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1 Method of Simulated Moments

The Method of Simulated Moments (MSM) retrieves the parameters that minimize the sum of squared

residuals between the moments of the data and those of the model. The minimization problem reads as

follows:

Θ = arg min
Θ

d(Θ)′Wd(Θ), (1)

where Θ is a N × 1 vector of parameters, d(Θ) is a M × 1 vector of residuals, and W is a M × M

weighting matrix. It is required that there should be at least as many parameters (N) as moments (M),

that is N ≥ M. In the case of N = M the model is just-identified, whereas if N > M the model is

over-identified. Note that setting W as a matrix with the reciprocal of the squared data moments on the

diagonal and zero elsewhere implies that solving eq. 1 is equivalent to minimizing the sum of squared

residuals between the moments of the data and those of the model.

In order to solve the MSM we rely on the root-finding method of Nelder and Mead (1965). Since we

use a local root-finding method, we conduct robustness checks by altering both the initial starting values

and the step factor. We find that the results are not sensitive to such modifications.

2 Computational Strategy

This section describes the numerical methods used to compute the model’s steady state, as well as the

transitional dynamics under policy uncertainty. We first describe how the state space is discretized.
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2.1 State Space Discretization

The model contains four states: idiosyncratic productivity (a), idiosyncratic policy state (z), idiosyncratic

capital (k), aggregate state (ζ). The discretization of the four states is as follows:

• Idiosyncratic productivity (a) is discretized into a grid a ∈ {a1, ..., aNa} comprising of Na = 15

log-linearly spaced points.

• The idiosyncratic policy states (z) is discretized into a grid containing Nz = 3 idiosyncratic states

represented by z ∈ {z+, z−, z0}.

• The idiosyncratic capital state (k) is discretized into a grid k ∈ {k1, ..., kNk} containing of Nk =

100 points spaced log-linearly between 1× 100 and 1× 102.

• The aggregate states (ζ) are four (Nζ = 4): the pre-referendum state (ζP), the negotiations state

(ζN), the Soft Brexit state (ζS) and the Hard Brexit state (ζH). These aggregate states can be

represented into the following grid Z ∈ {ζP, ζN , ζS, ζH}.

The state space is Na × Nk × Nz × Nζ , or more specifically 15× 100× 3× 4.

We also discretize the following three exogenous stochastic processes:

• The stochastic process of the aggregate states can be represented by the transition matrix Γζ of

size Nζ × Nζ where ∑
Nζ

l=1 π
ζ
j,l = 1 for all j ∈ {1, ..., Nζ}. The transition matrix for the aggregate

policy state of the economy is given by:

Γζ(ζt+1 = ζ i|ζt = ζq) =



↓ ζ
q
t , ζ i

t+1 → ζN ζS ζH ζP

ζN 1− γR − θ θ(1− γH) θγH γR

ζS 0 1 0 0

ζH 0 0 1 0

ζP 0 0 0 1


.

(2)

• The stochastic process of idiosyncratic productivity can be represented by the transition matrix Γa

of size Na × Na discretized using Tauchen’s method.
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• The stochastic process of the idiosyncratic policy states can be represented by the transition matrix

Γz of size Na × Na × Nz × Nz. Where Γz(ζ ′ = ζ j, z′|ζ = ζ i, z) = I if i = {P, S, H} and

j = {P, N, S, H}, as these states do not entail the draw of z. Moreover, if i = {N}, j = {N, P},

and zn = {z+, z0, z−}: Γz(ζ ′ = ζ j, z′|ζ = ζ i, z) = I. However, if i = {N}, j = {S, H}, and

zn = {z+, z0, z−}:

Γz(ζ
′ = ζ j, z′|ζ = ζ i, z) =



↓ z, z′ → z+ z0 z−

z+ q+ (1− q+ − q−) q−

z0 q+ (1− q+ − q−) q−

z− q+ (1− q+ − q−) q−

. (3)

2.2 Steady State

We compute the stochastic steady states of the pre-referendum economy abstracting from the possibility

that Brexit may happen, i.e. we do not calculate the ’risky’ steady state. In what follows we describe the

solution algorithm based on value function iteration.

