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A Properties of the Bayes map

We review basic properties of the Bayes map B : � ⇥ E ! �2 that we use throughout
the appendix. Most results are known in statistical decision theory; they can be found in
monographs such as Torgersen (1991). For the reader’s convenience, here we provide a self-
contained presentation. See Denti, Marinacci and Rustichini (2022) for additional results
and proofs.

We start by discussing the algebraic properties of the Bayes map. Let BP : � ! �2

and B⇡ : E ! �2 be its P -section and ⇡-section, respectively.

Lemma 1. (i) The range of B⇡ is �2
⇡. (ii) The function BP is injective.

Property (i) can be decomposed into two parts. First, (i) states that the range of B⇡ is
included by �2

⇡. This is a manifestation of the so-called “martingale property” of Bayesian
updating: The expected posterior is equal to the prior, i.e., the barycenter of B(⇡, P ) is ⇡

itself. Second, (i) states that �2
⇡ is included by the range of B⇡: every random posterior is

generated by some experiment. This property comes from the richness of the signal space.
Overall, (i) and (ii) imply that the map µ 7! µ̄ is the left inverse of BP .

We turn to the ordinal properties of the Bayes map. Via this map, the Blackwell and
convex orders are related in the next result, which extends to priors with full support a
classic result for uniform priors.

Lemma 2. For all P,Q 2 E, the following conditions are equivalent:

(i) P ⌫b Q;

(iii) B(⇡, P ) ⌫cv B(⇡, Q) for some ⇡ 2 �+;

(iv) B(⇡, P ) ⌫cv B(⇡, Q) for all ⇡ 2 �+.

An implication is that for all ⇡ 2 �+ and µ 2 �2
⇡, the set of experiments B

�1
⇡ (µ) is an

equivalence class in the Blackwell order. When ⇡ does not have full support, we only have
that (i) implies (iv).

Next we describe the convexity properties of the Bayes map:

Lemma 3. For ↵ 2 [0, 1], ⇡, ⇢ 2 �, and P,Q 2 E, the following conditions hold:
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(i) ↵B(⇡, P ) + (1� ↵)B(⇢, P ) ⌫cv B(↵⇡ + (1� ↵)⇢, P );

(ii) ↵B(⇡, P ) + (1� ↵)B(⇡, Q) ⌫cv B(⇡,↵P + (1� ↵)Q).

The intuition is that mixing random posteriors corresponds to acquiring information on
the basis of a coin toss whose realization the decision maker observes. Mixing experiments
corresponds to acquiring information on the basis of a coin toss whose realization the decision
maker does not observe.

Finally, we report the continuity properties of the Bayes map:

Lemma 4. (i). If ⇡n ! ⇡ and B(⇡⇤
, Pn) ! B(⇡⇤

, P ), then B(⇡n, Pn) ! B(⇡, P ).
(ii). If Pn ! P and B(⇡, Pn) ! µ, then µ ⌫cv B(⇡, P ).

We conclude with two technical results that complement Lemmas 3 and 4.

Lemma 5. Let ⇡ 2 � and µ, ⌫ 2 �2
⇡. There are P,Q 2 E such that (i) B(⇡, P ) = µ, (ii)

B(⇡, Q) = ⌫, and (iii) B(⇡,↵P + (1� ↵)Q) = ↵µ+ (1� ↵)⌫ for all ↵ 2 [0, 1].

Lemma 6. Let (µn) be a sequence in �2
⇡ with µn ! µ. There is a sequence of experiments

(Pn) such that (i) Pn ! P , (ii) B(⇡, Pn) = µn for every n, and (iii) B(⇡, P ) = µ.

The two lemmas above use the richness of the signal space.

B Proofs of the results in the main text

Proof of Proposition 2. Fix a cost on experiments h : E ! [0,1] and a length n 2
N [ {1}. Assume that c := chn satisfies FFI.

Fix a full support prior ⇡⇤ (for example, the uniform distribution). Let Êm be the set of
fully informative sequential experiments of length m 2 N:

Êm =

(
P

m 2 Em : B(⇡⇤
, P

m) =
X

✓

⇡
⇤(✓)�2✓

)
.

By Lemma 2, for all ⇡ 2 �,

Êm ✓
(
P

m 2 Em : B(⇡, Pm) =
X

✓

⇡(✓)�2✓

)
.

Next we derive an implication of FFI for the cost of full information.

Claim 1. For all ✓ 2 ⇥ and ✏ > 0, there are m 2 N and P
m 2 Êm such that

h(�✓, P
m)  ✏.
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In addition, if n < 1, we can choose m = n.

Proof of the claim. FFI implies that

lim
↵!1

c

 
↵�

2
✓ + (1� ↵)

X

⌧

⇡
⇤(⌧)�2⌧

!
= 0.

Thus, for every ⌘ > 0 there exists ↵ 2 (1/2, 1) such that

c

 
↵�

2
✓ + (1� ↵)

X

⌧

⇡(⌧)�2⌧

!
< ⌘.

Because c = chn , we can find m 2 N and P
m 2 Êm such that

↵h (�✓, P
m) + (1� ↵)h (⇡, Pm)  ⌘.

In the case in which n < 1, we can choose m = n.
Because h � 0 and ↵ � 1/2, we deduce that

h (�✓, P
m)  2⌘.

By choosing ⌘ = ✏/2, we obtain that h (�✓, Pm)  ✏.

Next we describe the main construction of the proof. To simplify the exposition, we
order the states: ⇥ = {✓1, . . . , ✓k} where k � 2 is the cardinality of ⇥.

Fix ↵ 2 (0, 1). For every i = 1, . . . , k � 1, we invoke Claim 1 to choose mi 2 N and
P

mi 2 Êmi such that
h (�✓i , P

mi)  ↵
2
. (12)

We adopt the convention that P
mk corresponds to not experimenting; thus, in particular,

its cost is zero. As in Claim 1, if n < 1, we can choose mi = n.
We inductively construct a sequential experiment Q

m as follows:

• Begin with running P
m1 .

• While running P
mi (with i = 1, . . . , k � 1), if the posterior probability that the state

is ✓i ever falls below ↵, switch to P
mi+1 .

To clarify the construction, note that while running P
mk�1 , if the posterior probability that

the state is ✓k�1 ever falls below ↵, then the agent stops experimenting. Moreover, observe
that the length of Qm satisfies the following properties:

• If n < 1, then m  k · n < 1.
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• If n = 1, then m = 1.

• If ⇥ is binary, then m  n.

Next we characterize the informational content of Qm.

Claim 2. For every ⇡ 2 �, every ✏ 2 (0, 1/2), and every i 2 {1, . . . , k � 1},

Q
m
⇡ ({xm 2 X

m : qxm(✓i) 2 (✏, 1� ✏)})  ↵

✏

where qxm 2 � is the posterior belief generated by terminal history x
m, prior ⇡, and se-

quential experiment Q
m
.

Proof of the claim. Define A
m ✓ X

m by

A
m = {xm 2 X

m : qxm(✓i) 2 (✏, 1� ✏)} .

Let B
l ✓ X

l be the set of histories of length l = 1, . . . ,m� 1 at which the agent makes the
decision to abandon P

mi . Let B
l,m ✓ X

m be the set of terminal histories along which the
agent makes the decision to abandon P

mi at a history of length l = 1, . . . ,m� 1:

B
l,m =

n
x
m 2 X

m : xl 2 B
l
o

Let Cm ✓ X
m be the set of terminal histories along which the agent never makes the decision

to abandon P
mi :

C
m =

m�1\

l=1

n
x
m 2 X

m : xm /2 B
l,m
o
.

Every x
m 2 C

m is (at least partially) generated by some P
mj (with j = 1, . . . , i). Since

each P
mj is fully informative, we have that

Q
m
⇡ (Am) = Q

m
⇡ (Am \ Cm).

We observe that

Z

Xm\Cm
qxm(✓i) dQ

m
⇡ (xm) =

m�1X

l=1

Z

Bl,m
qxm(✓i) dQ

m
⇡ (xm)

=
m�1X

l=1

Z

Bl
qxl(✓i) dQ

l
⇡(x

l)  ↵

where the second equality follows from the martingale property of Bayesian updating, and
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the last inequality is a consequence of qxl(✓i)  ↵ (recall the construction of Qm). Thus,

↵ �
Z

Xm\Cm
qxm(✓i) dQ

m
⇡ (xm)

�
Z

Am\Cm
qxm(✓i) dQ

m
⇡ (xm) � ✏Q

m
⇡ (Am \ Cm).

Since Q
m
⇡ (Am) = Q

m
⇡ (Am \ Cm), we conclude that Q

m
⇡ (Am)  ↵/✏.

