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This supplement contains additional results for the paper “Pre-test with Caution: Event-
study Estimates After Testing for Parallel Trends.” Section A provides proofs for Proposition
2 and Proposition 4, generalizing the proofs given in the main text for the case of K =

1 to arbitrary K. Section B states and proves asymptotic results. Section C provides
additional simulation results in which the treatment and control group receive stochastic
common shocks. Finally, Section D contains additional tables and figures.

A Generalized Proofs for Results in the Main Text

This section provides multivariate extensions to some of the proofs in the main text, which
considered only the case K = 1. For ease of notation, I leave the dependence of B on Σ

implicit unless needed for clarity.
We begin with a series of lemmas leading up to proofs of Proposition 2 and Proposition

4 for the more general case of K > 1. These results extend the argument in Papadopoulos
(2013) for univariate truncated normals to the multivariate case.

Lemma A.1. Suppose Y is a k-dimensional multivariate normal, Y ∼ N (µ, Σ), and let
B ⊂ Rk be a convex set such that P (Y ∈ B) > 0. Letting Dµ denote the Jacobian operator
with respect to µ, we have

1. DµE [Y |Y ∈ B, µ] = Var [Y |Y ∈ B, µ] Σ−1.

2. Var [Y |Y ∈ B]− Σ is negative semi-definite.
∗Brown University. jonathanroth@brown.edu.
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Proof.
Define the function H : Rk → R by

H(µ) =

∫
B

φΣ(y − µ)dy

for φΣ(x) = (2π)−
k
2 det(Σ)−

1
2 exp(−1

2
x′Σ−1x) the PDF of the N (0, Σ) distribution. We now

argue that H is log-concave in µ. Note that we can write H(µ) =
∫
Rk g1(y, µ)g2(y, µ)dy for

g1(y, µ) = φΣ(y − µ) and g2(y, µ) = 1 [y ∈ B]. The normal PDF is log-concave, and g1 is
the composition of the normal PDF with a linear function, and hence log-concave as well.
Likewise, g2 is log-concave since B is a convex set. The product of log-concave functions
is log-concave, and the marginalization of a log-concave function with respect to one of its
arguments is log-concave by Prekopa’s theorem (see, e.g. Theorem 3.3 in Saumard and
Wellner (2014)), from which it follows that H is log-concave in µ.

Now, applying Leibniz’s rule and the chain rule, we have that the 1× k gradient of logH

with respect to µ is equal to

Dµ logH =

∫
B
DµφΣ(y − µ)dy∫
B
φΣ(y − µ)dy

=

∫
B
φΣ(y − µ)(y − µ)′Σ−1dy∫

B
φΣ(y − µ)dy

= (E [Y |Y ∈ B]− µ)′Σ−1.

where the second line takes the derivative of the normal PDF, DµφΣ(y − µ) = φΣ(y − µ) ·
(y − µ)′Σ−1, and the third uses the definition of the conditional expectation. It follows that

E [Y |Y ∈ B, µ] = µ+ Σ(Dµ logH)′.

Differentiating again with respect to µ, we have that the k×k Jacobian of E [Y |Y ∈ B, µ]

with respect to µ is given by

DµE [Y |Y ∈ B, µ] = I + ΣDµ(Dµ logH)′. (1)

Since H is log-concave, Dµ(Dµ logH)′ is the Hessian of a concave function, and thus is
negative semi-definite. Next, note that by definition,

E [Y |Y ∈ B, µ] =

∫
B
y φΣ(y − µ) dy∫
B
φΣ(y − µ) dy

.
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Thus, applying Leibniz’s rule again along with the product rule,

DµE [Y |Y ∈ B, µ] =

∫
B
y DµφΣ(y − µ) dy∫
B
φΣ(y − µ) dy

+[∫
B

y φΣ(y − µ) dy

]
·Dµ

[∫
B

φΣ(y − µ) dy

]−1

. (2)

Recall that
DµφΣ(y − µ) = φΣ(y − µ) · (y − µ)′Σ−1.

The first term on the right-hand side of (2) thus becomes∫
B
y(y − µ)′φΣ(y − µ) dy∫

B
φΣ(y − µ) dy

Σ−1 =

(E [Y Y ′ |Y ∈ B, µ]− E [Y |Y ∈ B, µ]µ′) Σ−1.

Applying the chain-rule, the second term on the right-hand side of (2) becomes

−
∫
B
y φΣ(y − µ) dy ·

∫
B

(y − µ)′ φΣ(y − µ) dy[∫
B
φΣ(y − µ) dy

]2 Σ−1 =(
−E [Y |Y ∈ B, µ]E [Y |Y ∈ B, µ]′ + E [Y |Y ∈ B, µ]µ′

)
Σ−1.

Substituting the expressions in the previous two displays back into (2), we have

DµE [Y |Y ∈ B, µ] =
(
E [Y Y ′ |Y ∈ B, µ]− E [Y |Y ∈ B, µ]E [Y |Y ∈ B, µ]′

)
Σ−1

= Var [Y |Y ∈ B, µ] Σ−1, (3)

which establishes the first result. Additionally, combining (1) and (3), we have that

Var [Y |Y ∈ B, µ] Σ−1 = I + ΣDµ(Dµ logH)′, (4)

which implies that

Var [Y |Y ∈ B, µ]− Σ = ΣDµ(Dµ logH)′Σ. (5)

However, log-concavity implies that Dµ(Dµ logH)′ is negative semi-definite, and thus
Var [Y |Y ∈ B, µ]− Σ is negative semi-definite as well, as we desired to show. �

Lemma A.2. Suppose that Σ satisfies Assumption 1. Then for ι the vector of ones and
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some c1 > 0, ι′Σ−1
22 = c1ι

′. Additionally, Σ12Σ−1
22 = c2ι

′, for a constant c2 > 0.

Proof. First, note that if K = 1, then Σ12 and Σ22 are each positive scalars, and the result
follows trivially. For the remainder of the proof, we therefore consider K > 1. Note that
we can write Σ22 = Λ + ριι′, where Λ = (σ2 − ρ)I. It follows from the Sherman-Morrison
formula that

Σ−1
22 = Λ−1 − ρ2Λ−1ιι′Λ−1

1 + ρ2ι′Λ−1ι

= (σ2 − ρ)−1I − ρ2(σ2 − ρ)−2ιι′

1 + ρ2(σ2 − ρ)−1ι′ι
.

Thus:

ι′Σ−1
22 =

ι′
(

(σ2 − ρ)−1I − ρ2(σ2 − ρ)−2ιι′

1 + ρ2(σ2 − ρ)−1ι′ι

)
=

(σ2 − ρ)−1

(
1− ρ2(σ2 − ρ)−1ι′ι

1 + ρ2(σ2 − ρ)−1ι′ι

)
ι′ =

(σ2 − ρ)−1

(
1

1 + ρ2(σ2 − ρ)−1ι′ι

)
︸ ︷︷ ︸

:=c1

ι′.

Since σ2 − ρ > 0, all of the terms in c1 are positive, and thus c1 > 0, as needed. Finally,
note that Assumption 1 implies that Σ12 = ρι′. It follows that Σ12Σ−1

22 = ρc1ι
′ = c2ι

′ for
c2 = ρc1 > 0.

Lemma A.3. Suppose Y ∼ N (0,Σ) is K-dimensional normal, with Σ satisfying Assumption
1. Let B = {y ∈ RK | aj ≤ y ≤ bj for all j}, where −bj < aj < bj for all j. Then for ι the
vector of ones, E [ι′Y |Y ∈ B] = E [Y1 + . . .+ YK |Y ∈ B] > 0.

