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This online appendix provides an alternative proof to the main theorem in the manuscript.

In this alternative environment, the setup and notations are also slightly different. As a

result, I set up the problem again before giving the proof. I recommend to the reader to

read this alternative setup and statement of the result before examining the proof.

Note that the original working paper includes further (non-peer-reviewed) analysis that

do not appear in the paper or in this online appendix. Most importantly, the working paper

provides an equivalent of the main result in a context of nonlinear pricing akin to Mussa and

Rosen (1978). Additionally, it presents a simulation analysis which is used to discuss the im-

plications of this paper for empirical research on bundling and second-degree price discrimina-

tion. To see these analyses, please visit my website at: https://sites.google.com/view/soheil-

ghili/research.

The rest of this appendix is organized as follows. Section 1 sets up the model and formally

presents the assumptions and the main result. Section 2 provides the proof. Note that there

is a large overlap between the assumptions and lemmas in this proof and those of the proof

provided in the main manuscript. In order for the reader to be able to follow the proof

without referring to the main article, I do not drop the overlapping parts from this proof.

For any assumption/result that is a repetition of (or is similar to) an assumption/result from

the main text, the correspondence has been mentioned to aid the reader in comprehending

the similarities between the two proofs.
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1 Main Result

1.1 Setup and Notations

A monopolist has n products to sell, indexed 1 through n. Possible bundles of these products

are denoted b ⊆ {1, ..., n}. Set B = {b|b ⊆ {1, ..., n}} represents the set of all possible

bundles. By b̄ denote the grand bundle {1, ..., n}. For any bundle b, denote bC = b̄ \ b.
There is a unit mass of customers whose types are represented by t ∈ T ⊂ Rm where T is

compact. As will be shown later, one of the model assumptions will imply that types are

one-dimensional (i.e., m = 1.)1 Probability distribution over types f(·) > 0 has no atoms.2

The valuation by type t for bundle b is denoted v(b, t). Assume v(∅, t) = 0. Also, for all b,

suppose that v(b, t) is continuous in t. The per-unit cost of production for each product i is

ci ≥ 0.

I consider deterministic selling procedures. The monopolist’s problem has two compo-

nents. First, she makes a bundling decision, choosing the optimal set B∗ of bundles b among

subsets B of B that satisfy ∅ /∈ B. Note that there are 22n−1 possible bundling strategies.

Thus, characterizing the conditions under which the monopolist can simply choose B∗ = {b̄}
should indeed be of value.

Next, the monopolist chooses prices p(·) : B → R for the bundles offered.3 Denote by

PB the set of all such pricing functions.

Once the firm decides on B and p(·), customers decide which bundles to purchase. Each

customer t’s decision β(t|B, p) ⊆ B is determined by:

β(t|B, p) = arg max
β̂⊆B

v(∪b∈β̂b, t)− Σb∈β̂p(b) (1)

Throughout, I assume customers break ties in favor of the seller. Also, note that equation

1 implies that customers want at most one unit of each product i and find additional units

redundant.

Demand for bundle b is the measure of customers t who would purchase b:

1The reason why I start with general m and later show m = 1 is that this exposition clarifies that m = 1
is a an implication of the rest of the model assumptions, rather than a separate assumption itself.

2The main result should hold without these assumptions on f . But I expect the proof to be less clean.
3Note that, in principle, one could model the bundling decision through pricing: not offering a product

would be equivalent to pricing it so high that no customer would purchase. As such, separating the bundling
and pricing decisions in the model is redundant. Nevertheless, I decided to carry out this separation because
it makes the notation easier.
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D(b|B, p) =

∫
t

1b∈β(t|B,p)f(t)dt (2)

Firm profit under strategy (B, p) is:

π(B, p) =

∫
t

Σb∈β(t|B,p)

(
p(b)− Σi∈bci

)
f(t)dt (3)

The monopolist chooses (B∗, p∗) to maximize profit:

(B∗, p∗) = arg max
B∈B,p∈PB

π(B, p) (4)

Unlike the proof in the main text, this setup only examines deterministic bundles.

