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I: Proof of (A28a), (A28b), & (A28¢)
We begin by proving (A28a) and (A28b), turning to (A28c) at the end. We start by
calculating expressions for f(cM™') and f (*M?) using (A23) in the text and the Sherman-

Morrison formula:
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We then use the spectral decomposition of V to create two key expressions:
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where 4, 2.2 4, >...2 4, are the ordered eigenvalues of V™! and the g; the inner-products of the
associated eigenvectors with P, i.c., a = E'Bs. As noted earlier, the eigenvalues of V™' are the
inverse of those of V, while adding ¢ times the identity matrix to a matrix increases all of its
eigenvalues by ¢, so we know that:

t.R
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where y, <...<y, <..<y, are the ordered eigenvalues of X{ X . While the 4; are in descending
order, the corresponding y; are in ascending order, as the two are inversely related. We note that
the eigenvalues of V are bounded between (1+¢,/t,)o./Rand (¢,/t.)+k,(1+t,/t.)o, /R, soin
manipulating limiting equations below we know that V™' is bounded from above and strictly

positive definite. The eigenvector matrix E of V™' is that of X', X and hence, conditional on a

given value of X’ X, , not a function of #., t, or & /R.
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'The latter found using the property that the maximum eigenvalue is less than the trace.
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Next we substitute the notation in (I.1) into the equation for asymptotic simple beliefs to

find
_ a.s. 4 _ |: BSB’S :|1
(1.4) B,oB, +cM B =B, +c V+=221 B,
PP
1+B. V7B, /PP 1+B. V7B, /PP

Using this we see that when simple beliefs are proportional to s asymptotically only one of the
a; in (1.2) is non-zero, i.¢., one of the eigenvectors in E is B_/(B'B,)” and the rest are orthogonal

to PBs, as in this case:
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so B, /(B'B,)" is an eigenvector of V. Alternatively, if ;= 1 for all a; # 0, then since a = E',,
we have V'B, =EAE'B, = E(Al, )a=AEa=AEE'B =B, so using (1.4) we again see that

beliefs are proportional to s
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In this case we can express the eigenbasis of X/ X in such a way that only one a; is non-zero.

(L5) o =P. P +

In sum, if beliefs are proportional to s only one a; is non-zero, and if not then the eigenvalues
cannot all be equal for all a; # 0.

When the complex are in power ¢, is the only element that changes in V and hence the
asymptotic effect on (I.2a) and (I.2b) can be calculated by simply looking at the implied changes
in the eigenvalues in (1.3), as the eigenvectors remain those of X! X . When the simple are in
power, t; changes, with effects through eigenvalues similar to those of the complex, but
X' X, also changes, with effects on both the eigenvalues and eigenvectors, i.e., the a; terms in
(I.2). We first calculate the effects of changes in ¢, and #,, and then examine the effects of

changes in X X, showing that they move (I.2a) and (1.2b) in the same direction as implied by

ss 2

increases in ;.
Taking derivatives with respect to 7. and #,, we have

2 2
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From (I.7) we see that when the complex are in power ¢, increases and all of the eigenvalues of

1 - . . . _ .
V™ increase (with no change in the eigenvectors), so B’V ~'B, increases and, consequently, so
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does f(cM™). When the simple are in power #, increases, which lowers all of the eigenvalues of
V! (without changing the eigenvectors) and hence lowers /(cM™). Taking the derivative of

(I.2b) with respect to any eigenvalue, we find:
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with equality when o= 0 or a; is non-zero for only one eigenvalue (i.e., the simple are on the

level curve associated with the steady state with beliefs proportional to Bs). Similarly,
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with, once again, equality when &= 0 or when beliefs are proportional to B and a; is non-zero
for only one eigenvalue. Intuition for why (1.9) and (I.11) are identical can be found by noting
that while ¢, appears in the numerator of (I.3), this element implicitly cancels in the ratio (I.2b).
Consequently, all that is left is the influence of #. and ¢ in the denominator of (I.3), where they
are both multiplied by o> . As time passes, regardless of which type is in power, random noise
lowers the angle of the deviation of the simple's beliefs from the direction implied by the true

parameter values.