Proof. For any x ∈ RK such that xj ≤ bj for all j, define BX(x) = {y ∈ RK |xj ≤ y ≤
bj for all j}. Let b = (b1, . . . , bK). Note that the distribution of Y is symmetric around zero,
andBX(−b) is likewise symmetric around 0, from which it follows that E

[
Y |Y ∈ BX(−b)

]
=

E
[
−Y |Y ∈ BX(−b)

]
= 0. Now, define

g(x) = E
[
ι′Y |Y ∈ BX(x)

]
.

From the argument above, we have that g(−b) = 0, and we wish to show that g(a) > 0. By
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the mean-value theorem, for some t ∈ (0, 1),

g(a) = g(−b) + (a− (−b)) ∇g (ta+ (1− t)(−b))

= (a+ b)∇g (ta+ (1− t)(−b))

=: (a+ b)∇g(xt).

By assumption, (a + b) is elementwise greater than 0. It thus suffices to show that all

elements of ∇g (xt) are positive. Without loss of generality, we show that
∂g(xt)

∂xK
> 0.

Using the definition of the conditional expectation and Leibniz’s rule, we have

∂g(xt)

∂xK
=

∂

∂xK

(∫ b1

xt1

· · ·
∫ bK

xtK

(y1 + . . .+ yK) φΣ(y) dy1 . . . dyK

)(∫ b1

xt1

· · ·
∫ bK

xtK

φΣ(y) dy1 . . . dyK

)−1
 =

(∫ b1

xt1

· · ·
∫ bK

xtK

(y1 + . . .+ yK) φΣ(y) dy1 . . . dyK ×
∫ b1

xt1

· · ·
∫ bK−1

xtK−1

φΣ

((
y−K

xtK

))
dy1 . . . dyK−1

−
∫ b1

xt1

· · ·
∫ bK−1

xtK−1

(y1 + . . .+ yK−1 + xtK) φΣ

((
y−K

xtK

))
dy1 . . . dyK−1 ×

∫ b1

xt1

· · ·
∫ bK

xtK

φΣ(y) dy1 . . . dyK

)

×

(∫ b1

xt1

· · ·
∫ bK

xtK

φΣ(y) dy1 . . . dyK

)−2

(6)

where φΣ(y) denotes the PDF of a multivariate normal with mean 0 and variance Σ, and

the second line uses the quotient rule. It follows from (6) that
∂g(xt)

∂xK
> 0 if and only if

∫ b1
xt1
· · ·
∫ bK
xtk

(y1 + . . .+ yK) φΣ(y) dy1 . . . dyK∫ b1
xt1
· · ·
∫ bK
xtk

φΣ(y) dy1 . . . dyK
>

∫ b1
xt1
· · ·
∫ bK−1

xtK−1
(y1 + · · ·+ yK−1 + xtK) φΣ

((
y−K

xtK

))
dy1 . . . dyK−1

∫ b1
xt1
· · ·
∫ bK−1

xtK−1
φΣ

((
y−K

xtK

))
dy1 . . . dyK−1

or equivalently,

E
[
Y1 + . . .+ YK |xtj ≤ Yj ≤ bj,∀j

]
> E

[
Y1 + . . .+ YK |xtj ≤ Yj ≤ bj, for j < K, YK = xtK

]
.
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It is clear that E
[
YK |xtj ≤ Yj ≤ bj,∀j

]
> xtK , since xtK < bK and the Kth marginal density

of the rectangularly-truncated normal distribution is positive for all values in [xtK , bK ] (see
Cartinhour (1990)). This completes the proof for the case where K = 1. For K > 1, it
suffices to show that

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj,∀j

]
≥ E

[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj, for j < K, YK = xtK

]
.

(7)

To see why (7) holds, let Ỹ−K = Y−K−Σ−K,KΣ−1
K,KYK , where a “−K” subscript denotes all

of the indices except forK. It is straightforward to verify that Ỹ−K is uncorrelated, and hence
(by normality) independent of YK and Ỹ−K ∼ N

(
0, Σ̃

)
for Σ̃ = Σ−K,−K−Σ−K,KΣ−1

K,KΣK,−K .

By construction, Y−K = Ỹ−K + Σ−K,KΣ−1
K,KYK , from which it follows that

Y−K |YK = yK ∼ N
(

Σ−K,KΣ−1
K,KyK , Σ̃

)
.

We now argue that Σ−K,KΣ−1
K,KyK = c yK ι for a positive constant c. If K = 2, then

by Assumption 1, Σ−K,KΣ−1
K,K = ρ/σ2 is the product of two positive scalars, and can thus

be trivially written as cι. For K > 2, we verify that Σ̃ satisfies Assumption 1, and then
apply Lemma A.2 to obtain the desired result. To do this, note that by Assumption 1,
Σ has common terms σ2 on the diagonal and ρ on the off-diagonal, and thus the same
holds for Σ−K,−K . Additionally, under Assumption 1, Σ−K,K = ρι and Σ−1

K,K = 1
σ2 , so

Σ−K,KΣ−1
K,KΣK,−K equals ρ2/σ2 times ιι′, the matrix of ones. The diagonal terms of Σ̃ =

Σ−K,−K−Σ−K,KΣ−1
K,KΣK,−K are thus equal to σ̃2 = σ2−ρ2/σ2, and the off-diagonal terms are

equal to ρ̃ = ρ−ρ2/σ2, or equivalently ρ̃ = ρ(1−ρ/σ2). Since by Assumption 1, 0 < ρ < σ2,
it is clear that σ̃2 > ρ̃. Additionally, 0 < ρ < σ2 implies that 1 − ρ/σ2 > 0, and hence
ρ̃ > 0, which completes the proof that Σ̃ satisfies the requirements of Assumption 1. Hence,
Σ−K,KΣ−1

K,KyK = c yK ι by Lemma A.2. We can therefore write

Y−K |YK = yK ∼ N
(
c yK ι, Σ̃

)
.

Let h(µ) = E
[
X|X ∈ B−K , X ∼ N

(
µ, Σ̃

)]
forB−K = {x̃ ∈ RK−1|xtj ≤ x̃j ≤ bj, for j =

1, . . . , K−1}. Then the previous display implies E
[
ι′Y−K |xtj ≤ Yj ≤ bj for j < K, YK = yK

]
=
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ι′h(cyKι). Hence,

∂

∂yK
E
[
ι′Y−K |xtj ≤ Yj ≤ bj for j < K, YK = yK

]
= ι′ (Dµh|µ=cyK ι) ι · c

= ι′Var [Y−K |Y−K ∈ B−K , YK = yK ] Σ̃−1ιc

= ι′Var [Y−K |Y−K ∈ B−K , YK = yK ] ιc1c

≥ 0

where the second line follows from Lemma A.1; the third line uses Lemma A.2 to obtain
that Σ̃−1ι = ιc1 for c1 > 0 (if K = 2, this holds trivially); and the inequality follows from the
fact that Var [Y−K |Y−K ∈ B−K , YK = yK ] is positive semi-definite and c1 and c are positive
by construction. Thus, for all yK ∈ [xtk, bk],

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK = yK

]
≥

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK = xtk

]
.

By the law of iterated expectations, we have

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj,∀j

]
=

E
[
E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK

]
|xtj ≤ Yj ≤ bj,∀j

]
≥

E
[
E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK = xtK

]
|xtj ≤ Yj ≤ bj,∀j

]
=

E
[
Y1 + . . .+ YK−1 |xtj ≤ Yj ≤ bj for j < K, YK = xtK

]
,

as we wished to show.

Proof of Proposition 2 From Proposition 1, the desired result is equivalent to showing
that

Σ12Σ−1
22 E

[
β̂pre − βpre | β̂pre ∈ B

]
> 0.