Some additional definitions and notations: For disjoint bundles b and b′, denote by

v(b, t|b′) the valuation by type t for b conditional on possessing b′. Formally:

v(b, t|b′) ≡ v(b ∪ b′, t)− v(b′, t)

In a similar manner, denote β(t|B, p, b′) = arg maxβ̂⊆(B\{b′}) v(∪b∈β̂b, t|b′)−Σb∈β̂p(b). Also

denote D(b|B, p, b′) =
∫
t
1b∈β(t|B,p,b′)f(t)dt. Moreover, denote

π(B, p|b′) =

∫
t

Σb∈β(t|B,p,b′)

(
p(b)− Σi∈bci

)
f(t)dt.

Finally, for any set β of bundles, denote β∪ = ∪b∈βb. Similarly, I write β∪(t|B, p, b′)
instead of ∪b∈β(t|B,p,b′)b. I next turn to the assumptions and the main result.

1.2 Assumptions and Characterization

I start by repeating the main assumptions from the main text and providing some definitions.

Assumption 1. Monotonicity: For all b, v(b, t) is increasing in v(b̄, t), and strictly so

whenever v(b, t) > 0. The same applies to v(b, t|bC) for all b.

Assumption 2. Quasi-concavity: For any b ∈ B, profit functions π(b, p) and π(b, p|bC)

are strictly quasiconcave in quantity as the monopolist varies p.

Note that Assumptions 1 and 2 are the same as those from the main text. Overall, the

assumptions here are similar to those in the main text except that v(b, t) is only continuous

and need not be differentiable in t here.
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Definition 1. By D∗(b) denote the “optimal quantity sold” of bundle b if no other bundle

were offered by the firm. Formally, D∗(b) is defined as D(b|{b}, p∗b) where p∗b is the optimal

price for bundle b when B = {b}.

Definition 2. A given firm strategy (B, p) involves pure bundling if:

∀t : β∪(t|B, p) ∈ {∅, b̄}

Definitions of “optimal quantity sold” and “pure bundling” are conceptually similar to

their counterparts in the main text but are defined in the posted-pricing setting rather than

the mechanism-design setting.

We are now ready to state the main result.

Theorem 1. Under assumptions 1 and 2, the optimal strategy (B∗, p∗) involves pure bundling

if:

D∗(b̄) > max
b∈B\{b̄}

D∗(b)

Conversely, the optimal strategy does not involve pure bundling if:

D∗(b̄) < max
b∈B\{b̄}

D∗(b)

In words, this result says that the firm should pure bundle if and only if it helps “sell

more.”

Note that the version of this result which was provided in the main text (and which, as the

main text mentioned, was proposed by a referee at American Economic Review: Insights) is

stronger than this version in two ways. First, the result in the main text applied to stochastic

bundles as well. Second, the present result (unlike that in the main text) falls slightly short

of a full if-and-only-if theorem since it is silent on whether pure bundling is optimal when

D∗(b̄) = maxb∈B\{b̄}D
∗(b).4

2 Proof of Theorem 1

I start by some remarks, definitions, and lemmas.

4One can show that under this last possibility, pure bundling is optimal if instead of assuming profits are
strictly quasi-concave in each price, we assume they are strictly concave and differentiable at peak. Even
though this would yield a full characterization, I decided that the ability to speak to the “measure-zero” case
of D∗(b̄) = maxb∈B\{b̄}D

∗(b) is too small a return to justify such a restrictive assumption as strict concavity.
As such, I maintain the quasi-concavity assumption.
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Lemma 1. There is a mapping τ from the set T of types t on to the interval [0, 1] such that:

1. ∀t, t′ ∈ T : v(b̄, t) > v(b̄, t′)⇔ τ(t) > τ(t′).

2. τ is a sufficient statistic: Once τ(t) is known, one can fully pin down all v(b, t) without

having to know t.

Proof of Lemma 1. Set τ(t) , v(b̄,t)−mint′∈T v(b̄,t′)

maxt′∈T v(b̄,t′)−mint′∈T v(b̄,t′)
. By construction, it satisfies

(1). To see why it satisfies (2), first note that by monotonicity, for any t, t′ such that

v(b̄, t) = v(b̄, t′), we have v(b, t) = v(b, t′) for any other b. As a result, v(b̄, t) is sufficient

information for determining v(b, t) for all b. Next, observe that one can recover v(b̄, t) from

τ(t): v(b̄, t) = mint′∈T v(b̄, t′) + τ(t) × (maxt′∈T v(b̄, t′) − mint′∈T v(b̄, t′)). As a result, once

one knows τ(t), one would also know v(b, t) for all b. Q.E.D.

