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A Proofs

Verification of Assumption A1 for Option Value: In view of Table 2, we only need to

show that Va(a, θ1, θ2) is decreasing in θ1 and increasing in θ2. Let R ≡ (1 − a)pθ1. By the

chain rule and product rule of derivatives, we have for k = 1, 2
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It is well known from the option pricing literature (see Hull (2017)) that ∂V/∂R = e−rtΦ(x).

So using this and the definition of x in (2) leads to
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Meanwhile, ∂R/∂a = −pθ1, so ∂ (∂R/∂a) /∂θ1 = −p and ∂ (∂R/∂a) /∂θ2 = 0. Plugging

these into the above first equation, we have
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Verification of Necessary Identification Condition for Option Value: A necessary

condition for identification is that the system Va(a; θ1, θ2) = Y1 and V (a; θ1, θ2) = Y2 has at

most one solution in (θ1, θ2) given (a, Y1, Y2). Indeed, if this was not the case, then (8)-(9)

would have more than one solution in (θ1, θ2). We now prove that the option value in (1)-(2)

satisfies this condition. Since (2) is a monotonic function of the ratio θ1/θ2, we use a change

of variables to solve (8)-(9) for θ1 and x instead of θ1 and θ2. First, we use (8) to express θ1

in terms of x. Second, we plug this expression for θ1 into (9), yielding an equation with one

unknown x. Third, we show that there cannot be more than one solution x to this equation.

Finally, we give closed-form expressions for θ1 and θ2 as functions of the solution x.

First, we define R ≡ (1−a)pθ1. We have Va(a; θ1, θ2) = (∂V/∂R)(∂R/∂a) = −e−rtpθ1Φ(x)

using ∂V/∂R = e−rtΦ(x). See Hull (2017). Substituting this into the left-hand side of

(8) leads to −e−rtpθ1Φ(x) = Y1. Hence, θ1 = −Y1/[e
−rtpΦ(x)] = C1/Φ(x), where C1 =

−Y1/[e
−rtp] > 0 is a known constant.
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Second, plugging this expression for θ1 in (1) gives
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where the last equality follows from θ2/ [(1− a)pθ1] = exp(−σ
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this expression for V (a; θ1, θ2) in (9) gives
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Third, the right-hand side of (A.1) is known and denoted C2. We show that the left-hand

side is strictly monotonic in x, so that there cannot be more than one value of x satisfying

(A.1). Taking the derivative of the left-hand side with respect to x gives

∂

∂x

(
e−σ

√
txΦ(x−σ

√
t)

Φ(x)

)
= −σ

√
te−σ

√
txΦ(x−σ

√
t)

Φ(x)
+e−σ

√
tx

(
ϕ(x−σ

√
t)Φ(x)−Φ(x−σ

√
t)ϕ(x)

Φ(x)2

)

=
(
e−σ

√
tx/Φ(x)

)(
−σ

√
tΦ(x− σ

√
t)+ϕ(x− σ

√
t)− ϕ(x)

Φ(x)
Φ(x− σ

√
t)

)
=
(
e−σ

√
txϕ(x− σ

√
t)/Φ(x)

)(
−σ

√
t
Φ(x− σ

√
t)

ϕ(x− σ
√
t)
+1− ϕ(x)

Φ(x)

Φ(x−σ
√
t)

ϕ(x−σ
√
t)

)

=
(
e−σ

√
txϕ(x− σ

√
t)/Φ(x)

)(
1−Φ(x−σ

√
t)

ϕ(x−σ
√
t)

(
σ
√
t+

ϕ(x)

Φ(x)

))
.

But h′(x) > −1, where h(x) ≡ ϕ(x)
Φ(x) .
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0, showing that the left-hand side of (A.1) is strictly decreasing in x. Thus, there is at most one

solution in x to (A.1), which can be obtained numerically. Finally, as functions of the solution

x, θ1 = Pa(a, b|a, b, n)/(Pb(a, b|a, b, n)e−rtpΦ(x)) and θ2 = (1− a)pθ1 exp(−σ
√
tx+ σ2t/2).

