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A.1 A Mussa-Rosen Setting

In this section we show that our main results extend to a setting with linear valuations and

non-linear costs, as in Mussa and Rosen (1978).

The set of products is A ⊆ R+, and A includes the outside option 0. Consumers’ types are

T = {1, . . . , n}, and their values are linear, via = vi · a for vi ∈ R+, where v1 < . . . < vn. Let

v0 = 0. Producing product a costs the seller C(a) ∈ R+, where C(0) = 0. Each type i has a

unique efficient product ā(i), which maximizes va−C(a) across products a, and different types

can have different efficient products. Notice that a higher type has a weakly higher efficient

product. The seller’s optimal mechanism (x, p) for market f is an IC and IR mechanism that

maximizes the expected profit Ei∼f,a∼x(i)[p(i)− C(a)] over all IC and IR mechanisms.

A mechanism (x, p) is a non-screening mechanism for a set of types T ′ = {i1, . . . , im}, i1 <

. . . < im, if it sells to each of these types his efficient product at the highest possible price. That

is, the allocation of type ij is efficient and this type pays

p(ij) =

j∑
j′=1

vij′ (ā(ij′)− ā(ij′−1)),

where i0 = 0. Types i′ < i1 are excluded and types i′, ij ≤ i′ < ij+1 obtain the allocation and

payment of type ij (where we define im+1 = n + 1). We denote this mechanism by NT ′
. In the

special case where all types have the same efficient alternative, mechanism NT ′
sells that efficient

alternative at the value of type i1 to all types i1 and higher, generalizing our formulation in the

main body of the paper.
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A market f is efficient if N supp(f) is optimal for f , where supp(f) is the support of f . A

market f is a non-screening market if NT ′
is optimal for f for some T ′, that is, any product that

is sold is efficient for some type that buys that product. A market is a screening market if it is

not a non-screening market. Any optimal mechanism for a screening market sells some product

that is not efficient for any type that buys that product. If all types have the same efficient

product, any optimal mechanism of a screening mechanism sells an inefficient product (other

than 0) to some type. These definitions coincide with those in the main body of the paper when

all types have the same efficient product. All other notions are defined as before.

In the standard Mussa-Rosen setting, the set of products is A = R+ and the cost function

is assumed to be twice continuously differentiable, increasing, and strictly convex. In such a

setting, each market f has a unique optimal mechanism M (the allocation of each type is the

unique product that maximizes the virtual surplus). Consider some type i with an inefficient

allocation in M . By Lemma 3, for the first-best consumer surplus to be achievable, mechanism

M must be optimal for any segment f ′. But some such segment must contain i, and because the

optimal mechanism for the segment is unique and M is optimal for the segment, the segment is

inefficient. This means that first-best consumer surplus and the surplus triangle are unachievable

for any inefficient market f .

With a finite set A of products, several mechanisms may be optimal for a market. We turn

to this case and assume that C(a) > 0 for all a 6= 0 but we do not assume that the cost function

is increasing nor that it is convex.

We first consider the case of two types, 1 and 2. We show that, similarly to Proposition 1

and Proposition 2, first-best consumer surplus and the surplus triangle are achievable for an

inefficient market if and only if all markets are non-screening markets. We start with the

following lemma, which is similar to Lemma 4. We identify each market by its fraction q ∈ [0, 1]

of type 2 consumers. Recall that F(M) denotes the sets of markets for which mechanism M is

optimal.

Lemma A.1 There exist q1 and q2, 0 ≤ q1 ≤ q2 ≤ 1, such that F(N{1,2}) = [0, q1],F(N{2}) =

[q2, 1], and F(M) ⊆ [q1, q2] for any mechanism M 6= N{1,2}, N{2}.

Proof. Following standard arguments, for any market q the allocation of type 2 is efficient and

the allocation of type 1 maximizes

(v1 − qv2)a− (1− q)C(a)(2)
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over all products a (including product 0). Because ā(1) uniquely maximizes (2) when q = 0, (2) is

continuous in q, and F(N{1,2}) is convex, there exists q1 such that F(N{1,2}) = [0, q1]. Similarly,

because a = 0 maximizes (2) for all q ≥ v1/v2, there exists q2 such that F(N{2}) = [q2, 1].