Based on this lemma, it is without loss to think of t as τ(t) and, hence, the set of all

possible t as [0, 1]. Therefore, we can use expressions such as t ≥ t′. Going forward, I assume

t ∈ [0, 1]. Note that this lemma is equivalent to Lemma 1 from the main text. I use it slightly

differently here: I normalize the set of types to the [0, 1] interval rather than normalizing to

t = v(b̄, t).

The next remark is also a repetition of one from the main text.

Remark 1. Suppose functions f1(x), f2(x) and f1(x) + f2(x) are all strictly quasi-concave

over the interval [a, b]. Then either (i) arg max f1 ≤ arg max f2 or (ii) arg max f1 ≤ arg max(f1+

f2) will imply:

arg max f1 ≤ arg max(f1 + f2) ≤ arg max f2.

The proof is left to the reader.

Definition 3. For disjoint bundles b and b′, denote by D∗(b|b′) the “optimal quantity sold”

of bundle b if all customers are already endowed with b′ and only b is offered by the firm at

optimal price. Formally, D∗(b|b′) ≡ D(b|{b}, p∗b|b′ , b′) where p∗b|b′ : {b} → R is effectively one

real number, and it is chosen among other possible p so that π({b}, p|b′) is maximized.

Next, I show that the problem of finding the optimal price for a bundle is equivalent to

the problem of finding the right type t∗ and sell to types t ≥ t∗.

Definition 4. Define by t∗(b|b′) the largest t such that 1 − F (t) ≥ D∗(b|b′). Also, for

simplicity, denote t∗(b|∅) by t∗(b).
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Lemma 2. Consider bundles b and bC = b̄ \ b. Suppose that all types are endowed with

bundle bC, and that the firm is selling only bundle b, optimally choosing p∗b|bC . The set of

types who will buy the product at this price is the interval [t∗(b|bC), 1].

Proof of Lemma 2. Follows directly from monotonicity. Monotonicity implies that

the optimal sales volume D∗(b|bC) would be purchased by the highest types t with t weakly

above some cutoff t̂. Definition 4 says that for the demand volume to equal D∗(b|bC), the

cutoff t̂ has to equal t∗(b|bC). Q.E.D.

Lemma 2 is important in that it shows the problem of choosing p∗b|bC can equivalently

be thought of as the problem of choosing t∗b|bC . This allows us to set up the firm’s problem

based on t. Next definition introduces a necessary notation for this purpose.

Definition 5. Consider disjoint bundles b and b′. Suppose that all types have already been

endowed with b′, and that the firm is to sell only bundle b. By πb(t|b′) denote the profit to

the firm if it chose a price for bundle b such that all types t′ ≥ t would purchase bundle b:

πb(t|b′) = (1− F (t))×
(
(v(t, b|b′)− Σi∈bci

)
= π({b}, v(b, t|b′)|b′)

Note that πb(t|bC) is strictly quasi-concave in t.

With the above definitions and lemmas in hand, we are ready to prove the main theorem.

I start by the necessity condition (i.e., the condition that D∗(b̄) ≥ D∗(b) for all b is necessary

for pure bundling to optimal).

Proof of necessity. We want to show that if there is some b such that D∗(b) > D∗(b̄),

then pure bundling is sub-optimal. Specifically, I show that offering bundles b and b̄ would

be strictly more profitable to the firm compared to offering b̄ alone. The argument follows.

Lemma 3. D∗(b) > D∗(b̄) implies D∗(b) > D∗(bC |b).

Proof of Lemma 3. Suppose, on the contrary, that D∗(b) ≤ D∗(bC |b). This means

t∗(b) ≥ t∗(bC |b). We know:

t∗(b) = arg max
t
πb(t)

and

t∗(bC |b) = arg max
t
πbC (t|b).