By Lemma A.2, Σ12Σ−1
22 = c1ι

′ for c1 > 0, so it suffices to show that ι′E
[
β̂pre − βpre | β̂pre ∈ B

]
>

0. Note that by assumption (β̂pre − βpre) ∼ N (0, Σ22). Additionally, observe that β̂pre ∈
BNIS = {β̂pre : |β̂pre,j|/

√
Σjj ≤ cα for all j} iff (β̂pre − βpre) ∈ B̃NIS = {β : aj ≤ βj ≤ bj}

for aj = −cα
√

Σjj − βpre,j and bj = cα
√

Σjj − βpre,j. Since βpre,j < 0 for all j, we have that
−bj < aj < bj for all j. The result then follows immediately from Lemma A.3.
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Proof of Proposition 4 By Proposition 3, it suffices to show that

(Σ12Σ−1
22 )
(
Var

[
β̂pre | β̂pre ∈ B

]
− Var

[
β̂pre

])
(Σ12Σ−1

22 )′ ≤ 0.

The result then follows immediately from the fact that Var
[
β̂pre | β̂pre ∈ B

]
− Var

[
β̂pre

]
is

negative semi-definite by Lemma A.1. �

B Uniform Asymptotic Results

In the main text of the paper, I consider a finite sample normal model for the event-study
coefficients, which I use to evaluate the distribution of the event-study estimates conditional
on passing a pre-test for the pre-period coefficients. In this section, I show that these finite-
sample results translate to uniform asymptotic results over a large class of data-generating
processes in which the probability of passing the pre-test does not go to zero asymptotically,
i.e. when the pre-trend is O(n−

1
2 ).

B.1 Assumptions

We consider a class of data-generating processes P . Let β̂n =
√
nβ̂ be the event-study

estimates β̂ =

(
β̂post

β̂pre

)
scaled by

√
n. Likewise, let τP,n =

√
n

(
τpost(P )

0

)
be the scaled

vector of treatment effects under data-generating process P ∈ P , where we assume there is
no true effect of treatment in the pre-periods.

Assumption 1 (Unconditional uniform convergence). Let BL1 denote the set of Lipschitz
functions which are bounded by 1 in absolute value and have Lipschitz constant bounded by
1. We assume

lim
n→∞

sup
P∈P

sup
f∈BL1

∣∣∣∣∣∣EP [f(β̂n − τP,n)
]
− E [f(ξP,n)]

∣∣∣∣∣∣ = 0,

where ξP,n ∼ N (δP,n, ΣP ).

Convergence in distribution is equivalent to convergence in bounded Lipschitz metric (see
Theorem 1.12.4 in van der Vaart and Wellner (1996)), so Assumption 1 formalizes the notion
of uniform convergence in distribution of β̂n− τP,n to a N (δP,n, ΣP ) variable under P . Note
that we allow δ to depend both on P and the sample size n.

We next assume that we have a uniformly consistent estimator of the variance ΣP , and
that the eigenvalues of ΣP are bounded above and away from singularity.
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Assumption 2 (Consistent estimation of ΣP ). Our estimator Σ̂ is uniformly consistent for
ΣP ,

lim
n→∞

sup
P∈P

PP
(
||Σ̂n − ΣP || > ε

)
= 0,

for all ε > 0.

Assumption 3 (Assumptions on ΣP ). We assume that there exists λ̄ > 0 such that for all
P ∈ P, ΣP ∈ S := {Σ | 1/λ̄ ≤ λmin(Σ) ≤ λmax(Σ) ≤ λ̄}, where λmin(A) and λmax(A) denote
the minimal and maximal eigenvalues of a matrix A.

Next, we assume that the pre-test takes the form of a polyhedral restriction on the vector
of pre-period coefficients. Note that the test that no pre-period coefficient be individually
significant can be written in this form.

Assumption 4 (Assumptions on B). We assume that the conditioning set B(Σ) is of the
form B(Σ) = {(βpost, βpre) |Apre(Σ)βpre ≤ b(Σ)} for continuous functions Apre and b. We
further assume that for all Σ on an open set containing S, B(Σ) is bounded and has non-
empty interior, and Apre(Σ) has no all-zero rows.

For ease of notation, it will be useful to define A(Σ) = [0, Apre(Σ)], so that β ∈ B(Σ) iff
A(Σ)β ≤ b(Σ).

B.2 Main uniform asymptotic results

Our first result concerns the asymptotic distribution of the event-study coefficients condi-
tional on passing the pre-test.

Proposition B.1 (Uniform conditional convergence in distribution). Under Assumptions
1-4,

lim
n→∞

sup
P∈P

sup
f∈BL1

∣∣∣∣∣∣EP [f(β̂n − τP,n) | β̂n ∈ B(Σ̂n)
]
− E [f(ξP,n)|ξP,n ∈ B(ΣP )]

∣∣∣∣∣∣ PP (β̂n ∈ B(Σ̂n)
)

= 0,

where ξP,n ∼ N (δP,n, ΣP ) .

Note that if we removed the PP
(
β̂n ∈ B(Σ̂n)

)
term from the statement of Proposition

B.1, then the proposition would imply uniform convergence in distribution of (β̂n−τP,n)|β̂n ∈
B(Σ̂n) to ξP,n|ξP,n ∈ B(ΣP ). The Proposition thus guarantees such convergence in distribu-
tion along any sequence of distributions for which the probability of passing the pre-test is
not going to zero.
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Although Proposition B.1 gives uniform convergence of the treatment effect estimates
conditional on passing the pre-test, it is well known that convergence in distribution need
not imply convergence in expectations. Our next result shows that under the additional
assumption of asymptotic uniform integrability, we also obtain uniform convergence in ex-
pectations, provided that the probability of passing the pre-test is not going to zero.

Proposition B.2 (Uniform convergence of expectations). Suppose Assumptions 1-4 hold.
Let βP,n = τP,n + δP,n. Assume that β̂n− βP,n is asymptotically uniformly integrable over the
class P,

lim
M→∞

lim sup
n→∞

sup
P∈P

EP
[
||β̂n − βP,n|| · 1[||β̂n − βP,n|| > M ]

]
= 0.

Then, for any ε > 0,

lim
n→∞

sup
P∈P

1
[∣∣∣∣∣∣EP [β̂n − τP,n | β̂n ∈ B(Σ̂n)

]
− E [ξP,n | ξP,n ∈ B(ΣP )]

∣∣∣∣∣∣ > ε
]
PP
(
β̂n ∈ B(Σ̂n)

)
= 0,

where ξP,n ∼ N (δP,n, ΣP ) .

B.3 Proofs of main asymptotic results

Proof of Proposition B.1 Towards contradiction, suppose that the proposition is false.
Then there exists an increasing sequence of sample sizes nm and data-generating processes
Pnm such that

lim inf
m→∞

sup
f∈BL1

∣∣∣∣∣∣EPn

[
f(β̂n − τPnm ,nm) | β̂nm ∈ B(Σ̂nm)

]
− E

[
f(ξPnm ,nm)|ξ ∈ B(ΣPnm

)
]∣∣∣∣∣∣×

PPnm

(
β̂nm ∈ B(Σ̂nm)

)
> 0. (8)

Since the interval [0, 1] is compact, there exists a subsequence of increasing sample sizes, nq,
such that

lim
q→∞

PPnq

(
β̂nq ∈ B(Σ̂nq)

)
= p∗,

for p∗ ∈ [0, 1].

