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A Diminishing Impatience does not imply Weak

Certainty E�ect

The following counter-example proves that Diminishing Impatience does not

imply Weak Certainty E�ect (and hence by Theorem 2 also does not imply

Delay Independent Diminishing Impatience). If (5.2) implied (3.4), then (5.2)

would also imply that ∀r ∈ (0, 1) and ∀m,n ∈ N

g(rm+n) ≥ g(rm)g(rn) (A.1)

We will rewrite these expressions in an additive form by de�ning f(x) =

−log(g(e−x))⇐⇒ g(x) = e−f(−logx). Then f : (0,∞)→ (0,∞) is di�erentiable
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and increasing, just like the function g. The inequalities under consideration

are now:

∀t ∈ N and ∀r ∈ (0, 1), g(rt+1) > g(r)g(rt)

⇐⇒ e−f(−log(r
t+1)) > e−f(−log(r

t))e−f(−log(r))

⇐⇒ f(−(t+ 1)log(r)) < f(−tlog (r)) + f(−log(r))

Now, de�ning x := −log (r) ∈ (0,∞) for r ∈ (0, 1).

f((t+ 1)x) < f(tx) + f(x) (A.2)

Further, the boundary conditions g(0) = 0 and g(1) = 1 translate to

f(0) = 0 and f(∞) =∞.1

Similarly, (A.1) converts to

f(mx+ nx) ≤ f(mx) + f(nx) ∀x ∈ (0,∞) and ∀m,n ∈ N (A.3)

Summing it up, (5.2) implies (A.1), if and only if (A.2) implies (A.3). The

next step is to propose a function f which would satisfy (A.2) on all points of

its domain, but, for some x ∈ R and some m,n ∈ N,

f(mx+ nx) > f(mx) + f(nx) (A.4)

Instead of providing the function f , we propose it's derivative h, so f

can be calculated as f(x) =
� x
0
h(x)dx.2 Let, k = 20

1+sin(π/2−.0001) and δ =

50kπ cos(π/2− .0001) ≈ .157.

1Using the extended real line (R ∪∞)
2Recall that f (0) = 0.
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Let,

h(x) =



11 + (1− x)δ For x < 1

1 + k
2

+ k
2

sin 100π(1 + π/2−.0001
100π

− x) For 1 ≤ x ≤ 1.005 + π/2−.0001
100π

1 For 1.005 + π/2−.0001
100π

< x < 2− .005

4 + 3 sin 100π(x− 2) For 2− .005 ≤ x ≤ 2 + .005

7 For 2 + .005 < x < 2.5− .005

4 + 3 sin 100π(2.5− x) For 2.5− .005 ≤ x ≤ 2.5 + .005

1 For 2.5 + .005 < x < 3− .005

4 + 3 sin 100π(x− 3) For 3− .005 ≤ x ≤ 3 + .005

7 For 3 + .005 < x < 5− .005

4 + 3 sin 100π(5− x) For 5− .005 ≤ x ≤ 5 + .005

1 For x > 5 + .005

f is increasing, twice di�erentiable and f(∞) = ∞. h(x) is plotted in Figure

A.1.

Figure A.1: The function h.

We next show that (A.2) holds.

Lemma 1. ∀t∈ N, ∀x ∈ R,
� x
0
h(x)dx >

� (t+1)x

tx
h(x)dx.

Proof. The most intuitive way to check the claim would be to notice that
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the sinusoids introduced hardly perturb the area under the curve. Figure

A.2 illustrates the point in a more clear fashion by considering the function

h for a small part of the real line. For all practical purposes, one could go

about checking the inequalities by replacing the sinusoid (in black) in Figure 1

by a corresponding discontinuous function(h̄(x) = 7 for x ≤ 2.5, h̄(x) = 1 for

x > 2.5 as drawn in red). The area between the two curves in [2.495, 2.5] is only

(.005∗3− 3
100π

) ≈ .005. Therefore, as long as the inequalities hold with a large

enough margin, this intuitive method of approximating sinusoids with �at lines

works �ne. The area between the two curves in [2.5, 2.505] is also (.005 ∗ 3−
3

100π
). Thus, the two approximations in [2.495, 2.505] are equal and opposite in

direction, and the areas under the red and black curves in this region are equal.