Also, given definition 5, it is straightforward to verify that:
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πb̄(t) ≡ πbC (t|b) + πb(t)

By strict quasi-concavity of all profits in t and by remark 1, it has to be that the argmax

of πb̄(t) falls in between the argmax values t∗(bC |b) and t∗(b). Therefore, we get: t∗(b̄) ≤ t∗(b),

which implies D∗(b) ≤ D∗(b̄), contradicting a premise of the lemma. Q.E.D.

Lemma 4. Selling D∗(bC |b) units of the grand bundle b̄ along with D∗(b)−D∗(bC |b) units of

bundle b would be strictly more profitable to the monopolist compared to selling D∗(b̄) units

of the grand bundle alone.

Proof of Lemma 4. Note that given monotonicity and given Lemma 3, selling D∗(bC |b)
units of the grand bundle b̄ along with D∗(b)−D∗(bC |b) units of bundle b would simply mean

selling b to types [t∗(b), t∗(bC |b)) and selling b̄ to types [t∗(bC |b), 1]. This can be implemented

by offering bundles b and b̄ and pricing them at p∗b and p∗b + p∗bC |b respectively.5 This would

deliver the following profit:

π1 = πbC (t∗(bC |b)|b) + πb(t
∗(b))

Again, by monotonicity, selling D∗(b̄) units of the grand bundle can be thought of as

selling b̄ to types t∗(b̄) and above. This would deliver a profit of π2 = πb̄(t
∗(b̄)), which can

be expanded and written as:

π2 = πbC (t∗(b̄)|b) + πb(t
∗(b̄))

Note that each term in π2 is weakly less than its corresponding term in π1 (due to

the optimality of the terms in π1). Also by the fact that t∗(bC |b) > t∗(b), then either

t∗(bC |b) 6= t∗(b̄) or t∗(b) 6= t∗(b̄). Thus, by strict quasi-concavity, at least one of the two

inequalities between corresponding terms in π1 and π2 has to be strict, yielding π1 > π2.

Q.E.D.

Given this lemma, the proof of the if side of the theorem is now complete. Q.E.D.

Note that the proof of the first side did not use the constant marginal costs assumption.

Next, I turn to the proof of the sufficiency conditions (i.e., that D∗(b̄) > maxb∈B\{b̄}D
∗(b)

implies that pure bundling is optimal).

Proof of sufficiency. I start with some lemmas.

5Recall that I use the notation p∗b for the optimal price of b when only b is offered. Similarly, p∗bC |b is the

optimal price of bC when everyone is endowed by b and the monopolist is only selling bC .
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Lemma 5. Under assumptions 1 and 2, there is a firm optimal strategy (B∗, p∗) such that

non-measure-zero set of customers t we have β∪(t|B∗, p∗) = b̄.

Proof of Lemma 5. I start by assuming that no optimal strategy (B∗, p∗) involves selling

b̄ to a non-measure-zero set of consumers. Then I reach a contradiction by constructing a

weakly profitable deviation from an assumed optimal (B∗, p∗) such that the deviation sells b̄

to a non-measure-zero set of consumers.

By D∗(b̄) > D∗(b) for all b 6= b̄, we get: D∗(b̄) > 0, which in turn yields t∗(b̄) < 1.

Next, note that the number of possibilities for β(t|B∗, p∗) is finite. By this finiteness and

by continuity of value functions, there is some t̃ ≥ t∗(b̄) such that all consumers with types

higher than t̃ have the same purchase behavior.6 Formally:

∀t, t′ ∈ (t̃, 1) : β∪(t|B∗, p∗) = β∪(t′|B∗, p∗)

Denote this commonly purchased bundle b̃. Given that our contrapositive assumption is

that no non-measure-zero set of types purchases the grand bundle b̄, it has to be that b̃ 6= b̄.