Suppose first that p∗ = 0. Note that by definition, a function f ∈ BL1 is bounded in
absolute value by 1. It then follows from the triangle inequality that for all f ∈ BL1,∣∣∣∣∣∣EPnq

[
f(β̂nq − τPnq ,nq) | β̂nq ∈ B(Σ̂nq)

]
− E

[
f(ξPnq ,nq)|ξPnq ,nq ∈ B(ΣPnq

)
]∣∣∣∣∣∣ ≤ 2
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for all q. But this implies that

lim inf
q→∞

sup
f∈BL1

∣∣∣∣∣∣EPnq

[
f(β̂nq − τPnq ,nq) | β̂nq ∈ B(Σ̂nq)

]
− E

[
f(ξPnq

)|ξPnq
∈ B(ΣPnq

)
]∣∣∣∣∣∣PPnq

(
β̂nq ∈ B(Σ̂nq)

)
≤ 2p∗ = 0,

which contradicts (8).
Now, suppose p∗ > 0. Note that by Assumption 3, ΣP falls in the set S = {Σ|1/λ̄ ≤

λmin(Σ) ≤ λmax(Σ) ≤ λ̄}, which is compact (e.g., in the Frobenius norm). Thus, we can
extract a further subsequence of increasing sample sizes, nr, such that

lim
r→∞

ΣPnr
= Σ∗,

for some Σ∗ ∈ S.
Additionally, since p∗ > 0, Lemma B.4 implies that δprePnr ,nr

is bounded, and thus we can
extract a further subsequence ns along which

lim
s→∞

δprePns ,ns
= δpre,∗.

By Lemma B.3, for δ+
ns

=

(
δpostPns ,ns

0

)
, δ∗ =

(
0

δpre,∗

)
, and ξ∗ ∼ N (δ∗, Σ∗), we have

(β̂ns − τP,ns − δ+
ns

)|β̂ns ∈ B(Σ̂ns)
d−→ ξ∗|ξ∗ ∈ B(Σ∗),

and
(ξPns

− δ+
ns

)|ξPns
∈ B(ΣPns

)
d−→ ξ∗|ξ∗ ∈ B(Σ∗).

Recalling the convergence in distribution is equivalent to convergence in bounded Lipschitz
metric, we see that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns

[
f(β̂ns − τPns ,ns − δ+

ns
) | β̂ns ∈ B(Σ̂ns)

]
− E [f(ξ∗)|ξ∗ ∈ B(Σ∗)]

∣∣∣∣∣∣ = 0 (9)

and

lim
s→∞

sup
f∈BL1

∣∣∣∣E [f(ξPns
− δ+

ns
)|ξPns

∈ B(ΣPns
)
]
− E [f(ξ∗)|ξ∗ ∈ B(Σ∗)]

∣∣∣∣ = 0. (10)

Equations (9) and (10) together with the triangle inequality then imply that
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lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns

[
f(β̂ns − τPns ,ns − δ+

ns
) | β̂ns ∈ B(Σ̂ns)

]
− E

[
f(ξPns

− δ+
ns

)|ξPns
∈ B(ΣPns

)
]∣∣∣∣∣∣ = 0.

However, BL1 is closed under horizontal transformation (i.e. f(x) ∈ BL1 implies f(x− c) ∈
BL1), and so this implies that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns

[
f(β̂ns − τPns ,ns) | β̂ns ∈ B(Σ̂ns)

]
− E

[
f(ξPns

)|ξPns
∈ B(ΣPns

)
]∣∣∣∣∣∣ = 0,

which contradicts (8). �

Proof of Proposition B.2 Towards contradiction, suppose the proposition is false. Then
there exists an increasing sequence of sample sizes nm and data-generating processes Pnm

such that for some ε > 0,

lim inf
m→∞

1
[∣∣∣∣∣∣E [β̂nm − τPnm ,nm | β̂nm ∈ B(Σ̂nm)

]
− E

[
ξPnm

| ξPnm
∈ B(ΣPnm

)
]∣∣∣∣∣∣ > ε

]
×

PPnm

(
β̂nm ∈ B(Σ̂nm)

)
> 0. (11)

Since the interval [0, 1] is compact, we can extract a subsequence of increasing sample
sizes, nq, along which

lim
q→∞

PPnq

(
β̂nq ∈ B(Σ̂nq)

)
= p∗

for p∗ ∈ [0, 1].
First, suppose p∗ = 0. Since the indicator function is bounded by 1,

lim inf
s→∞

1
[∣∣∣∣∣∣E [β̂nq − τPnq ,nq | β̂nq ∈ B(Σ̂nq)

]
− E

[
ξPnq
| ξPnq

∈ B(ΣPnq
)
]∣∣∣∣∣∣ > ε

]
PPnq

(
β̂nq ∈ B(Σ̂nq)

)
≤

lim inf
s→∞

PPnq

(
β̂nq ∈ B(Σ̂nq)

)
= p∗ = 0,

which contradicts (11).
Now, suppose p∗ > 0. As argued in the proof to Proposition B.1, we can iteratively
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extract subsequences to obtain a subsequence, ns, along which

lim
s→∞

ΣPns
= Σ∗,

lim
s→∞

δprePns ,ns
= δpre,∗,

lim
s→∞

PPns

(
β̂ns ∈ B(Σ̂ns)

)
= p∗ > 0,

where Σ∗ ∈ S.

Let δ−ns
=

(
0

δprePns ,ns

)
and δ∗ =

(
0

δpre,∗

)
be the vectors with zeros for the post-period

coefficients and δprePns ,ns
and δpre,∗, respectively, for the pre-period coefficients. Similarly, let

δ+
ns

=

(
δpostPns ,ns

0

)
be the vector with zeros for the pre-period coefficients and δpostPns ,ns

for the

post-period coefficients. From Lemma B.3, (β̂ns − τPns ,ns − δ+
ns

)|β̂ns ∈ B(Σ̂ns)
d−→ ξ∗|ξ∗ ∈

B(Σ∗), for ξ∗ ∼ N (δ∗, Σ∗).
Additionally, from uniform integrability, we have

lim
M→∞

lim sup
s→∞

EPns

[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ]

]
= 0.

Observe that

EPns

[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ]

]
=

EPns

[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns ∈ B(Σ̂ns)

]
· PPns

(
β̂ns ∈ B(Σ̂ns)

)
+

EPns

[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns 6∈ B(Σ̂ns)

]
· PPns

(
β̂ns 6∈ B(Σ̂ns)

)
≥

EPns

[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns ∈ B(Σ̂ns)

]
· PPns

(
β̂ns ∈ B(Σ̂ns)

)
,

and hence

lim
M→∞

lim sup
s→∞

EPns

[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns ∈ B(Σ̂ns)

]
·PPns

(
β̂ns ∈ B(Σ̂ns)

)
= 0.

Further, since PPns

(
β̂ns ∈ B(Σ̂ns)

)
→ p∗ > 0, it follows that

lim
M→∞

lim sup
s→∞

EPns

[
||β̂ns − βPns ,ns|| · 1[||β̂ns − βPns ,ns|| > M ] | β̂ns ∈ B(Σ̂ns)

]
= 0,

so β̂ns − βPns ,ns is uniformly asymptotically integrable conditional on β̂ns ∈ B(Σ̂ns). Note
that β̂ns − τPns ,ns − δ+

ns
= β̂ns − βPns ,ns + δ−ns

, and δ−ns
→ δ∗ as s→∞. It then follows from
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Lemma B.6 that β̂ns − τPns ,ns − δ+
ns

is uniformly asymptotically integrable conditional on
β̂ns ∈ B(Σ̂ns).

Convergence in distribution along with uniform asymptotic integrability implies conver-
gence in expectation (see Theorem 2.20 in van der Vaart (2000)), and thus

lim
s→∞

∣∣∣∣∣∣EPns

[
β̂ns − τPns ,ns − δ+

ns
| β̂ns ∈ B(Σ̂ns)

]
− E [ξ∗ | ξ∗ ∈ B(Σ∗)]

∣∣∣∣∣∣ = 0.