If q1 = q2, then all markets are non-screening markets, as shown in Figure 1 (a). In this

case, any inefficient market, i.e., a market in (q1, 1), can be segmented into markets q1 and 1,

achieving first-best consumer surplus. If q1 < q2, as shown in Figure 1 (b), then some markets are

screening markets. In this case, first-best consumer surplus is not achievable for any inefficient

market, i.e., a market in (q1, 1). This is because any segmentation of such a market into efficient

segments must include a segment with a different optimal mechanism. The proof of the following

proposition is identical to that of Proposition 1 and Proposition 2 and is omitted.

Proposition A.1 The following are equivalent:

1. First-best consumer surplus is achievable for any inefficient market q.

2. The surplus triangle is achievable for any non-singleton market q.

3. q1 = q2.

We next show that our main result, that first-best consumer surplus and the surplus triangle

are unachievable for any screening market, continues to hold with any number of types. The

key step is to establish a lemma that parallels Lemma 5. We start with some simplifications,

then state some known characterizations of optimal mechanisms, and then state and prove the

lemma.

Notice that in any optimal mechanism, the allocation of a type must minimize the expected

cost over all distributions over alternatives that have the same expectation. Otherwise, we can

lower the allocation cost of that type without changing the expected allocation, and thus without

changing the incentives. So for the rest of this section, to simplify notation, we let x(i) denote

the expected allocation of type i, and we let C(x(i)) denote the minimum cost over all allocations

with expectation x(i). This extended cost function is convex because it is the convex hull of the

original cost function.

Throughout the rest of this section we use two standard properties (Myerson, 1981; see Vohra,

2011, for the formulation used here with finitely many types). First, there exists a payment rule

p such that a mechanism (x, p) is IC and IR if and only if the (expected) allocation x(i) is
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monotone non-decreasing in i. Second, for such a monotone allocation rule x, the optimal profit

for a market f among all IC and IR mechanisms (x, p) is achieved with the payment rule

p(i) =
i∑

j=1

vj(x(j)− x(j − 1)),(3)

where x(0) := 0, and this optimal profit is equal to the virtual surplus

n∑
i=1

[Rf (i)x(i)− fiC(x(i))],

where Rf (i),

Rf (i) = vifi − (vi+1 − vi)
∑
j>i

fj,

is the marginal revenue of type i.7

Lemma A.2 Consider a market f ′ that has an optimal mechanism M = (x, p), and let T1 be the

set of types that get a higher allocation than lower types in M , that is, T1 = {i : x(i) > x(i− 1)}

(and x(0) := 0). Suppose that N supp(f ′) is also optimal for f ′. Then, NT1 is also optimal for f ′.

Proof. We first show that T1 ⊆ T2 := {̄i(f ′), . . . , n} ∪ supp(f ′), where ī(f ′) is the highest type

in the support of f ′. Suppose for contradiction that x(i) > x(i−1) for some i such that i < ī(f ′)

and i /∈ supp(f ′). Consider setting x(i) = x(i − 1) and p(i) = p(i − 1). Because i is not in the

support of f ′, this change doesn’t affect the profit obtained from i. But by the payment identity

(3), this change increases the payment of all higher types, resulting in higher expected profit

because types higher than i have a positive probability in f ′. We can also assume that all types

higher than ī(f ′) obtain their efficient allocation, that is, mechanism NT2 is optimal for f ′. This

is because mechanism N supp(f ′) is optimal, and the two mechanisms are identical for all types in

the support of f ′.

7If f has full support, then the virtual surplus can be written in a more familiar form

n∑
i=1

fi[φ
f (i)x(i)− C(x(i))],

where

φf (i) = vi −
(vi+1 − vi)

∑
j>i fj

fi

is the virtual value of type i. But because the virtual value is undefined if fi = 0, and because we want to allow

for segments that do not have full support, we use the formulation with marginal revenue.
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Now let xT1 and xT2 denote the allocation rules of mechanisms NT1 and NT2 , respectively.

Let T3 be the set of types at which the efficient allocation increases, T3 = {i : ā(i) > ā(i− 1)}.

Consider set of types T̂ = T1∪T3 = {j1, . . . , jr}, for some r. The set T̂ partitions the set of types

into intervals j`, . . . , j`+1 − 1 for ` ∈ 0, . . . , r, where we set j0 = 1, jr+1 = n + 1. We show that

mechanism NT1 is optimal by showing that for any interval j`, . . . , j`+1 − 1, the virtual surplus

of NT1 is weakly higher than the virtual surplus of M

j`+1−1∑
i=j`

[Rf ′(i)xT1(i)− f ′iC(xT1(i))] ≥
j`+1−1∑
i=j`

[Rf ′(i)x(i)− f ′iC(x(i))],(4)

and therefore NT1 must also be optimal. We do so inductively, from ` = r to ` = 0.