Next, I construct a profitable deviation for the monopolist from (B∗, p∗). First, note that

given that currently no consumer purchases b̄ or constructs it from other bundles, it has to

be that either b̄ is not part of B∗ or it is expensive enough for no customer to prefer to

obtain it. Next, assume that the monopolist deviates from (B∗, p∗) by adding b̄ to the set

of bundles and pricing it at p∗(b̃) + Σi∈b̃Cci + ε where ε is chosen so that (i) type t̃ would

weakly prefer b̃ over b̄ but (ii) type 1 would weakly prefer b̄ over b̃. Next, I proceed to show

two things. First: finding such an ε is feasible. Second: with that ε, the monopolist will see

a weak profit increase relative to (B∗, p∗) and sell b̄ to a positive-measure set of types.

For type t̃ to weakly prefer b̃ over b̄, it has to be that

v(b̄, t̃)− p∗(b̃)− Σi∈b̃Cci − ε ≤ v(b̃, t̃)− p∗(b̃)

⇔ ε ≥ v(b̃C , t̃|b̃)− Σi∈b̃Cci

Similarly, for type to 1 weakly to prefer to purchase b̄, one can show that ε must satisfy:

ε ≤ v(b̃C , 1|b̃)− Σi∈b̃Cci

But by monotonicity, we have v(b̃C , t̃|b̃) ≤ v(b̃C , 1|b̃). Therefore, ε may be chosen within

6Perhaps with the exception of type t = 1; but that does not matter given its zero measure.
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the following interval:

[v(b̃C , t̃|b̃)− Σi∈b̃Cci, v(b̃C , 1|b̃)− Σi∈b̃Cci]

If the interval is not a singleton, choose ε in the interior.

Next, I show that once such ε is chosen, the new bundling and pricing strategy by the

firm will weakly increase the profit to the insurer while selling b̄ to a non-measure zero set of

consumers. To see the latter, denote by t̃′ the set of types who weakly prefer b̄ over b̃ under

this new strategy. By the choice of ε and by monotonicity, we have t̃ ≤ t̃′ < 1. Therefore the

new strategy will change the purchase behavior by types t ≥ t̃′ (and only those types.) Next

note that this behavior-change is weakly profitable to the monopolist. Prior to this change,

the profit to the monopolist from these types was:

π1 = (1− t̃′)× (p∗(b̃)− Σi∈b̃ci)

Under the new strategy (i.e., with the introduction of b̄ at the price of p∗(b̃)+Σi∈b̃Cci+ε,)

the new profit level from these types is:

π2 = (1− t̃′)×
(

(p∗(b̃) + Σi∈b̃Cci + ε)− Σi∈b̄ci

)

= π1 + (1− t̃′)× ε

Thus, it remains to show ε ≥ 0. To this end, note that by D∗(b̄) > D∗(b̃) we have

t∗(b̄) ≤ t∗(b̃). This, by monotonicity, quasi-concavity, and remark 1, implies t∗(b̃C |b̃) ≤ t∗(b̄)

which in turn yields t∗(b̃C |b̃) ≤ t̃. That is, all types weakly above t̃ would purchase b̃C

if (i) they were offered it at the optimal price for the monopolist and (ii) they were pre-

endowed with b̃. This implies that ∀t ≥ t̃ : v(b̃C , t|b̃) ≥ p∗
b̃C |b̃ ≥ Σi∈b̃Cci. But this means

ε = v(b̃C , t̃|b̃) − Σi∈b̃Cci ≥ 0. As a result, we get π2 ≥ π1, which completes the proof of the

lemma.Q.E.D.

Next, it is useful to observe that the monotonicity assumption imposes a vertical rela-

tionship not only on consumers’ preferences, but also on their purchase behaviors.

Lemma 6. Consider bundling strategy B and pricing strategy p. Consider types t and t′

such that β∪(t|B, p) 6= β∪(t′|B, p). Then the following statements hold:

1. If β∪(t′|B, p) = ∅, we have t′ < t.
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2. If β∪(t′|B, p) = b̄, we have t′ > t.

This lemma says that if there are types who buy b̄, they are the highest types. Also if

there are types who buy nothing, they are the lowest types.

Proof of Lemma 6. I prove the second statement in the lemma. The first statement

would be proved in a similar way. Suppose that β∪(t|B, p) 6= β∪(t′|B, p) = b̄. For simplicity,

denote β∪(t|B, p) = b̃. Now suppose, contrary to the statement of the lemma, that t′ ≤ t.