Next we prove a bound on the cost of Qm. To do so, we need some additional notation.
For every i 2 {1, . . . , k}, we inductively construct a sequential experiment Q(m,i) as follows:

• Begin with running P
mi .

• While running P
mj (with j = i, . . . , k � 1), if the posterior probability that the state

is ✓j ever falls below ↵, switch to P
mj+1 .

Note that Q
m = Q

(m,1), while Q
(m,k) corresponds to the choice of not experimenting.

Claim 3. For every ⇡ 2 � and every i = 1, . . . , k,

h

⇣
⇡, Q

(m,i)
⌘
 2↵(k � i).

Proof of the claim. We proceed by induction on i. First observe that trivially,

h

⇣
⇡, Q

(m,k)
⌘
= 0

since Q
(m,k) corresponds to the choice of not experimenting.

Now suppose that the result is true for j = i+1 and all ⇡ 2 �. For every l = 1, . . . ,mi�1,
define

A
l =

n
x
l 2 X

l : pxt(✓i) > ↵ for all t = 1, . . . , l
o

B
l =

n
x
l 2 X

l : pxl(✓i)  ↵ and x
l�1 2 A

l�1
o

where pxl 2 � is the posterior belief generated by history x
l, prior ⇡, and sequential ex-

periment P
mi ; we adopt the convention that A

0 = X
0. In other terms, in the sequential

experiment Q(m,i), Al ✓ X
l is the set of histories of length l = 1, . . . ,mi�1 along which the

agent never makes the decision to abandon P
mi ; Bl ✓ X

l is the set of histories of length
l = 1, . . . ,mi � 1 along which the agent makes the decision to abandon P

mi .
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Simple algebra shows that

h

⇣
⇡, Q

(m,i)
⌘
= h (Px0) +

mi�1X

l=1

✓Z

Al
h (Pxl) dP l

⇡(x
l) +

Z

Bl
h

⇣
pxl , Q

(m,i+1)
⌘
dP l

⇡(x
l)

◆
.

By the inductive hypothesis, we have that

mi�1X

l=1

Z

Bl
h

⇣
pxl , Q

(m,i+1)
⌘
dP l

⇡(x
l)  2(k � i� 1)↵. (13)

Now fix l = 1, . . . ,mi � 1. For P
l
⇡-almost all xl, we have that

pxl(✓i) � ↵ if and only if
⇡(✓i)

↵

dP l
✓i
(xl)

dP l
⇡(x

l)
� 1;

see Section 1.3. Since h � 0, we obtain that

Z

Al
h(Pxl) dP l

⇡(x
l) 

Z

Al
h(Pxl)

 
⇡(✓i)

↵

dP l
✓i
(xl)

dP l
⇡(x

l)

!
dP l

⇡(x
l)

=
⇡(✓i)

↵

Z

Al
h(Pxl) dP l

✓i(x
l)  ⇡(✓i)

↵

Z

Xl
h(Pxl) dP l

✓i(x
l).

Aggregating across l, we deduce that

h (Px0) +
mi�1X

l=1

Z

Al
h (Pxl) dP l

⇡(x
l)  h (Px0) +

⇡(✓i)

↵

mi�1X

l=1

Z

Xl
h(Pxl) dP l

✓i(x
l)

 h(⇡, Pmi) +
⇡(✓i)

↵
h(⇡, Pmi)

 ↵
2 + ⇡(✓i)↵  2↵

where we use the fact that h(⇡, P (n,i))  ↵
2—see (12).

We are ready to conclude the proof. For every ⇡ 2 � and ↵ 2 (0, 1), let µ↵ 2 �2
⇡ be the

random posterior induced by Q
m. Since �2

⇡ is compact, without loss of generality we can
assume that there is µ 2 �2

⇡ such that

lim
↵!0

µ↵ = µ.

For every ✏ 2 (0, 1) and i = 1, . . . , k � 1,

µ({p : p(✓i) 2 (✏, 1� ✏)})  lim inf
↵!0

µ↵({p : p(✓i) 2 (✏, 1� ✏)}) = 0
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where the last equality follows from Claim 2. By continuity, we deduce that

µ({p : p(✓i) 2 (0, 1)}) = lim
✏!0

µ({p : p(✓i) 2 (✏, 1� ✏)}) = 0.

This shows that

µ =
kX

i=1

⇡(✓i)�
2
✓i .

Finally, pick M = 1 for n = 1 and M = n · (k � 1) for n � 2. It follows from Claim 3 that

lim
↵!0

chM (µ↵) = 0.

⌅

Lemma 7. If c� : �2 ! [0,1) is bounded, uniformly posterior-separable, and experimental,
then there is h : E ! [0,1] such that c� = ch1 .

Proof. Since c� is experimental, there must be n 2 N [ {1} and h : E ! [0,1] such that
c� = chn . If n = 1, the desired result follows. Assume therefore that n < 1.

Set m = 2n. We claim that for all µ 2 �2,

chn(µ) = chm(µ).

By definition, chn(µ) � chm(µ). Now, fix ✏ > 0. We can find a sequential experiment Pm of
length m such that

B(⇡, Pm) = µ and h(⇡, Pm)  chm(µ) + ✏.

The sequential experiment P
m can be expressed as a series of two sequential experiments

P
(n,1) and P

(n,2), each of length n, such that P
(n,2) depends on the outcome of P

(n,1).
Simple algebra shows that

h(⇡, Pm) = h

⇣
⇡, P

(n,1)
⌘
+

Z

Xn
h

⇣
pxn , P

(n,2)
xn

⌘
dP (n,1)

⇡ (xn)

where pxn 2 � is the posterior belief induced by history x
n, prior ⇡, and sequential experi-

ment P
(n,1). Since c� = chn , we obtain that

h(⇡, Pm) � c�

⇣
B

⇣
⇡, P

(n,1)
⌘⌘

+

Z

Xn
c�

⇣
B

⇣
pxn , P

(n,2)
xn

⌘⌘
dP (n,1)

⇡ (xn).
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As shown by Bloedel and Zhong (2021),

c�

⇣
B

⇣
⇡, P

(n,1)
⌘⌘

+

Z

Xn
c�

⇣
B

⇣
pxn , P

(n,2)
xn

⌘⌘
dP (n,1)

⇡ (xn) = c� (B (⇡, Pm)) .

Since B(⇡, Pm) = µ and c� = chn , we conclude that

chn(µ)  chm(µ) + ✏.

Since the choice of ✏ was arbitrary, we deduce that chn(µ)  chm(µ). As mentioned before,
chn(µ) � chm(µ). We obtain that chn(µ) = chm(µ).

Proceeding by induction, we obtain that for all k 2 N, c� = chn = chk·n . We conclude
that c� = chn = ch1 .

Proof of Proposition 1. The “if” direction is trivial. Suppose that c� is bounded, uni-
formly posterior-separable, and experimental. By Lemma 7, c� = ch1 for some h : E !
[0,1]. Since c� satisfies FFI, it follows from Proposition 2 that for every ⇡ 2 �, there exists
a sequence of random posteriors (µk)1k=1 in �2

⇡ such that

lim
k!1

µk =
X

✓

⇡(✓)�2✓ and lim
k!1

c�(µk) = 0.

By continuity of c�,

0 = lim
k!1

c�(µk) = c�

✓
lim
k!1

µk

◆
= c�

 
X

✓

⇡(✓)�2✓

!
.

Since c� is monotone in the convex order, we have that for all µ 2 �2
⇡,

c� (µ)  c�

 
X

✓

⇡(✓)�2✓

!
= 0.

We conclude that c� = 0. ⌅

Proof of Proposition 3. Throughout the proof, we fix a full support prior ⇡
⇤. For short,

we write ch instead of ch1 .

Claim 4. For all P 2 E ,
h(P ) = ch(B(⇡⇤

, P )).
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Proof of the claim. By definition,

ch(B(⇡⇤
, P )) = inf{h(Q) : B(⇡⇤

, Q) = B(⇡⇤
, P )}.

If B(⇡⇤
, P ) = B(⇡⇤

, Q), then P ⇠b Q (see Lemma 2). Thus, since h is Blackwell monotone,

inf{h(Q) : B(⇡⇤
, Q) = B(⇡⇤

, P )} = h(P ).

We conclude that ch(B(⇡⇤
, P )) = h(P ).

Claim 5. The function ch is lower semicontinuous on �2
⇡⇤ .

Proof of the claim. Let (µn) be a sequence of random posteriors with barycenter ⇡
⇤ that

converges to a random posterior µ, which necessarily has barycenter ⇡⇤ as well. By Lemma
6, there exists a sequence of experiments (Pn) that converges to an experiment P such that
(i) for every n, Pn generates µn, and (ii) P generates µ. By Claim 4,

lim inf
n!1

ch(µn) = lim inf
n!1

h(Pn) and ch(µ) = h(P ).

