PERSUASION WITH CORRELATION NEGLECT: A FULL MANIPULATION RESULT

Gilat Levy, Inés Moreno de Barreda, Ronny Razin

Online Appendix

A1. Proof of Lemma 2

A receiver with correlation neglect believes that the conditional joint distribution of the signals is the product of the conditional marginals:

$$q(s_1, s_2, ..., s_m \mid \omega) = \prod_{i=1}^m q_i(s_i \mid \omega).$$

Therefore upon observing realisation $s = (s_1, ..., s_m)$ which leads to posteriors $\mu = (\mu_1, ..., \mu_m)$ with $\mu_i(\omega) = (p(\omega)q_i(s_i \mid \omega))/(\sum_{\upsilon} p(\upsilon)q_i(s_i \mid \upsilon))$, her posterior belief is:

$$\frac{p(\omega)q(s_{1},...,s_{m}|\omega)}{\sum_{v}p(v)q(s_{1},...,s_{m}|v)} = \frac{p(\omega)\prod_{i=1}^{m}q_{i}(s_{i}|\omega)}{\sum_{v}p(v)\prod_{i=1}^{m}q_{i}(s_{i}|v)}$$

$$= \frac{(1/p(\omega)^{m-1})\prod_{i=1}^{m}p(\omega)q_{i}(s_{i}|\omega)/\sum_{v}p(v)q_{i}(s_{i}|v)}{\sum_{v}(1/p(v)^{m-1})\prod_{i=1}^{m}p(v)q_{i}(s_{i}|v)/\sum_{v}p(v)q_{i}(s_{i}|v)}$$

$$= \frac{\prod_{i=1}^{m}\mu_{i}(\omega)/p(\omega)^{m-1}}{\sum_{v\in\Omega}\prod_{i=1}^{m}\mu_{i}(v)/p(v)^{m-1}}$$

Hence we can write,

$$\mu^{CN}(\boldsymbol{\mu})(\omega) = \frac{\prod_{i=1}^m \mu_i(\omega) / p(\omega)^{m-1}}{\sum_{\upsilon \in \Omega} \left(\prod_{i=1}^m \mu_i(\upsilon) / p(\upsilon)^{m-1} \right)}$$

A2. Additional proofs for Theorem 1

We prove that the joint conditional distribution described in (10) is well defined.

First, we show that $0 \le \gamma^\omega \le 1$. From the definition, γ^ω is trivially positive. Moreover, it cannot be that both $\alpha/z_\omega^\omega > 1$ and $\beta/(\max_{v \ne \omega} \{z_v^\omega\}) > 1$. If that were the case, then $z_\omega^\omega < \alpha$ and $\max_{v \ne \omega} \{z_v^\omega\} < \beta$. But then $\sum_v z_v^\omega \le z_\omega^\omega + (n-1)\max_{v \ne \omega} \{z_v^\omega\} < \alpha + (n-1)\beta = 1$, which contradicts that $\sum_v z_v^\omega = 1$. Therefore, $\gamma^\omega \le 1$.

Second we show that both $0 \le \lambda_\omega^\omega \le 1$ and $0 \le \lambda_v^\omega \le 1$. Again, from the definition it is trivial to see that these numbers are below 1. To see that they are positive note that, $\lambda_\omega^\omega = \alpha - \gamma^\omega z_\omega^\omega \ge \alpha - (\alpha/z_\omega^\omega) z_\omega^\omega = 0$ and $\lambda_v^\omega = \beta - \gamma^\omega z_v^\omega \ge \beta - (\beta/z_v^\omega) z_v^\omega = 0$.

Lastly, $\gamma^{\omega} + \sum_{v} \lambda_{v}^{\omega} = \gamma^{\omega} (1 - \sum_{v} z_{v}^{\omega}) + \alpha + (n - 1)\beta = 1$, therefore $\tau(\cdot \mid \omega)$ is indeed a distribution.