1To prove this, we adapt Sampford (1953)’s proof about the derivative of ϕ(x)
1−Φ(x) . Specifically,

consider a standard normal distribution which is top-truncated at x. Its variance is 1 − xϕ(x)
Φ(x) −(

ϕ(x)
Φ(x)

)2
= 1− xh(x)− h(x)2 > 0. Because h′(x) = −xh(x)− h(x)2, then h′(x) > −1.
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Proof of Proposition 1: Under assumptions A1–A4, the first-order conditions (3)-(4)

become (8)-(9) as explained in the text. Thus, by the invertibility assumption A4, (8)-

(9) has a unique solution in (θ1, θ2) given (a, b). Hence, the private information (θ1, θ2) is

identified for each bidder from his bid (a, b) since the RHS of (8)-(9) is identified. It follows

that the 2n-dimensional joint distribution of types F (·, . . . , ·|n) is identified.

B Additional Details and Extensions

Bidders’ Asymmetry and Stability of Allocation Patterns: We check for asymmetry

among bidders in the allocation rule and whether this rule changes over time with factors

such as oil price. We observe in the data 522 different bidders’ identities. The concentration

of the share of wins among bidders is very low with a Herfindhal-Hirschman index of 0.01. As

is common in the empirical auction literature, we refer to bidders who participate 10 times or

less as ‘fringe’ bidders. Table A1 displays the result of a probit regression to assess the effect of

being a fringe bidder on the probability of winning, controlling for component-wise differences

from the competing bid. The probit coefficient on the fringe bidder dummy is statistically

insignificant, showing no evidence that fringe bidders are treated differently from regular

bidders or face a different probability of winning conditional on bid components. The second

column includes interactions with oil price to assess whether the State’s choice of winner

depends on oil price. The coefficients on the oil price interactions are statistically insignificant.

These probit regressions also confirm that the probability of winning is increasing in both

cash payment and royalty.

Derivation of Implied Volatility: Using prices of crude oil options, we compute the im-

plied volatility of West Texas Intermediate oil prices for each month. Specifically, we invert

the Black (1976) commodity option pricing equation to back out the expected volatility im-

plied by the price of every traded call option. We take the median of these implied volatilities

in each trade month m for option maturity τ (in months) to be the implied volatility στm in

month m of τ -month futures, where 1-month futures are the closest to the spot price. Im-

plied volatilities derived from 1-month options are noisy because we observe only the month

of option expiration but not the day, so that the time left to expiration may not equal an

exact month. To address this noise issue, we adapt Kellogg (2014)’s method to infer the

desired volatility from options with different maturities. Specifically, for each month m, we

use daily realized volatilities of oil futures2 in the surrounding 1-year window to estimate the

fixed effects regression log rvolτt = ητ + δt + ϵτt, where rvolτt is the realized volatility of the

τ -month future contract on day t, ητ is a maturity fixed effect and δt is a day fixed effect.

2Historical crude oil futures prices were obtained from Quandl (1983-2019).
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Table A1: Probit Model Probability of Winning, n = 2

(1) (2)

fringe bidder -0.009 -0.011

(0.148) (0.148)

log difference from competing bid’s cash 2.757 2.966

(0.165) (0.433)

difference from competing bid’s royalty 20.385 27.327

(1.844) (5.491)

log cash difference × oil price -0.004

(0.008)

royalty difference × oil price -0.133

(0.098)

constant 0.007 0.009

(0.132) (0.132)

Pseudo R2 0.564 0.565

Notes: Table shows probit regression of a dummy for winning the

auction on the listed regressors in auctions with two bidders. For

oil price, we use monthly West Texas Intermediate crude oil (WTI)

prices, deflated to 2009 dollars. Observations are at the bid level.

Standard errors are in parentheses.

We then infer the implied volatility σ1m of 1-month futures in month m from the volatility

implied by contemporary 3-month options σ3m as σ1m = σ3m exp(η1m − η3m).

Parameters of the Binomial Tree for Valuing American Options: In each step of a

binomial tree going from node t to t+1, the price increases to pt+1 = ptu with probability q and

decreases to pt+1 = ptd with probability 1−q. The parameters u, d and q of the tree are chosen

to match the price process of p as follows. Let ∆t denote the size of each time step, which

is 3/100 year given a 3-year option duration divided by 100 steps in the tree. A geometric

Brownian motion with volatility σ implies that the standard deviation of the return on p

during time step ∆t is equal to σ
√
∆t. Therefore, u = eσ

√
∆t and d = e−σ

√
∆t. A geometric

Brownian motion with zero drift after adjusting for inflation implies that E(pt+1) = pt. This

means qptu+ (1− q)ptd = pt. Solving this equation for q gives q = (1− d)/(u− d). See Hull