2.3 Steady State Solution Algorithm:

1. Solve the problem of the firms using value function iteration, given the prices β and w:

(a) guess an initial value function Vg(a, z, k), for instance Vg(e, z, k) = 0;

(b) solve for VNA(a, z, k) and VA(a, z, k) by taking expectations over the exogenous processes

of a and z and using V ′(a, z, k) = Vg(a, z, k), and obtain the policy functions K(a, z, k) and

L(a, z, k) ;

(c) using VNA(a, z, k) and VA(a, z, k) find Ṽ(a, z, k, φ);

(d) then find the policy function for the fixed capital adjustment cost threshold φT(a, z, k);

(e) calculate V(a, z, k) by taking expectations of Ṽ(a, z, k, φ) over φ using the threshold φT(a, z, k);

(f) check whether the absolute percentage deviation between the guessed value function Vg(a, z, k)

and the obtained value function V(a, z, k) is within a pre-set tolerance. If the absolute devia-

tion is smaller than the tolerance then exit the algorithm and save the optimal policy functions

(K(a, z, k),L(a, z, k),φT(a, z, k)), otherwise update the guess Vg(a, z, k) = V(a, z, k) and re-

peat steps (a)-(e) until convergence.
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2. Using the policy functions K(a, z, k) and φT(a, z, k) solve for the stationary distribution as a fixed

point, defined as µ′(a′, z′, k′) = µ(a, z, k), by iterating on the distribution of firms over idiosyn-

cratic productivity, idiosyncratic policy, and idiosyncratic capital holdings. In doing so, the tran-

sitional probability matrices, Γa and Γz, for the exogenous processes for a and z, respectively, are

used for the evolution of the distribution:

µ′(a′, z′, k′)

=
Na

∑
a∈a

Nz

∑
z∈z

µ(a, z, k)Γa(a′ = al |a = aq)Γz(z′ = zi|z = zj)I(k′, a, z, k),
(4)

where I(k′, a, z, k) = 1 if k′ = K(a, z, k) and 0 otherwise.

3. Once the stationary distribution is obtained, it is possible to multiply it by the relevant policy

decision to obtain the aggregates K, L, Y, I.

2.4 Transitional Dynamics under Policy Uncertainty

We solve for the transitional dynamics under policy uncertainty. The model features policy uncertainty,

coming through the stochastic processes represented by the transition matrices Γζ and Γz.

We set T = 100 and N∗ = 16, where T is the total number of periods in the simulation and

N∗ denotes the first period in which uncertainty is resolved. For the transition from ζP to ζ j where

j ∈ {S, H, P}:

1. Solve the model for the initial steady state (ζP) using value function iteration and obtain the initial

distribution µ0(a, z, k) by solving the fixed point of the stationary distribution.

2. Solve the model for all the aggregate states with the aggregate policy stochastic process (Γζ) and

the idiosyncratic policy stochastic process (Γz) and obtain the optimal policy functions Kt(a, z, k; ζ i),

Lt(a, z, k; ζ i), and φT
t (a, z, k; ζ i) where i ∈ {P, N, S, H} using value function iteration.

3. Using the optimal policy functions and µt−1(a, z, k), obtain aggregates and solve for the next

period distribution µt(a, z, k) for t = 1, ..., N∗ under the aggregate state ζN .

4. Again, using the optimal policy functions and µt−1(a, z, k), obtain aggregates and solve for the

next period distribution µt(a, z, k) for t = N∗ + 1, ..., T under the aggregate state ζ j.
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We have used alternative maximum time periods for the algorithm, namely, T = 200, 300 and

checked that the results do not change.
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