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This supplement contains additional results for the paper “Pre-test with Caution: Event-
study Estimates After Testing for Parallel Trends.” Section A provides proofs for Proposition
2 and Proposition 4, generalizing the proofs given in the main text for the case of K =
1 to arbitrary K. Section B states and proves asymptotic results. Section C provides
additional simulation results in which the treatment and control group receive stochastic

common shocks. Finally, Section D contains additional tables and figures.

A  Generalized Proofs for Results in the Main Text

This section provides multivariate extensions to some of the proofs in the main text, which
considered only the case K = 1. For ease of notation, I leave the dependence of B on X
implicit unless needed for clarity.

We begin with a series of lemmas leading up to proofs of Proposition 2 and Proposition
4 for the more general case of K > 1. These results extend the argument in Papadopoulos

(2013) for univariate truncated normals to the multivariate case.

Lemma A.1. Suppose Y is a k-dimensional multivariate normal, Y ~ N (u, ), and let
B C R* be a conver set such that P(Y € B) > 0. Letting D, denote the Jacobian operator

with respect to u, we have
1. DEY|Y € Byu|=Var[Y |Y € B,u] X1

2. Var[Y'|Y € B] — X is negative semi-definite.
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Proof.
Define the function H : R¥ — R by

H(u) = /Bcbz(y — p)dy

for ¢x(x) = (27r)’§det(E)’%ewp(—%x’E_lx) the PDF of the N (0, X) distribution. We now
argue that H is log-concave in p. Note that we can write H(u) = [pr 1(y, 1t)g2(y, ) dy for
g1(y,p) = és(y — p) and ga(y, ) = 1[y € B]. The normal PDF is log-concave, and g¢; is
the composition of the normal PDF with a linear function, and hence log-concave as well.
Likewise, g9 is log-concave since B is a convex set. The product of log-concave functions
is log-concave, and the marginalization of a log-concave function with respect to one of its
arguments is log-concave by Prekopa’s theorem (see, e.g. Theorem 3.3 in Saumard and
Wellner (2014)), from which it follows that H is log-concave in p.

Now, applying Leibniz’s rule and the chain rule, we have that the 1 x k£ gradient of log H

with respect to u is equal to

[y Duds(y — p)dy

[z ¢s(y — w)dy
[y oy — )y — pystdy
N [z 0y — p)dy
—([E[Y|Y € B] - p)s.

D,log H =

where the second line takes the derivative of the normal PDF, D, ¢s(y — 1) = ¢s(y — ) -
(y — p)’>71, and the third uses the definition of the conditional expectation. It follows that

EY|Y € B,ul=p+X(D,logH)".

Differentiating again with respect to p, we have that the kx k Jacobian of E[Y | Y € B, y]
with respect to u is given by

DE[Y|Y € B,y]=I+¥D,(D,logH)'. (1)

Since H is log-concave, D, (D, log H)" is the Hessian of a concave function, and thus is

negative semi-definite. Next, note that by definition,

_ Jpyosly—n)dy
Jpts(y—p)dy

EY|Y € By



Thus, applying Leibniz’s rule again along with the product rule,

Dys(y — 1) d
E[Y|Y € B,y :foy gﬁ;(g M)Z)y ’

[/ycﬁz(y Iz dy} V Py — p dy} 1- (2)

Dyuds(y — 1) = os(y — p) - (y — p)S~"

The first term on the right-hand side of (2) thus becomes

Recall that

Jpyly — 1) és(y — p) dy
Jp 05y — ) dy
EYY'|Y €B,u —E[Y|Y € B,ulp/)x

=

Applying the chain-rule, the second term on the right-hand side of (2) becomes

_Jpyosly—mwdy- [yly =)' ésly —mdy,.
[ by — 1) dy]”
(-E[Y|Y € B WE[Y|Y € By +E[Y|Y € B,uJy/) 7"

Substituting the expressions in the previous two displays back into (2), we have

EY|YeBu=(EYY|YeBu-EY|YeBUEY|YeBu)s!
=Var[Y |Y € B, ] 71, (3)

which establishes the first result. Additionally, combining (1) and (3), we have that
Var[Y|Y € B,y ' =1+ %D,(D,log H), (4)
which implies that
Var[Y|Y € B,y] — £ =X D, (D, log H)' . (5)

However, log-concavity implies that D,(D,log H)" is negative semi-definite, and thus

Var[Y |Y € B, u] — ¥ is negative semi-definite as well, as we desired to show. [J

Lemma A.2. Suppose that ¥ satisfies Assumption 1. Then for v the vector of ones and



some c1 > 0, /Sy = c1t’. Additionally, Y1255, = cot/, for a constant cy > 0.

Proof. First, note that if K = 1, then X5 and X5, are each positive scalars, and the result
follows trivially. For the remainder of the proof, we therefore consider K > 1. Note that
we can write Yoy = A + put/, where A = (02 — p)I. It follows from the Sherman-Morrison
formula that
PPATL/ AT
14+ p2/A1
_ (0_2 _ p)flf o p2(02 — p)_QLL, )
1+ p2(0? — p) 1

E2_21 = A

Thus:

(= prr- e

1 T p2(02 — p)~1e
2

(0,2 . p)—l 1 — pQ(U B p>_1L/L L, _
1 +p2(02 _ p)ilL/L

1
2 —1 /
"= 2) (1 +p*(0? — p)lb’L) .

i=c1

Since 02 — p > 0, all of the terms in ¢; are positive, and thus ¢; > 0, as needed. Finally,
note that Assumption 1 implies that X5 = pi/. It follows that X535, = peit’ = cyt! for
co = pcp > 0.

m

Lemma A.3. SupposeY ~ N (0,%) is K-dimensional normal, with ¥ satisfying Assumption
1. Let B={y € RE |a; <y <b; for all j}, where —b; < a; < b; for all j. Then for v the
vector of ones, E['Y|Y € Bj=E[Y1+...+ Yk |Y € B] > 0.

Proof. For any x € R¥X such that z; < b; for all j, define BX(z) = {y € R¥ |z; <y <
b; for all j}. Let b= (by,...,bk). Note that the distribution of Y is symmetric around zero,
and B~ (—b) is likewise symmetric around 0, from which it follows that E [Y | Y € BX(—b)] =
E[-Y|Y € B¥(=b)] = 0. Now, define

g(z) =E[/Y |Y € B¥(2)].

