

]
,

and the linearized first-order condition becomes

p∗i,m,t = (1− χθ)
∞∑
k=0

(χθ)kϕEi,m,t[mct+k] + (1− χθ)
∞∑
k=0

(χθ)kEi,m,t[αNpm,t+k + (1− αN )pt+k].

Under the assumption that all firms share the same information within the market, all newly set
prices within a market are identical. Denote the newly set price in market m as p∗m,t, and it satisfies

p∗m,t = (1− χθ)
∞∑
k=0

(χθ)kϕEm,t[mct+k] + (1− χθ)
∞∑
k=0

(χθ)kEm,t[αNpm,t+k + (1− αN )pt+k].

Denote πm,t as the inflation rate in market m. Subtracting pm,t−1 from both sides of the equation
above leads to

πm,t =(1− θ)(1− χθ)
∞∑
k=0

(χθ)kϕEm,t[mct+k] + αN (1− θ)
∞∑
k=0

(χθ)kEm,t[πm,t+k]

+ (1− θ)(1− αN )

∞∑
k=0

(χθ)kEm,t[πt+k] + (1− θ)(1− αN )(pt−1 − pm,t−1).



To proceed, consider the following alternative inflation definition in market m

π̃m,t =(1− θ)(1− χθ)
∞∑
k=0

(χθ)kϕEm,t[mct+k] + αN (1− θ)
∞∑
k=0

(χθ)kEm,t[π̃m,t+k]

+ (1− θ)(1− αN )
∞∑
k=0

(χθ)kEm,t[πt+k].

Since the aggregate inflation under these two models are identical (
∫
m πm,t =

∫
m π̃m,t), we can derive

the aggregate inflation dynamics from the latter. By the law of iterated expectations, we have

π̃m,t =Em,t
[

(1− θ)(1− χθ)ϕmct + (1− θ)(1− αN )πt
1− χθL−1

]
+ (1− θ)αNEm,t

[
π̃m,t

1− χθL−1

]
=Em,t

[
(1− θ)(1− χθ)ϕmct + (1− θ)(1− αN )πt

1− χθL−1

(
1− (1− θ)αN

1− χθL−1

)−1
]

=
1

1− (1− θ)αN

∞∑
k=0

(
χθ

1− (1− θ)αN

)k
Em,t[(1− θ)(1− χθ)ϕmct+k + (1− θ)(1− αNπt+k)].

Aggregating across markets and using the assumption that firms can observe current inflation, it
follows that the aggregate inflation satisfies

πt = κ

∞∑
k=0

(
χθ

1− (1− θ)αN

)k
Et[mct+k] +

χ(1− θ)(1− αN )

1− (1− θ)αN

∞∑
k=0

(
χθ

1− (1− θ)αN

)k
Et[πt+k+1],

where κ = (1−χθ)(1−θ)ϕ
θ . Mapping the fixed point problem above to our baseline framework, the

aggregate outcome is the result of the following forward-looking game

ai,t = ϕEi,t[ξt] + βEi,t[ai,t+1] + γEi,t[at+1],

where

β =
χθ

1− (1− θ)αN
, and γ =

χ(1− θ)(1− αN )

1− (1− θ)αN
.

with β + γ = χ. Note that γ is decreasing in αN . To show that γ is increasing in N , it is sufficient
to show that αN is decreasing in N . When ψ > ε > 1, and N ≥ 2

∂αN
∂N

=
(ψ − 1)(ψ − ε)

(
ψ2 + ε2 − 2ψε− ψN2(ψ − 1)

)
(ψ (N2(ψ − 1)− (N − 1)ψ) + (N − 2)ψε+ ε2)2

<
(ψ − 1)(ψ − ε)

(
ψ2 − ψ + ε2 − ε−N2(ψ2 − ψ)

)
(ψ (N2(ψ − 1)− (N − 1)ψ) + (N − 2)ψε+ ε2)2

< 0,

which completes the proof.



Proof of Proposition 12

The signal process can be represented as

[
zt
xi,t

]
=

[
τ
−1/2
ε 0 1

1−ρL
0 τ

−1/2
u

1
1−ρL

]
︸ ︷︷ ︸

≡M(L)

 ε̂tûi,t
η̂t


︸ ︷︷ ︸
≡ŝi,t

.

where ŝi,t is a vector of standardized normal random variables. The auto-covariance generating
function for the signal process is

M (L) M′ (L−1
)

=
1

(L− ρ) (1− ρL)

[
L+ (L−ρ)(1−ρL)

τε
L

L L+ (L−ρ)(1−ρL)
τu

]
.