During our analysis, in some cases there will be multiple approximations in

opposite directions which would partially or completely cancel each other out.

Figure A.2: Function h approximated in a sinusoidal region

Utilizing this intuition more rigorously, one can create upper bounds and lower

bounds on
� (t+1)x

tx
h(x)dx and

� x
0
h(x)dx respectively to complete the proof.

For 0 < x ≤ 1,
� x
0
h(x)dx >

� (t+1)x

tx
h(x)dx is obvious, as [0, x] contains the

highest values obtained by h(x) on the real line.

For, 1 < x ≤ 5
3
,
� x
0
h(x)dx =

� 1

0
h(x)dx+

� x
1
h(x)dx > 1

2
(11+11+δ)+(x−1) =

10 + δ
2

+ x.3 The inequality holds because h(x) ≥ 1 with strict inequality for

1 ≤ x < 1.005 + π/2−.0001
100π

, and hence
� x
1
h(x)dx > x − 1. In the interval

3δ = 50kπ cos(π/2− .0001) = .157 (approximately)
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[tx, (t + 1)x], h(x) ≤ 7 and after mutual canceling out there are no more

than 3 sinusoidal perturbations which could increase the area under the curve.

Hence,
� (t+1)x

tx
h(x)dx < 7x + 3(.015 − 3

100π
) = 6x + x + 3(.015 − 3

100π
) ≤

6(5
3
) + x+ 3(.015− 3

100π
) = 10 + x+ 3(.015− 3

100π
).

For 5
3
≤ x ≤ 2,

� x
0
h(x)dx > 10 + δ

2
+ x as before. On the other hand, us-

ing the same line of logic as before,
� 2x

x
g(x)dx < 1.x + 6[(4 − 3) + (2.5 −

2)] + 3.(.015 − 3
100π

) = 9 + x + 3.(.015 − 3
100π

). Similarly,
� 3x

2x
h(x)dx ≤

1.x+ 6[5− 2.5
3
] + 3.(.015− 3

100π
) = 10 + x+ 3.(.015− 3

100π
).

Similarly for larger values of x, it can be shown that
� x
0
h(x)dx >

� (t+1)x

tx
h(x)dx.

(follows trivially for x ≥ 5.)

Now complete the counter-example:

� 2

0

h(x)dx < 12+
δ

2
+{.01∗10+(.015− 3

100π
)} < 14−2(.015− 3

100π
) =

� 5

3

h(x)dx

The �rst inequality follows from setting an upper bound on the sinusoidal

perturbation introduced around 1.4 Therefore, f(5) > f(2) + f(3), which

provides us with the counter-example to equation (A.3) and hence, to equation

(A.1). In other words, as (A.2) does not imply (A.3), (5.2) does not imply

(A.1), and hence, (5.2) does not imply (3.4).

That is, even if for all t ∈ N and for all r ∈ (0, 1) : g((1 − r)t+1) > g((1 −
r)t)g((1− r)) it does not imply that ∀p, q ∈ (0, 1): g(pq) > g(p)g(q) .

4This particular sinusoid dies down after 1.005 + π/2−.0001
100π < 1.01 and never rises above

the h(x) = 1 line by more than 6 units.

5



B Extension: temporal rewards with pure time

discounting

In the paper, we have de�ned time preferences {%d} as follows:

[x, t] �d [y, s]⇔ (x, p(t|d)) �r (y, p(s|d)). (B.1)

This de�nition assumes that the agent discounts future payo�s only because

the future payo�s are uncertain due to the hazard rate. In this section, we

show that a result similar to Theorem 1 holds even when we allow the agent

to discount future payo�s not only because the future payo�s are uncertain

but also because of �pure� time discounting (i.e., the agent intrinsically prefers

early rewards to later rewards).

We would need the following new notations to separate out the two e�ects

of time, one of pure discounting and the other of temporal hazard:

• (x, τ): sure payo� of x ∈ X after waiting τ ∈ T periods.

• ((x, τ), p): the lottery which gives (x, τ) ∈ X × T with probability p ∈
[0, 1] and gives nothing with the probability 1− p. (Temporal Lotteries)

The reader should interpret the former as a counterfactual choice-object, where

by choosing (x, τ), the agent can consume x for sure but the reward arrives

τ periods later, and hence is subjected to pure discounting. The latter is a

temporal lottery that provides (x, τ) with probabilityp. Finally, we assume

that the agent at decision period d discounts a future reward [x, t] ∈ X(d) not

only because the future reward is uncertain (i.e., the probability of consuming

x is p(t|d)) but also because the agent needs to wait t − d periods until x is

obtained. Therefore the agent's time preferences can be de�ned as follows:

Assumption 1: For all d ∈ T and [x, t], [y, s] ∈ X(d)

[x, t] %d [y, s]⇔ ((x, t− d), p(t|d)) % r((y, s− d), p(s|d)).

We are going to additionally assume:
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Assumption 2: For any x, y ∈ X, τ, γ ∈ T , and p, q ∈ [0, 1]

((x, τ), p) % ((y, γ), q)⇔ ((x, τ + σ), p) % ((y, γ + σ), q)

This assumption means that equally postponing two temporal lotteries

(i.e., σ periods) does not reverse the preference between them. This axiom

is slightly stronger than an axiom (Axiom B2) of Fishburn and Rubinstein

(1982), in which they assume τ = γ.

Common-ratio e�ect, de�ned as a property of risk preferences {%r} on

atemporal lotteries in the main paper, is now extended to the domain of tem-

poral lotteries.

De�nition 1. %r is said to exhibit Strict Common-Ratio E�ect, if for any

x, y ∈ X and p, q ∈ (0, 1] such that x < y, p < q, and ((x, τ), p) ∼r ((y, s), q)

(a) ((x, τ), pr) �r ((y, s), qr) for all r < 1.

(b) ((x, τ), pr) ≺r ((y, s), qr) for all r > 1 and qr < 1

Strict Certainty E�ect can be de�ned as Strict Common-Ratio E�ect with

q = 1. Similarly, Independence can be de�ned as follows:

((x, τ), p) �r ((y, s), q) =⇒ ((x, τ), pr) �r ((y, s), qr)

The de�nitions of temporal reversals, present-biased temporal reversal, and

temporally unbiased are the same as in the main paper.

Theorem 1. Under Assumptions 1 and 2,

(i) %r exhibits Strict Common Ratio E�ect (a) and (b) i� {%d}d∈T exhibit

Temporal Reversal (a) and (b), respectively.

(ii) %r exhibits Strict Certainty E�ect (a) and (b) i� {%d}d∈T exhibit Present

Biased Temporal Reversal (a) and (b), respectively.

(iii) %r satis�es the Independence Axiom i� {%d}d∈T is Temporally Unbiased.
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Proof. First we show (i). Step 1: First showing that Strict Common Ratio

E�ect (a) implies Temporal Reversal (a). Suppose that d′ < d < t < s.

[x, t] ∼d [y, s] ⇐⇒ ((x, t− d), p(t|d)) ∼r ((y, s− d), p(s|d))

=⇒ ((x, t− d), p(t|d)p(d|d′)) ≺r ((y, s− d), p(s|d)p(d|d′)))

=⇒ ((x, t− d), p(t|d′)) ≺r ((y, s− d), p(s|d′)))

=⇒ ((x, t− d′), p(t|d′)) ≺r ((y, s− d′), p(s|d′)))

=⇒ [x, t] ≺d [y, s].

The second implication follows from p(d|d′) < 1 and Strict Common-Ratio

E�ect (a), and the second last implication follows from Assumption 2.

Step 2: Now showing that Temporal Reversal (a) implies Common-Ratio

E�ect (a): Fix p, q, r such that p < q and r < 1. Choose t, s, d, d′ such that

d′ < d < t < s and p(t|d) = p, p(s|d) = q, and p(d|d′) = r < 1. Then

p(t|d′) = pr and p(s|d′) = qr. Moreover,

((x, t), p) ∼r ((y, s), q) ⇐⇒ ((x, t), p(t|d)) ∼r ((y, s), p(s|d))

⇐⇒ [x, t] ∼d [y, s]

⇐⇒ [x, t] ≺d′ [y, s]

=⇒ ((x, t− d′), p(t|d′)) ≺r ((y, s− d′), p(s|d′))

=⇒ ((x, t− d′), pr) ≺r ((y, s− d′), qr)

=⇒ ((x, t), pr) ≺r ((y, s), qr).

Steps 1 and 2 show that Strict Common-Ratio E�ect (a) is equivalent to

Temporal Reversal (a). In the same way, we can show that Strict Common

Ratio E�ect (b) is equivalent to Temporal Reversal (b). Hence, statement (i)

holds. In the same way, assuming q = 1 and d = t, we obtain statement (ii).

Finally, we show statement (iii).

Step 3: Independence implies Temporally Unbiased. Suppose that d′ <
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d < t < s.

[x, t] %d [y, s] ⇐⇒ ((x, t− d), p(t|d)) %r ((y, s− d), p(s|d))

⇐⇒ ((x, t− d), p(t|d)p(d|d′)) %r ((y, s− d), p(s|d)p(d|d′)))

⇐⇒ ((x, t− d), p(t|d′)) %r ((y, s− d), p(s|d′)))

⇐⇒ ((x, t− d′), p(t|d′)) %r ((y, s− d′), p(s|d′)))

⇐⇒ [x, t] %d [y, s].

The second equivalence holds by Independence. The second to the last

equivalence holds by Assumption 2.

Step 4: Temporally Unbiased implies Independence. Fix p, q, r such that

p < q and r < 1. Choose t, s, d, d′ such that d′ < d < t < s and p(t|d) = p,

p(s|d) = q, and p(d|d′) = r < 1. Then p(t|d′) = pr and p(s|d′) = qr, Moreover,

((x, t), p) %r ((y, s), q) ⇐⇒ ((x, t), p(t|d)) %r ((y, s), p(s|d))

⇐⇒ [x, t] %d [y, s]

⇐⇒ [x, t] %d′ [y, s]

⇐⇒ ((x, t− d′), p(t|d′)) %r ((y, s− d′), p(s|d′))

⇐⇒ ((x, t), pr) %r ((y, s), qr).

The third equivalence holds by Temporally Unbiased and the last equiva-

lence holds by Assumption 2.
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C Extension: non-constant hazard rate

There are two types of intertemporal preference reversals. Violations of Sta-

tionarity (static reversals) is a choice pattern at a �xed decision time, where

the relative impatience between two periods increases as they are equally-

shifted closer to the decision time. Violations of Time-consistency (dynamic

reversals), on the other hand, �xes the two periods between which choice is to

be made, but as the decision time shifts forward closer to the the two periods,

the relative impatience revealed by choices increases. When temporal prefer-

ences are Time-invariant (Halevy, 2015) (i.e, when preferences depend only on

the temporal distance between decision and consumption time), dynamic and

static reversals coincide.

In our treatment of preferences over temporal rewards, we consider dynamic

reversals as preferences {%d}d∈T depend on the decision time d. On the other

hand, in our treatment of preferences over consumption streams, we consider

static reversals since the discounting function D is de�ned over the temporal

distance but not on the decision date, following the standard formulation of the

literature. In the main paper, we assume that the hazard rate is constant. This

implies that preferences are Time-invariant and therefore each formulation

captures dynamic as well as static reversals.

If we allow for an arbitrary hazard rate (i.e., rt 6= rs for calendar times

t 6= s), static and dynamic reversals would no longer coincide. However, in the

temporal-rewards domain, Theorem 1 holds exactly in the same way as long

as the function p (·) satis�es the following standard conditions: (i) p(0) = 1;

(ii) p(+∞) = 0; (iii) p is continuous and strictly decreasing.5 In the following,

we discuss how our results for consumption streams could be extended to non-

constant hazard rate, in the context of dynamic reversals.

Consider the dynamic problem where the DM knows that conditional on

reaching some period τ ≥ 0, the consumption in the next period τ + 1 will be

available with probability of 1− rτ (so the hazard rate between periods τ and

τ + 1 is rτ ∈ [0, 1]). The equivalent of Diminishing Impatience in the dynamic

5Similar �ndings are discussed in Halevy (2004; 2015).
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context is Dt′ (t)
Dt′ (t+1)

< Dt(t)
Dt(t+1)

for all t, t′ ∈ N and t′ < t, where

Ds (t) = δt−sg

(
p(t)

p(s)

)
= δt−sg

(
Πt−1
τ=s (1− rτ )

)
(C.1)

is the composite discounting of some period t ≥ s when the decision time is s,

and p (τ) is the prior probability of reaching at least period τ . We adopt the

convention that Πt−1
τ=t (1− rτ ) = 1.

Note that this actually has to be interpreted slightly di�erently from our pre-

vious (static) Diminishing Impatience property. This new property states that

the DM's impatience between consumption at any two consecutive periods t

and t + 1 is highest when the decision period is t (i.e., considering immedi-

ate consumption versus consumption delayed by one period). We call this

property Dynamic Diminishing Impatience.

Similarly, de�ne Dynamic Strongly Diminishing Impatience as Dt′′ (t)
Dt′′ (t+1)

<
Dt′ (t)
Dt′ (t+1)

for all t, t′′, t′ ∈ N and t′′ < t′ ≤ t .

The following implications follow directly from the de�nitions:

(i) Dynamic Diminishing Impatience holds if and only if for every rτ ∈ (0, 1)

and t ∈ N:

g
(
Πt
τ=t′ (1− rτ )

)
> g

(
Πt−1
τ=t′ (1− rτ )

)
g ((1− rt)) . (C.2)

(ii) Dynamic Strongly Diminishing Impatience holds if and only if for every{
{rτ}τ∈N : rτ ∈ (0, 1)

}
and t, t′′, t′ ∈ N and t′′ < t′ ≤ t :

g (Πt
τ=t′′ (1− rτ ))

g
(
Πt−1
τ=t′′ (1− rτ )

) > g (Πt
τ=t′ (1− rτ ))

g
(
Πt−1
τ=t′ (1− rτ )

) . (C.3)

Theorem 2. Consider a DM whose preferences are represented by (2.1) with

g (·). The following hold6:

(i) Dynamic Strongly Diminishing Impatience implies Strict Common-Ratio

E�ect.
6Continuity of g() is no longer needed
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(ii) Dynamic Diminishing Impatience implies Strict Certainty E�ect.

(iii) The converses of 1 and 2 are easy to show and are omitted.

Proof. We �rst show claim (i). We will show that for any p, q ∈ (0, 1) and

` ∈ (0, 1], (3.3) in Remark 1 holds. Let q < p without loss of generality. Take

t′′ = 0, t′ = 1, t = 2 , and r0 = 1− p, r1 = 1− `, r2 = 1− q. Dynamic Strongly

Diminishing Impatience implies that

g((1− r0)(1− r1)(1− r2))
g((1− r0)(1− r1))

>
g((1− r1)(1− r2))

g(1− r1)

⇐⇒ g(pq`)

g(p`)
>

g(q`)

g(`)

⇐⇒ g(`)

g(p`)
>

g(q`)

g(pq`)

Part (2) is a special case of (1), where ` = 1 (i.e., r1 = 0), and Dynamic

Diminishing Impatience is used instead of Dynamic Strongly Diminishing Im-

patience.
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