From the argument above, we have that g(—b) = 0, and we wish to show that g(a) > 0. By



the mean-value theorem, for some ¢ € (0, 1),

g(a) = g(=b) + (a — (b)) Vg (ta + (1 = 1)(~b))
= (a+b)Vg (ta+ (1 —t)(-b))
= (a+0)Vg(a").

By assumption, (a + b) is elementwise greater than 0. It thus suffices to show that all

Salxt
elements of Vg (2') are positive. Without loss of generality, we show that M > 0.

8.7:K
Using the definition of the conditional expectation and Leibniz’s rule, we have
dg(a') _
a$K N
by bi by b -1
8 / / (y1+...+yk) ox(y) dyr ... dyx / ox(y) dy: ... dyx =
TK e
b1 bx b1 br—1 Y_K
/ / (y1+ ... +yx) ¢x(y) dyr ... dyk ¥ / / o dyi...dyx—1
i K
b1 br—1 YK b1 bx
/ / y1+ T YK— 1+$K)(b . dyy...dyg—1 X / ¢E(y)dy1--
by b -
X /t , d)g(y) dyl...dyK (6)
$1 CL'K

where ¢x(y) denotes the PDF of a multivariate normal with mean 0 and variance ¥, and

a t
the second line uses the quotient rule. It follows from (6) that # > ( if and only if
T

L+ 4 i) os(y) dyr - dyie
Sl [ és(y) dys - dyx

>

T

1 -1 Y-
f;tl f;{:_l (bE (( x; )) dyldnyl

E[Yi+...4+Yg|ah <Y; <b;,Vj] >E[Yi+... + Y| <Y; <by, for j < K, Y =] .

or equivalently,

. dyK>



It is clear that E [YK | xé <Y; < bj,‘v’j] > xh, since r% < by and the Kth marginal density
of the rectangularly-truncated normal distribution is positive for all values in [x% bx] (see
Cartinhour (1990)). This completes the proof for the case where K = 1. For K > 1, it

suffices to show that

EYi+... 4 Ye |2t <Y<,V 2EYi+ ..+ Y |2l <Y, < by, for j < K, Yie = %] .
(7)

To see why (7) holds, let Y k=Y -2 K, KZ;(}KYK, where a “— K" subscript denotes all
of the indices except for K. It is straightforward to verify that Y_ is uncorrelated, and hence
(by normality) independent of Yy and Y k~N <0, i) for Y = E_K_K—Z_K,KZZKEK’_K.

By construction, Y_x = Y. K+ 2 K KZ}}}KYK, from which it follows that

Yok |Ye =y ~ N (Z—K,KZ[_(}KyKa i) :

We now argue that E,K,KZEKyK = cyg ¢ for a positive constant ¢. If K = 2, then
by Assumption 1, »_ K,KZ[_{}K = p/c? is the product of two positive scalars, and can thus
be trivially written as cz. For K > 2, we verify that 3 satisfies Assumption 1, and then
apply Lemma A.2 to obtain the desired result. To do this, note that by Assumption 1,

Y has common terms o2

on the diagonal and p on the off-diagonal, and thus the same
holds for ¥_x k. Additionally, under Assumption 1, ¥_gx = pt and ZI}}K = %, SO
Sk Sk kSK-K equals p?/o? times ', the matrix of ones. The diagonal terms of & =
Y kK —Z,K,KZZKZK,K are thus equal to 6% = 02— p?/0?, and the off-diagonal terms are
equal to p = p— p*/0?, or equivalently p = p(1— p/c?). Since by Assumption 1, 0 < p < 02,
it is clear that 62 > p. Additionally, 0 < p < o2 implies that 1 — p/o? > 0, and hence
p > 0, which completes the proof that ¥ satisfies the requirements of Assumption 1. Hence,

Z_KKZ;{}KyK = cygi t by Lemma A.2. We can therefore write
Yok | Yk = yx NN<C?JKL, i) -

Let h(y) =E [X|X € B_g, X ~ N (u, z)} for B_ic = {# € RE-1|zt < &; <b;, for j =
1,...,K—1}. Then the previous display implies E [//Y_ | wh <Yy <bjforj <K, Yg = yk| =



!'h(cykt). Hence,

aiE[/YKM <Y; <, for j < K, YK:yK]—L(D hlu=cyr) t - €
YK

= /Var[Y_g |Y_x € B_g,Yi = yx] X e
=/Var|Y_g|Y_x € B_g, Y = yx] tcic
>0

where the second line follows from Lemma A.1; the third line uses Lemma A.2 to obtain
that X' = 1¢; for ¢; > 0 (if K = 2, this holds trivially); and the inequality follows from the
fact that Var [Y_ | Y_g € B_g, Yk = yk| is positive semi-definite and ¢; and ¢ are positive

by construction. Thus, for all yx € [2t, by,

E[Yi+...4+Yga|ai <Y; <bfor j <K, Yg =yx| >
E[Yi+...4+Yg |2 <Y; <bfor j <K, Yg=u}].

By the law of iterated expectations, we have

]E[Y1+ A Y |2t <Y <b;,V5] =

]E[ [ —I—YK1|93 <Y<bfor]<KYK}|x <Y<b],Vj}
]E[ [ —I—YKl\x <Y<bforj<KYK—:ch]]a: <Y<b],V]]
E[vi + —|—YK1|3: <Y; <b;for j < K, Yg = a],

as we wished to show.

]

Proof of Proposition 2 From Proposition 1, the desired result is equivalent to showing
that

Z1222721 E [Bprc - 5pre ‘ Bpre € B] > 0.

By Lemma A .2, Y1535 = ¢/ for ¢; > 0, so it suffices to show that //F [Bme — Bpre | Bpre € B] >
0. Note that by assumption (Bpre — Bpre) ~ N (0, X92). Additionally, observe that ﬁpre €
BNIS = {Bpre . |6pre,j|/\/ Ejj S Co fOI' all j} lﬁ (ﬁpre - Bpre) S BNIS - {ﬁ : aj S Bj S bg}

for a; = —can/2jj — Bpre,j and bj = car/2j; — Bpre,j- Since By j < 0 for all j, we have that
—b; < a; < b; for all j. The result then follows immediately from Lemma A.3.