In order to apply the Wiener-Hopf prediction formula we need to obtain the canonical factorization.
Let λ be the inside root of the determinant of M (L) M′ (L−1

)
λ =

1

2

τε + τu
ρ

+
1

ρ
+ ρ−

√(
τε + τu
ρ

+
1

ρ
+ ρ

)2

− 4

 .

Then the fundamental representation is given by

B(z)−1 =
1

1− λz

[
1− τερ+λτu

τε+τu
z τu(λ−ρ)

τε+τu
z

τε(λ−ρ)
τε+τu

z 1− τuρ+λτε
τε+τu

z

]
,

V−1 =
τετu

ρ(τε + τu)

[
τuρ+λτε

τu
λ− ρ

λ− ρ τερ+λτu
τε

]
,

which satisfies
B (L) VB′

(
L−1

)
= M (L) M′ (L−1

)
.

Applying the Wiener-Hopf prediction formula, the forecast of ξt is given by

Ei,t [ξt] =
[[

0 0 1
1−ρL

]
M′ (L−1

)
B′
(
L−1

)−1
]

+
V−1B (L)−1

[
zt
xi,t

]
=

λ
[
τε τu

]
ρ (1− λL) (1− ρλ)

[
zt
xi,t

]
.

Suppose the policy function is h1(L) and h2(L), that is,

ai,t = h1(L)zt + h2(L)xi,t.

Let g (L) ≡ h1(L) + h2(L), and it follows that the aggregate outcome is at = g(L)ξt + h1(L)εt. The
forecast about at+1 is given by

Ei,t [at+1] =
[[
τ
−1/2
ε L−1h1 (L) 0 L−1g(L)

1−ρL

]
M′ (L−1

)
B′
(
L−1

)−1
]

+
V−1B (L)−1

[
zt
xi,t

]

=

 [
(
(ρτu + λτε + λρ (λτu + ρτε))L− λρ (τu + τε)

(
1 + L2

))
h1 (L) τu (λ− ρ) (1− ρλ)Lh1 (L)]

ρ (τu + τε)L (L− λ) (1− λL)



− [τε (ρ− λ) (1− ρL)Lh1 (λ) τu (ρ− λ) (1− ρL)Lh1 (λ)]

ρ (τu + τε)L (L− λ) (1− λL)

− [ρ (L− λ) ((λτu + ρτε)L− (τu + τε))h1 (0) τu (ρ− λ)Lρ (L− λ)h1 (0)]

ρ (τu + τε)L (L− λ) (1− λL)

+
λ ((1− ρλ) g (L)− (1− ρL) g (λ)) [τε τu]

ρ (1− ρλ) (L− λ) (1− λL)

}[
zt
xi,t

]
.

Also, the forecast about ai,t+1 − at+1 is

Ei,t [ai,t+1 − at+1] =
[[

0 τ
−1/2
u L−1h2 (L) 0

]
M′ (L−1

)
B′
(
L−1

)−1
]

+
V−1B (L)−1

[
zt
xi,t

]

=

 [τε (λ− ρ) (1− ρλ)Lh2 (L)
(
(λτu + ρτε + λρ (ρτu + λτε))L− λρ (τu + τε)

(
1 + L2

))
h2 (L)]

ρ (τu + τε)L (L− λ) (1− λL)

− [τε (ρ− λ) (1− ρL)Lh2 (λ) τu (ρ− λ) (1− ρL)Lh2 (λ)]

ρ (τu + τε)L (L− λ) (1− λL)

− [τε (ρ− λ)Lρ (L− λ)h2 (0) ρ (L− λ) ((ρτu + λτε)L− (τu + τε))h2 (0)]

ρ (τu + τε)L (L− λ) (1− λL)

}[
zt
xi,t

]
.

These two objects are useful for agents to decide their optimal action, which should satisfy the best
response function

ai,t = ϕEi,t[ξt] + βEi,t[ai,t+1] + γEi,t[at+1] = ϕEi,t[ξt] + βEi,t[ai,t+1 − at+1] + (γ + β)Ei,t[at+1].