(2017) for further details on binomial trees.
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Bidders’ Cash Constraints: We might wonder whether bidders are cash constrained and

bid higher royalties in order to pay less cash upfront. The bidding patterns we observe appear

inconsistent with cash constraints being a major driver of royalty bids. As described in Section

2.1, we observe more often than not that the bidder bidding more royalty simultaneously bids

more cash than competing bidders in the same auction. If higher royalty bids were from more

cash constrained bidders, we would observe the opposite. This positive correlation between

cash and royalty is also observed in Figure 1. To compute the correlation conditional on tract

heterogeneity, we use the residuals of the two regressions of Table 3, which regress the cash

and royalty components of the bids on lease covariates. The correlation coefficient between

the log cash and royalty residuals is 0.32. Cash constraints do not appear to be a first-order

issue in our bidding data.

Unobserved Heterogeneity: Previous empirical studies have shown that auction data

might be subject to unobserved heterogeneity. One way to account for unobserved hetero-

geneity is to condition the value distribution on the number of bidders (as we do) to control

for higher valued tracts attracting (say) more bidders. Empirically, there remains residual

correlation between bids submitted to the same auction after conditioning on the covariates

listed in Table 3. In two-bidder auctions, the correlation coefficient of the residuals is 0.65

for the logarithm of cash and 0.26 for royalty. These correlations can be generated by un-

observed auction heterogeneity or affiliation of private information across bidders, which are

difficult to distinguish from bid data. Krasnokutskaya (2011)’s deconvolution method for

first-price sealed-bid auctions attributes all conditional correlation to unobserved heterogene-

ity. Her method relies on (i) the scale invariance property of the bidding strategy and (ii)

independence of private values. In our model, the general allocation rule need not satisfy (i).3

Meanwhile, (ii) is necessary because unobserved heterogeneity is identified by assuming that

all conditional correlation across bids is caused by it. Instead, we attribute the conditional

correlation of each bid component across bidders to affiliation of private information while

controlling for auction heterogeneity more carefully through our heatmap indices in addition

to standard covariates.

Common Values: Oil lease auction data have historically been analyzed within a common

value (CV) framework though private value models have been recently used for leases in areas

3The issue related to the lack of scale invariance has also been noted by Yoganarasimhan (2016)

in beauty contests upon assuming independence of univariate private information across bidders. She

uses discrete unobserved heterogeneity which would not be sufficient in our case. Takahashi (2018)

extends Krasnokutskaya (2011)’s method to bidimensional private information by generalizing scale

invariance. His result depends on a combination of assumptions including the independence of private

information across and within bidders, the parametric specification of the cost function and a known

scoring function in the inverse price quality ratio.
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with a long antecedent of development. See e.g. Hendricks, Porter and Boudreau (1987) for

the analysis of auctioned offshore leases and Kong (2020, 2021) for auctioned leases in the

Permian Basin. We discuss a pure CV model with multidimensional private information.4 In

our setting with option values, let (Q,C) denote the unknown common components, which

represent the quantity of oil and production cost, respectively. Bidder i’s private information

(θ1i, θ2i) are now interpreted as signals. The 2(n + 1)-vector (Q,C, θ11, θ21, . . . , θ1n, θ2n) is

distributed as F (·, . . . , ·|n) which is affiliated. The contract value becomes V (ai;Q,C), which

is common to all bidders up to their royalty bids ai. For a bid pair (ai, bi), let W (ai, bi) be

an indicator for winning and let v(ai, bi; θ1i, θ2i, n) ≡ E[V (ai;Q,C)|W (ai, bi) = 1, θ1i, θ2i, n]

denote bidder i’s expected value conditional on winning. Bidder i’s expected profit from the

auction is [v(ai, bi; θ1i, θ2i, n) − bi]P (ai, bi|θ1i, θ2i, n). Maximizing this expected profit with

respect to (ai, bi), rearranging the first-order conditions and omitting the subscript i give

va(a, b; θ1, θ2, n)−
Pa(a, b|θ1, θ2, n)
Pb(a, b|θ1, θ2, n)

vb(a, b; θ1, θ2, n) = −Pa(a, b|θ1, θ2, n)
Pb(a, b|θ1, θ2, n)

,

v(a, b; θ1, θ2, n) +
P (a, b|θ1, θ2, n)
Pb(a, b|θ1, θ2, n)

vb(a, b; θ1, θ2, n) = b+
P (a, b|θ1, θ2, n)
Pb(a, b|θ1, θ2, n)

.