Likewise, Lemma B.5 gives that

lim
s→∞

∣∣∣∣E [ξPns
− δ+

ns
| ξPns

∈ B(ΣPns
)
]
− E [ξ∗ | ξ∗ ∈ B(Σ∗)]

∣∣∣∣ = 0.

It then follows from the triangle inequality that

lim
s→∞

∣∣∣∣∣∣EPns

[
β̂ns − τPns ,ns − δ+

ns
| β̂ns ∈ B(Σ̂ns)

]
− E

[
ξPns
− δ+

ns
| ξPns

∈ B(ΣPns
)
]∣∣∣∣∣∣ = 0.

Cancelling the δ+
ns

terms gives

lim
s→∞

∣∣∣∣∣∣EPns

[
β̂ns − τns,Pns

| β̂ns ∈ B(Σ̂ns)
]
− E

[
ξPns
| ξPns

∈ B(ΣPns
)
]∣∣∣∣∣∣ = 0,

which contradicts (11). �

B.4 Auxiliary lemmas and proofs

Lemma B.1. Suppose (ξn,Σn)
d−→ (ξ∗,Σ∗), for ξ∗ ∼ N (δ∗, Σ∗) and Σ∗ ∈ S. Then, if B

satisfies Assumption 4,

PPn (ξn ∈ B(Σn)) −→ P (ξ∗ ∈ B(Σ∗)) .

Proof. By definition, ξn ∈ B(Σn) iff A(Σn)ξn ≤ b(Σn). Now, consider the function

h(ξ,Σ) = 1[A(Σ)ξ ≤ b(Σ)].

Note that since A(·) and b(·) are continuous by Assumption 4, h is continuous at all (ξ,Σ)

such that for all j, (A(Σ)ξ)j 6= b(Σ)j. However, the jth element of A(Σ∗)ξ∗ is normally
distributed with variance A(Σ∗)(j,·)Σ

∗A(Σ∗)′(j,·), where X(j,·) denotes the jth row of a matrix
X. Since A(Σ∗) has no non-zero rows by Assumption 4, and Σ∗ ∈ S implies that Σ∗ is positive
definite, A(Σ∗)(j,·)Σ

∗A(Σ∗)′(j,·) > 0. This implies that for each j, (A(Σ∗)ξ∗)j = b(Σ∗)j with
probability zero, and hence (A(Σ∗)ξ∗)j 6= b(Σ∗)j for all j with probability 1. Thus, h is
continuous at (ξ∗,Σ∗) for almost every ξ.
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Since (ξn,Σn)
d−→ (ξ∗,Σ∗), the Continuous Mapping Theorem gives that 1[A(Σn)ξn ≤

b(Σn)]
d−→ 1[A(Σ∗)ξ∗ ≤ b(Σ∗)]. Since the indicator functions are bounded, it follows that

P (ξn ∈ B(Σn)) = E [1[A(Σn)ξn ≤ b(Σn)]] −→ E [1[A(Σ∗)ξ∗ ≤ b(Σ∗)]] = P (ξ∗ ∈ B(Σ∗)) ,

which completes the proof.

Lemma B.2. Suppose that (ξn,Σn)
d−→ (ξ∗,Σ∗), for ξ∗ ∼ N (δ∗, Σ∗) and Σ∗ ∈ S. Suppose

further that P (ξ∗ ∈ B(Σ∗)) = p∗ > 0 for B(Σ) satisfying Assumption 4. Then

ξn | ξn ∈ B(Σn)
d−→ ξ∗ | ξ∗ ∈ B(Σ∗).

Proof. By the Portmanteau Lemma (see Lemma 2.2. in van der Vaart (2000)),

ξn | ξn ∈ B(Σn)
d−→ ξ∗ | ξ∗ ∈ B(Σ∗)

iff E [f(ξn) | ξn ∈ B(Σn)] −→ E [f(ξ∗) | ξ∗ ∈ B(Σ∗)] for all bounded, continuous functions f .
Let f be a bounded, continuous function. Since (ξn,Σn)

d−→ (ξ∗,Σ∗), the Contin-
uous Mapping Theorem together with the Dominated Convergence Theorem imply that
E [g(ξn,Σn)]

p−→ E [g(ξ∗,Σ∗)] for any bounded function g that is continuous for almost every
(ξ∗,Σ∗). It follows that

E [f(ξn) · 1 [ξn ∈ B(Σn)]] −→ E [f (ξ∗) · 1 [ξ∗ ∈ B(Σ∗)]] ,

where we use the fact that the function 1[ξ ∈ B(Σ)] is continuous at (ξ∗,Σ∗) for almost every
ξ∗, as shown in the proof to Lemma B.1, and that the product of bounded and continuous
functions is bounded and continuous. Additionally, by Lemma B.1, we have that

P (ξn ∈ B(ξn)) −→ P (ξ∗ ∈ B(Σ∗)) = p∗ > 0.

We can thus apply the Continuous Mapping Theorem to obtain

E [f(ξn) · 1 [ξn ∈ B(Σn)]]

P (ξn ∈ B(Σn))
−→ E [f (ξ∗) · 1 [ξ∗ ∈ B(Σ∗)]]

P (ξ∗ ∈ B(Σ∗))
,

which by the definition of the conditional expectation, implies

E [f(ξn) | ξn ∈ B(Σn)] −→ E [f(ξ∗) | ξ∗ ∈ B(Σ∗)] ,

as needed.
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Lemma B.3. Suppose Assumptions 1-4 hold, and ns is an increasing sequence of sample
sizes such that

lim
s→∞

ΣPns
= Σ∗,

lim
s→∞

δprePns ,ns
= δpre,∗,

lim
s→∞

PPns

(
β̂ns ∈ B(Σ̂ns)

)
= p∗ > 0

for Σ∗ ∈ S. Let δ+
ns

=

(
δpostPns ,ns

0

)
be the vector with elements corresponding with δPns ,ns

for the post-period coefficients, and zeros for the pre-period coefficients. Likewise, let δ∗ =(
0

δpre,∗

)
be the vector with zeros for the post-period coefficients and δpre,∗ for the pre-period

coefficients. Then

(β̂ns − τP,ns − δ+
ns

)|β̂ns ∈ B(Σ̂ns)
d−→ ξ∗|ξ∗ ∈ B(Σ∗)

and
(ξPns ,ns − δ+

ns
) | ξPns ,ns ∈ B(ΣPns

)
d−→ ξ∗|ξ∗ ∈ B(Σ∗),

for ξ∗ ∼ N (δ∗, Σ∗).

Proof. By assumption, ξPns
∼ N

(
δPns

, ΣPns

)
, and thus ξPns

−δ+
ns
∼ N

(
δ−ns
, ΣPns

)
. Since by

construction δ−ns
−→ δ∗ and ΣPns

−→ Σ∗, it follows that ξPns
−δ+

ns

d−→ ξ∗, for ξ∗ ∼ N (δ∗, Σ∗).
Convergence in distribution is equivalent to convergence in bounded Lipschitz metric, so

lim
s→∞

sup
f∈BL1

∣∣∣∣E [f(ξPns
− δ+

ns
)
]
− E [f(ξ∗)]

∣∣∣∣ = 0. (12)

Additionally, Assumption 1 gives that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns

[
f(β̂ns − τPns ,ns)

]
− E

[
f(ξPns

)
]∣∣∣∣∣∣ = 0.