Since h is lower semicontinuous,

lim inf
n!1

h(Pn) � h(P ).

We conclude that
lim inf
n!1

ch(µn) � ch(µ).

This shows that ch is lower semicontinuous on �2
⇡⇤ .

Claim 6. For every µ 2 �2,

ch(µ) = inf {ch(B(⇡⇤
, P )) : B(µ̄, P ) ⌫cv µ} .

Proof of the claim. By definition,

ch(µ) = inf {h(Q) : B(µ̄, Q) = µ} � inf {h(P ) : B(µ̄, P ) ⌫cv µ} .

Let Q be an experiment that generates µ. Let P be an experiment with B(µ̄, P ) ⌫cv B(µ̄, Q).
By Lemma 2, there exists a stochastic kernel K such that for all ✓ 2 supp µ̄, Q✓ = KP✓.
Define an experiment Q

0 as follows: for all ✓ 2 ⇥, Q0
✓ = KP✓. Then, Q0 generates µ and

P ⌫b Q. Since h is Blackwell monotone, h(Q)  h(P ). This shows that

inf {h(Q) : B(µ̄, Q) = µ}  inf {h(P ) : B(µ̄, P ) ⌫cv µ} .
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In sum, we conclude that

ch(µ) = inf {h(P ) : B(µ̄, P ) ⌫cv µ} .

It follows from Claim 4 that

ch(µ) = inf {ch(B(⇡⇤
, P )) : B(µ̄, P ) ⌫cv µ} .

Claim 7. The correspondence � : �2 ◆ �2
⇡⇤ defined by

�(µ) = {(B(⇡⇤
, P )) : B(µ̄, P ) ⌫cv µ}

has compact values and is upper hemicontinuous.

Proof of the claim. Let (µn) be a sequence of random posteriors that converges to a random
posterior µ. Let (Pn) be a sequence of experiments such that for every n, B(µ̄n, Pn) ⌫cv

µn. Define ⌫n = B(µ̄n, Pn) and µ
⇤
n = B(⇡⇤

, Pn); note that µ
⇤
n 2 �(µn). Since �2

⇡⇤ is
compact, without loss of generality we can assume that the sequence of random posteriors
(µ⇤

n) converges to a random posterior µ
⇤. Next we show that µ

⇤ 2 �(µ).
Let P be an experiment that generates µ

⇤. Since µn ! µ, we have that µ̄n ! µ̄. In
addition, B(⇡⇤

, Pn) ! B(⇡⇤
, P ). It follows from Lemma 4-(i) that B(µ̄n, Pn) ! B(µ̄, P ).

Define ⌫ = B(µ̄, P ), so that ⌫n ! ⌫. For every continuous convex function � : �(⇥) ! R,
⌫n ⌫cv µn implies that Z

� d⌫n �
Z

� dµn.

Since ⌫n ! ⌫ and µn ! µ, we deduce that
Z

� d⌫ �
Z

� dµ.

This shows that ⌫ ⌫cv µ, which in turn implies that µ
⇤ 2 �(µ). It follows from Aliprantis

and Border (2006, Theorem 17.20) that the correspondence � has compact values and is
upper hemicontinuous.

We are ready to conclude the proof. By Claim 6,

ch(µ) = inf
µ⇤2�(µ)

ch(µ
⇤).
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Alternatively,
�ch(µ) = � inf

µ⇤2�(µ)
ch(µ

⇤) = sup
µ⇤2�(µ)

�ch(µ
⇤).

By Claim 5, the function �ch is upper semicontinuous on �2
⇡⇤ . By Claim 7, the corre-

spondence � is upper hemicontinuous and has (nonempty) compact values. By Aliprantis
and Border (2006, Theorem 17.30), the function �ch is upper semicontinuous on �2, which
means that ch is lower semicontinuous on �2. ⌅

Proof of Proposition 4. Without loss of generality, assume that ↵ 2 (0, 1). Define
⇡↵ = ↵⇡+ (1�↵)⇢. Since ↵ 2 (0, 1), ⇡ and ⇢ are absolutely continuous with respect to ⇡↵.

First, suppose that c = chn for some n 2 N. Let Pn be a sequential experiment of length
n. Since ⇡ and ⇢ are absolutely continuous with respect to ⇡↵, it follows from Lemma 2 that
B(⇡↵, Pn) = B(⇡↵, P ) implies B(⇡, Pn) = B(⇡, P ) and B(⇢, Pn) = B(⇢, P ). In addition,

h(⇡↵, P
n) = ↵h(⇡, Pn) + (1� ↵)h(⇢, Pn).

We obtain that

h(⇡↵, P
n) � ↵chn(B(⇡, P )) + (1� ↵)chn(B(⇢, P )).

Since the choice of Pn is arbitrary, we conclude that

chn(B(⇡↵, P )) � ↵chn(B(⇡, P )) + (1� ↵)chn(B(⇢, P )).

Now, suppose that c = ch1 . Then, we have that

ch1(B(⇡↵, P )) = inf
n2N

chn(B(⇡↵, P ))

� inf
n2N

↵chn(B(⇡, P )) + (1� ↵)chn(B(⇢, P ))

� ↵ inf
n2N

chn(B(⇡, P )) + (1� ↵) inf
n2N

chn(B(⇢, P ))

= ↵ch1(B(⇡, P )) + (1� ↵)ch1(B(⇢, P )).

⌅

Proof of Proposition 5. Define � : � ! R by

�(p) = max
a2A

X

✓

u(a, ✓)p(✓).
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Note that � is continuous and convex. Moreover,

V (⇡) = max
µ2�2

⇡

Z
� dµ� c(µ).

Since E is rich enough, every random posterior is generated by some experiment (see Lemma
1). Thus,

V (⇡) = max
P2E

Z
� dB(⇡, P )� c(B(⇡, P )).

Claim 8. The quantity
R
� dB(⇡, P ) is convex in ⇡.

Proof of the claim. Take ⇡, ⇢ 2 � and ↵ 2 [0, 1]. By Lemma 3,

↵B(⇡, P ) + (1� ↵)B(⇢, P ) ⌫cv B(↵⇡ + (1� ↵)⇢, P ).

Define µ = B(⇡, P ) and ⌫ = B(⇢, P ). Since � is convex,
Z

� d(↵µ+ (1� ↵)⌫) �
Z

� dB(↵⇡ + (1� ↵)⇢, P ).

Since
R
� d(↵µ+ (1� ↵)⌫) = ↵

R
� dµ+ (1� ↵)

R
� d⌫, we obtain that

↵

Z
� dµ+ (1� ↵)

Z
� d⌫ �

Z
� dB(↵⇡ + (1� ↵)⇢, P ).

This shows that
R
� � dB(⇡, P ) is convex in ⇡.

By hypothesis, c(B(⇡, P )) is concave in ⇡. Thus,
Z

� dB(⇡, P )� c(B(⇡, P ))

is convex in ⇡. Since the supremum of convex functions is a convex function, V is convex.⌅

Proof of Proposition 6. (i). Fix a full-support prior ⇡
⇤. For every experiment P 2 E ,

h⇤(P ) = c(B(⇡⇤
, P )) = ch1(B(⇡⇤

, P ))  h(P ).

Thus, for every random posterior µ 2 �2,

ch1
⇤
(µ)  ch1(µ) = c(µ). (14)

Conversely, for all P,Q 2 E and ⇡ 2 �, if B(⇡⇤
, P ) = B(⇡⇤

, Q), then B(⇡, P ) = B(⇡, Q)
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(see Lemma 2, using the fact that ⇡
⇤ has full support). We obtain that

c(B(⇡⇤
, P )) = ch1(B(⇡⇤

, P )) = inf{h(Q) : B(⇡⇤
, Q) = B(⇡⇤

, P )}

� inf{h(Q) : B(⇡, Q) = B(⇡, P )}

= ch1(B(⇡, P )) = c(B(⇡, P )).

We deduce that

ch1
⇤
(µ) = inf{h⇤(P ) : B(µ̄, P ) = µ}

= inf{c(B(⇡⇤
, P )) : B(µ̄, P ) = µ}

� inf{c(B(µ̄, P )) : B(µ̄, P ) = µ} = c(µ). (15)

Combining (14) and (15), we obtain c = ch1
⇤
.

(ii). For every experiment P 2 E and prior ⇡ 2 �,

ch1(B(⇡, P ))  ch1(B(⇡, P ))  h(P ).

Thus, we have that

h?(P ) = sup
⇡2�

c(B(⇡, P )) = sup
⇡2�

ch1(B(⇡, P ))  h(P ).