The right-hand sides are identical to those in (3)-(4), whereas the left-hand sides are more

complicated. In particular, one can show that the left-hand side of the second equation

reduces to the standard pivotal value E[V (ao;Q,C)|maxj ̸=i bj = bi, θi, n] in a first-price

sealed-bid auction with fixed royalty ao and one-dimensional private information θi. Our

identification argument and estimation recover the left-hand sides since the right-hand sides

are observed or estimable. When it comes to characterizing v(a, b; θ1, θ2, n) and identifying

the latent distribution F (· . . . , ·|n) from bids, there are new difficulties arising from (i) charac-

terization of the winner’s curse under multidimensional private information and multivariate

bids, (ii) the dependence of v(a, b; θ1, θ2, n) on the endogenous royalty bid a as well as b

and (iii) the nonstandard nature of the allocation rule. The standard common value model

of first-price sealed-bid auctions with univariate private information is identified from bids

with the help of, e.g., functional form restrictions or exclusion restrictions involving bidders’

asymmetry. See Perrigne and Vuong (2021) for a recent survey. We doubt that the existing

approaches would resolve the difficulties above. The study of such a model with multivari-

ate bids, multidimensional private information and a general allocation rule is left for future

research.

4More generally, we could develop an interdependent value model with multidimensional private

information. For simplicity and concreteness, we consider the special case of a pure CV model.
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Table A2: Decomposing the Revenue Comparison

in $ per acre Total Cash Royalty

LA cash-royalty auction 2564 882 1682

Keep LA bids but apply fixed-royalty allocation 2589 890 1700

Fixed-royalty auction (23%) 2666 994 1672

Notes: The first, second, and third columns display ex ante expected total government

revenue, cash revenue, and royalty revenue in dollars per acre, respectively. Dollar

amounts are in 2009 dollars. The first row is based on bids observed in the Louisiana

cash royalty auction. The second row uses the same bids as the first row but counterfac-

tually applies the allocation of a fixed royalty auction with 23% royalty. The third row

counterfactually simulates a fixed royalty auction with 23% royalty.

C Supplement to Sections 5.1 and 5.3

Allocative Performance: Beyond revenue, Figure A4 assesses the allocative performance

of fixed-royalty auctions. We exploit the bidder’s estimated types to check whether the

state allocation generates the highest ex ante expected revenue. The solid curve gives the

proportion of fixed-royalty auctions that are revenue efficient. This proportion ranges from

97% to 100% as A varies. Allocative inefficiency arises because royalties are levied on revenues

and not profits thereby asymmetrically affecting bidders’ and government’s payoffs. From the

dashed line, we see that Louisiana does not perform as well with about 6% of auctions in

which allocation is not revenue optimal. As discussed before, royalties are less costly for weak

firms and serve as a ‘cheaper’ currency with which to bid, so these firms win more often than

when royalty is fixed.

To quantify the misallocation issue, the second row of Table A2 takes bids from the

Louisiana auction but counterfactually applies the same allocation as the 23% fixed-royalty

auction, i.e., each lease is awarded to the bidder who would have won the fixed-royalty auction.

Therefore, the second row quantifies the effect of changes in allocation separately from the

effect of changes in bids. For comparison, the first and third rows present revenues from the

Lousiana auction and the 23% fixed-royalty auction, respectively. The total revenue column

shows that about one fourth of the revenue gap is due to differences in allocation, the rest

arising from differences in bids. The second and third rows show that, holding allocation

constant, cash-royalty bidding still causes a drop in cash revenue that is not recouped in

royalty revenue.

The figures below provide additional details on the counterfactual results.
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Figure A1: Information Rents
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Notes: Solid line displays winning bidders’ informa-

tion rents from counterfactual simulations of fixed-

royalty auctions, as a function of the fixed royalty rate

displayed on the x-axis. For comparison, the dashed

horizontal line marks information rents computed

from observed bids in the Louisiana cash-royalty auc-

tion, and the vertical dotted line marks the aver-

age observed royalty rate resulting from that auction,

23%.

Figure A2: Exercise Probability
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Notes: Solid line displays ex ante expected probabil-

ity of lease development in counterfactual simulations

of fixed-royalty auctions, as a function of the fixed

royalty rate displayed on the x-axis. For compari-

son, the dashed horizontal line marks the analogous

exercise probability computed from observed bids in

the Louisiana cash-royalty auction, and the vertical

dotted line marks the average observed royalty rate

resulting from that auction, 23%.