Consider an interval j`, . . . , j`+1− 1 of types. If j` ∈ T1, then all types in this interval obtain

their efficient product in both NT1 and NT2 and so (4) is trivially satisfied. If j` ∈ T3, then

consider the smallest `′ ≥ ` such that j`′ ∈ T1 (j`′ = n + 1 if no such type exists), which means

that the allocation in mechanism M is constant for all types in j` to j`′ − 1 but there is a jump

at j`′ , and also that the efficient allocation has a jump at j`. Now consider two marginal changes

to mechanisms M and NT2 .

First, consider a mechanism M ′ that is identical to M except that for each type i from j` to

j`′ − 1, with probability ε the allocation is modified from x(i) to ā(i). This change increases the

expected allocation of types j` to j`′ − 1, but because there is a jump in the allocation of M at

j`′ , for ε small enough, the allocation of mechanism M ′ is monotone. Because mechanism M is

optimal, this change must weakly lower virtual surplus,

ε

j`′−1∑
i=j`

[Rf ′(i)x(i)− f ′iC(x(i))] ≥ ε

j`′−1∑
i=j`

[Rf ′(i)ā(i)− f ′iC(ā(i))].(5)

Similarly, consider a mechanism M ′ that is identical to NT2 except that for each type i from

j` to j`′ − 1, with probability ε the allocation is modified from ā(i) to x(i). This change lowers

the allocation of types j` to j`′ − 1, but because there is a jump in the allocation of NT2 at j`,

for ε small enough, the allocation of mechanism M ′ is monotone. Because mechanism NT2 is

optimal, this change must weakly lower virtual surplus,

ε

j`′−1∑
i=j`

[Rf ′(i)x(i)− f ′iC(x(i))] ≤ ε

j`′−1∑
i=j`

[Rf ′(i)ā(i)− f ′iC(ā(i))].(6)

Given (5) and (6), we conclude that

j`′−1∑
i=j`

[Rf ′(i)x(i)− f ′iC(x(i))] =

j`′−1∑
i=j`

[Rf ′(i)ā(i)− f ′iC(ā(i))].(7)
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By induction, we have

j`′−1∑
i=j`+1

[Rf ′(i)x(i)− f ′iC(x(i))] =

j`′−1∑
i=j`+1

[Rf ′(i)ā(i)− f ′iC(ā(i))].(8)

Subtracting (8) from (7), we have

j`+1−1∑
i=j`

[Rf ′(i)x(i)− f ′iC(x(i))] =

j`+1−1∑
i=j`

[Rf ′(i)ā(i)− f ′iC(ā(i))].

Now notice that allocation x is constant on the interval j` to j`+1 − 1, and the same holds for

the efficient allocation. So we have

(

j`+1−1∑
i=j`

f ′i)(C(ā(j`))− C(x(j`))) = (

j`+1−1∑
i=j`

Rf ′(i))(ā(j`)− x(j`)).

Because C is convex and x(j`) ≤ xT1(j`) ≤ ā(j`),

(

j`+1−1∑
i=j`

f ′i)(C(xT1(j`))− C(x(j`))) ≤ (

j`+1−1∑
i=j`

Rf ′(i))(xT1(j`)− x(j`)).

Finally, because xT1(j`) is constant on the interval j` to j`+1 − 1, the above inequality becomes

j`+1−1∑
i=j`

[Rf ′(i)x(i)− f ′iC(x(i))] ≤
j`+1−1∑
i=j`

[Rf ′(i)xT1(i)− f ′iC(xT1(i))].

Therefore, by induction, mechanism NT1 is optimal.

Similar to Lemma 5, the logic behind Lemma A.2 does not rely on a characterization of

optimal mechanisms. Such a closed-form characterization is available in the Mussa-Rosen setting

but requires ironing to allow for all segmentations. Since the ironed intervals may be different

in different segments, the closed-form solution is not convenient to work with. Our approach

avoids this issue.

Lemma A.2 implies our result as follows.

Proposition A.2 First-best consumer surplus is not achievable for any screening market.

Proof. Consider a market f with an optimal mechanism M = (x, p), and suppose that first-

best consumer surplus is achievable for f . Consider a segmentation of market f that achieves

first-best consumer surplus, and take any segment f ′. By Lemma 3, M is optimal for f ′ and f ′

is efficient so N supp(f ′) is also optimal for f ′. Lemma A.2 shows that NT1 is also optimal for f ′,
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where T1 = {i : x(i) > x(i− 1)} (and x(0) := 0). Because NT1 is optimal for every segment, it

is also optimal for f and f is a non-screening market.

As discussed above, if all types have the same efficient product, a non-screening market is

one in which only that efficient product is sold and some types are possibly excluded, so Propo-

sition A.2 generalizes Theorem 1 (Proposition A.2 is not a strict generalization of Theorem 1

because it only concerns linear values). One may wonder if it is possible to strengthen Proposi-

tion A.2 using a perhaps more natural definition of a non-screening market. Let us say that a

market f is a strong non-screening market if NT ′
is optimal for f , where for some i, T ′ contains

all types i or higher, T ′ = {i, . . . , n}. Compare this with a non-screening market f , which is

when NT ′
is optimal for some T ′. So if a market is a strong non-screening market, then it is

a non-screening market, but the reverse does not necessarily hold. Our current proof does not

show that if first-best consumer surplus is achievable for f , then f is a strong non-screening

market. The reason is that a type i ∈ supp(f) need not be in the support of every segment f ′.

So even if i is served efficiently in every segment that contains i, this type need not be served

efficiently in f . In contrast, Lemma A.2 shows that all the types in T ′ are in the support of, and

are served efficiently in, every segment.

We leave a generalization of Theorem 2 and Theorem 3 to the Mussa-Rosen setting for future

work. A conceptual question is what the right definitions of screening and non-screening markets

are. The strong definition discussed above does not seem to be the right definition. To see this,

consider the third statement of Theorem 2, “every market is a non-screening market.” This

statement cannot hold with the strong definition for any set of at least three types that have

different efficient products. For example, consider three types and a market that contains a large

fraction of type 1 consumers and a small fraction of type 3 consumers, so mechanism N1,3 is

optimal. Then type 2 is served inefficiently so this is not a strong non-screening market (we can

also construct a market with full support by adding a small fraction of type 2 such that N1,3 is

still optimal). This market, however, is a non-screening market, so it is possible that Theorem 2

and Theorem 3 can be generalized using our definition of non-screening. The decomposition

algorithm of Bergemann, Brooks, and Morris (2015) does not directly work here because there

are seven possible non-screening mechanisms for a market with full support over three types,

one for each non-empty subset of {1, 2, 3}, unlike the special case with the same efficient product

where there are three such mechanisms.
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Figure A.1: Type 1 has valuations (v, 1) and type 2 has valuations (1, 2) for product 1 and product 2. Case

(a) corresponds to v ≤ 0.5, and case (b) corresponds to v ≥ 0.5.

A.2 A Two Type Example

In this section we discuss a parametric example to highlight our results. We directly calculate the

closed form expression for the maximum consumer surplus and compare it to first-best consumer

surplus. Even though the calculations are straightforward, they are not easily extendable beyond

this example.

Suppose that there are two products and two types. A type 1 consumer has valuation

v ∈ (0, 1) for one unit and valuation 1 for two units. A type 2 consumer has valuation 1 for one

unit and valuation 2 for two units. The two types are illustrated in Figure A.1, in which case (a)

corresponds to v ≤ 0.5 and case (b) corresponds to v ≥ 0.5. A market q consists of a fraction

1− q of type 1 consumers and a fraction q of type 2 consumers.

To identify maximum consumer surplus in different markets, it is useful to first identify the

optimal mechanism in each market. Consider the following three mechanisms and their revenue

in a market q. Mechanism N1 offers product 2 at price 1. Mechanism N2 offers product 2

at price 2. Mechanism S screens; it offers each consumer a choice between buying product 1

at price v or product 2 at price v + 1. It can be shown that for any market q, one of these

three mechanisms is optimal, as illustrated in Figure A.2. If v ≤ 0.5, then mechanisms N1 is

optimal for markets in [0, 0.5] and mechanism N2 is optimal for markets in [0.5, 1]. If v ≥ 0.5,

then mechanism N1 is optimal for markets in [0, 1− v], mechanism S is optimal for markets in

[1− v, v], and mechanism N2 is optimal for markets in [v, 1].