Proof of Proposition 4 By Proposition 3, it suffices to show that
(D12957) (Var [Bm | Byre € B} ~ Var [@JD (B1255)) < 0.

The result then follows immediately from the fact that Var [Bpre | Bpre € B} — Var [Bpre] is

negative semi-definite by Lemma A.1. [J

B Uniform Asymptotic Results

In the main text of the paper, I consider a finite sample normal model for the event-study
coefficients, which I use to evaluate the distribution of the event-study estimates conditional
on passing a pre-test for the pre-period coefficients. In this section, I show that these finite-
sample results translate to uniform asymptotic results over a large class of data-generating
processes in which the probability of passing the pre-test does not go to zero asymptotically,

i.e. when the pre-trend is O(n"2).

B.1 Assumptions

We consider a class of data-generating processes P. Let Bn = \/EB be the event-study

6post 7—post(P)
0

pre
vector of treatment effects under data-generating process P € P, where we assume there is

be the scaled

estimates 3 = scaled by y/n. Likewise, let 7p,, = /n

no true effect of treatment in the pre-periods.

Assumption 1 (Unconditional uniform convergence). Let BL; denote the set of Lipschitz
functions which are bounded by 1 in absolute value and have Lipschitz constant bounded by

1. We assume

lim sup sup
n—00 pcP feBL,

where fP,n ~ N(5P,na ZP)'

Ep [£(Ba = re0)] ~E[f(Ern)]|| = 0.

Convergence in distribution is equivalent to convergence in bounded Lipschitz metric (see
Theorem 1.12.4 in van der Vaart and Wellner (1996)), so Assumption 1 formalizes the notion
of uniform convergence in distribution of Bn —7pn to a N (dp,, Xp) variable under P. Note
that we allow ¢ to depend both on P and the sample size n.

We next assume that we have a uniformly consistent estimator of the variance Xp, and

that the eigenvalues of ¥ p are bounded above and away from singularity.



Assumption 2 (Consistent estimation of Xp). Our estimator S is uniformly consistent for
EI%
lim sup Pp (Hin —Xp|| > 6) =0,

n—o0 pep

for all e > 0.

Assumption 3 (Assumptions on ¥p). We assume that there exists A > 0 such that for all
PeP,p S ={Z]1/X < Mnin(D) < Anaz(B) < A}, where Apin(A) and Apae(A) denote

the minimal and mazimal eigenvalues of a matriz A.

Next, we assume that the pre-test takes the form of a polyhedral restriction on the vector
of pre-period coefficients. Note that the test that no pre-period coefficient be individually

significant can be written in this form.

Assumption 4 (Assumptions on B). We assume that the conditioning set B(X) is of the
form B(X) = {(Bpost: Bpre) | Apre (L) Bpre < b(X)} for continuous functions Ape and b. We
further assume that for all ¥ on an open set containing S, B(X) is bounded and has non-

empty interior, and Ap..(X) has no all-zero rows.

For ease of notation, it will be useful to define A(X) = [0, A,..(X)], so that § € B(X) iff
A(X)B < b(%).

B.2 Main uniform asymptotic results

Our first result concerns the asymptotic distribution of the event-study coefficients condi-

tional on passing the pre-test.

Proposition B.1 (Uniform conditional convergence in distribution). Under Assumptions

1_47

lim sup sup
N0 peP feBLy

Ep [£(B0 = 7pn) | B € BE)| —E1f(€rn)lérn € BER)|| Pr (B € BE) =0,

where Epy ~ N (0pn, Xp).

Note that if we removed the Pp (Bn €eB (f]n)> term from the statement of Proposition

B.1, then the proposition would imply uniform convergence in distribution of (Bn —Tpn) |Bn €
B(2,) to Epnlépn € B(Xp). The Proposition thus guarantees such convergence in distribu-
tion along any sequence of distributions for which the probability of passing the pre-test is

not going to zero.



Although Proposition B.1 gives uniform convergence of the treatment effect estimates
conditional on passing the pre-test, it is well known that convergence in distribution need
not imply convergence in expectations. Our next result shows that under the additional
assumption of asymptotic uniform integrability, we also obtain uniform convergence in ex-

pectations, provided that the probability of passing the pre-test is not going to zero.

Proposition B.2 (Uniform convergence of expectations). Suppose Assumptions 1-4 hold.
Let Bp,, = Tpy + 0py. Assume that Bn — Bpan 1s asymptotically uniformly integrable over the

class P,

lim limsup sup Ep [Hén — Bl 1||Bn — Bl > M]} — 0.

M—=oo paoo PeP

Then, for any e > 0,

lim sup 1 [HEP [Bn — TPn

n—oo pep

Bn € B(in)} —E [SP,R

Epn € B(Ep)]H > e} Pp (Bn e B(i}n)> — 0,
where Epy, ~ N (0pn, Xp) .

B.3 Proofs of main asymptotic results

Proof of Proposition B.1 Towards contradiction, suppose that the proposition is false.
Then there exists an increasing sequence of sample sizes n,, and data-generating processes
P,, such that

Ep, |£(Bo = 71pin) | By € B(En,)| = E [£(€8,,,)I€ € B(Sg,, )] || x

liminf sup
m—0o0 fEBLl

Pp, (Bnm c B(inm)> > 0. (8)

Since the interval [0, 1] is compact, there exists a subsequence of increasing sample sizes, n,
such that

lim Pp, (Bnq e B(inq)> — ",

q— o0

for p* € [0, 1].
Suppose first that p* = 0. Note that by definition, a function f € BL; is bounded in
absolute value by 1. It then follows from the triangle inequality that for all f € BLy,

[Ep, [£(Brs = 700 00) | oy € Bw)| = E [£Ey ) piyng € BEr,)]|| <2

10



for all q. But this implies that

liminf sup
4= feBLy

<2p" =0,

Ep, £ By = 00gn) | Py € B(En,)| —E [£(E8,,lén, € BEn,,)]||Pr,, (B, € BEn,))

which contradicts (8).
Now, suppose p* > 0. Note that by Assumption 3, ¥p falls in the set S = {X|1/\ <
Amin(2) € Anaz(X) < A}, which is compact (e.g., in the Frobenius norm). Thus, we can

extract a further subsequence of increasing sample sizes, n,, such that

lim anr = Z*,

T—00

for some >X* € S.

pre

Additionally, since p* > 0, Lemma B.4 implies that & Po, oy 18 bounded, and thus we can

extract a further subsequence n, along which

lim 67 = 7o,
s—00 Prsns

6post O
By Lemma B.3, for 6, = ( P"(;’"S ), 0 = ( spres ), and &* ~ N (6%, ¥*), we have

(Baw = TP = 05 )|Bn, € B(Sn,) -5 €°16* € B(EY),
and
(Ep,. — 61 )|ép,. € B(Sp,,) —2 £7[¢" € B(Z").