Substituting the forecast formulas into the best response function, it leads to the following functional
equation

A(L)

[
h1 (L)
h2 (L)

]
= d (L) ,

where18

A(L) =

[
1− (γ + β)L−1 − γλτε

ρ(L−λ)(1−λL)

0 1− γλτu
ρ(L−λ)(1−λL) − βL

−1

]
,

and

D(L) ≡
ϕλ
[
τε τu

]′
ρ (1− λL) (1− ρλ)

− ϕ1
(1− ρL)

[
τε τu

]′
(L− λ) (1− λL)

−ϕ2

[
(λτu + ρτε)L− (τε + τu) τu (ρ− λ)L

]′
L (1− λL)

− ϕ3

[
τε (ρ− λ)L (λτε + ρτu)L− (τε + τu)

]′
L (1− λL)

,

18We have used the following identities to simplify the expressions

ρτu + λτε + λρ (λτu + ρτε) + λτε(τu + τε) = ρ(1 + λ2)(τu + τε),

ρτε + λτu + λρ (λτε + ρτu) + λτu(τu + τε) = ρ(1 + λ2)(τu + τε).



with

ϕ1 =
(ρ− λ) ((γ + β)h1 (λ) + βh2(λ))

ρ (τu + τε)
+ (β + γ)

λg (λ)

ρ (1− ρλ)
, ϕ2 =

γ + β

τu + τε
h1 (0) , ϕ3 =

β

τu + τε
h2 (0) .

Next note that the determinant of A(L) is given by

det(A(L)) =

λ

(
− L3 +

(
ρ+ 1

ρ + τu+τε
ρ + β

)
L2 −

(
1 + β

(
ρ+ 1

ρ + τu+τε
ρ

)
+ γτu

ρ

)
L+ β

)
(L− (γ + β))

L2 (1− λL) (L− λ)
,

which has four roots ω1 to ω4, with |ω4| > 1 and the others being less than 1 in absolute value. We
choose ϕ1, ϕ2, and ϕ3 to remove the inside poles of h1(L) at ω1 to ω3. This leads to the following
policy function,

h1 (L) =
ϕ

1− ρ(β + γ)

τεϑ

ρ(1− ρϑ)

1

1− ϑL
, and h2 (L) =

ϕ

1− ρ(β + γ)

(1− ρϑ)(ρ− ϑ)− ϑτε
ρ(1− ρϑ)

1

1− ϑL
,

where ϑ ≡ ω−1
4 is the reciprocal of the outside root of the following cubic equation

C(z) = −z3 +

(
ρ+

1

ρ
+
τu + τε
ρ

+ β

)
z2 −

(
1 + β

(
ρ+

1

ρ
+
τu + τε
ρ

)
+
γτu
ρ

)
z + β

= −z3 +

(
ρ+

1

ρ
+

1

ρσ2
+ δ − γ

)
z2 −

(
1 + (δ − γ)

(
ρ+

1

ρ

)
+
δ − γχ
ρσ2

)
z + δ − γ.

where the last line using the definition σ−2 = σ−2
u + σ−2

ε . The aggregate outcome, at = (h1(L) +
h2(L))ξt + h1(L)εt, is

at =

(
1− ϑ

ρ

)
1

1− ϑL
ϕ

1− ρ(β + γ)
ξt +

τεϑ

ρ(1− ρϑ)

ϕ

1− ρ(β + γ)

1

1− ϑL
εt

≡ aξt + vt.

In terms of comparative statics, note that

∂C(ϑ−1)

∂χ
=

χ

ρσ2
> 0.

By the same logic in the proof of Proposition 5, it follows that ϑ is decreasing in χ.

Proof of Proposition 13

This follows directly from the analysis in the main text.

Proof of Proposition 14

First, let us prove gk < ĝk. Recall that {gk} is given by

gk =

∞∑
h=0

γhλkλk+1...λk+hρk+h.

Clearly,

0 < gk <

∞∑
h=0

γhλkρk+h = ĝk,



which proves the first property. If limk→∞ λk = 1 and
∑∞

h=0 γ
hρk+h exists for all k, then it follows

that

lim
k→∞

ĝk
gk

=
limk→∞

∑∞
h=0 γ

hρk+h

limk→∞
∑∞

h=0 γ
hρk+h

= 1.

