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In this Appendix, we restate and proof Theorem 2. Theorem 2 tells us how the
probability of success changes with N — ¢, and its proof follows the same logic as the
proof of Theorem 1. Then we state and prove Proposition 2, which is a generalization of
Proposition 1.

For general ¢ and N with ¢ < N, the indifference condition (which is a generalization

of (1)) is:

anl) _ (V) 0 o)™ (- Pl 1)

U q—1

Similarly, the probability of success for general ¢ and N (the generalization of (2) and

(3)) is:
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We now restate Theorem 2 from the main text.
Theorem 2. Take q, N, ¢ and N’ such that ¢ < N and ¢ < N'.

1. If¢<q and N —q > N'— ¢, with at least one inequality strict, then Sy n(c; x(u)) >
Sy (¢ no () for sufficiently small u.
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2. Suppose the support of costs is bounded from above, or 1 — F(x) is log-concave for
sufficiently large x. If N —q < N' — ¢, then Syn(c; y(u)) > Sy (¢l ni(u)) for
sufficiently large .

Before we provide the proof for Theorem 2, we provide a Lemma that will be crucial
for the second part of the proof.

Lemma 2. Take q, N, ¢' and N’ such that g < N and ¢' < N'. If the support of costs is
bounded from above, or if 1 — F(x) is log-concave for sufficiently large x,

1. For all a > 0, lim,_. cqjj—a(u) =0.
2. lim, % < 00.
ql,N/

Proof of Lemma 2. Suppose first that the support of costs is bounded from above.
Then, by (1), for any ¢ < N and u > 0, ¢} y(u) is strictly smaller than the upper bound
of the cost distribution, which proves the first part. Also by (1), limy o ¢y yi(u) > 0,
which proves the second part.

Next, suppose the support of costs is not bounded, but 1 — F(z) is log-concave for
sufficiently high x.

To prove the first part, we first show that lim, . ¢ y(u) = 0o. Suppose towards a

contradiction that lim, . ¢ y(u) < oo. This implies that lim, . Cq’]: ® _ 0. But the
right-hand side of (1) converges to a strictly positive number, a contradiction.
Then, using L’Hopital’s rule,
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Differentiating (1) with respect to u yields (we omit argument u here for brevity)
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From (1), the numerator is equal to %Lu(u), and also

N -1 C a2 (1 N :CZ,N(U> 1
(5 70) (P o)™ (1 F () u Fle (@) (L= Fle n(@)))

(6)




qN<>

Substituting and (6) into (5) yields:
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Substituting (7) into (4),
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Recall that lim, o ¢} y(u) = oo, and thus lim, ;. F(c y(u)) = 1. Since 1 — F(x) is

log-concave, lim,_, % 0. Equation (8) then implies that lim, CZ,ga(U) =0.
To prove the second part by contradiction, suppose that lim, . ciZ'N (Zj ;= 00. Then,
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limy o0 € n(w) > limy o0 €y o (u). Because 1 — F() is log-concave j is increasing,
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Using L’Hopital’s rule,
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Proof of Theorem 2. To prove the first part, note that from (1), ¢; y(0) = 0. There-



fore, when u = 0, the number of citizens contributing is:
X ~ Binomial(N, F(0))
and the probability of success is:
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where I, (a,b) is the regularized beta function, defined as:
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Since I, (., .) is strictly decreasing in its first argument and strictly increasing in its second
argument, S, y(0) is strictly increasing in N — ¢ + 1 and strictly decreasing in ¢. As a
result, Son(ch n(0)) > Sy nr(cy ni(0)) if N —qg > N —¢ and ¢ < ¢/, with at least one
inequality strict. The first part of the theorem follows from the continuity of ¢} y(u) and
Sy n(es y(u)) in u.

Now, we prove the second part of the theorem. Take ¢, N, ¢’ and N’ such that
N — g < N'—¢. We will consider three separate cases.

Case 1: N — ¢ > 0. Write the difference between success probabilities as:
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Thus, it suffices to show
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Moreover, since lim, o F'(c) y(u)) = 1,
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Substituting (11) into (10) yields
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Substituting the indifference conditions (1) into (12) yields
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Case 2: N —¢g=0and N’ — ¢ = 1. If the support of costs is bounded from above, then



1 — F(c; y(u)) = 0 for sufficiently large u, while 1 — F'(¢, y,(u)) > 0 for all u. As
a result, Sy n(c; y(u)) =1 > Sy ni(cl ni(u)). If the support of costs has no upper
bound, (12) applies and
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By (1), limy_e0 vl g By Lemma 2, lim,_,s cq"g;(u) = 0 for any o > 0.
Therefore, it suffices to show:
1-F
lim () =0, for some a € (0,1). (13)
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This is precisely condition (13), demonstrated in the proof of Theorem 1.
Case 3: N —g=0and N’ — ¢ > 1. For sufficiently large u,
Sn (e (w) > Sy-1n(cy g (1)) > Sy v (cgr o (w)).
where the first inequality follows from Case 2 and the second inequality follows from
Case 1.
O
We state and prove now the equivalent of Proposition 1.
Proposition 2. Suppose 1 — F(x) = g/z%, o, 5 > 0, for sufficiently large x.
e If a > 1, the likelihood of success is decreasing in N — q for sufficiently large u:
Sqn (¢ n(u)) > Sy ni(Cy yi(w)) when N —q < N' — ¢ for sufficiently large u,
o if a < 1, the likelihood of success is increasing in N — q for sufficiently large u:
Sen(c; n(w)) > Sy ni(cy yi(uw)) when N —q > N’ — ¢ for sufficiently large u.
Proof of Proposition 2. Substituting 1 — F'(x) = xﬁa in (12),
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Substituting 1 — F(z) = £ in (1),
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Thus,
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Since limy o ¢ v (u) = 00,
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Now, suppose:
ea>land N—qg< N —¢, or,
ea<land N—q¢g> N —¢.

In both cases,
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Thus, for sufficiently large u
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