We now address the case in which ρ^{ω} is not interior. Consider a sequence of interior posteriors $\{\rho_m^{\omega}\}_{m\in\mathbb{N}}$ converging to ρ^{ω} and we replicate the proof by replacing in equation (6) ρ^{ω} by ρ_m^{ω} . Hence with probability converging to one, the information structure generates vectors of proportions $z^{\omega}(m)$ that satisfy:

$$0 \leq \lim_{m \to \infty} |\mu^{CN}(z^{\omega}(m)) - \rho^{\omega}| \leq \lim_{m \to \infty} |\mu^{CN}(z^{\omega}(m)) - \rho_m^{\omega}| + \lim_{m \to \infty} |\rho_m^{\omega} - \rho^{\omega}| = 0.$$

A3. Proof of Corollary 1

Recall from Section II.B that for each $\omega \in \Omega$, we defined $v^{\omega}(\mu) = \max_{a \in A_{\mu}} v(a, \omega)$ and that $v^{\omega}(\cdot)$ is continuous for all $\mu \in \Delta(\Omega)$ but for a finite set of posteriors. If ρ^{ω} is such that v^{ω} is continuous at ρ^{ω} , then given Theorem 1, the expected utility of the sender conditional on state ω converges to \bar{v}^{ω} .

Suppose now that ρ^{ω} is one of the finite points for which $A^{\omega}_{\rho^{\omega}}$ is not continuous. Then, by Assumption 1 there exists $a \in A^{\omega}_{\rho^{\omega}}$ and sequences $\{\rho^{\omega}_{m}\}_{m=1}^{\infty}, \{a_{m}\}_{m=1}^{\infty} \text{ with } \rho^{\omega}_{m} \neq \rho^{\omega} \text{ and } a_{m} \in A_{\rho^{\omega}_{m}}, \text{ such that } \rho^{\omega}_{m} \to_{m \to \infty} \rho^{\omega} \text{ and } a_{m} \to_{m \to \infty} a. \text{ Note that without loss of generality we can assume that for any } m, v^{\omega} \text{ is continuous at } \rho^{\omega}_{m}. \text{ Now, we use the proof of Theorem 1 in which at each } m \text{ we replace } \rho^{\omega} \text{ in equation (6) by } \rho^{\omega}_{m}. \text{ Therefore, with probability converging to one, the information structure generates vectors of proportions } z^{\omega}(m) \text{ that satisfy:}$

$$|v(a_{\mu^{CN}(z^{\omega}(m))},\omega)-\bar{v}^{\omega}|\leq |v(a_{\mu^{CN}(z^{\omega}(m))},\omega)-v(a_m,\omega)|+|v(a_m,\omega)-\bar{v}^{\omega}|\longrightarrow_{m\to\infty}0.$$

Therefore, the ex-ante expected utility of the sender converges to $\sum_{\omega \in \Omega} p(\omega) \bar{v}^{\omega}$.

Suppose first that $\rho(\omega) \neq 0$ for all $\omega \in \Omega$. Let $\hat{\mu}_m \in \Delta(\Omega)$ be defined in the following way:

$$\hat{\mu}_m(\omega) = \frac{\rho(\omega)^{\frac{1}{m}} p(\omega)^{\frac{m-1}{m}}}{\sum_{\upsilon \in \Omega} \rho(\upsilon)^{\frac{1}{m}} p(\upsilon)^{\frac{m-1}{m}}},$$

which then implies that:

$$\mu_m^{FC}(\hat{\mu}_m) = \rho.$$

Note that since p is interior, we can always design a signal structure τ^m of fully positively correlated signals that have two vectors of posteriors in the support, $\hat{\mu}_m = (\hat{\mu}_m, ..., \hat{\mu}_m)$ and $\mu'_m = (\mu'_m, ..., \mu'_m)$, where μ'_m is at a fixed distance $\delta > 0$ from p. The weights are then pinned down by the Bayesian Plausibility constraint such that:

$$\tau^{m}(\hat{\mu}_{m})\hat{\mu}_{m} + (1 - \tau^{m}(\hat{\mu}_{m}))\mu'_{m} = p.$$