Since the class of BL1 functions is closed under horizontal transformations, it follows that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns

[
f(β̂ns − τPns ,ns − δ+

ns
)
]
− E

[
f(ξPns

− δ+
ns

)
]∣∣∣∣∣∣ = 0. (13)
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Equations (12) and (13), together with the triangle inequality, imply that

lim
s→∞

sup
f∈BL1

∣∣∣∣∣∣EPns

[
f(β̂ns − τPns ,ns − δ+

ns
)
]
− E [f(ξ∗)]

∣∣∣∣∣∣ = 0, (14)

or equivalently, (β̂ns−τPns ,ns−δ+
ns

)
d−→ ξ∗. By Assumption 4, the pre-test is invariant to shifts

that only affect the post-period coefficients, and so β̂ns ∈ B(Σ̂ns) iff (β̂ns − τns,Pns
− δ+

ns
) ∈

B(Σ̂ns). Lemma B.1 thus implies that lims→∞ PPns

(
β̂ns ∈ B(Σ̂ns)

)
= P (ξ∗ ∈ B(Σ∗)), and

hence P (ξ∗ ∈ B(Σ∗)) = p∗ > 0. We have thus shown that (β̂ns − τPns ,ns − δ+
ns
, Σ̂ns)

d−→
(ξ∗,Σ∗), (ξPns

− δ+
ns
,ΣPns

)
d−→ (ξ∗,Σ∗), and P (ξ∗ ∈ B(Σ∗)) > 0. The result then follows

immediately from Lemma B.2.

Lemma B.4. Suppose that Assumptions 1-4 hold. Then for any increasing sequence of
sample sizes nq and corresponding data-generation processes Pnq such that

lim
q→∞
||δprePnq ,nq

|| =∞,

we have
lim
q→∞

PPnq

(
β̂nq ∈ B(Σ̂nq)

)
= 0.

Proof. Towards contradiction, suppose that there exists a sequence nq such that

lim
q→∞
||δprePnq ,nq

|| =∞,

and

lim inf
q→∞

PPnq

(
β̂nq ∈ B(Σ̂nq)

)
> 0. (15)

Since S is compact, we can extract a subsequence nr along which ΣPnr
→ Σ∗ for some

Σ∗ ∈ S. Assumption 2 then implies that Σ̂nr

p−→ Σ∗.
By Assumption 4, Bpre(Σ) is bounded for every Σ. Let M̃(Σ) = supβpre∈Bpre(Σ) ||βpre||.

Assumption 4 implies that Bpre(Σ) is a compact-valued continuous correspondence, and so
M̃(Σ) is a continuous function by the theorem of the maximum. It follows that for any Σ

in a sufficiently small neighborhood of Σ∗, M̃(Σ) ≤ M̃(Σ∗) + 1 =: M̄ . Since Σ̂nr

p−→ Σ∗,
it follows that M̃(Σ̂nr) →p M̃(Σ∗), and thus for r sufficiently large, M̃(Σ̂nr) ≤ M̄ with
probability 1. Thus, for r sufficiently large, PPnr

(
β̂nr ∈ B(Σ̂nr)

)
≤ PPnr

(
β̂nr ∈ BM̄

)
, where
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BM̄ = {(βpost, βpre) | ||βpre|| ≤ M̄}. It follows that

lim inf
r→∞

PPnr

(
β̂nr ∈ B(Σ̂nr)

)
≤ lim inf

r→∞
PPnr

(
β̂nr ∈ BM̄

)
= 1− lim sup

r→∞
PPnr

(
β̂nr ∈ Bc

M̄

)
.

We now show that lim supr→∞ PPnr

(
β̂nr ∈ Bc

M̄

)
= 1, which along with the display above

implies that lim infr→∞ PPnr

(
β̂nr ∈ B(Σ̂nr)

)
= 0, contradicting (15).

Consider the function h(β) = min(d(β,BM̄), 1), where for a set S we define d(β, S) =

inf β̃∈S ||β − β̃||. It is easily verified that h ∈ BL1, and that h(β) ≤ 1[β ∈ Bc
M̄

] for all β.
Thus,

lim sup
r→∞

PPnr

(
β̂nr ∈ Bc

M̄

)
≥ lim sup

r→∞
EPnr

[
h(β̂nr)

]
. (16)

Note that d(β̂, BM̄) depends only on the components of β̂ corresponding with the pre-period,

and thus h(β̂) = h(β̂ − τ) for any value τ =

(
τpost

0

)
that has zeros in the positions

corresponding with βpre. This, along with Assumption 1, implies that

lim
r→∞

∣∣∣∣∣∣EPnr

[
h(β̂nr)

]
− E

[
h(ξPnr ,nr)

]∣∣∣∣∣∣ = 0.

Using the triangle inequality and the fact that h is a non-negative function, we have

EPnr

[
h(β̂nr)

]
≥ E

[
h(ξPnr ,nr)

]
−
∣∣∣∣∣∣EPnr

[
h(β̂nr)

]
− E

[
h(ξPnr ,nr)

]∣∣∣∣∣∣ .
It then follows that

lim sup
r→∞

EPnr

[
h(β̂nr)

]
≥ lim sup

r→∞
E
[
h(ξPnr ,nr)

]
. (17)

Now, since limr→∞ ||δprePnr ,nr
|| = ∞, there exists at least one component j of δprePnr ,nr

that
diverges. Let δprej,r denote the jth element of δprePnr ,nr

, and suppose WLOG that δprej,r → ∞.
Likewise, let ξprej,r denote the jth element of ξprePnr ,nr

. Note that h(ξPnr ,nr) = 1 whenever
ξprej,r > M̄ + 1, and thus E

[
h(ξPnr ,nr)

]
≥ E

[
1[ξprej,r > M̄ + 1]

]
. Hence,

lim sup
r→∞

E
[
h(ξPnr ,nr)

]
≥ lim sup

r→∞
E
[
1[ξprej,r > M̄ + 1]

]
. (18)

Since ξprej,r ∼ N
(
δprej,r , σ

2
j,r

)
, for σ2

j,r the jth diagonal element of ΣPnr
, we have
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E
[
1[ξprej,r > M̄ + 1]

]
= 1− Φ

(
M̄ + 1− δprej,r

σj,r

)
.

However, by construction σj,r → σ∗j as r → ∞, where σ∗2j is the jth diagonal ele-
ment of Σ∗. Additionally, σ∗j > 0 by Assumption 3. Thus, since δprej,r → ∞, we have that

Φ
(
M̄+1−δprej,r

σj,r

)
→ 0, and hence E

[
1[ξprej,r > M̄ + 1]

]
→ 1. This, combined with the inequalities

(16), (17), (18), gives the desired result.

Lemma B.5. Suppose Assumptions 1-4 hold. Consider a subsequence of increasing sample
sizes, ns, such that

lim
s→∞

ΣPns
= Σ∗, (19)

lim
s→∞

δprePns ,ns
= δpre,∗, (20)

lim
s→∞

PPns

(
β̂ns ∈ B(Σ̂ns)

)
= p∗ > 0 (21)

for Σ∗ ∈ S. Then

lim
s→∞

∣∣∣∣E [ξPns ,ns − δ+
ns
| ξPns ,ns ∈ B(ΣPns

)
]
− E [ξ∗ | ξ∗ ∈ B(Σ∗)]

∣∣∣∣ = 0,

for ξ∗ ∼ N (δ∗, Σ∗) , where δ∗ =

(
0

δpre,∗

)
and δ+

ns
=

(
δpostPns ,ns

0

)

Proof. Let ξj,s denote the jth element of ξPns ,ns−δ+
ns
. We show that E

[
ξj,s | ξPns ,ns ∈ B(Σ̂Pns

)
]
−→

E
[
ξ∗j | ξ∗ ∈ B(Σ∗)

]
for each element j, which implies the desired result.