We now consider the impact of periods when the simple are in power through its effects

on X' X . f(cM") is monotonically increasing in B'V~'B,, with V as defined in (1.1). Each

SS SS

period when the simple are in power and implement policies x generates a rank one update of V,

so that B'V™'B, becomes
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so this effect lowers f(cM™) as does (as already proven) the increase in  that accompanies
periods when the simple are in power.
Turning to the ratio f(c"M?)/ f(cM™"), equal to p’V'V'B_/(B'V'.)*as shown in
(I.1), we again calculate the effects of the rank-one update of V
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,with m!, =a'V™'b.

We wish to show this is < B,V 'V7'B, /(B,V"'B,)" =my, /my, my, , with equality only when
B, is proportional to B, i.e., when simple beliefs lie along the lowest level curve where f(¢*M™)
= f (cM)/B'Bs. If B, is proportional to B,, then so is policy implemented by the simple. Say x
= of8s, then we have m,’;;x = amé;ps and (I.14) simplifies to:
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as desired. Our next task is to show that (I.14) is asymptotically strictly less than méms / méms méms

if beliefs are not proportional to f;.
We begin by using x=f,/R/p'B, and (1.4) to find that
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(I.16) tells us that all mé;x and m.. can be expressed as a combination of ml{;’ﬁs terms. Each
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m[{[, is asymptotically bounded, as
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where we have made use of the definition of V from (I.1). Added to that the fact that (1.4)

‘min

implies that B'B, > BB, , and we can see that all m,@ .and m., are bounded from above and the
limit of (I.14) as ¢. goes to infinity is méms / mll,ms m:}ms , as should be expected since the rank one
updates of V, x/(#.R)"”, get smaller and smaller.

With the preceding in mind, consider (I.14) as a function of #., g(¢.), with®
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Substituting using (I1.16), we have
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where we once again use the Cauchy-Schwarz inequality. We are unable to sign c;, but since ¢,
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*We ignore the effect of z. on V as we are trying to prove the sign of the rank one update x given V.
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> 1 and ¢3 >0, if ¢; 1s strictly positive it follows that g'(z.) is strictly positive and consequently
g(t.) 1s strictly less than mlilis / mémsméms for finite ¢, as long as simple beliefs are not proportional
to Bs. Going forward, we assume this is not the case, i.e., that ¢; <0.
Using the work above, we formally note the upper bounds on R/B.B,, m,l,;x and the
maximum eigenvalue of V!
2
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Substituting into ¢; + ¢,c¢3 using (1.20) and ¢, > t
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Focusing on ¢, in the last line, as mé; b = B’V B, , we use the spectral decomposition of V™', as

in (1.2) earlier
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where we have used the fact that the 4; are ordered in decreasing order, with 4, >... >4, ... > /1,(‘; .
The last line of (1.23) holds with strict inequality whenever there exists a difference between the
maximum and minimum eigenvalues corresponding to non-zero a;, i.€., simple beliefs are not
proportional to B, . Consequently, we may conclude that for all 7. > {,as long as simple beliefs
are not proportional to B, g'(¢.) is strictly positive and hence g(z,) is strictly less than

mé;lh / mémsmé;ﬁs . This concludes our proof that the rank one update of X! X  when the simple
are in power lowers the ratio f (*M?)/ fi (cM™)? as long as simple beliefs are not proportional to
Bs, i.e., as long as the economy is not on the (lowest) level curve in Figure A2 associated with the
steady state.

To summarize, when the complex are in power, ¢, increases in the formula for M, which
increases /(¢cM™) and lowers the ratio f(¢*M?)/ f(cM™)?. When the simple are in power, 7
increases and there is also a rank-one update of M based upon implemented simple policy. Both
of these lower both f(¢cM™) and f(¢*M™?)/ f(¢cM™)%. These are the results stated in (A28a) and
(A28b). Turning to (A28c), we begin by noting that since the sum of the eigenvalues of a matrix
equals the trace, the individual eigenvalues y; of X! X are bounded from above by Rf.