This shows that for every random posterior µ 2 �2,

ch1
?
(µ)  ch1(µ) = c(µ). (16)

Conversely, for every sequential experiment P
n,

h?(⇡, P
n) =

nX

i=1

Z

Xi�1
h? (Pxi�1) dP i�1

⇡ (xi�1)

�
nX

i=1

Z

Xi�1
c (B (pxi�1 , Pxi�1)) dP i�1

⇡ (xi�1)

where pxi�1 2 � is the posterior belief at partial history x
i�1; by convention, px0 = ⇡. As

shown by Bloedel and Zhong (2021), since c = ch1 , we have that

nX

i=1

Z

Xi�1
c (B (pxi�1 , Pxi�1)) dP i�1

⇡ (xi�1) � c(B(⇡, Pn)).
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Thus, for every random posterior µ 2 �2,

chn
?
(µ) = sup{h?(µ̄, Pn) : B(µ̄, Pn) = µ} � c(µ).

Since the inequality holds for every n 2 N, we deduce that

ch1
?
(µ) � c(µ). (17)

Combining (16) and (17), we obtain ch1
?

= c. ⌅

Proof of Proposition 7. Matějka and McKay (2015) consider the following information
acquisition problem:

max
P,�

X

✓

⇡(✓)

Z

X

 
X

a

u(a, ✓)�(a|x)
!

dP✓(x)� cE(B(⇡, P )). (18)

They show that if (P,�) is an optimal solution of (18), then the following conditions hold:

• For all ✓ 2 ⇥ and a 2 A,

�✓(a) =
e
u(a,✓)

�⇡(a)P
a0 e

u(a0,✓)�⇡(a0)

• The probability �⇡ is an optimal solution of

max
↵2�(A)

X

✓

⇡(✓) log

 
X

a

e
u(a,✓)

↵(a)

!
. (19)

Conversely, if ↵ is an optimal solution of (19), then there is an optimal solution (P,�) of
(18) such that �⇡ = ↵. See Denti, Marinacci and Montrucchio (2020) for an extension of
this result to non-discrete environments.

The desired result immediately follows from Matějka and McKay (2015). It is enough
to observe that (8) can be rewritten as

max
P,�

X

✓

⇡
⇤(✓)

Z

X

 
X

a

u(a, ✓)⇡(✓)

⇡⇤(✓)
�(a|x)

!
dP✓(x)� cE(B(⇡⇤

, P )).

Thus, solving (9) is equivalent to solving (8) for a fictitious prior ⇡
⇤ and a fictitious utility

u
⇤ : A⇥⇥ ! R given by u

⇤(a, ✓) = u(a, ✓)⇡(✓)/⇡⇤(✓). ⌅

Proof of Proposition 8. (i). By contradiction, suppose that trade happens with probabil-
ity one. By (11), the experiment P must be uninformative; otherwise, the buyer would have
a profitable deviation (P 0

,�
0) where P

0 is uninformative and for every signal x, �0(x) = 1.
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Since P is uninformative, the buyer purchases the good with probability one no matter
what the seller’s offer is. Thus, � must put probability one on s = maxS; otherwise, the
seller would have a profitable deviation in increasing his offer. Since maxS > v, the buyer
must never purchase the good: �(x) = 0 for all x. This contradicts the hypothesis that
trade happens with probability one. We conclude that in every equilibrium trade fails with
positive probability.

(ii). By contradiction, suppose that trade happens with positive probability and the
buyer extracts zero surplus. By (11), P must be uninformative; otherwise, the buyer would
have a profitable deviation (P 0

,�
0) where P

0 is uninformative and for every signal x, �0(x) =

0. Since P is uninformative, the probability with which the buyer purchases the good does
not depend on the seller’s offer. Thus, � must put probability one on s = maxS: otherwise,
the seller would have a profitable deviation in increasing his offer. Since maxS > v, the
buyer must never purchase the good: �(x) = 0 for all x. This contradicts the hypothesis
that trade happens with positive probability. We conclude that, in every equilibrium where
trade happens with positive probability, the buyer extracts a positive surplus.

(iii). If trade happens with positive probability, then by (ii) the seller must make an offer
below v; otherwise, the buyer’s surplus would not be positive. By contradiction, suppose
that the seller’s offer is never above v: for all s > v, �(s) = 0. By (11), the experiment
P must be uninformative; otherwise, the buyer would have a profitable deviation (P 0

,�
0)

where P
0 is uninformative and for every signal x, �

0(x) = 1. Since P is uninformative,
the probability with which the buyer purchases the good does not depend on the seller’s
offer. Thus, � must put probability one on s = maxS: otherwise, the seller would have a
profitable deviation in increasing his offer. This contradicts the hypothesis that the seller’s
offer is never above v. We conclude that, in every equilibrium where trade happens with
positive probability, the seller randomizes between offers below and above v. ⌅

C Morris and Strack (2019)

Focusing on a specific environment, Morris and Strack (2019) follow an approach similar to
ours. In their paper, the state space is binary: ⇥ = {✓0, ✓1}. The decision maker observes
the evolution of a Brownian motion whose drift depends on the state. The flow cost is a
linear function of the passage of time, which is of course independent of the evolving beliefs
of the decision maker.

Morris and Strack characterize the induced cost on random posteriors cMS : �2 ! [0,1].
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Modulo a scale factor,

cMS(µ) = �MS(µ̄)�
Z

�
�MS(p)dµ(p)

with �MS(p) = p(✓0) ln
p(✓1)

p(✓0)
+ p(✓1) ln

p(✓0)

p(✓1)
.

In particular, cMS is uniformly posterior-separable but not bounded—if p(✓0) 2 {0, 1}, then
�MS(p) = 1.

As observed by Pomatto, Strack and Tamuz (2020), cMS admits a neat representation in
terms of Kullback-Leibler divergences (also called relative entropies). Given ⇠0, ⇠1 2 �(X),
the KL-divergence DKL (⇠0k⇠1) of ⇠1 from ⇠0 is

DKL (⇠0k⇠1) =

8
<

:

R
X ln(d⇠1/d⇠0) d⇠1 if ⇠1 ⌧ ⇠0,

0 otherwise.

Simple algebra shows that for each ⇡ 2 �+ and P 2 E ,

cMS(B(⇡, P )) = ⇡(✓0)DKL (P✓0kP✓1) + ⇡(✓1)DKL (P✓1kP✓0) . (20)

The quantity DKL (P✓0kP✓1) is a measure of how P✓1 is different from P✓0 (see, e.g., Cover
and Thomas, 2012, Chapter 2). Thus, one can view DKL (P✓0kP✓1) as a measure of the
informativeness of P when the true state is ✓0. Analogously, one can view DKL (P✓1kP✓0)

as a measure of the informativeness of P when the true state is ✓1. The cost cMS(B(⇡, P ))

aggregates, in expectation, these two measures of informativeness.
The results of Morris and Strack (2019) are consistent with our findings. First, cMS does

not satisfy FFI. For all ⇡ 2 �+,

cMS
�
⇡(✓0)�

2
✓0 + ⇡(✓1)�

2
✓1

�
= 1.

As a consequence,
lim

⇡(✓0)!1
cMS

�
⇡(✓0)�

2
✓0 + ⇡(✓1)�

2
✓1

�
= 1 > 0.

Thus, FFI does not hold. Moreover, cMS is concave in the prior, as easily follows from (20).
In Morris and Strack (2019), the arrival of information is a continuous time process.

Bloedel and Zhong (2021) re-derive cMS in a discrete time model with flexible information
acquisition. In the language of our paper, Bloedel and Zhong show that cMS = ch1 for
h : E ! [0,1] given by

h(P ) = max {DKL (P✓0kP✓1) , DKL (P✓1kP✓0)} .
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Interestingly, the cost on experiments they use is the same cost on experiments we propose
in Proposition 6(ii): it follows from (20) that

max
⇡2�

cMS(B(⇡, P )) = max {DKL (P✓0kP✓1) , DKL (P✓1kP✓0)} .

The cost cMS is consistent with an underlying model of sequential experimentation, but
not with an underlying model of one-shot experimentation:

Proposition 9. There is no cost on experiments h : E ! [0,1] such that ch1 = cMS.

The result can be readily checked using Proposition 6:

Proof. By contradiction, suppose there is h : E ! [0,1] such that ch1 = cMS . By Proposi-
tion 6(i), for all ⇡ 2 � and P 2 E ,

cMS(B(⇡, P )) = inf{cMS(B(⇡⇤
, Q)) : B(⇡, P ) = B(⇡, Q)} (21)

where ⇡
⇤ is a fixed full-support prior. The cost cMS is monotone in the convex order. It

follows from Lemma 2 that h⇤(P ) := cMS(B(⇡⇤
, P )) is Blackwell monotone in P . Thus, if ⇡

has full support, B(⇡, P ) = B(⇡, Q) implies B(⇡⇤
, P ) = B(⇡⇤

, Q) (by Lemma 2), which in
turn implies h⇤(P ) = h⇤(Q), since h⇤ is monotone in the Blackwell order. We deduce from
(21) that for all ⇡ 2 �+ and P 2 E ,

cMS(B(⇡, P )) = cMS(B(⇡⇤
, P )).