Next, we compute the (average) consumer surplus in each market q generated by the optimal
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Figure A.2: Optimal mechanisms for the two cases (a) v ≤ 0.5 and (b) v ≥ 0.5.
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Figure A.3: Consumer surplus CS(q) for the two cases (a) v ≤ 0.5 and (b) v ≥ 0.5.

mechanism for that market.8 Type 1 does not receive any information rents in any optimal

mechanism. Thus, consumer surplus CS(q) in market q is q times the utility of type 2 in the

optimal mechanism for that market. Consumer surplus CS(q) is illustrated in Figure A.3.

A segmentation of market q is a distribution µ over markets [0, 1] such that Eq′∼µ[q′] = q.

The maximum consumer surplus is MCS(q) = maxµEq′∼µ[CS(q′)], that is, the highest consumer

surplus across all segmentations µ. The maximum consumer surplus is obtained by concavifying

the function CS. That is, MCS(q) = CS(q), where CS is the lowest concave function that is

point-wise at least as high as CS.

The maximum consumer surplus MCS(q) is at least CS(q) and at most first best consumer

surplus FB(q), which is the surplus from the efficient allocation (that is, product 2 for each

type) minus the seller’s revenue in market q. If the optimal mechanism for market q implements

the efficient allocation, then the two bounds are equal, that is, CS(q) = FB(q), so CS(q) =

MCS(q) = FB(q). This is the case for a market q for which mechanism N1 is optimal and for

market q = 1 which contains only type 2 consumers and for which mechanism N2 is optimal.

We refer to such markets as efficient, and otherwise as inefficient. If a market is efficient, then

there is no scope for market segmentation to increase consumer surplus.

We can now address the possibility of achieving first-best consumer surplus for all markets

q ∈ [0, 1]. The relationship between maximum consumer surplus, MCS, and first-best consumer

8If there is more than one optimal mechanism we choose the one with higher consumer surplus.
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Figure A.4: The relationship between CS, MCS, and FB: (a) v ∈ (0, 0.5], (b) v ∈ (0.5,
√
5−1
2 ), and (c)

v ∈ [
√
5−1
2 , 1).

surplus, FB, is illustrated in Figure A.4, and depends on the value of v. If v is in (0.5, 1), as

in Figure A.4 (b) and (c), then first-best consumer surplus is not achievable for any inefficient

market. The only difference between cases (b) and (c) in Figure A.4 is that in the former,

MCS(q) strictly exceeds CS(q) for every inefficient market q whereas in the latter MCS(q) =

CS(q) for market q = v.9 If v ∈ (0, 0.5], as in Figure A.4 (a), then first-best consumer surplus is

achievable for all markets. Equivalently, first-best consumer surplus is achievable for all markets

if and only if for every market either mechanism N1 or N2 is optimal, that is, the seller does

not find it profitable to screen consumers.

This example can also be used to illustrate how close MCS is to FB when FB is not

achievable. If v is in (0.5, 1), as in Figure A.4 (b) and (c), then the ratio FB/MCS increases in

q in the interval (1−v, v) and decreases in the interval (v, 1). Consider the maximal point q = v.

At this point, we have FB = 1− v; If v ∈ (0.5,
√
5−1
2

), then MCS = (1−v)2
v

so FB/MCS = v
1−v ,

which increases in v; If v ∈ [
√
5−1
2
, 1), then MCS = (1− v)v, so FB/MCS = 1

v
, which decreases

in v.

What is the economic significance of v being greater than or smaller than 0.5? For type

2 consumers, product 2 is twice as valuable as product 1. For type 1 consumers, whether v

is greater than or smaller than 0.5 determines whether product 2 is more than or less than

twice as valuable as product 1. In other words, when v ≤ 0.5 the second unit of the product

is relatively more complementary to the first unit of the product for type 1 consumers than for

type 2 consumers, and vice versa when v > 0.5.

Turning to the surplus triangle, it is trivially achievable for markets with a single type of

consumer (q = 0 and q = 1). For all other markets, the same conditions that characterize achiev-

9See Haghpanah and Siegel (2021) for a detailed investigation of when MCS strictly exceeds CS.
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ability of first-best consumer surplus also characterize when the surplus triangle is achievable for

every market or no market (efficient or inefficient). Indeed, whenever first-best consumer surplus

is not achievable, the surplus triangle is clearly not achievable. And the results of Bergemann,

Brooks, and Morris (2015) show that when the seller does not find it optimal to screen, that is,

in every market q only offers two units as a bundle, the entire surplus triangle is achievable.
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