Given β(t|B, p)∪ 6= β∪(t′|B, p), we know t 6= t′ which implies t′ < t. Next, observe the

following two inequalities:

First, note that under (B, p), type t prefers purchasing β(t|B, p) and forming b̃ over

purchasing β(t′|B, p) and forming b̄. Formally:

v(b̃, t)− Σb∈β(t|B,p)p(b) ≥ v(b̄, t)− Σb∈β(t′|B,p)p(b) (5)

Similarly, type t′ prefers to purchase β(t′|B, p) and forming b̄ over purchasing β(t|B, p)
and forming b̃. Formally:

v(b̄, t′)− Σb∈β(t′|B,p)p(b) ≥ v(b̃, t′)− Σb∈β(t|B,p)p(b) (6)

At least one of the two inequalities above has to be strict (because if both types were

indifferent between b̄ and b̃, they would break this tie the same way.) Adding these two

inequalities together, we get:

v(b̄, t′) + v(b̃, t) > v(b̄, t) + v(b̃, t′)

⇔ v(b̄, t′)− v(b̃, t′) > v(b̄, t)− v(b̃, t)

v(b̃C , t′|b̃) > v(b̃C , t|b̃)

This latter statement, combined with t′ < t, contradicts monotonicity. Q.E.D.

In light of lemma 5, the following two corollaries of lemma 6 are useful.

Corollary 1. Under (B∗, p∗), the set of types to for which β∪(t|B∗, p∗) = b̄ takes the form

of [t1, 1] for some t1 < 1.

Corollary 2. Under (B∗, p∗), the set of types to for which β∪(t|B∗, p∗) = ∅ takes the form

of [0, t2) for some t2 < 1.
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With these lemmas in hand, I next turn to the proof of the sufficiency conditions. The

strategy is, again, contrapositive.

Assume on the contrary that we have, at the same time: (i) ∀b 6= b̄ : D∗(b) < D∗(b̄) and

(ii) the firm’s optimal strategy does not involve pure bundling. This latter statement implies

that the set of all distinct bundles chosen by customers under (B∗, t∗) includes members

other than ∅ or b̄. Formally, if we denote

β∗ = {b|∃t : β∪(t|B∗, p∗) = b}

then β∗ \ {∅, b̄} 6= ∅. In other words, our contrapositive assumption implies that t1 in

corollary 1 is strictly larger than t2 in corollary 2.

We now turn to the behavior of β∪(t|B∗, p∗) in close vicinity of t1 and t2, starting with

t1. Take set B1 to be the set of all b ∈ B such that no matter how close t′1 < t1 is to t1,

there is some t ∈ [t′1, t1) with β∪(t|B∗, p∗) = b. That is, B1 is the set of all bundles who are

chosen by infinitely many types in [t′1, t1) no matter how close t′1 is to t1 (note that B1 may

be a singleton). Pick some t̂1 < t1 close enough to t1 so that types between t̂1 and t1 only

choose bundles in B1:

∀t ∈ [t̂1, t1) : β∪(t|B∗, p∗) ∈ B1 (7)

Among members of B1, choose b1 to be a bundle with the “lowest complement net value”

at t1. That is: ∀b ∈ B1 : v(bC , t1|b)− cbC ≥ v(bC1 , t1|b1)− cbC1 .

Similarly, define B2 to be the set of all bundles which, under (B∗, p∗), are chosen by

infinitely many types in [t2, t
′
2] no matter how close t′2 is to t2 (this set too may be a singleton).

Pick some t̂2 > t2 close enough to t2 so that types between t̂2 and t2 only choose bundles in

B2:

∀t ∈ [t2, t̂2] : β∪(t|B∗, p∗) ∈ B2 (8)

Among members of B2, choose b2 to be a bundle with the “highest net value” at t2. That

is: ∀b ∈ B2 : v(b, t2)− cb ≤ v(b2, t2)− cb2 .
The rest of the proof of the sufficiency conditions of the theorem is organized as follows.

I first make a series of claims (without proving them). Next I use the claims to prove the

sufficiency conditions of the theorem. Finally, I will return to the proofs of the claims.