Using the representation of cMS in terms of KL-divergence, we obtain that for all ⇡ 2 �+

and P 2 E ,

⇡(✓0)DKL (P✓0kP✓1) + ⇡(✓1)DKL (P✓1kP✓0) = cMS(B(⇡⇤
, P )). (22)

The KL-divergence is not symmetric. This means that we can find an experiment P such
that DKL (P✓0kP✓1) 6= DKL (P✓1kP✓0), that is, we can find an experiment P such that (22)
if and only if ⇡ = ⇡

⇤: contradiction.

The cost proposed by Morris and Strack (2019) suggests a class of costs on random
posteriors that do not satisfy FFI and exhibit a non-trivial dependence on prior beliefs. The
class is based on a generalization of KL-divergence called f -divergence. Let f : (0,1) ! R
be a convex function such that f(1) = 0. Given ⇠0, ⇠1 2 �(X), the f -divergence Df (⇠0k⇠1)
of ⇠1 from ⇠0 is

Df (⇠0k⇠1) =
Z

X

d⇠0
d�

f

✓
d⇠1/d�

d⇠0/d�

◆
d�
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where � is a control (�-finite) measure such that ⇠0 ⌧ � and ⇠1 ⌧ �.12 The f -divergences
are common generalizations of KL-divergence, used in statistics and information theory
(see, e.g., Liese and Vajda, 2006). KL-divergence corresponds to the case in which for all
t 2 (0,1), f(t) = t ln t.

For every µ 2 �2 such that µ̄ 2 �+, we define

cf (µ) = ⇡(✓0)Df

⇣
P

µ
✓0
kPµ

✓1

⌘
+ ⇡(✓1)Df

⇣
P

µ
✓1
kPµ

✓0

⌘

where P
µ is an experiment that generates µ; if µ̄(✓0) 2 {0, 1}, then cf (µ) = 0. As discussed

above for KL-divergence, one can view Df (P✓0kP✓1) and Df (P✓1kP✓0) as measures of the
informativeness of P when the true state is ✓0 and ✓1, respectively. The cost cf aggregates,
in expectation, these two measures of informativeness.

The function cf satisfies a number of desirable properties. By standard arguments, cf is
monotone in the convex order and lower semicontinuous. In addition, FFI holds if and only
if f is affine (in which case cf is identical to zero): for all ⇡ 2 �+,

cf (⇡(✓0)��0 + ⇡(✓1)��1) = lim
t!0

f(t) + lim
t!0

f(t)

t
.

The right-hand side is equal to zero if and only if f is affine. Thus, if f is not affine,

lim
⇡(✓0)!1

cf (⇡(✓0)��0 + ⇡(✓1)��1) = lim
t!0

f(t) + lim
t!0

f(t)

t
> 0,

which shows that FFI does not hold. Reasoning as above, one can also check that cf (B(⇡, P ))

is concave in ⇡; one can also show that cf (B(⇡, P )) is convex in P . An interesting question
for future research is whether cf is experimental.

D Bloedel and Zhong (2021), Hébert and Woodford (2021)

A few recent papers have explored the relationship between rational inattention and sequen-
tial information acquisition. Bloedel and Zhong (2021) and Hébert and Woodford (2021)
address questions similar to ours, but allow the flow cost of information to depend arbitrarily
on the evolving beliefs of the decision maker, as in rational inattention. As a consequence,
more cost functions on random posteriors can be generated; the next example is a concrete
illustration.

Example 1 (Bloedel and Zhong, 2021). Let � : � ! R be a concave continuous function.
In contrast with (2), suppose the decision maker incurs a cost c� (B (pxi�1 , Pxi�1)) for per-

12
Behind the integral the conventions f(0) = limt!0 f(t) and 0 · f (t/0) = t lims!1 f(s)/s are adopted.
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forming an experiment Pxi�1 2 E at a history x
i�1 2 X

i�1, where pxi�1 2 � is the posterior
belief conditional on x

i�1 (by convention, px0 = ⇡).
Given a prior ⇡ 2 �, the resulting cost of a sequential experiment P

n is

h(⇡, Pn) =
nX

i=1

Z

Xi�1
c� (B (pxi�1 , Pxi�1)) dP i�1

⇡ (xi�1).

As Bloedel and Zhong (2021) show, c�(B(⇡, Pn)) = h(⇡, Pn). We obtain that for all µ 2 �2,

c�(µ) = inf{h(⇡, Pn) : B(µ̄, Pn) = µ}.

N

Thus, if the flow cost depends arbitrarily on the evolving beliefs of the decision maker,
then any uniformly posterior-separable cost function can be generated—e.g., the entropy-
based cost of Matějka and McKay (2015). Our Proposition 1 adds a caveat: the arbitrariness
is crucial; if the flow cost depends only on the per-period experiment, then no cost function
that is bounded and uniformly posterior-separable can be generated.

As a special case of their framework, Bloedel and Zhong (2021) study what happens
when the flow cost depends only on the per-period experiment, as in (2). Their findings
are consistent with ours. In particular, under the hypothesis that h is “locally quadratic”—
we refer the reader to their paper for a precise definition of this property—they show that
no bounded, non-trivial, uniformly posterior-separable cost is consistent with a primitive
model of sequential information acquisition (Bloedel and Zhong, 2021, Proposition 3).13

Our Proposition 2 complements their result, as we put no functional-form assumption on
h, generalize beyond uniform posterior separability, and rely on a different argument for
the proof. As discussed above, Proposition 2 generalizes to the case in which the flow cost
of information depends on the history of experimentation, a case that is not discussed by
Bloedel and Zhong (2021).

E Expertise and fatigue

In the main text, we consider models of sequential information acquisition where the flow cost
of information does not depend on the history of experimentation. This invariance property
rules out interesting phenomena such as building expertise and experiencing fatigue (see,
e.g., Dillenberger, Krishna and Sadowski, 2022). Next we discuss how to incorporate these
phenomena into our analysis and results.

13
When there are at least three states, their result holds for all non-trivial uniformly posterior-separable

costs, bounded or unbounded.

A-19



We assume that the decision maker incurs a cost h(Pxi�1 |Px0 , . . . , Pxi�2) for performing
an experiment Pxi�1 at a history x

i�1 = (x0, . . . , xi�2). The cost may depend on the
experiments Px0 , . . . , Pxi�2 that the decision maker performed in the past. Building expertise
corresponds to the case in which

h (Pxi�1 |Px0 , . . . , Pxi�2)  h(Pxi�1), (23)

that is, the more information the agent acquires, the less costly information becomes. Ex-
periencing fatigue is the opposite phenomenon.

Given prior ⇡ 2 �, the expected cost of a sequential experiment P
n is

h(⇡, Pn) =
nX

i=1

Z

Xi�1
h (Pxi�1 |Px0 , . . . , Pxi�2) dP i�1

⇡ (xi�1)

where P
i�1
⇡ 2 �(Xi�1) is the predictive probability generated by ⇡ and the first i � 1

experiments.
When the state is binary, Proposition 2 and its proof extend verbatim to the case in

which the flow cost of information depends on the history of experimentation, regardless of
the nature of the dependence. When there are many states, Proposition 2 extends verbatim
to the case in which the decision maker builds expertise, as defined by (23); the proof needs
only a minor adjustment: replace (13) with

mi�1X

l=1

Z

Bl
h

⇣
pxl , Q

(m,i+1)|Px0 , . . . , Pxl�1

⌘
dP l

⇡(x
l) 

mi�1X

l=1

Z

Bl
h

⇣
pxl , Q

(m,i+1)
⌘
dP l

⇡(x
l)

 2(k � i� 1)↵

where the first inequality uses the fact that the agent builds expertise. Intuitively, building
expertise is the most interesting case for FFI, since the property seems to suggest that the
more the decision maker learns, the less costly information becomes.

Proposition 4 also holds whether or not the flow cost depends on the history of experi-
mentation. Proposition 6-(ii) instead is specific to the case in which

h (Pxi�1 |Px0 , . . . , Pxi�2) = h(Pxi�1).

Proposition 8 generalizes under the mild assumption that running an uninformative experi-
ment today does not reduce to zero the cost of running an informative experiment tomorrow.
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F Additional examples on continuity

Example 2. Let ⇥ = {Low,High} and X = [0, 1]. Let P0 be an uninformative experiment
that always generates the signal x = 0. For every k 2 N, let Pk be an experiment that
generates the signal x = 0 with probability one when ✓ = Low, and that generates the
signal x = 1/k with probability 1� 1/k and the signal x = 0 with the remaining probability
1/k when ✓ = High. Notice that as k ! 1, Pk ! P0.