Figure A3: Social Surplus
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Notes: Solid line displays social surplus in coun-

terfactual simulations of fixed-royalty auctions, as a

function of the fixed royalty rate displayed on the

x-axis. For comparison, the dashed horizontal line

marks social surplus computed from observed bids in

the Louisiana cash-royalty auction, and the vertical

dotted line marks the average observed royalty rate

resulting from that auction, 23%.

Figure A4: Allocative Performance

0 0.1 0.2 0.3 0.4 0.5

fixed royalty

0.88

0.9

0.92

0.94

0.96

0.98

1

Fixed-royalty

 LA
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royalty auctions that allocate the lease to the ex ante

revenue-maximizing bidder according to counterfac-

tual simulations, as a function of the fixed royalty rate

displayed on the x-axis. For comparison, the dashed

horizontal line marks the analogous proportion in the

Louisiana cash-royalty auction.
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Figure A5: Exercise Probability t = 6
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Notes: Figure displays ex ante expected probability

of lease development in counterfactual simulations of

fixed-royalty auctions, as a function of the fixed roy-

alty rate displayed on the x-axis. The solid line is for

a 6-year lease and the dashed line is for a 3-year lease.

Leases are modeled as American options.

Figure A6: Government Revenue t = 6
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Notes: Figure displays ex ante expected total govern-

ment revenue in counterfactual simulations of fixed-

royalty auctions, as a function of the fixed royalty

rate displayed on the x-axis. The solid line is for a

6-year lease and the dashed line is for a 3-year lease.

Leases are modeled as American options.

Figure A7: Oil Price and Government Rev-

enue

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

royalty

0

500

1000

1500

2000

2500

3000

3500

4000

4500

re
v
e
n
u
e
 i
n
 d

o
lla

rs
 p

e
r 

a
c
re

standard

federal

rate

standard

private

rate
at counterfactual prices

at observed prices
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ment revenue in counterfactual simulations of fixed-

royalty auctions, as a function of the fixed royalty rate

displayed on the x-axis. The solid line is at oil prices

20% higher than observed, while the dashed line is at

observed oil prices.
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D Robustness Analysis using American Options

In this section, we repeat all the counterfactual analyses of Section 5 using American option

estimates and valuations. We present the results in tables and figures corresponding to the

ones shown for the European option.

Table A3: Decomposing the Revenue Comparison

in $ per acre Total Cash Royalty

LA cash-royalty auction 2444 882 1562

Keep LA bids but apply fixed-royalty allocation 2468 890 1579

Fixed-royalty auction (23%) 2569 992 1577

Notes: The first, second, and third columns display ex ante expected total

government revenue, cash revenue, and royalty revenue in dollars per acre,

respectively. Dollar amounts are in 2009 dollars. The first row is based on

bids observed in the Louisiana cash royalty auction. The second row uses

the same bids as the first row but counterfactually applies the allocation of

a fixed royalty auction with 23% royalty. The third row counterfactually

simulates a fixed royalty auction with 23% royalty.

Table A4: Details of Quasi-Linear Scoring Auctions

ρ 1 2 3 4 5 6 7 8 9 10

E[(b− b)/(s− s)] 0.53 0.43 0.41 0.44 0.45 0.49 0.49 0.47 0.47 0.48

mean royalty bid 0.36 0.30 0.31 0.30 0.31 0.29 0.29 0.31 0.30 0.31

median royalty bid 0.20 0.23 0.25 0.26 0.27 0.27 0.28 0.31 0.30 0.31

Notes: We counterfactually simulate second-score auctions with quasi-linear scoring

rules of the form S(a, b) = b− p(ω/aρ), where a and b are the royalty and cash compo-

nents of the bid, respectively, p is the oil price, ω is a revenue-maximizing weight, and ρ

determines the curvature of the scoring function. Table columns from left to right show

auction outcomes associated with ρ = 1, 2, . . . , 10. The first row shows the expected

portion of the score that is due to the cash payment b, where b and s are the minimum

of cash and score values, respectively.

10



Table A5: Fixed-Royalty versus Scoring Auctions

Fixed-royalty auction Scoring auction, ρ = 1

Mean royalty 30% 36%

Median royalty 30% 20%

Total government revenue $2,808 $2,694

Royalty revenue $1,913 $1,137

Cash revenue $894 $1,557

Firm information rents $922 $1,283

Same allocation as fixed-royalty – 0.97

Pr(option exercise) 0.42 0.45

Social surplus $3,730 $3,977

Notes: Table presents outcomes associated with counterfactual simulations of a

second-price fixed-royalty auction in the first column, with revenue-maximizing

fixed royalty of 30%, and a second-score scoring auction in the second column,

which uses a quasi-linear scoring rule S(a, b) = b− p(ω/aρ) with curvature ρ = 1

and revenue-maximizing weight ω. Dollars are expressed in 2009 dollars and per

acre.