Note that ξPns ,ns ∼ N
(
δPns ,ns , ΣPns

)
, so ξPns ,ns − δ+

ns
∼ N

(
δ−ns
, ΣPns

)
, where δ−ns

=(
0

δprePns ,ns

)
. Since by construction δ−ns

−→ δ∗ and ΣPns
−→ Σ∗, it follows that ξPns ,ns −

δ+
ns

d−→ ξ∗. The continuous mapping theorem then gives that (ξPns ,ns − δ+
ns

) · 1[ξPns ,ns ∈
B(Σ̂Pns

)]
d−→ ξ∗1[ξ∗ ∈ B(Σ∗)], where the function is continuous for almost every ξ∗ as shown

in the proof to Lemma B.1, and we use the fact that ξPns ,ns ∈ B(Σ̂Pns
) iff ξPns ,ns − δ+

ns
∈

B(Σ̂Pns
) by Assumption 4. Next, observe that

|ξj,s · 1[ξPns ,ns ∈ B(Σ̂Pns
)]| ≤ |ξj,s|.

Since the absolute value function is continuous and ξj,s
d−→ ξ∗j , |ξj,s|

d−→ |ξ∗j | by the contin-
uous mapping theorem. Further, each |ξj,s| has a folded-normal distribution, as does |ξ∗j |,
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and since the mean of a folded-normal distribution is finite and continuous in the mean and
variance parameters, we have E [|ξj,s|]→ E

[
|ξ∗j |
]
<∞. Thus, by the generalized dominated

convergence theorem,

E
[
ξj,s · 1[ξPns ,ns ∈ B(Σ̂Pns

)]
]

d−→ E
[
ξ∗j · 1[ξ∗ ∈ B(Σ∗)]

]
.

However, by Lemma B.1 we have that

P
(
ξPns
∈ B(Σ̂Pns ,ns)

)
−→ P (ξ∗ ∈ B(Σ∗)) = p∗ > 0.

Thus, by the continuous mapping theorem,

E
[
ξj,s · 1[ξPns

∈ B(Σ̂Pns
)]
]

P
(
ξPns ,ns ∈ B(Σ̂Pns

)
) −→

E
[
ξ∗j · 1[ξ∗ ∈ B(Σ∗)]

]
P (ξ∗ ∈ B(Σ∗))

,

as we wished to show.

Lemma B.6. Suppose that a sequence of random variables Yn is asymptotically uniformly
integrable,

lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn|| > M ]] = 0.

If cn is a sequence of constants with cn → c and Yn − cn converges in distribution, then
Yn − cn is also asymptotically uniformly integrable.

Proof. Note that ||Yn − cn|| ≤ ||Yn||+ ||cn||. Thus,

lim
M→∞

lim sup
n→∞

E [||Yn − cn|| · 1[||Yn − cn|| > M ]] ≤

lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn − cn|| > M ]] + lim
M→∞

lim sup
n→∞

E [||cn|| · 1[||Yn − cn|| > M ]] .

(22)

We now show that each of the two terms on the right hand side of (22) is zero. To see
why the first term is zero, note that since cn → c, for n sufficiently large, ||cn|| ≤ ||c+1||. By
the triangle inequality, ||Yn−cn|| ≤ ||Yn||+ ||cn|| and so for n sufficiently large, 1[||Yn−cn|| >
M ] ≤ 1[||Yn|| > M − ||c+ 1||]. Thus,

lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn − cn|| > M ]] ≤ lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn|| > M − ||c+ 1||]]

= lim
M→∞

lim sup
n→∞

E [||Yn|| · 1[||Yn|| > M ]] ,
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and limM→∞ lim supn→∞ E [||Yn|| · 1[||Yn|| > M ]] = 0 by assumption.
To show that the second term in (22) is zero, note again that since cn −→ c, for n

sufficiently large, ||cn|| ≤ ||c+ 1||, and thus

lim
M→∞

lim sup
n→∞

E [||cn|| · 1[||Yn − cn|| > M ]] ≤ ||c+ 1|| lim
M→∞

lim sup
n→∞

E [1[||Yn − cn|| > M ]] .

However, since Yn − cn converges in distribution, Prohorov’s theorem gives that Yn − cn is
uniformly tight, so

lim
M→∞

lim sup
n→∞

E [1[||Yn − cn|| > M ]] = 0.

C Power Calculations Under Stochastic Differential Trends

This section considers data-generating processes in which there are stochastic differential
trends between the treated and control groups. In particular, we consider the following
hierarchical model:

δ ∼ N (0, V ) (23)

β̂ | δ ∼ N (δ + τ, Σ) . (24)

The distribution for β̂|δ in (24) is identical to the model considered in Section II. However,
we now treat δ as stochastic, rather than as a fixed parameter (e.g. linear in event-time).
Treating δ as stochastic is sensible in situations in which we think that there may be common
shocks to the treated and control groups (e.g. if each of these is a state, and there are macro-
level shocks).

I now evaluate the power of pre-tests against such stochastic shocks in data-generating
processes calibrated to the sample of papers reviewed in Section I. For a given value of
(V,Σ), we define the power of the pre-test to be the probability, Pδ,β̂

(
β̂pre ∈ B(Σ)

)
, where

Pδ,β̂ (·) denotes the probability taken over the realization of the joint distribution of (δ, β̂).
We explicitly write the pre-test acceptance region as B(Σ) to denote that the pre-test region
depends on Σ (but not V ). We again set Σ to be the estimated variance-covariance matrix
from each of the papers in the sample. Calibrating the covariance matrix V for the common
stochastic shocks is more difficult, as it cannot be consistently estimated from the data. For
simplicity, I set V = c ·Σ for a constant c > 0. Under this specification, the marginal distri-
bution of β̂ under the hierarchical model defined above is N (0, (1 + c)Σ). The parameter c
can thus be interpreted as the factor by which we have underestimated the variance matrix
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by treating δ as fixed and ignoring common stochastic shocks.
I then calculate the values of c for which the pre-test rejects 50 or 80% percent of the

time, which I denote c0.5 and c0.8. As in Section I, I use the pre-test criterion that no pre-
period coefficient is significant at the 95% level. I compute the null rejection probabilities of
conventional confidence intervals for the average post-treatment effect τ̄ and the first-period
treatment effect τ1 under the DGPs with c0.5 and c0.9. The null rejection probabilities are
computed over the joint distribution of (β̂, δ).1 As in Section I, I report these probabilities
both unconditionally, and conditional on surviving the pre-test. Tables C1 and C2 show the
results for τ1 and τ̄ , respectively. Across all specifications, the null rejection probabilities
substantially exceed the nominal level of 5% for most of the papers. Conditioning on pass-
ing the pre-test generally reduces the null rejection probability, but only moderately so in
most cases. Conditional on passing the pre-test, null rejection probabilities are often many
multiples of the nominal size. The results thus suggest that conventional pre-tests may be
underpowered against detecting common stochastic shocks, in addition to the linear secular
trends considered in the main text. Concurrent work by Ferman (2020) reaches a similar
conclusion in a related model with stochastic violations of parallel trends.

I do not report results for bias as in the main text, since δ is mean-zero and so β̂ is
unbiased when the expectation is taken over the joint distribution of (β̂, δ). It would be
straightforward to combine this simulation design with one such as in the main test so that
there are both stochastic shocks and a non-zero average difference in trends.