Assume that h(P0) = 0 and for every k 2 N, h(Pk) = 0. For every other experiment P ,
let h(P ) = 1. The cost h : E ! {0, 1} is lower semicontinuous, but not Blackwell monotone.
For example, let Qk be an experiment that generates the signal x = 0 with probability one
when ✓ = Low, and that generates the signal x = 1 with probability 1� 1/k and the signal
x = 0 with the remaining probability 1/k when ✓ = High. Clearly, Qk ⇠b Pk. However,
h(Qk) = 1 > h(Pk) = 0.

The experimental cost ch1 is not lower semicontinuous. For example, assuming a uniform
prior, let µk be the random posterior generated by the experiment Pk, and let µ be the
random posterior corresponding to full information. It is easy to check that µk ! µ,
ch1(µk) = 0 for all k, but ch1(µ) = 1. This shows that ch1 is not lower semicontinuous. N

Example 3. Let ⇡
⇤ be the uniform prior. Define a cost on experiments h : E ! [0,1) by

h(P ) =
X

✓2⇥
⇡
⇤(✓)DKL (P✓kP⇡⇤)

where DKL is the Kullback-Leibler divergence. It is easy to check—recall that another name
for the KL divergence is relative entropy—that

h(P ) = cE(B(⇡⇤
, P )).

Thus, h(P ) is the expected reduction in entropy with respect to a reference prior ⇡
⇤—see

also (7) in the main text. By standard arguments, h is Blackwell monotone and lower
semicontinuous.

Define c : �2 ! [0,1) by

c(µ) = inf {h(P ) : B(µ̄, P ) = µ} .

By definition, c is experimental and non-trivial. By Proposition 3, c is lower semicontinuous.
Next we verify that c is continuous on each subdomain �2

⇡. But first we need a closed-
form characterization of c(µ):
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Claim 9. For every µ 2 �2,

c(µ) = ⇡
⇤(T )

X

✓2T
⇡
⇤
T (✓)DKL

⇣
P

µ
✓ kP

µ
⇡⇤
T

⌘

where T is the support of µ̄, ⇡⇤
T is the uniform distribution over T , and P

µ is an experiment
that generates µ.

Proof of the claim. Define experiments Q and Q
0 by

Q✓ =

8
<

:
P

µ
✓ if ✓ 2 T

P
µ
⇡⇤
T

if ✓ /2 T

and Q
0
✓ =

8
<

:
P

µ
✓ if ✓ /2 T

P
µ
⇡⇤
T 0

if ✓ 2 T

where T
0 = ⇥ \ T . An application of the chain rule (see, e.g., Cover and Thomas, 2012,

Section 2.5) shows that

h(P ) = ⇡
⇤(T )D (Q⇡⇤kPµ

⇡⇤) + ⇡
⇤(T 0)D

�
Q

0
⇡⇤kPµ

⇡⇤
�
+ h(Q) + h(Q0)

where we use the fact that Q⇡⇤ = P
µ
⇡⇤
T

and Q
0
⇡⇤ = P

µ
⇡⇤
T 0

. Thus,

h(Pµ) � h(Q) = ⇡
⇤(T )

X

✓2T
⇡
⇤
T (✓)DKL

�
Q

µ
✓ kQ

µ
⇡⇤
�

= ⇡
⇤(T )

X

✓2T
⇡
⇤
T (✓)DKL

⇣
P

µ
✓ kP

µ
⇡⇤
T

⌘
.

Since for all ✓ 2 T , Q✓ = P
µ
✓ , the experiment Q generates µ. We obtain that

c(µ)  ⇡
⇤(T )

X

✓2T
⇡
⇤
T (✓)DKL

⇣
P

µ
✓ kP

µ
⇡⇤
T

⌘
.

If Qµ is any other experiment that generates µ, then there exists a stochastic kernel K such
that for all ✓ 2 T , Q✓ = KQ

µ
✓ (see Lemma 2). Thus,

X

✓2T
⇡
⇤
T (✓)DKL

⇣
Q

µ
✓ kQ

µ
⇡⇤
T

⌘
�
X

✓2T
⇡
⇤
T (✓)DKL

⇣
Q✓kQ⇡⇤

T

⌘

=
X

✓2T
⇡
⇤
T (✓)DKL (Q✓kQ⇡⇤) .

We conclude that
c(µ) = ⇡

⇤(T )
X

✓2T
⇡
⇤
T (✓)DKL

⇣
P

µ
✓ kP

µ
⇡⇤
T

⌘
.
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Now we are ready to prove that c is continuous on each subdomain �2
⇡. Fix a prior

⇡ 2 � and let T be its support. Simple algebra shows that

X

✓2T
⇡
⇤
T (✓)DKL

⇣
P

µ
✓ kP

µ
⇡⇤
T

⌘
= cE (B (⇡⇤

T , P
µ)) .

It follows from Claim 9 that

c(µ) = ⇡
⇤(T )cE (B (⇡⇤

T , P
µ)) .

Now, let (µn) be a sequence of random posteriors—all with barycenter ⇡—that converges
to µ. By Lemma 4, B (⇡⇤

T , P
µn) ! B (⇡⇤

T , P
µ). By continuity of cE , we deduce that

c(µn) ! c(µ). This shows that c is continuous on each subdomain �2
⇡. N

G Ultimatum game: a tractable functional form

In the main text, we study the ultimatum game under under broad conditions on the cost
over experiments. In this section, we provide an explicit characterization of the equilibria
for the tractable functional form we introduce in Section 2.

We fix a full-support probability distribution over offers ⇡
⇤ 2 �(S)—for simplicity, let

⇡
⇤ be the uniform distribution. We consider a cost over experiments hk by

hk(P ) := k · hE⇤(P ) = k · cE(B(⇡⇤
, P )). (24)

Thus, hk is the expected reduction in the entropy of beliefs with respect to a reference prior
⇡
⇤, scaled by a constant k > 0 that parameterizes the marginal cost of information. Since

⇡
⇤ has full support, cE(B(⇡⇤

, P )) = 0 if and only if P is uninformative. As a consequence,
(11) holds.

We distinguish between two cases. First, we consider a simple set of offers that includes
only three options; the simplicity of the setup allows us to highlight the main features of
the game. Next, we consider richer sets of offers that approximate the continuum of offers
considered by Ravid (2020). Throughout, let

�s :=

Z

X
�(x) dPs(x)

be the probability of trade when the offer is s, and let �� :=
P

s �(s)�s be the marginal
probability of trade.
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G.1 Simple set of offers

We assume that S = {2v/3, v, 2v}: the seller can offer the good at two-thirds of its value,
its value, or twice its value. The next proposition characterizes the equilibria where trade
happens with positive probability.

Proposition 10. Assume (24) for the cost of information, and let S = {2v/3, v, 2v}. A
strategy profile (�, P,�) is an equilibrium with �� > 0 if and only if there exists z 2 (0, 2v/3)

that satisfies the following conditions:

(i) For all s 2 S,
�s =

z

s

(ii) For all s 6= v,

�(s) =
k/3

v � s
log

v � z

s� z
.

In particular, an equilibrium where trade happens exists if and only if

k <
3v

3 log 3� 2 log 2
.

In every equilibrium where trade occurs, the seller is indifferent between all offers: for
all s, s0 2 S,

s�s = z = s
0
�s0 . (25)

The seller randomizes over offers to make it optimal for the buyer to choose a strategy (P,�)

such that, indeed, (25) holds. In particular, the seller always puts positive probability on
s = 2v/3 and s = 2v; this creates an incentive for the buyer to acquire information. Finally,
there exists an equilibrium where trade occurs if and only if the marginal cost of information
k is small relative to the value v of the good; otherwise, the buyer’s incentive to acquire
information is not strong enough to monitor the seller’s offer and she chooses never to buy
the good. By an argument analogous to Ravid (2020, p. 2959), the buyer earns a positive
payoff (consumer surplus minus attention costs).

The proof of Proposition 10 builds on the logit characterization of optimal information
acquisition provided by Proposition 7.

Proof. Let (�, P,�) be an equilibrium with �� > 0. By Proposition 8, �(2v) > 0 and
�(2v3 ) > 0. The seller’s indifference condition between s = 2v

3 and s = 2v is

2v

3
� 2v

3
= 2v�2v () � 2v

3
= 3�2v.
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From Proposition 7, �v = ��⇤ . Thus

1

3
� 2v

3
+

1

3
�v +

1

3
�2v = ��⇤ () 1

2
� 2v

3
+

1

2
�2v = ��⇤

It follows from � 2v
3
= 3�2v that

� 2v
3
=

3

2
��⇤ and �2v =

1

2
��⇤ .