Next, let us prove that
gk+1

gk
>

ĝk+1

ĝk
. By definition,

ĝk+1

ĝk
=
λk+1

λk

∑∞
h=0 γ

hρk+h+1∑∞
h=0 γ

hρk+h
,

gk+1

gk
=
λk+1

λk

∑∞
h=0 γ

hλk+2...λk+h+1ρk+h+1∑∞
h=0 γ

hλk+1...λk+hρk+h
.

Since {λk} is strictly increasing and ρk > 0, we have

gk+1

gk

/
ĝk+1

ĝk
>

∑∞
h=0 γ

hλk+1...λk+hρk+h+1∑∞
h=0 γ

hλk+1...λk+hρk+h

/∑∞
h=0 γ

hρk+h+1∑∞
h=0 γ

hρk+h
.

It is sufficient to show that the term on the right-hand side is greater than 1. To proceed, we start
with the following observation. If θ1 ≥ θ2 > 0, and y2

y1+y2
≥ x2

x1+x2
, then

(J1)
x1θ1 + x2θ2

x1 + x2
≥ y1θ1 + y2θ2

y1 + y2
.

Note that ∑∞
h=0 γ

hλk+1...λk+hρk+h+1∑∞
h=0 γ

hλk+1...λk+hρk+h
=
ρk+1

ρk

1 + γλk+1
ρk+2

ρk+1
+ γ2λk+1λk+2

ρk+3

ρk+1
+ . . .

1 + γλk+1
ρk+1

ρk
+ γ2λk+1λk+2

ρk+2

ρk
+ . . .

,

and ∑∞
h=0 γ

hρk+h+1∑∞
h=0 γ

hρk+h
=
ρk+1

ρk

1 + γ
ρk+2

ρk+1
+ γ2 ρk+3

ρk+1
+ . . .

1 + γ
ρk+1

ρk
+ γ2 ρk+2

ρk
+ . . .

.

In what follows, we will show by induction that

1 + γλk+1
ρk+2

ρk+1
+ γ2λk+1λk+2

ρk+3

ρk+1
+ . . .

1 + γλk+1
ρk+1

ρk
+ γ2λk+1λk+2

ρk+2

ρk
+ . . .

≥
1 + γ

ρk+2

ρk+1
+ γ2 ρk+3

ρk+1
+ . . .

1 + γ
ρk+1

ρk
+ γ2 ρk+2

ρk
+ . . .

.

We first establish the following inequality

1 + γλk+1
ρk+2

ρk+1

1 + γλk+1
ρk+1

ρk

≥
1 + γ

ρk+2

ρk+1

1 + γ
ρk+1

ρk

.

This inequality is obtained by labeling θ1 = 1, θ2 =
ρkρk+2

ρ2k+1
, x1 = y1 = 1, x2 = γλk+1

ρk+1

ρk
, and

y2 = γ
ρk+1

ρk
, and applying inequality (J1). By assumption,

ρkρk+2

ρ2k+1
≤ 1, which implies θ1 ≥ θ2 > 0.

Meanwhile,

x2

x1 + x2
=

γλk+1
ρk+1

ρk

1 + γλk+1
ρk+1

ρk

≤
γλk+1

ρk+1

ρk

λk+1 + γλk+1
ρk+1

ρk

=
y2

y1 + y2
.



Now suppose that

1 + γλk+1
ρk+2

ρk+1
+ . . .+ γn−1λk+1 . . . λk+n−1

ρk+n
ρk+1

1 + γλk+1
ρk+1

ρk
+ . . .+ γn−1λk+1 . . . λk+n−1

ρk+n−1

ρk

≥
1 + γ

ρk+2

ρk+1
+ . . .+ γn−1 ρk+n

ρk+1

1 + γ
ρk+1

ρk
+ . . .+ γn−1 ρk+n−1

ρk

,

and we need to show

1 + γλk+1
ρk+2

ρk+1
+ . . .+ γn−1λk+1 . . . λk+n−1

ρk+n
ρk+1

+ γnλk+1 . . . λk+n
ρk+n+1

ρk+1

1 + γλk+1
ρk+1

ρk
+ . . .+ γn−1λk+1 . . . λk+n−1

ρk+n−1

ρk
+ γnλk+1 . . . λk+n

ρk+n
ρk

(J2)

≥
1 + γ

ρk+2

ρk+1
+ . . .+ γn−1 ρk+n

ρk+1
+ γn

ρk+n+1

ρk+1

1 + γ
ρk+1

ρk
+ . . .+ γn−1 ρk+n−1

ρk
+ γn

ρk+n
ρk

.