Claim 1. t∗(bC1 |b1) ≥ t1.
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In words, claim 1 says that the set of customers who purchase the grand bundle β(t|B∗, p∗) =

b̄ under the firm optimal strategy (B∗, p∗) is a subset of those who purchase bC1 and construct

the grand bundle if (i) everyone is endowed with b1 and (ii) the firm offers only bC1 , pricing

it optimally.

Claim 2. t∗(b2) ≤ t2.

Claim 2 says that the set of customers who purchase ∅ under the firm optimal strategy

(B∗, p∗) is a subset of those who purchase ∅ if the firm offers only b2 and prices it optimally.

Next, note that the assumption D∗(b̄) > D∗(b2), combined with monotonicity and claim

2, implies t∗(b̄) ≤ t2. By t1 > t2, we get t∗(b̄) < t1 ≤ t∗(bC1 |b1). Also note that:

∀t : πb̄(t) = πbC1 (t|b1) + πb1(t)

As such, by strict quasi-concavity of profits, by t∗(b̄) < t∗(bC1 |b1), and by remark 1, the

peak of πb̄(t) should happen in between those of πbC1 (t|b1) and πb1(t). Therefore, we should

have: t∗(b1) ≤ t∗(b̄) ≤ t∗(bC1 |b1). But t∗(b1) ≤ t∗(b̄) implies:

D∗(b1) ≥ D∗(b̄)

which is a contradiction. Therefore, the sufficiency part of the theorem is true provided

that claims 1 and 2 are true. I now turn to the proofs of these claims.

Proof of Claim 1. Suppose on the contrary that t∗(bC1 |b1) < t1. In that case, it can be

shown that the firm can strictly improve its profit upon the optimal strategy (B∗, p∗). The

proof of this claim constructs such improvement. To this end, the following remark is useful

to state.

Remark 2. Construct the bundling strategy (B̂, p̂) from (B∗, p∗) in the following way:

• B̂ = {β∪(t|B∗, p∗)∀t}

• For each t, or in other words for each b̂ = β∪(t|B∗, p∗) ∈ B̂, set p̂(b̂) = Σb∈b̂p
∗(b).

For such (B̂, p̂), we have:

1. ∀t : β(t|B̂, p̂) = β(t|B∗, p∗)

2. π(B̂, p̂) = π(B∗, p∗)
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This remark simply states that there is an optimal strategy by the seller under which each

buyer type only purchases a single bundle instead of combining different bundles to construct

her/his desired one. I skip the proof of this remark. Also, in order to save on notation, I

assume from now on that it is (B∗, p∗) itself that has the feature of every β(t|B∗, p∗) being

a singleton. I now return to the proof of claim 1 and construct a strict improvement upon

the profit of (B∗, p∗).

I do so by slightly adjusting the price of b̄. That is, I show that there is a pricing strategy

p with p(b) = p∗(b) for all b 6= b̄, but with p(b̄) 6= p∗(b̄), such that π(B∗, p) > π(B∗, p∗).

To see why this is the case, first construct bundling strategy B′ in the following way:

B′ = {b1, b̄} (9)

Also construct pricing strategy p′ by fixing p′(b1) = mint v(b1) and setting p′(b̄) = p′(b1)+

p∗(b̄)−p∗(b1). Note that under (B′, p′), all types t ≥ t1 purchase b̄ and all other types purchase

b1. This is because p∗(b̄)− p∗(b1) = v(bC1 , t1|b1) by construction.7

Assume, contrary to the claim, that t∗(bC1 |b1) < t1. By quasi-concavity, this means that if

the monopolist starts from (B′, p′) and then charges slightly less for b̄, it will strictly increase

its profit. That is, if the monopolist changes p′(b̄) from p′(b1)+v(bC1 , t1|b1) to p′(b1)+v(bC1 , t|b1)

for any t ∈ [t∗(bC1 |b1), t1), the net profit change is strictly positive. Formally:

(F (t1)− F (t))×
[
v(bC1 , t|b1)− cbC1

]
− (1− F (t1))×

[
v(bC1 , t1|b1)− v(bC1 , t|b1)

]
> 0 (10)

The first term in this inequality indicates the fact that types [t, t1) now purchase b̄ instead

of b1 and pay v(bC1 , t|b1) more each, but at an increased cost of cbC1 for each. The second term

corresponds to the margin decrease by the amount of v(bC1 , t1|b1) − v(bC1 , t|b1) for all types

in [t1, 1].