Note that when $m \to \infty$, then $\hat{\mu}_m$ is arbitrarily close to p, as

$$\hat{\mu}_m(\omega) = \frac{p(\omega)^{1-\frac{1}{m}}}{\sum_{\upsilon \in \Omega} \left(\frac{p(\upsilon)}{p(\omega)}\right)^{\frac{1}{m}} p(\upsilon)^{1-\frac{1}{m}}} \to_{m \to \infty} p(\omega).$$

As a result, given the Bayesian Plausibility constraint, and maintaining μ'_m always at a fixed distance $\delta > 0$ away from p, $\tau^m(\hat{\mu}_m) \to_{m \to \infty} 1$. This implies that for any $\epsilon > 0$,

$$\lim_{m \to \infty} \tau^m(\{ \mu = (\mu, ..., \mu) \text{ s.t. } \tau^m(\mu) > 0 \mid |\mu_m^{FC}(\mu) - \rho| < \epsilon \}) = 1.$$

Lastly, consider the case in which $\rho(\omega) = 0$ for some $\omega \in \Omega$. Consider a sequence $\{\rho_m\}_{m=1}^{\infty}$ such that for any m, $\rho_m(\upsilon) > 0$ for any $\upsilon \in \Omega$ and $\lim_{m \to \infty} \rho_m = \rho$. Moreover, we can choose the sequence to satisfy for any υ , $\omega \in \Omega$, $\lim_{m \to \infty} (\rho_m(\upsilon)/\rho_m(\omega))^{1/m} = 1$.

Let $\hat{\mu}_m \in \Delta(\Omega)$ be defined in the following way:

$$\hat{\mu}_m(\omega) = \frac{(\rho_m(\omega))^{\frac{1}{m}} p(\omega)^{\frac{m-1}{m}}}{\sum_{v \in \mathcal{O}} (\rho_m(v))^{\frac{1}{m}} p(v)^{\frac{m-1}{m}}},$$

which then implies that:

$$\mu_m^{FC}(\hat{\mu}_m) = \rho_m.$$

Note that since p is interior, we can always design a signal structure τ^m of fully positively correlated signals with two vectors of posteriors in the support, $\hat{\mu}_m = (\hat{\mu}_m, ..., \hat{\mu}_m)$ and $\mu'_m = (\mu'_m, ..., \mu'_m)$, where μ'_m is at a fixed distance $\delta > 0$ from p. The weights are then pinned down by the Bayesian Plausibility constraint such that:

$$\tau^{m}(\hat{\mu}_{m})\hat{\mu}_{m} + (1 - \tau^{m}(\hat{\mu}_{m}))\mu'_{m} = p.$$

Note that when $m \to \infty$, then $\hat{\mu}_m$ is arbitrarily close to p, as

$$\hat{\mu}_m(\omega) = \frac{p(\omega)^{\frac{m-1}{m}}}{\sum_{\upsilon \in \Omega} \left(\frac{\rho_m(\upsilon)}{\rho_m(\omega)}\right)^{\frac{1}{m}} p(\upsilon)^{\frac{m-1}{m}}} \to_{m \to \infty} p(\omega).$$

As a result, given the Bayesian Plausibility constraint, and maintaining μ'_m always at a fixed distance $\delta > 0$ away from p, $\tau^m(\hat{\mu}_m) \to_{m \to \infty} 1$. As $\lim_{m \to \infty} \rho_m = \rho$, this implies that for any $\epsilon > 0$,

$$\lim_{m \to \infty} \tau^m(\{ \mu = (\mu, ..., \mu) \text{ s.t. } \tau^m(\mu) > 0 \mid |\mu_m^{FC}(\mu) - \rho| < \epsilon \}) = 1.$$