Again, to apply (J1), let θ1 =
1+γ

ρk+2
ρk+1

+...+γn−1 ρk+n
ρk+1

1+γ
ρk+1
ρk

+...+γn−1
ρk+n−1

ρk

, θ2 =
ρkρk+n+1

ρk+1ρk+n
, x1 = 1 + γλk+1

ρk+1

ρk
+

. . . + γn−1λk+1 . . . λk+n−1
ρk+n−1

ρk
, x2 = γnλk+1 . . . λk+n

ρk+n
ρk

, y1 = 1 + γ
ρk+1

ρk
+ . . . + γn−1 ρk+n−1

ρk
,

y2 = γn
ρk+n
ρk

. We have

1 + γλk+1
ρk+2

ρk+1
+ . . .+ γn−1λk+1 . . . λk+n−1

ρk+n
ρk+1

+ γnλk+1 . . . λk+n
ρk+n+1

ρk+1

1 + γλk+1
ρk+1

ρk
+ . . .+ γn−1λk+1 . . . λk+n−1

ρk+n−1

ρk
+ γnλk+1 . . . λk+n

ρk+n
ρk

=

x1

1+γλk+1
ρk+2
ρk+1

+...+γn−1λk+1...λk+n−1
ρk+n
ρk+1

1+γλk+1
ρk+1
ρk

+...+γn−1λk+1...λk+n−1
ρk+n−1

ρk

+ x2θ2

x1 + x2

≥x1θ1 + x2θ2

x1 + x2
,

and

1 + γ
ρk+2

ρk+1
+ . . .+ γn−1 ρk+n

ρk+1
+ γn

ρk+n+1

ρk+1

1 + γ
ρk+1

ρk
+ . . .+ γn−1 ρk+n−1

ρk
+ γn

ρk+n
ρk

=
y1θ1 + y2θ2

y1 + y2
.

To establish (J2), it remains to show that θ1 ≥ θ2 and x2
x1+x2

≤ y2
y1+y2

. Note that

θ1

θ2
=

1 + γ
ρk+1

ρk

ρk+2ρk
ρ2k+1

+ . . .+ γn−1 ρk+n−1

ρk

ρk+nρk
ρk+1ρk+n−1

θ2 + γ
ρk+1

ρk
θ2 + . . .+ γn−1 ρk+n−1

ρk
θ2

.

By assumption, θ2 < 1 and θ2 ≤ ρkρk+i+1

ρk+1ρk+i
when i ≤ n, which leads to θ1 ≥ θ2. Also note that

x2

x1 + x2

=
γnλk+1 . . . λk+n

ρk+n
ρk

1 + γλk+1
ρk+1

ρk
+ . . .+ γn−1λk+1 . . . λk+n−1

ρk+n−1

ρk
+ γnλk+1 . . . λk+n

ρk+n
ρk

≤
γnλk+1 . . . λk+n

ρk+n
ρk

λk+1 . . . λk+n + γλk+1 . . . λk+n
ρk+1

ρk
+ . . .+ γn−1λk+1 . . . λk+n

ρk+n−1

ρk
+ γnλk+1 . . . λk+n

ρk+n
ρk

=
y2

y1 + y2
.

This completes the proof that
gk+1

gk
>

ĝk+1

ĝk
.



*

REFERENCES

Abel, Andrew B., and Olivier J. Blanchard. 1983. “An Intertemporal Model of Saving and
Investment.” Econometrica, 51(3): 675–692.

Allen, Franklin, Stephen Morris, and Hyun Song Shin. 2006. “Beauty Contests and Iterated
Expectations in Asset Markets.” Review of financial Studies, 19(3): 719–752.

Alvarez, Fernando, and Francesco Lippi. 2014. “Price Setting with Menu Cost for Multiprod-
uct Firms.” Econometrica, 82(1): 89–135.

Angeletos, George-Marios, and Chen Lian. 2018. “Forward Guidance without Common
Knowledge.” American Economic Review, 108(9): 2477–2512.

Angeletos, George-Marios, Fabrice Collard, and Harris Dellas. 2020. “Business-Cycle
Anatomy.” American Economic Review, 110(10): 3030–70.

Auclert, Adrien, Matthew Rognlie, and Ludwig Straub. 2020. “Micro Jumps, Macro Humps:
monetary policy and business cycles in an estimated HANK model.” mimeo.
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