Figure A8: Scoring Auctions
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Notes: The solid line and dashed line plot simulated outcomes of a second-score scoring

auction with quasi-linear scoring rule S(a, b) = b − p(ω/aρ), as a function of curvature

parameter ρ. Given each ρ, a revenue-maximizing weight ω is used. The dashed line is to

be read by the left y-axis, and the solid line is to be read by the right y-axis. For comparison,

the dash-dot horizontal line to be read by the right y-axis marks simulated revenue from a

second-price fixed-royalty auction with revenue-maximizing fixed royalty (30%).
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Figure A9: Royalty Revenue
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Notes: Solid line displays ex ante expected roy-

alty revenue from counterfactual simulations of fixed-

royalty auctions, as a function of the fixed royalty rate

displayed on the x-axis. For comparison, the dashed

horizontal line marks ex ante expected royalty rev-

enue from observed bids in the Louisiana cash-royalty

auction, and the vertical dotted line marks the aver-

age observed royalty rate resulting from that auction,

23%.

Figure A10: Cash Payment Revenue
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Notes: Solid line displays expected cash revenue from

counterfactual simulations of fixed-royalty auctions,

as a function of the fixed royalty rate displayed on

the x-axis. For comparison, the dashed horizontal

line marks cash revenue from observed bids in the

Louisiana cash-royalty auction, and the vertical dot-

ted line marks the average observed royalty rate re-

sulting from that auction, 23%.

Figure A11: Government Revenue
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Notes: Solid line displays ex ante expected total gov-

ernment revenue, which is the sum of cash and royal-

ties, from counterfactual simulations of fixed-royalty

auctions, as a function of the fixed royalty rate dis-

played on the x-axis. For comparison, the dashed

horizontal line marks ex ante expected total govern-

ment revenue from observed bids in the Louisiana

cash-royalty auction. For reference, vertical dotted

lines mark the standard royalty rate on federal leases,

12.5%, and the prevalent royalty rate on privately held

lands, 25%.

Figure A12: Information Rents

0.1 0.15 0.2 0.25 0.3 0.35 0.4

fixed royalty

600

800

1000

1200

1400

1600

1800

2000

d
o
lla

rs
 p

e
r 

a
c
re

LA

average

rate

Fixed-royalty

 LA

Notes: Solid line displays winning bidders’ informa-

tion rents from counterfactual simulations of fixed-

royalty auctions, as a function of the fixed royalty rate

displayed on the x-axis. For comparison, the dashed

horizontal line marks information rents computed

from observed bids in the Louisiana cash-royalty auc-

tion, and the vertical dotted line marks the aver-

age observed royalty rate resulting from that auction,

23%.
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Figure A13: Exercise Probability
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Notes: Solid line displays ex ante expected probabil-

ity of lease development in counterfactual simulations

of fixed-royalty auctions, as a function of the fixed

royalty rate displayed on the x-axis. For compari-

son, the dashed horizontal line marks the analogous

exercise probability computed from observed bids in

the Louisiana cash-royalty auction, and the vertical

dotted line marks the average observed royalty rate

resulting from that auction, 23%.

Figure A14: Social Surplus
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Notes: Solid line displays social surplus in coun-

terfactual simulations of fixed-royalty auctions, as a

function of the fixed royalty rate displayed on the

x-axis. For comparison, the dashed horizontal line

marks social surplus computed from observed bids in

the Louisiana cash-royalty auction, and the vertical

dotted line marks the average observed royalty rate

resulting from that auction, 23%.

Figure A15: Allocative Performance
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Notes: The solid line displays the proportion of fixed-

royalty auctions that allocate the lease to the ex ante

revenue-maximizing bidder according to counterfac-

tual simulations, as a function of the fixed royalty rate

displayed on the x-axis. For comparison, the dashed

horizontal line marks the analogous proportion in the

Louisiana cash-royalty auction.

Figure A16: Oil Price and Government Rev-

enue
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ment revenue in counterfactual simulations of fixed-
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20% higher than observed, while the dashed line is at

observed oil prices.
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