In particular, the seller is indifferent between all offers. From Proposition 7,

e

(v� 2v
3 )�( 3v

3 )
k/3 ��⇤

e

(v� 2v
3 )�( 2v

3 )
k/3 ��⇤ + 1� ��⇤

=
3

2
��⇤ and

e

(v�2v)�(2v)
k/3 ��⇤

e

(v�2v)�(2v)
k/3 ��⇤ + 1� ��⇤

=
1

2
��⇤ .

Simple algebra shows that

e

(v� 2v
3 )�( 3v

3 )
k/3

✓
1� 3

2
��⇤

◆
=

3

2
(1� ��⇤) and e

(v�2v)�(2v)
k/3

✓
1� 1

2
��⇤

◆
=

1

2
(1� ��⇤).

Thus ��⇤ 2 (0, 23). Simplifying further, we obtain

�

✓
2v

3

◆
=

k/3

v/3
log

3(1� ��⇤)

2� 3��⇤
and �(2v) =

k/3

v
log

2� ��⇤

1� ��⇤
.

Taking z = v��⇤ , we observe that (i) and (ii) hold.
Now take z 2 (0, 2v/3) such that (i) and (ii) hold. Notice that ��⇤ = z/v. Simple algebra

shows that
1

3

X

s

e

(v�s)�(s)
k/3

e

(v�s)�(s)
k/3 z

v + 1� z
v

= 1.

That is the first order condition of the auxiliary maximization problem in Proposition 7.
Thus we can find a best response (P,�) to � such that ��⇤ = z

v . In addition, for all t 2 T ,

�s =
e

(v�s)�(s)
k/3 z

v

e

(v�s)�(s)
k/3 z

v + 1� z
v

=
z

s
.

Therefore the seller is indifferent between all offers: � is a best response to (P,�) as well.
We conclude that (�, P,�) is an equilibrium with �� > 0.
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Finally, consider the function f :
�
0, 2v3

�
! [0,1) given by

f(z) =
k

v
log

3(v � z)

2v � 3z
+

k

3v
log

2v � z

v � z
.

Note that f is continuous and strictly increasing. In addition,

lim
z!0

f(z) =
k

v
log

3

2
+

k

3v
log 2 and lim

z! 2v
3

f(z) = 1.

As shown above, if (�, P,�) is an equilibrium with �� > 0, then

lim
z!0

f(z) < f(v��⇤) = �

✓
2

3
v

◆
+ �(2v)  1.

Conversely, if limz!0 f(z) < 1, then by Brouwer’s fixed point theorem there exists z such
that f(z)  1. As shown above, this implies that there exists an equilibrium (�, P,�) with
�� > 0. The condition limz!0 f(z) < 1 is equivalent to k <

3v
3 log 3�2 log 2 .

G.2 Rich sets of offers

Next, we generalize Proposition 10 to rich sets of offers that approximate the continuum of
offers studied by Ravid (2020).

For ease of exposition, assume v = 1: it is common knowledge that the good has value
1. We consider a finite set of offers S that satisfies the following property: there exists ŝ 2 S

with 0 < ŝ < 1 such that X

s�ŝ

1

s
= |{s 2 S : s � ŝ}|. (26)

For example, S = {2/3, 1, 2} and ŝ = 2/3, as in Proposition 10. Next is a more interesting
example, which shows how to construct finer and finer sets of offers that satisfy (26).

Example 4. Take any increasing sequence 0  s1 < . . . < sn  1. Choose an index
m 2 {1, . . . , n} such that sm 2 (1/2, 1). Define

S =

⇢
s1, . . . , sn,

sn

2sn � 1
, . . . ,

sm

2sm � 1

�
.

For ŝ = sm, condition (26) holds. N

We impose an addition condition on S. To state it, define

Ŝ = {s 2 S : s � ŝ and s 6= 1}.
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We assume that there exists z 2 (0, t̂) such that

X

s2Ŝ

k

(1� s)|S| log
1� z

s� z
= 1 (27)

where k > 0 is the scale factor that parametrizes the marginal cost of information. The next
lemma provides a simplification:

Lemma 8. A sufficient condition for (27) is that

|Ŝ|
|S|

log ŝ

ŝ� 1
<

1

k
. (28)

In addition,

z �
1� ŝ exp

⇣
|S|·(1�ŝ)

|Ŝ|·k

⌘

1� exp
⇣
|S|·(1�ŝ)

|Ŝ|·k

⌘ > 0.

Proof. For z 2 (0, t̂) and s 2 [ŝ,1), define

f(z, s) =
k

(1� s)|S| log
1� z

s� z
.

The quantity f(z, s) is increasing in z and decreasing in s:

@

@z
f(z, s) > 0 , 1

(s� z)(1� z)
> 0.

@

@s
f(z, s) < 0 , log

1� z

s� z
<

1� s

s� z
=

1� z

s� z
� 1.

Define F (z) =
P

s2Ŝ f(z, s). Notice that

lim
z%ŝ

F (z) = lim
z%ŝ

f(z, ŝ) = 1.

Moreover, being f(z, s) decreasing in s,

lim
z&0

F (z)  |Ŝ| lim
z&0

f(z, ŝ) = k
|Ŝ|
|S|

log ŝ

ŝ� 1
< 1

where the last inequality follows from (28). Since F (z) is continuous in z, there must exist
z such that F (z) = 1.

Define

ẑ =
1� ŝ exp

⇣
|S|·(1�ŝ)

|Ŝ|·k

⌘

1� exp
⇣
|S|·(1�ŝ)

|Ŝ|·k

⌘ .
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Observe that |Ŝ| · f(ẑ, ŝ) = 1. Thus, ẑ 2 (0, ŝ). Since f(z, s) is decreasing in s,

F (ẑ)  |Ŝ| · f(ẑ, ŝ) = 1.

Since f(z, s) is increasing in z, F (z) = 1 implies z � ẑ.

Next we provide an example of a rich set of offers that satisfy both (26) and (27).

Example 5. Fix n � 2. Define

S =

⇢
0,

1

2n
, . . . ,

2n � 1

2n
, 1,

2n � 1

2(2n � 1)� 2n
, . . . ,

3

2

�
.

For ŝ = 3/4, (26) holds. For n sufficiently large,

|Ŝ|
|S| ⇡

2

5
.

Condition (28) becomes

k <
5

8(log 4� log 3)
.

Thus, (27) is satisfied as long as the marginal cost of information is sufficiently small. N

We are now ready to generalize Proposition 10.

Proposition 11. Assume (24) for the cost of information, and let S satisfy (26) and (27).
For z 2 (0, t̂) that satisfies (27), there exists an equilibrium (�, P,�) with the following
properties:

• The support of � is Ŝ.

• For all s 2 Ŝ,

�(s) =
k/|S|
1� s

ln
1� z

s� z
.

• For all s < ŝ, �s = z.

• For all s � ŝ, �s = z/s.

What happens as the set of offers become finer and finer? In the equilibrium described
above, �(s) is decreasing in s 2 Ŝ. It follows that

�({s0 : s0  s}) � |Ŝ \ [0, s]| · �(s)

=
|Ŝ \ [0, s]|

|S|
k

1� s
log

1� z

s� z
.
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Now imagine that the set of possible offers become finer and finer. If ŝ is fixed and the ratio
|Ŝ \ [0, s]|/|S| is bounded away from zero, then the probability that the seller claims less
than s is bounded away from zero, being z bounded away from zero (cfr. Lemma 8). Thus,
in particular, � does not converge in distribution to a Dirac measure concentrated on 1.
This shows that, even in the limit of a continuum of offers, the seller randomizes between
offers above and below the value of the good.

We can repeat the same exercise for the probability of trade. Being �(s) decreasing
s 2 Ŝ, we have

X

s2Ŝ

�s�(s) � |Ŝ|�max(S)�(max(S))

=
|Ŝ|
|S|

z

max(S)

k

(1�max(S))
log

1� z

max(S)� z
.

Now imagine that the set of possible offers become finer and finer. If ŝ and max(S) are fixed
and the ratio |Ŝ|/|S| is bounded away from zero, then the probability of trade is bounded
away from zero, being z bounded away from zero (cfr. Lemma 8). This shows that, even in
the limit of a continuum of offers, trade happens with positive probability.