Consequently, we can bound the derivatives in (I.7) and prove that their limit is zero

124) 0<% __ RGi+to,) _RRi+1,0,) R(R+0,)
' di. v+ +t)o))y  to, o,

da, Rt &2 R
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dt, (y,+ (@, +t.)o,) to

n

2
R(R—+40'”) 0 & 0>11mcM >11m—i:O.

; t—o0 dts t—o tO'

= 0<lim—+ 4, <l
t—o dtc t—o0 to

The only remaining effect on f(cM™) with the passage of time is through the rank one update of

B'V~'B,, which, as described earlier in (I.13), generates a change
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BV'xx'V'B /t R  mymy 1R
(L.25) —== = .
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However, as shown in (I.16) and (I.17), all mé;x and m.. are bounded from above, while we
established much earlier above that 7. goes to infinity (outside of equilibrium paths of probability
measure zero which we are not examining). Consequently, the change in f(cM™) through this
mechanism goes to zero as well. This proves (A28c) and completes the proof of the convergence

of Bl. and 6; = t;/t in this appendix.



II: Random Outcomes and the Political Cycle

As noted in the paper, a characteristic of political life seems to be that random outcomes
benefit or harm incumbent parties. In this appendix we show that this feature arises in our model
through the fully rational Bayesian updating of beliefs. Random shocks change estimates of the
effectiveness of policy, but these effects are stronger for the incumbent party which is
implementing its desired policy combination. Consequently, although the long run equilibrium
involves cycles with each type on average in power for a determinate share of the time, a random
negative shock to y lowers the voting intensity of incumbent groups relative to their opposition,
hastening regime change, while random positive shocks to y strengthen the political position of
incumbents, lengthening their stay in power in the current political cycle. The proof below
shows that these statements, which form Proposition 1 in the text, are true in the probability
limit.

To allow an examination of period by period beliefs, we introduce notation with respect
to time, with the 7 x k£ matrix H; denoting the history of policy up to time t, the vector h; the "
row thereof, and H;; and h’/, the corresponding histories and " period policies that type i deems
relevant. We focus on outcomes in the vicinity of the steady state and, to simplify the analysis,
with negligible amounts of policy noise. The analysis below is in the context of the generalized
model described in the appendix of the paper and makes use of the Lemmas and methods of
proof therein.

The formula for mean Bayesian beliefs, based as it is upon regression coefficients, allows

a simple representation of the updating of beliefs from period 7 to 7 +1

!
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where in the second line we make use of the Sherman-Morrison formula for the rank one update
of a matrix inverse. The term in brackets [] in the last line is the period ¢ + 1 prediction error

based upon beliefs at the end of period z.



Asymptotically, the change in intensity of each type, B,,,B,., —B.B, =
(B,., +B,)(B,., —B,), almost surely converges to 2B/ (.., — B, ), since, using (IL.1)
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The almost sure limit on the last line follows from the fact that for j =1 or 2

!
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For the denominator of (II.3a) we use Lemma (A1) of the appendix to see that

(H4) H;tHitt_X;tXit — X;tNit+N;ttX[t+N;tNit a_; O-,flk‘~

For the remaining terms we use the fact that policies x and beliefs B,. converge almost surely to

finite constants while, with v; denoting either ¢+, or any element of n;; or n;+; divided by Jt , we
have E(v') = u,/t*, where, following the assumption given in the paper's appendix, s is the
bounded fourth moment of ¢;+; or any of the iid elements of n;,. Consequently, applying

Markov's Inequality we have for any a > 0

EW!
(IL5) P(vf2a4)£—(4’) = P(v,|>a)< ﬂ: ,
a a
s0, as discussed in the paper's appendix, from the Borel-Cantelli Lemma we know that v, almost
surely converges to 0.

Using (I1.2) and (II.1), we can say that asymptotically the change in intensity of type i is

HH
2B”[ t j
h!

1 it+1 (H;tHz j it+1
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given by:

[yz+1 — h;H—lEit] )
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Since beliefs almost surely converge, it is of course easily shown that the term on the right-hand
side converges almost surely to 0. Instead of examining this degenerate case, we shall consider
the probability limit of ¢ times the change in intensity. The shift in emphasis from almost sure to
probability limit comes from the fact that if for random variables a, b and ¢ we havea % be and
b g b", it is not necessarily true that a S b'cif ¢ is unbounded, but it is true that i) b'c if the
second moment of ¢ is bounded. To see this, note that if a 2> bc and b g b" then outside of
paths of probability measure zero for every ¢ > 0 and 0 > 0 there exists a ¢, s sufficiently large
such that |a - be| <e/2 and |b—b" |< (6/2)y5/ E(c*) forall > t,5. We can then say that for all ¢
> t. s along such paths

(I1.7) P(la-b'cl>&)<P(a-bc|+|b-b|c]>¢)

<P(cl>+E(c*)/8)=P(* > E(c’)/5)< 4.
where in the last we use Markov's Inequality. Since the remaining paths are of probability
measure zero, this establishes that a i) b'c?