1Recall that β̂ ∼ N (0, (1 + c)Σ). Thus, this is the probability that τ falls inside a confidence interval
based on the assumption that β̂ ∼ N (τ, Σ) when in fact β̂ ∼ N (τ, (1 + c)Σ).
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Unconditional Cond’l on Passing Pre-test
Scaling factor for stochastic variance

0 c0.5 c0.8 0 c0.5 c0.8

Bailey and Goodman-Bacon (2015) 0.05 0.17 0.34 0.05 0.16 0.33
Bosch and Campos-Vazquez (2014) 0.05 0.19 0.38 0.03 0.12 0.26
Deryugina (2017) 0.05 0.19 0.38 0.01 0.04 0.09
Deschenes et al. (2017) 0.05 0.17 0.35 0.03 0.10 0.19
Fitzpatrick and Lovenheim (2014) 0.05 0.23 0.45 0.05 0.21 0.43
Gallagher (2014) 0.05 0.14 0.30 0.04 0.12 0.26
He and Wang (2017) 0.05 0.26 0.48 0.05 0.23 0.46
Kuziemko et al. (2018) 0.05 0.29 0.55 0.04 0.20 0.42
Lafortune et al. (2017) 0.05 0.19 0.38 0.05 0.18 0.37
Markevich and Zhuravskaya (2018) 0.05 0.22 0.44 0.04 0.18 0.38
Tewari (2014) 0.05 0.10 0.22 0.04 0.08 0.18
Ujhelyi (2014) 0.05 0.22 0.43 0.04 0.18 0.36

Table C1: Null Rejection Probabilities for Nominal 5% Test of Average Treatment Effect
Under Stochastic Trends Against Which Pre-tests Have 50 or 80% Power

Note: This table shows null rejection probabilities, i.e. the probability that the true parameter falls outside
a nominal 95% confidence interval, using data-generating processes in which parallel trends holds (scaling
factor = 0) or in which there are stochastic violations of parallel trends that conventional pre-tests would
detect 50 or 80% of the time (c0.5 and c0.8). The first three columns show unconditional null rejection
probabilities, whereas the latter three columns condition on passing the pre-test. The estimand is the
average of the post-treatment causal effects, τ̄ . See Section C for details on the data-generating process.
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Unconditional Cond’l on Passing Pre-test
Scaling factor for stochastic variance

0 c0.5 c0.8 0 c0.5 c0.8

Bailey and Goodman-Bacon (2015) 0.05 0.17 0.34 0.04 0.14 0.30
Bosch and Campos-Vazquez (2014) 0.05 0.19 0.38 0.05 0.17 0.35
Deryugina (2017) 0.05 0.19 0.38 0.04 0.13 0.29
Deschenes et al. (2017) 0.05 0.17 0.35 0.04 0.11 0.22
Fitzpatrick and Lovenheim (2014) 0.05 0.23 0.45 0.05 0.22 0.44
Gallagher (2014) 0.05 0.14 0.30 0.03 0.09 0.19
He and Wang (2017) 0.05 0.26 0.48 0.04 0.23 0.45
Kuziemko et al. (2018) 0.05 0.29 0.55 0.04 0.21 0.45
Lafortune et al. (2017) 0.05 0.19 0.38 0.05 0.18 0.37
Markevich and Zhuravskaya (2018) 0.05 0.22 0.44 0.04 0.17 0.36
Tewari (2014) 0.05 0.10 0.22 0.04 0.08 0.19
Ujhelyi (2014) 0.05 0.22 0.43 0.04 0.17 0.35

Table C2: Null Rejection Probabilities for Nominal 5% Test of First Period Treatment Effect
Under Stochastic Trends Against Which Pre-tests Have 50 or 80% Power

Note: This table shows null rejection probabilities, i.e. the probability that the true parameter falls outside
a nominal 95% confidence interval, using data-generating processes in which parallel trends holds (scaling
factor = 0) or in which there are stochastic violations of parallel trends that conventional pre-tests would
detect 50 or 80% of the time (c0.5 and c0.8). The first three columns show unconditional null rejection
probabilities, whereas the latter three columns condition on passing the pre-test. The estimand is the causal
effect for the first period after treatment, τ1. See Section C for details on the data-generating process.
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D Additional tables and figures

Unconditional Cond’l on Passing Pre-test
Slope of differential trend:

0 γ0.5 γ0.8 0 γ0.5 γ0.8

Bailey and Goodman-Bacon (2015) 0.05 0.06 0.09 0.04 0.07 0.13
Bosch and Campos-Vazquez (2014) 0.05 0.12 0.22 0.05 0.08 0.11
Deryugina (2017) 0.05 0.07 0.09 0.04 0.09 0.21
Deschenes et al. (2017) 0.05 0.06 0.06 0.04 0.05 0.08
Fitzpatrick and Lovenheim (2014) 0.05 0.10 0.18 0.05 0.13 0.26
Gallagher (2014) 0.05 0.05 0.06 0.03 0.04 0.05
He and Wang (2017) 0.05 0.15 0.29 0.04 0.21 0.47
Kuziemko et al. (2018) 0.05 0.13 0.22 0.04 0.07 0.11
Lafortune et al. (2017) 0.05 0.19 0.41 0.05 0.17 0.34
Markevich and Zhuravskaya (2018) 0.05 0.11 0.19 0.04 0.17 0.42
Tewari (2014) 0.05 0.06 0.07 0.04 0.06 0.11
Ujhelyi (2014) 0.05 0.09 0.15 0.04 0.12 0.28

Table D1: Null Rejection Probabilities for Nominal 5% Test of First Period Treatment Effect
Under Linear Trends Against Which Pre-tests Have 50 or 80% Power

Note: This table shows null rejection probabilities, i.e. the probability that the true parameter falls outside
a nominal 95% confidence interval, using data-generating processes in which parallel trends holds (slope
of differential trend = 0) and in which there are linear violations of parallel trends that conventional pre-
tests would detect 50 or 80% of the time (γ0.5 and γ0.8). The first three columns show unconditional null
rejection probabilities, whereas the latter three columns condition on passing the pre-test. The estimand is
the treatment effect in the first period after treatment, τ1.
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Figure D1: Original Estimates and Bias from Linear Trends for Which Pre-tests Have 50
Percent Power – Average Treatment Effect

Note: I calculate the linear trend against which conventional pre-tests would reject 50 percent of the time
(γ0.5). The red triangles show the bias that would result from such a trend conditional on passing the pre-test
(E
[
τ̂ − τ∗ | β̂pre ∈ BNIS(Σ)

]
); the green circles show the unconditional bias from such a trend (E [τ̂ − τ∗]).

As a benchmark, I plot in blue the OLS estimates and 95% CIs from the original paper. All values are
normalized by the standard error of the estimated treatment effect and so the OLS treatment effect estimate
is positive. The estimand is the average of the treatment effects in all periods after treatment began, τ∗ = τ̄ .
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Figure D2: Original Estimates and Bias from Linear Trends for Which Pre-tests Have 80
Percent Power – First Period Treatment Effect

Note: I calculate the linear trend against which conventional pre-tests would reject 80 percent of the time
(γ0.8). The red triangles show the bias that would result from such a trend conditional on passing the pre-test
(E
[
τ̂ − τ∗ | β̂pre ∈ BNIS(Σ)

]
); the green circles show the unconditional bias from such a trend (E [τ̂ − τ∗]).

As a benchmark, I plot in blue the OLS estimates and 95% CIs from the original paper. All values are
normalized by the standard error of the estimated treatment effect and so the OLS treatment effect estimate
is positive. The estimand is the treatment effect in the first period after treatment began, τ∗ = τ1.
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Figure D3: Original Estimates and Bias from Linear Trends for Which Pre-tests Have 50
Percent Power – First Period Treatment Effect

Note: I calculate the linear trend against which conventional pre-tests would reject 50 percent of the time
(γ0.5). The red triangles show the bias that would result from such a trend conditional on passing the pre-test
(E
[
τ̂ − τ∗ | β̂pre ∈ BNIS(Σ)

]
); the green circles show the unconditional bias from such a trend (E [τ̂ − τ∗]).

As a benchmark, I plot in blue the OLS estimates and 95% CIs from the original paper. All values are
normalized by the standard error of the estimated treatment effect and so the OLS treatment effect estimate
is positive. The estimand is the treatment effect in the first period after treatment began, τ∗ = τ1.
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