Recalling the convergence in distribution is equivalent to convergence in bounded Lipschitz

metric, we see that

lim sup
S— 00 fGBLl

Ep,, [F(Br. = Thuvne = 55) | B, € BS0)| —EIF(€)E" € BE)|| =0 (9)
and

lim sup [[E [£(€r,. — 07 )lép,, € B(Sp,)] —Ef(€)E € B[ =0 (10)

S$—00 fEBLl

Equations (9) and (10) together with the triangle inequality then imply that

11



B, [, = 120 — 350 | B € BE)] — B [F(6n, - 05)lén,, € BSn,)]|| = 0.

lim sup
S5—00 fEBLl

However, BL is closed under horizontal transformation (i.e. f(z) € BL; implies f(x —c¢) €

BLy), and so this implies that

lim sup
S— 00 fGBLl

B, € B(S)] ~E [£(€n,)lér,, € B(Sn,)]|| =0,

Epns |:f(/3ns - T-Pnsyns)
which contradicts (8). O

Proof of Proposition B.2 Towards contradiction, suppose the proposition is false. Then
there exists an increasing sequence of sample sizes n,, and data-generating processes P,

such that for some € > 0,

lim inf 1 ME [Bnm — o | B € B(inm)] —E[¢r, &, € B(Sp,)] H > e} X

m—0o0
]P)an </én7n 6 B(inm)> > O (11)

Since the interval [0, 1] is compact, we can extract a subsequence of increasing sample
sizes, ng, along which

lim Pp, (Bnq € B(f]nq)> =p*

q—00
for p* € [0, 1].
First, suppose p* = 0. Since the indicator function is bounded by 1,

lim inf 1 [HE [Bnq — b, g | By € B(inq)} ~E[¢p,, |€p, € B(Zn,,)] H > e} Pp,, (Bnq S B(%)) <

§—00

liminf Pr,, (B, € B(S,,)) =p" =0,

§—00

which contradicts (11).
Now, suppose p* > 0. As argued in the proof to Proposition B.1, we can iteratively

12



extract subsequences to obtain a subsequence, ng, along which

lim $p, =¥,

S§—00

: pre __ Spre,x
B 0, = 077

hm IP)Pns (an G B(ins)> :p* > 07

S§—00

where X* € S.
0

pre
Pns M

coefficients and % °
UX-E]

0
Let 0, = ) and 0* = spren ) be the vectors with zeros for the post-period

n, and 07" respectively, for the pre-period coefficients. Similarly, let

. for the

n

post
5 = ( P "0 s ) be the vector with zeros for the pre-period coefficients and 5’1325:7

post-period coefficients. From Lemma B.3, (8, — TP, ms — 6;;”5% € B(Z,,) LN £¥|&* €
B(X*), for & ~ N (0%, X*).

Additionally, from uniform integrability, we have

im limsupEp,  [l1B,. = Be,mll - 11, = Bl > M| = 0.

1
M—=oo s 400

Observe that

E-Pns _H/éns _/Bpnsyns .1[||/3ns_/BPns7ns
IE:P’ﬂs Han - /Bpnsvns : 1[”an - 5Pnsyns > M] ‘/an S B(ins> ’ ]P)Pns (an € B(XA)"S)>
Er,, [11Br. = Brumcl |- 11Bn. = Bewnll > M] | B, & B(S,)| - P, (B, & BE,))

EPnS ||/6A)ns_/8P7L57ns||.1[||an_/ﬁpn57ns|| >M]|Bn.s EB(ins) ‘IEDPTLS (an €B<ins)

> M| =

+
>

™M

9

and hence

hm hmsupEPns [||Bna - /BpnsynsH . 1[||an - /Bpn57n5

—00 500

> M|, € B(E0,)| Pr, (B, € B(En)) =0.
Further, since Pp,_ (an € B(f]ns)> — p* >0, it follows that

’ ]‘[H/an - /Bpnsyns

]Vllim limsupEp,_ [Han — B, s > M] ’an € B(ins)] =0,

—X 5300

S0 B, — Bp,.n, is uniformly asymptotically integrable conditional on Bn. € B(X,.). Note
that Bn — Tpymne — O = Bn — Bpoyms T 0,,, and 0, — 0" as s — oo. It then follows from

13



Lemma B.6 that an — Tp,,m, — O, is uniformly asymptotically integrable conditional on

~ A~

BTLS E B<Ens)
Convergence in distribution along with uniform asymptotic integrability implies conver-

gence in expectation (see Theorem 2.20 in van der Vaart (2000)), and thus

tim |[Ep, (B, = 7o, m. = 05 | B, € B(E0)| —E[€"|€" € BE|| = 0.

S§—00

Likewise, Lemma B.5 gives that

lim ||E [¢p,, — 6
5—00 N

&, € B(Zp,,)] —E["[€ € B(ZY)]|| = 0.
It then follows from the triangle inequality that

fim HEPns [an — TPygms — 571 |an < B(im)} —B [£P”S N 5:; |€P”S < B(EP”S>] H =0

§—00

Cancelling the §;7 terms gives

lim H]Epns [ﬁns — T, Pa,
S—00

which contradicts (11). O

B, € B(S0)| ~ E [¢p,

ér., € B(Sn,)]|| = 0.

B.4 Auxiliary lemmas and proofs

Lemma B.1. Suppose (§,,%,) N (€*,3%), for & ~ N (6%, X%) and X* € S. Then, if B

satisfies Assumption /,
Pp, (& € B(En)) — P (§" € B(XY)).
Proof. By definition, &, € B(%,) iff A(X,)&, < b(X,). Now, consider the function
h(§, X) = 1[A(X)E < b(X)].