We now consider the limits of various elements on the right-hand side of (I.6). As
shown in (II.3a), the quadratic form in the denominator of (I1.6) almost surely converges to zero.
As for the term (H/H,, /)" in the numerator, we use the fact that policies and the share of time
each type spends in power almost surely converge to steady state values, and the almost sure
limits of Lemma (A1), to say that

(IL8) HH, = [A, B} and Wl 551 A O )
! B C t 0, 4, ol

R R
PPN & C = 90 ~8 l~x T
BB b PP

where we use the subscript ~i to denote policies that each type deems irrelevant, subscript b to

. * R
with A =(0,c7 +Hc)Bb|3;)ﬁ+0'jIkh, B=68,p, +03[kﬂ,

denote the policies both deem relevant, k-; and &, the number of such policies, and make use of
the fact that simple beliefs and policies in areas the complex deem irrelevant (~c) converge to the

true parameter values of 0. With regards to the prediction error, since beliefs and policies

3To understand the distinction between this result and the almost sure limit, note that if ¢ is an unbounded
iid random variable and b does not converge to »* quickly enough, then for every & > 0 on a positive measure of
paths there occur an infinite, albeit increasingly rare, number of events were a deviates from 5"¢ by more than ¢, and
hence a does not converge almost surely to that limit. If it can be established that b converges sufficiently rapidly to
b", then with an appeal to the Borel-Cantelli Lemma and bounds on the higher moments of ¢ it is possible to
establish almost sure convergence, but the probability limit is sufficient for our purposes.
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converge almost surely, and the second moments of the noise and output shocks are bounded, we

can say that:

h,.B, - h BN & h,.B, —
(H9) Vi — st+lBst - +1B st B & Vi1 = ct+1Bct = &
These results allow us to express the asymptotic change in intensity as

-1
o A 0, , .
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Finally, we note the formula for a block matrix inverse and calculate the limits of some

useful quadratic forms as policy noise goes to zero:
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LB, B, HB{G}f “ 1408 B (RIBP)/ o,

1
hm BhA Bb— hm Bb[ 5 kh_

= lim LA - FP )
o250 g, +9 BNYBNY(R/B B) QCR

11rn|3 [0'21 TB —11m|3 B_./o,=1lim0/o; =0.

GHO

Since we are considering the limit as the variance of policy noise goes to zero, we also take h;
in (I1.10) as equal to x,+;, the intentional policy vector of that time period.

Asymptotically the simple implement policies 7B, \/T[i'[i for the policies they believe
are relevant and 0, ., for those they believe are irrelevant, so using the preceding results the

change in the intensity of both types when the simple are in power is
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~ R ZBBr[l—T] BB 277,
{B,/ B,—7B, TB } Tortve ‘WREEWIE’
: : n n ne : ' ' A B - T* , R
lelr_l;lophm t(BCt+1BCt+1 - BCtBCt) = o!ﬁlr—l;lo Z[Bb B~x B’ Ci| |:0k~Bj1:| ﬁgtﬂ

(R
m 2(1-p_C"'p_.6 '(A-BC'B)'B, ., =0.
a-p, chBBm( ) B, BBg

lim=1(by IL.11)

The first term for the simple represents the systematic tendency for their intensity to decline
when in power, as they respond to the overprediction of average outcomes. The &, term, for the
simple and the complex, represents the effect of random shocks to y. Here, a negative shock
reduces the intensity of the simple, as their belief in the effectiveness of the policies they deem
relevant falls. Complex beliefs in these same policies also fall, but the complex belief in the
efficacy of policies the simple deem irrelevant, and hence do not implement, rises, as the poor
outcome under simple rule convinces the complex that these neglected policies are more
effective than previously thought. These two effects offset each other, and complex intensity
remains constant. In sum, a negative shock lowers the relative political intensity of the simple,
hastening the transfer of power, with positive shocks having the opposite effect.