Using inequality 10 from the (B′, p′) setting, I now construct a strict improvement upon

(B∗, p∗) by replacing it with (B∗, p), where p(b) = p∗(b) for all b 6= b̄ but p(b̄) 6= p∗(b̄). More

specifically, choose t ∈ [t∗(bC1 |b1), t1) such that t is larger than t̂1 from equation 7 and that

β∪(t|B∗, p∗) = b1. Set the value of p(b̄) as follows:

p(b̄) = p∗(b̄)−
[
v(bC1 , t1|b1)− v(bC1 , t|b1)

]
(11)

7This latter equality is given by continuity, the fact that b1 is preferred over b̄ under (B∗, p∗) by types
arbitrarily close to t1, and the fact that b̄ is preferred over b1 under (B∗, p∗) by type t1.
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This price change, too, has two effects on the monopolist’s profit. First, it lowers the

margin by v(bC1 , t1|b1)−v(bC1 , t|b1) for all types in [t1, 1]. The resulting profit change is exactly

equal to −(1− F (t1))×
[
v(bC1 , t1|b1)− v(bC1 , t|b1)

]
, the latter term in equation 10.

The price change from p∗ to p also leads all types [t, t1) to switch to b̄.8 Denoting this

component of the profit change by ∆, we can write:

∆ =

∫ t1

τ=t

(
p∗(b̄)−

[
v(bC1 , t1|b1)− v(bC1 , t|b1)

]
− p∗(β∪(τ |B∗, p∗))− c[β∪(τ |B∗,p∗)]C

)
f(τ)dτ

The is because each type τ will now (i) pay p(b̄)–which is replaced from equation 11–

instead of p∗(β∪(τ |B∗, p∗)) and (ii) also inflict an extra cost of c[β∪(τ |B∗,p∗)]C on the monopolist.

Next, observe that for all τ ∈ [t, t1) : β∪(τ |B∗, p∗) ∈ B1 and that by continuity, for any

b ∈ B1 we have: p∗(b̄) − p∗(b) = v(bC , t1|b). Plugging this into the above expression for ∆

yields:

∆ =

∫ t1

τ=t

(
v
(
[β∪(τ |B∗, p∗)]C , t1|β∪(τ |B∗, p∗)

)
−
[
v(bC1 , t1|b1)−v(bC1 , t|b1)

]
−c[β∪(τ |B∗,p∗)]C

)
f(τ)dτ

In words, for each type τ ∈ [t, t1) with β∪(τ |B∗, t∗) = b ∈ B1, the margin change for the

monopolist from this price decrease has two components: (i) the −
[
v(bC1 , t1|b1)− v(bC1 , t|b1)

]
component which was also present for types above t1, and (ii) a v(bC , t1|b)− cbC component

caused by the switching from b to b̄. But we know that this second component is exactly

the “net complement value at t1” which, by our choice of b1, is weakly smaller for b1 than

for any other b ∈ B1. That is: ∀b ∈ B1 : v(bC , t1|b)− cbC ≥ v(bC1 , t1|b1)− cbC1 . Replacing this

into the expression for ∆, we get:

∆ ≥
∫ t1

τ=t

(
v(bC1 , t1|b1)− cbC1 −

[
v(bC1 , t1|b1)− v(bC1 , t|b1)

])
f(τ)dτ

=

∫ t1

τ=t

(
v(bC1 , t|b1)− cbC1

)
f(τ)dτ

= (F (t1)− F (t))×
(
v(bC1 , t|b1)− cbC1

)
8To see why, note that type t will be indifferent between b1 and b̄ and chooses b̄. By monotonicity, all

lower types will prefer b1 over b̄ and hence, will not adopt b̄ no matter whether b1 is their optimal choice.
All types larger than t will also buy b̄ by Lemma 6.
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But by construction, the total profit change due to a price change from p∗ to p is given

by:

∆− (1− F (t1))×
[
v(bC1 , t1|b1)− v(bC1 , t|b1)

]
Given ∆ ