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Conditioning on the Sign of the Estimated Coefficient:

In the main text of this article we have shown that statistical significance may carry very
little information in large samples. As a result, the values of other statistics should be
taken into account along with significance when the null is rejected in a significance test.
As discussed in Section 2, in a normal (or asymptotically normal) setting it does not take

much to go back to full information (e.g., two-sided p-value and the sign of θ̂n). Here we
consider the question of whether minimally augmenting the information on significance
with the sign of θ̂n results in informativeness when the null is rejected. This exercise is
motivated by the possibility that the sign of the estimated coefficient is implicitly taken
into account in many discussions of results from significance tests.

For concreteness, we will concentrate on the case of a positive coefficient estimate, θ̂n > 0.
That is, the limited information posterior under significance and positive θ̂n conditions on
the event

√
nθ̂n > c. The case with negative θ̂n is analogous. Using similar calculations as

in Section 1, we obtain:
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Figure A.1 reproduces the setting of Figure 1 but for the case when the posterior is con-
ditional on the sign of the estimate in addition to significance. Like in Figure 1, failure to
reject carries substantial information. In fact, both outcomes of the significance test carry
additional information, with respect to the setting in Figure 1, which of course is explained
by the additional information in the sign of θ̂n.
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Figure A.1: Posterior Distributions Conditional on Significance and Positive Coefficient
Sign

Notice that, in this case, under significance, the ratio between the posterior and the prior
converges to

lim
n→∞

p(θ|
√
nθ̂n > c)

p(θ)
=


0 if θ < 0,
Φ(−c)/Φ(µ/σ) if θ = 0,
1/Φ(µ/σ) if θ > 0.

Without significance, the ratio between the posterior and the prior converges to

lim
n→∞

p(θ|0 <
√
nθ̂n ≤ c)

p(θ)
=

{
0 if θ 6= 0,
∞ if θ = 0.

That is, as n→∞ non-significance is highly informative. Under significance, the posterior
of θ converges to the prior truncated at zero. As a result, in this case the informational
content of significance depends on the value of Pr(θ > 0) = Φ(µ/σ). If this quantity is
small, significance with a positive sign is highly informative. Unsurprisingly, when µ/σ is
large (that is, in cases where there is little uncertainty about the sign of the parameter

of interest), a positive sign of θ̂n does not add much to the informational content of the

test. Moreover, the limit of p(θ|
√
nθ̂n > c) cannot be more than double the value of p(θ)

as long as µ is non-negative. This is relevant to many instances in economics where there
are strong beliefs about the sign of the estimated coefficients (e.g., the slope of the demand
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function, or the effect of schooling on wages) and specifications reporting “wrong” signs for
the coefficients of interest are rarely reported or published.1

Testing an Interval Null:

In view of the lack of informativeness of significance in large samples (under a point null),
one could instead try to reinterpret significance tests as tests of the implicit null “θ is close
to zero”.

To accommodate this possibility, we will now concentrate on the problem of testing the null
that the parameter θ is in some interval around zero. Under the null hypothesis, θ ∈ [−δ, δ],
where δ is some positive number. Under the alternative hypothesis, θ 6∈ [−δ, δ]. Consider
the normal model of Section 2. To obtain a test of size α we control the supremum of the
probability of Type I error:

Pr(
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n|θ̂n| > c | |θ| = δ) = Φ(
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Therefore, we choose c such that Φ(
√
nδ − c) + Φ(−

√
nδ − c) = α. While there is no

closed-form solution for c, its value can be calculated numerically for any given value of√
nδ, and a very accurate approximation for large

√
nδ is given by

c = Φ−1(1− α) +
√
nδ.

That is, controlling size in this setting implies that the critical value has to increase with
the sample size at a root-n rate, with the constant given by δ. In turn, this implies that
the probability of rejection, Pr(

√
n|θ̂n| > c|θ) = Φ(

√
nθ − c) + Φ(−

√
nθ − c) converges

to one if θ 6∈ [−δ, δ], and converges to zero if θ ∈ (−δ, δ). As a result, the large sample
posterior distributions with and without significance are truncated versions of the prior,
with the prior truncated at (−δ, δ) under significance, and at (−∞,−δ) ∪ (δ,∞) under
no significance. If δ is large, both significance and non-significance are informative. If,
however, δ is small, we go back to the setting where significance carries only local-to-zero
information. Figure A.2 reports exact prior and posterior distributions for the same prior
as in Figure 1, and with δ = {0.5, 1, 2}, α = 0.05 and n = 10000. When δ is small the
large sample posterior under significance is close to the prior and the large sample posterior
under no significance is close to a distribution degenerate at zero.
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Figure A.2: Posterior After a Test of the Null θ ∈ [−δ, δ] (n = 10000, α = 0.05)
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