When the complex are in power asymptotically they implement policies B_/R/B'p for
the policies they believe are relevant and Okﬁxl for those they believe are irrelevant, so the

changes in intensity are seen to be
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(IL.13) lzimoplim f(ﬂmﬂm _B;tﬁvt) = lzimOZT* [B;;A_lﬁh + ﬁlcok%xl /03

(1—(ILYC ltg) )l‘h(A BC'B) "', +B_C B,

p'p
| S !
= lim 2 lim=1 (by IL11) R £, = pB'p 25”1.
o B VR 0

+( B.L,C'B —B,)A-BC'B)'BC'p_,

N —
lim=p), (by IL.8 &IL.11)

Once again, the change in simple beliefs contains a systematic component, this time consisting of
the gradual increase in bias and intensity as outcomes under the complex are consistently better
than expected. Both simple and complex respond to the realization of the output shock ¢, but the

impact on the intensity of the complex is greater as, given that 6,/6, — ¢~ as o> — 0, we have

(IL14) fim——~ -+ L
50077 +60, O.(r +1) 6

c

A negative shock reduces the belief in the effectiveness of policies of both types, but the effects
on intensity are greater for the complex, for whom intensity depends upon a wider range of
policies, all of which are seen to be failing. Consequently, negative shocks accelerate regime
change, ushering in further negative outcomes as the simple implement misguidedly narrow and
intense policies, while positive shocks lengthen the time the complex hold onto power and the
polity continues to benefit from a full range of moderate policy actions. These results are those

described in the paper and at the beginning of this appendix.

-14 -



I11: Results and Proofs on Berk-Nash Equilibria
We continue to use the notation and modelling framework established at the beginning of
the paper's Appendix. We now define a Berk-Nash equilibrium adapted to our environment:
Definition 1: A Berk-Nash equilibrium consists of beliefs for i € {S,C} with meanf,, a
policy choice x;, and a probability that type S is in power, 6, €[0,1], such that:

*

(1a) Optimal actions: x;, is the optimal action given mean beliefs B, and so x, =X,.

1

(1b) Power sharing according to intensity: ;=1 (0) if /B, > (<) BB, ; if B.B, =B.B,,
6 <[0,1].

(1c) Beliefs minimize Kullback-Leibler distance: Given actions X., X, and 6y, each vector in
the support of i's beliefs solves, according to their subjective model:

min EnEe |:gs In fﬁg) + (1 - Hs)ln fﬁg) :|
b, JB'(x+n)-Bi(x; +n,)+¢) SB'(x+m)-Bi(x, +n,) +¢)

Proposition II1.1: For small enough o, » there exists a unique Berk-Nash equilibrium. In
equilibrium, B, =p,, B, =7'B,and 6, =(1-7'c, /R)/(1+7).

Proof of Proposition I11.1: First, it is easy to see that the unique KL minimiser for the
beliefof Ciis B, =P, , as B_,is a vector of 0s. Next, given the optimal policies, we solve for the
minimiser of S's KL condition. Taking the FOC of the term in (1c) with respect to B, , we have:
H* f’(B’sxj + B’n __E;(X: +ns) + 8) (X* +n )

T SBx +Bn-B(x;+n)+e) T
(III 1) EnEa " — " = 0ksxl
o S(Bex P -B(x, +n)+e) T
0. (x, +n)[B,x; +B'm—B(x; +n,)]

= -k, _ = kaxl
+(1-6,)(x,, +n)[B.x, +B'n—B;(x;, +n,)]

= Ox[Bx. - Bix .1+ (1-0)x, [Bix, —Bx. ]=—(B, - B,)o,.

where in moving to the second line we make use of the assumption that f'is the density of a mean

zero normal, and we follow the notation established earlier that a single subscript i denotes the
policies deemed relevant by type i and a double subscript ij denotes these policies in periods of j
rule, so that x; = x; are the optimal policies of type i but x; are the optimal policies of j deemed

relevant by type i.
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Arguments similar to those in Section II.A of the paper and continuity can be used to
show that when & f is sufficiently small in equilibrium 49: is interior and so we have equal
intensity,

(II1.2) B:B, =B:B. =B.B. =P'B.
Moreover, arguments similar to those in Section II.C can be used to show that optimal policies
must be colinear when o, is sufficiently small. Plugging the colinear optimal action and equal

intensity into the FOC of the KL, we get the unique solution stated in the Proposition.

-16 -