Note that since A(-) and b(-) are continuous by Assumption 4, h is continuous at all (£, %)
such that for all j, (A(X)£); # b(X),. However, the jth element of A(X*){* is normally
distributed with variance A(X*)(; )" A(X")(; y, where X(; ) denotes the jth row of a matrix
X. Since A(X*) has no non-zero rows by Assumption 4, and 3* € S implies that X* is positive
definite, A(X")(; X" A(X")(;.) > 0. This implies that for each j, (A(X*)¢"); = b(X*); with
probability zero, and hence (A(X*)£*); # b(X*); for all j with probability 1. Thus, h is

continuous at (£*,¥*) for almost every &.

14



Since (&,,%n) N (&*,%%), the Continuous Mapping Theorem gives that 1[A(%,)§, <
b(2%,)] N 1[A(X*)E* < b(32*)]. Since the indicator functions are bounded, it follows that

P (&n € B(3n)) = E[1[A(En)én < b(En)]] — E[IA(E)E" < 0(E7)]] = P(£7 € B(XY)),

which completes the proof. ]
Lemma B.2. Suppose that (&,,%,) N (&*,3%), for & ~ N (6%, %) and ¥* € S. Suppose
further that P (¢* € B(X*)) = p* > 0 for B(X) satisfying Assumption J. Then
d * * *
&nl&n € B(S,) — £°| & € B(XY).

Proof. By the Portmanteau Lemma (see Lemma 2.2. in van der Vaart (2000)),
d * * *

it E[f(&) & € B(3,)] — E[f(&%) | € B(X*)] for all bounded, continuous functions f.
Let f be a bounded, continuous function. Since (&,,%,) N (&*,%2%), the Contin-
uous Mapping Theorem together with the Dominated Convergence Theorem imply that

E[g(&, 2n)] == E[g(£*,%%)] for any bounded function ¢ that is continuous for almost every
(€, %X%). It follows that

E[f(&n) - 1[6n € B(En)]] — E[f (£7) - 16" € B(X)]],

where we use the fact that the function 1[¢ € B(X)] is continuous at (£*,%*) for almost every
&*, as shown in the proof to Lemma B.1, and that the product of bounded and continuous

functions is bounded and continuous. Additionally, by Lemma B.1, we have that
P&, € B(&,)) — P (e B(X))=p">0.

We can thus apply the Continuous Mapping Theorem to obtain

E[f(&)-1[6 € BE)l] | E[f(€7) 1[€" € BE)]
P (&n € B(3)) P e B(XE))

which by the definition of the conditional expectation, implies

Ef(&n)|&n € B(Xa)] — E[f(£7) € € B(ET)],

as needed. O
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Lemma B.3. Suppose Assumptions 1-/ hold, and ng is an increasing sequence of sample

sizes such that

. _ *
i B, =,
: pre — Abre*
i O, =97

lim Pr,, (B, € B(S,,)) =p" >0
S§—00
post
for ¥* € S. Let o) = P”S’”S be the vector with elements corresponding with dp, .,
for the post-period coefficients, and zeros for the pre-period coefficients. Likewise, let 0* =
be the vector with zeros for the post-period coefficients and 6P"* for the pre-period

6[)7‘6,*

coefficients. Then
(B, = 7Py = 03B, € B(S,) = £°[6" € B(ZY)
and

(Eppoms — 07 ) | €y € B(Zp,,) —5 €¥|¢* € B(XY),

for & ~ N (6%, ¥%).

Proof. By assumption, &p,  ~ N (0p,., Ep,.), and thus p, = 0,7 ~ N (8, , Bp,.). Since by
construction d,, — 0* and ¥p,  — ¥*, it follows that {p, —0, —Ly & for & ~ N (6%, T%).

Convergence in distribution is equivalent to convergence in bounded Lipschitz metric, so

lim sup ||E [f(&p,, —05)] —E[f(€)]|| =0. (12)

5—00 fEBLl

Additionally, Assumption 1 gives that

lim sup
§—00 fEBLl

Er,, [£(Bn, = 7o) ~ E[En)]]| = 0

Since the class of BL; functions is closed under horizontal transformations, it follows that

lim sup
S— 00 fGBLl

Ep, [£(Bn. = 750, = 02)] —E [£(&n,, = 53)]|| = 0. (13)
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Equations (12) and (13), together with the triangle inequality, imply that

lim sup
5—00 fEBLl

Ep, (B, = 7p,om, = 65)| —ELF(E)]]| =0, (14)

or equivalently, ( ,@n —TP,. ms— 0,1 N ¢*. By Assumption 4, the pre-test is invariant to shifts
that only affect the post-period coefficients, and so 8,, € B(2y,,) iff (8., — Tng, P, — O ) €
B(%,.). Lemma B.1 thus implies that lim, o, Pp, <Bn € B(ﬁn)) =P (¢ € B(XY)), and
hence P (£* € B(X*)) = p* > 0. We have thus shown that (5,, — TP,y — 5:5,2%) N
(&,2%), (€p., — 04, Xp,.) LN (€, 2%), and P (£ € B(X*)) > 0. The result then follows
immediately from Lemma B.2.

[

Lemma B.4. Suppose that Assumptions 1-/ hold. Then for any increasing sequence of

sample sizes ng and corresponding data-generation processes P, such that

: pre _
lim {65, o, || = oo,

we have
lim Pp, (Bn € B2, )) =0.
q—00 q a a

Proof. Towards contradiction, suppose that there exists a sequence n, such that

: pre _
lim {65, || = oo,
and
lim inf Pp, (Bn e B(S, )) > 0. (15)
q—00 q a a

Since S is compact, we can extract a subsequence n, along which Xp, — X* for some
¥* € S§. Assumption 2 then implies that f]nr A

By Assumption 4, B,,..(X) is bounded for every ¥. Let M(X) = SUDg,, . eByre(s) | Bprell-
Assumption 4 implies that B,,.(X) is a compact-valued continuous correspondence, and so
M(%) is a continuous function by the theorem of the maximum. It follows that for any ¥
in a sufficiently small neighborhood of ¥*, M(X) < M(X*) +1 =: M. Since %, —£+ %%,
it follows that M(%,. ) —, M(¥*), and thus for r sufficiently large, M(%,. ) < M with
probability 1. Thus, for r sufficiently large, Pp, <Bnr €EB (f]nr)> <Pp,, (Bnr €EB M), where
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Bt = {(Bposts Bpre) ||| Bprel| < M}. Tt follows that

lim inf Pp, (Bm e B(im)> < liminf Pp, (Bm e BM)

7—00 7—00

=1—limsupPp, (Bnr € Bfw) .