Example 5 (Continued). Let n be large. The distance between two consecutive points si

and si+1 in Ŝ \ [0, 1] is 1/2n. Thus, for s 2 [3/4, 1],

�({s0 : s0  s}) =
X

s02Ŝ\[0,1]

k/|S|
1� s0

log
1� z

s0 � z

=
2n

|S|
X

s02Ŝ\[0,1]

1

2n
k

1� s0
log

1� z

s0 � z

⇡ 3

5

Z s

3
4

k

1� s0
log

1� z

s0 � z
ds0

where the last approximation presumes that n is large.
The distance between two consecutive points si and si+1 in Ŝ \ (1,1) is

(2si � 1)(2si+1 � 1)

2n
.
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Thus, for s 2 (1, 3/2],

�({s0 : 1 < s
0  s}) =

X

s02Ŝ\(1,1)

k/|S|
1� s0

log
1� z

s0 � z

⇡ 3

5

Z s

3
4

(2s0 � 1)2

1� s0
log

1� z

s0 � z
ds0

where the last approximation presumes that n is large.
Overall, in the limit, the equilibrium is as follows:

• � has support [3/4, 3/2] and admits a density f given by

f(s) =

8
<

:

3k
5

1
1�s log

1�z
s�z s 2 [3/4, 1]

3k
5

(2s�1)2

1�s log 1�z
s�z s 2 (1, 3/2].

• z is pinned down by the equation

Z 1

3
4

k

1� s
log

1� z

s� z
ds+

Z 3
2

1

k

1� s
log

1� z

s� z
ds =

5

3
.

• For all s < 3/4, �s = z.

• For all s � 3/4, �s = z/s.

N

We conclude with the proof of Proposition 11, which follows the same steps of the proof
of Proposition 10.

Proof of Proposition 11. For all s � ŝ,

s�s = z = �1.

Thus the seller is indifferent among all s � ŝ. For all s < ŝ,

s�s = sz < z = �1

where we use the fact that ŝ < 1. Thus, � is a best reply to (P,�).
It follows from (26) that

��⇤ =
X

s2S

1

|S|�s = z
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Thus, from Proposition 7 in the main text, (P,�) is a best reply to � if for all s 2 S,

�s =
e

(1�s)�(s)
k/|S| z

e

(1�s)�(s)
k/|S| z + 1� z

.

If s < ŝ, then �(s) = 0, which implies

e

(1�s)�(s)
k/|S| z

e

(1�s)�(s)
k/|S| z + 1� z

= z.

If s = 1, then (regardless of �)

e

(1�s)�(s)
k/|S| z

e

(1�s)�(s)
k/|S| z + 1� z

= z.

If s 2 Ŝ, the choice of �(s) guarantees that that

e

(1�s)�(s)
k/|S| z

e

(1�s)�(s)
k/|S| z + 1� z

=
z

s
.

This shows that (P,�) is a best reply to �. We conclude that (�, P,�) is an equilibrium.

H Costly monitoring in leader-follower games

The inconsistency of posterior-based costs with a primitive model of costly experimentation
has concrete implications for the analysis of information acquisition in games. In the main
text, we make the point by focusing on an ultimatum game proposed by Ravid (2020). Here
we show that the same conclusions hold for any leader-follower game.

There are two players in the game, a leader and a follower. The leader chooses an action
a from a finite set A, the follower chooses an action b from a finite set B; denote by ul(a, b)

and uf (a, b) the corresponding utilities. We make the generic assumption that utilities are
different across actions: for all a, a0 2 A and b, b

0 2 B such that a 6= a
0 and b 6= b

0,

ul(a, b) 6= ul(a
0
, b) and uf (a, b) 6= uf (a, b

0). (29)

As usual, for ↵ 2 �(A) and � 2 �(B), we denote by ul(↵,�) and uf (↵,�) the mixed
extensions of the utilities.

Before taking action, the follower has the opportunity to monitor the sender’s action at
a cost. A monitoring structure is represented by an experiment P : A ! �(X). A strategy
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for the leader is a probability over actions ↵ 2 �(A). A strategy for the follower consists of
an experiment P : A ! �(X) and a measurable action rule � : X ! �(B) that specifies
for every signal x, the probability �(b|x) with which the follower takes an action b.

Next we analyze the game for two different specifications of the cost of information, one
that takes as primitive a cost on random posteriors, as in applications of rational inattention,
and one that takes as a primitive a cost on experiments.

Posterior-based costs. Let c : �(�(A)) ! [0,1] be a cost on random posteriors such
that for all a 2 A,

c(�a) = 0. (30)

For choosing an experiment P , the follower incurs a cost c(B(↵, P )), where ↵ is her conjec-
ture about the seller’s strategy.

A posterior-based approach generates a multiplicity of counterintuitive equilibria. To
illustrate, let BR(↵) ✓ B be the set of best pure responses to a strategy ↵ 2 �(A) of the
leader:

BR(↵) = argmax
b2B

uf (↵, b).

Note that, by (29), for all a 2 A, BR(a) is a singleton. We denote by MBR(↵) the set of
mixed best responses:

MRB(↵) = {� 2 �(B) : supp(�) ✓ BR(↵)}.

We also denote by MBR(¬a) the set of mixed best responses to a strategy of the leader
that does not play a:

MRB(¬a) =
[

↵2�(A\{a})

MRB(↵).

Proposition 12. Assume (30) for cost of information. For every a 2 A, if

ul(a,BR(a)) > min

⇢
inf

�2MBR(¬a)
max
a0 6=a

ul(a
0
,�),max

a0 6=a
ul(a

0
, BR(a))

�
,

then there exists an equilibrium (↵, P,�) such that ↵(a) = 1.

The proposition generalizes Ravid’s multiplicity result. In the ultimatum game, a is any
offer between 0 and v, and BR(a) is the decision of buying the good. Let b be the decision
of not buying the good, which is a best response to the belief that the seller makes an offer
above v. We obtain the inequality

ul(a,BR(a)) > max
a0 6=a

ul(a
0
, b).
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The proof of the proposition is an abstract version of Ravid’s arguments.

Proof. Assume first that there is � 2 MBR(¬a) such that

ul(a,BR(a)) > max
a0 6=a

ul(a
0
,�). (31)

Let P be a binary experiment with two possible outcomes, x and y. Assume that Pa(x) = 1;
for all a0 6= a, Pa0(y) = 1. Choose � such that �(BR(a)|x) = 1; for all b 2 B, �(b|y) = �(b).
By (31), a is a best response to (P,�). On path, the follower plays the best response to a.
In addition, by (30), the cost of information is zero. Thus, (P,�) is a best response to a.
Off path, the follower plays �, which is sequentially rational since � 2 MBR(¬a). Overall,
(a, P,�) is an equilibrium, even if we impose sequential rationality.

Assume now that
ul(a,BR(a)) > max

a0 6=a
ul(a

0
, BR(a)). (32)

Let P be an uninformative experiment. Choose � such that for all x, �(BR(a)|x) = 1. By
(32), a is a best response to (P,�). On path, the follower plays the best response to a.
In addition, by (30), the cost of information is zero. Thus, (P,�) is a best response to a.
Since P is uninformative, no signal is off-path. Overall, (a, P,�) is an equilibrium, even if
we impose sequential rationality.

Experiment-based costs. Let h : E ! [0,1] be a cost on experiments such

h(P ) = 0 if and only if P is uninformative. (33)

For choosing an experiment P , the follower incurs a cost h(P ), which does not depend on
her conjecture about the leader’s strategy.

The next proposition, which extends Proposition 8 in the main text, shows that the
counterintuitive equilibria that Ravid finds disappear.

Proposition 13. Assume (33) for cost of information. The following conditions hold:

(i) In every equilibrium (↵, P,�) where P is informative,

X

a

↵(a)

Z

X
uf (a,�(x)) dPa(x) > max

b2B

X

a

↵(a)uf (a, b).

In particular, ↵ is not degenerate.

(ii) For every a 2 A, there exists an equilibrium (↵, P,�) with ↵(a) = 1 if and only if

ul(a,BR(a)) > max
a0 6=a

ul(a
0
, BR(a)).
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Proof. (i). The follower can always obtain the payoff

max
b2B

X

a

↵(a)uf (a, b)

by choosing an uninformative experiment, which costs zero. For this deviation not to prof-
itable, by (33) it must be that

X

a

↵(a)

Z

X
uf (a,�(x)) dPa(x) > max

b2B

X

a

↵(a)uf (a, b).

In particular, ↵ cannot be degenerate.
(ii). Let (↵, P,�) be an equilibrium such that ↵(a) = 1. By (i), P is uninformative.

Thus, the follower must play the best response to a no matter what signal she observes.
For the leader not to have an incentive to deviate, it must be that a is a best response to
b = BR(a)—that is,

ul(a,BR(a)) > max
a0 6=a

ul(a
0
, BR(a)).

Conversely, take an action a for which the above inequality holds. Let P be an unin-
formative experiment. Choose � such that for all x, �(BR(a)|x) = 1. By the inequality
above, a is a best response to (P,�). On path, the follower plays the best response to a.
In addition, by (33), the cost of information is zero. Thus, (P,�) is a best response to a.
Since P is uninformative, no signal is off-path. Overall, (a, P,�) is an equilibrium, even if
we impose sequential rationality.
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