T—00

We now show that limsup,_, . Pp

ny

(Bnr € BE) = 1, which along with the display above

implies that lim inf, . Pp, (Bm = B(inr)> — 0, contradicting (15).

Consider the function h(5) = min(d(5, Bj;), 1), where for a set S we define d(5,5) =
infzq |8 — B||. Tt is easily verified that h € BLy, and that h(3) < 1[8 € BS,] for all f5.
Thus,

lim sup Pp, (Bnr c BKZ) > limsup Ep, [h(Bm)} . (16)

r—00 r—o0

Note that d(B , Bjr) depends only on the components of $3 corresponding with the pre-period,

and thus h(3) = h(B — 7) for any value 7 = TPSSt that has zeros in the positions

corresponding with (,,... This, along with Assumption 1, implies that
g p g

tim ||Ex,, [5(3)] - B [A(Er,, »)] || = 0.

700

Using the triangle inequality and the fact that A is a non-negative function, we have

Er,, [h(Bu)] = E [0(ép,, )] = |[Er., [3(B)] — E [1(gr,, 0] ||

It then follows that

fimsup Ep,, [h(h,)] = lmsupE [h(é, )] (17
T—00 r—00
Now, since lim, o [|0p, , || = oo, there exists at least one component j of dp,°  ~that

diverges. Let &7, denote the jth element of 65° . and suppose WLOG that 07" — oo.

Likewise, let £ denote the jth element of {5° . Note that h(&p,, n,) = 1 whenever
"¢ > M +1, and thus E [h(¢p,, n,)] > E [1[5° > M + 1]]. Hence,

limsupE [h(ép,, n,)] > limsupE [1[6]7° > M +1]] . (18)

T—00 T—00

Since &8¢ ~ N (0%7¢, 07,), for o, the jth diagonal element of ¥p, , we have
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_ M +1—6"¢
E[1[§:8>M+1]}=1—q><—”).

O’J}T‘

However, by construction o;, — o; as r — oo, where 0}‘2 is the jth diagonal ele-

ment of X*. Additionally, o > 0 by Assumption 3. Thus, since 07,° — oo, we have that
v __gpre _
P (M) — 0, and hence E [1[¢77° > M + 1]] — 1. This, combined with the inequalities

9j,r

(16), (17), (18), gives the desired result.
[

Lemma B.5. Suppose Assumptions 1-/ hold. Consider a subsequence of increasing sample

sizes, ng, such that

lim ¥p, = %*, (19)
S— 00

lim 07° = §P"e*, (20)
$—00 ERI

lim Pp, (an c B(f]ns)) >0 (21)
S— 00

for ¥ € S. Then

lim [[E [¢p,, 0. =9,

S§—00

0 5post
for & ~ N (6%, %), where §* = sores and 6, = Prg.s

&Py me € B(Xp,,)] —E[¢"]| & € B(ZY)]|| =0,

0

Proof. Let &; ; denote the jth element of £p, ,,—6," . We show that E |:£j’s | €pa.ins € B(f]pns )]
E [¢ € € B(E)] for each element j, which implies the desired result.
Note that &p, n, ~ N (0p,. nes Epo.)s 80 Epymy — 08 ~ N (0,,., £p,.), where 6, =

pre
Pns sMs

0
( > Since by construction 6, — ¢ and Xp, — X%, it follows that {p,_ ., —

ot N £*. The continuous mapping theorem then gives that ({p, ., — 6, ) - 1[¢p,. n, €
B(Xp,)] ¢ *1[¢* € B(X*)], where the function is continuous for almost every £* as shown
in the proof to Lemma B.1, and we use the fact that {p, ,, € B(f]pns) iff {p, ne — 01 €
B(® p,.) by Assumption 4. Next, observe that

&5 - Lpa,ns € B(ER)]| < 1€54].

Since the absolute value function is continuous and &; N I N €] by the contin-

uous mapping theorem. Further, each |¢;,| has a folded-normal distribution, as does |}/,
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and since the mean of a folded-normal distribution is finite and continuous in the mean and

variance parameters, we have E[|¢;|]] = E [|¢;]] < oo. Thus, by the generalized dominated

convergence theorem,

E s 1, n € BEp,)l| S E[g 16" € BE).

However, by Lemma B.1 we have that

P(¢p,, € B(Sp, ) — P(€ € BE) =p" >0,

Thus, by the continuous mapping theorem,

E [gj,s -1ép,, € B(ipns)]} E [¢ - 1[¢* € B(ZY)]]
P <£Pns’ns c B@Pns)) P& e B(X*))

as we wished to show. O

Lemma B.6. Suppose that a sequence of random variables Y, is asymptotically uniformly

integrable,

lim limsupE[||Y,| - 1]||Ya]] > M]] = 0.
M—

n—oo

If ¢, 1s a sequence of constants with ¢, — ¢ and Y, — ¢, converges in distribution, then

Y, — ¢, s also asymptotically uniformly integrable.

Proof. Note that ||Y,, — cu|| < ||Yal|| + ||cnl||- Thus,

lim limsupE[||Y, — || - 1[||Yn — cnl| > M]] <

M—oo  pyoo

]\}im limsup E [||Y,]| - 1[||Yn — ¢al| > M]] —i—]vl[im limsup E [||c,]| - 1[||Yn — cnl| > M]].
—

n—00 X n—oo

(22)

We now show that each of the two terms on the right hand side of (22) is zero. To see
why the first term is zero, note that since ¢, — ¢, for n sufficiently large, ||c,|| < ||c+1]||. By
the triangle inequality, ||Y;, —cu|| < ||Yo||+]|cn|| and so for n sufficiently large, 1[||Y,, —c,|| >
M) < 1[||Ynl| > M —||c+ 1]|]. Thus,

lim limsupE[||Y,|| - 1[||Yn — cnl| > M]] < lim limsup E[||Y,|| - 1[||Ya]| > M — ||c + 1||]]
M—=oo p oo M—=oo p oo
= lim limsupE[||Y,|| - 1[||Y.]| > M]],
M —o00

n—oo
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and limps_,o limsup,,_,  E[||Y,]| - 1[||Yn|| > M]] = 0 by assumption.
To show that the second term in (22) is zero, note again that since ¢, — ¢, for n

sufficiently large, ||c,|| < ||c+ 1||, and thus

lim limsupE[||c,|| - 1[||Yn — cul| > M]] < |le+ 1]] lim limsup E[1[||Y,, — .|| > M]].
M—oo pyeo M—oo pyeo
However, since Y,, — ¢, converges in distribution, Prohorov’s theorem gives that Y,, — ¢, is
uniformly tight, so
lim limsup E [1[||Y;, — ¢.|| > M]] = 0.

M—=oo p oo

C Power Calculations Under Stochastic Differential Trends

This section considers data-generating processes in which there are stochastic differential
trends between the treated and control groups. In particular, we consider the following

hierarchical model:

5§ ~N(0,V) (23)
Blo~N@B+T1,35). (24)

The distribution for 3|6 in (24) is identical to the model considered in Section II. However,
we now treat 0 as stochastic, rather than as a fixed parameter (e.g. linear in event-time).
Treating 0 as stochastic is sensible in situations in which we think that there may be common
shocks to the treated and control groups (e.g. if each of these is a state, and there are macro-
level shocks).

I now evaluate the power of pre-tests against such stochastic shocks in data-generating
processes calibrated to the sample of papers reviewed in Section I. For a given value of
(V, %), we define the power of the pre-test to be the probability, P; 5 (Bp,,e €eB (E)), where

Ps 5 (+) denotes the probability taken over the realization of the joint distribution of (d, B)
We explicitly write the pre-test acceptance region as B(X) to denote that the pre-test region
depends on ¥ (but not V). We again set ¥ to be the estimated variance-covariance matrix
from each of the papers in the sample. Calibrating the covariance matrix V' for the common
stochastic shocks is more difficult, as it cannot be consistently estimated from the data. For
simplicity, [ set V' = c¢- X for a constant ¢ > 0. Under this specification, the marginal distri-
bution of § under the hierarchical model defined above is N (0, (1 + ¢)X). The parameter ¢

can thus be interpreted as the factor by which we have underestimated the variance matrix
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by treating ¢ as fixed and ignoring common stochastic shocks.

I then calculate the values of ¢ for which the pre-test rejects 50 or 80% percent of the
time, which I denote ¢y5 and cyg. As in Section I, I use the pre-test criterion that no pre-
period coefficient is significant at the 95% level. T compute the null rejection probabilities of
conventional confidence intervals for the average post-treatment effect 7 and the first-period
treatment effect 7, under the DGPs with cg5 and cyg. The null rejection probabilities are
computed over the joint distribution of (B, §)." As in Section I, I report these probabilities
both unconditionally, and conditional on surviving the pre-test. Tables C1 and C2 show the
results for 73 and 7, respectively. Across all specifications, the null rejection probabilities
substantially exceed the nominal level of 5% for most of the papers. Conditioning on pass-
ing the pre-test generally reduces the null rejection probability, but only moderately so in
most cases. Conditional on passing the pre-test, null rejection probabilities are often many
multiples of the nominal size. The results thus suggest that conventional pre-tests may be
underpowered against detecting common stochastic shocks, in addition to the linear secular
trends considered in the main text. Concurrent work by Ferman (2020) reaches a similar
conclusion in a related model with stochastic violations of parallel trends.

I do not report results for bias as in the main text, since 0 is mean-zero and so B is
unbiased when the expectation is taken over the joint distribution of (3,5). It would be
straightforward to combine this simulation design with one such as in the main test so that

there are both stochastic shocks and a non-zero average difference in trends.

"Recall that 3 ~ N (0, (14 ¢)X). Thus, this is the probability that 7 falls inside a confidence interval
based on the assumption that 5 ~ N (7, ) when in fact 5 ~ N (7, (1 4+ ¢)X).
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Unconditional Cond’l on Passing Pre-test
Scaling factor for stochastic variance

0 €o0.5 Co.8 0 €o0.5 Co0.8
Bailey and Goodman-Bacon (2015)  0.05  0.17  0.34  0.05  0.16 0.33
Bosch and Campos-Vazquez (2014)  0.05  0.19  0.38  0.03  0.12 0.26
Deryugina (2017) 0.05 0.19 0.38 0.01 0.04 0.09
Deschenes et al. (2017) 0.0 017 035 0.03 0.10 0.19
Fitzpatrick and Lovenheim (2014) 0.06 023 045 005 0.21 0.43
Gallagher (2014) 0.05 0.14 0.30 0.04 0.12 0.26
He and Wang (2017) 0.05 0.26 0.48 0.05 0.23 0.46
Kuziemko et al. (2018) 0.05 029 055 0.04 0.20 0.42
Lafortune et al. (2017) 0.05 0.19 0.38 0.05 0.18 0.37
Markevich and Zhuravskaya (2018)  0.05 022 044  0.04 0.18 0.38
Tewari (2014) 0.05 010 022 004 0.08 0.18
Ujhelyi (2014) 0.05 022 043 0.04 0.18 0.36

Table C1: Null Rejection Probabilities for Nominal 5% Test of Average Treatment Effect
Under Stochastic Trends Against Which Pre-tests Have 50 or 80% Power

Note: This table shows null rejection probabilities, i.e. the probability that the true parameter falls outside
a nominal 95% confidence interval, using data-generating processes in which parallel trends holds (scaling
factor = 0) or in which there are stochastic violations of parallel trends that conventional pre-tests would
detect 50 or 80% of the time (co.5 and cpg). The first three columns show unconditional null rejection
probabilities, whereas the latter three columns condition on passing the pre-test. The estimand is the
average of the post-treatment causal effects, 7. See Section C for details on the data-generating process.
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Unconditional Cond’l on Passing Pre-test
Scaling factor for stochastic variance

0 €o0.5 Co.8 0 €o0.5 Co0.8
Bailey and Goodman-Bacon (2015)  0.05  0.17 034 0.04 0.14 0.30
Bosch and Campos-Vazquez (2014)  0.05  0.19 038  0.05  0.17 0.35
Deryugina (2017) 005 019 038 004 0.13 0.29
Deschenes et al. (2017) 0.05 017 035 004 0.11 0.22
Fitzpatrick and Lovenheim (2014) 0.06 023 045 0.05 0.22 0.44
Gallagher (2014) 0.05 0.14 0.30 0.03 0.09 0.19
He and Wang (2017) 0.05 0.26 0.48 0.04 0.23 0.45
Kuziemko et al. (2018) 0.05 029 055 004 021 0.45
Lafortune et al. (2017) 0.05 0.19 0.38 0.05 0.18 0.37
Markevich and Zhuravskaya (2018)  0.05  0.22 044  0.04  0.17 0.36
Tewari (2014) 0.05 010 022 004 0.08 0.19
Ujhelyi (2014) 0.05 022 043 004 017 0.35

Table C2: Null Rejection Probabilities for Nominal 5% Test of First Period Treatment Effect
Under Stochastic Trends Against Which Pre-tests Have 50 or 80% Power

Note: This table shows null rejection probabilities, i.e. the probability that the true parameter falls outside
a nominal 95% confidence interval, using data-generating processes in which parallel trends holds (scaling
factor = 0) or in which there are stochastic violations of parallel trends that conventional pre-tests would
detect 50 or 80% of the time (co.5 and cpg). The first three columns show unconditional null rejection
probabilities, whereas the latter three columns condition on passing the pre-test. The estimand is the causal
effect for the first period after treatment, 7;. See Section C for details on the data-generating process.
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D Additional tables and figures

Unconditional

Cond’l on Passing Pre-test

Slope of differential trend:

0 705 70.8 0 0.5 70.8
Bailey and Goodman-Bacon (2015)  0.05  0.06  0.09 0.04  0.07 0.13
Bosch and Campos-Vazquez (2014)  0.05  0.12  0.22  0.05 0.08 0.11
Deryugina (2017) 0.0 0.07 009 004 0.09 0.21
Deschenes et al. (2017) 0.05 006 0.06 0.04 0.05 0.08
Fitzpatrick and Lovenheim (2014) 0.06 010 0.18 0.05 0.13 0.26
Gallagher (2014) 0.05 0.05 0.06 0.03 0.04 0.05
He and Wang (2017) 0.05 0.15 0.29 0.04 0.21 0.47
Kuziemko et al. (2018) 0.05 013 022 004 0.07 0.11
Lafortune et al. (2017) 0.05 019 041 005 0.17 0.34
Markevich and Zhuravskaya (2018) 0.05 011 019 004 0.17 0.42
Tewari (2014) 0.05 0.06 0.07 0.04 0.06 0.11
Ujhelyi (2014) 0.05 009 015 004 012 0.28

Table D1: Null Rejection Probabilities for Nominal 5% Test of First Period Treatment Effect

Under Linear Trends Against Which Pre-tests Have 50 or 80% Power

Note: This table shows null rejection probabilities, i.e. the probability that the true parameter falls outside
a nominal 95% confidence interval, using data-generating processes in which parallel trends holds (slope
of differential trend = 0) and in which there are linear violations of parallel trends that conventional pre-
tests would detect 50 or 80% of the time (9.5 and 79.8). The first three columns show unconditional null
rejection probabilities, whereas the latter three columns condition on passing the pre-test. The estimand is
the treatment effect in the first period after treatment, 7.
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Figure D1: Original Estimates and Bias from Linear Trends for Which Pre-tests Have 50
Percent Power — Average Treatment Effect
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0 2 4 6 8

Treatment Effect / Bias from Trend

Note: I calculate the linear trend against which conventional pre-tests would reject 50 percent of the time
(70.5). The red triangles show the bias that would result from such a trend conditional on passing the pre-test

(E [f — 72| Bpre € Bnis (E)} ); the green circles show the unconditional bias from such a trend (E [T — 7.]).

As a benchmark, I plot in blue the OLS estimates and 95% CIs from the original paper. All values are
normalized by the standard error of the estimated treatment effect and so the OLS treatment effect estimate
is positive. The estimand is the average of the treatment effects in all periods after treatment began, 7, = 7.
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Figure D2: Original Estimates and Bias from Linear Trends for Which Pre-tests Have 80
Percent Power — First Period Treatment Effect
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Treatment Effect / Bias from Trend

Note: I calculate the linear trend against which conventional pre-tests would reject 80 percent of the time
(70.8). The red triangles show the bias that would result from such a trend conditional on passing the pre-test

(E [f — 72| Bpre € Bnis (E)} ); the green circles show the unconditional bias from such a trend (E [T — 7.]).

As a benchmark, I plot in blue the OLS estimates and 95% CIs from the original paper. All values are
normalized by the standard error of the estimated treatment effect and so the OLS treatment effect estimate
is positive. The estimand is the treatment effect in the first period after treatment began, 7, = 7.
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Figure D3: Original Estimates and Bias from Linear Trends for Which Pre-tests Have 50
Percent Power — First Period Treatment Effect
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Treatment Effect / Bias from Trend

Note: I calculate the linear trend against which conventional pre-tests would reject 50 percent of the time
(70.5). The red triangles show the bias that would result from such a trend conditional on passing the pre-test

(E [f — 72| Bpre € Bnis (E)} ); the green circles show the unconditional bias from such a trend (E [T — 7.]).

As a benchmark, I plot in blue the OLS estimates and 95% CIs from the original paper. All values are
normalized by the standard error of the estimated treatment effect and so the OLS treatment effect estimate
is positive. The estimand is the treatment effect in the first period after treatment began, 7, = 7.

28



Supplement References

Cartinhour, J. (1990). One-dimensional marginal density functions of a truncated mul-
tivariate normal density function. Communications in Statistics-Theory and Methods,
19:197-203.

Ferman, B. (2020). Inference in Differences-in-Differences: How Much Should We Trust in
Independent Clusters? arXiv:1909.01782 [econ/. arXiv: 1909.01782.

Papadopoulos, A. (2013). Is the mean of the truncated normal distribution monotone in p?
Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/455809 (version:
2013-08-01).

Saumard, A. and Wellner, J. A. (2014). Log-concavity and strong log-concavity: A review.
arXiv:1404.5886 [math, stat].

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes:
With Applications to Statistics. Springer Science & Business Media. Google-Books-1D:
seH8dMrEgggC.

van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press. Google-
Books-ID: UEuQEMb5RjWgC.

29



	Generalized Proofs for Results in the Main Text
	Uniform Asymptotic Results
	Assumptions
	Main uniform asymptotic results
	Proofs of main asymptotic results
	Auxiliary lemmas and proofs

	Power Calculations Under Stochastic Differential Trends
	Additional tables and figures

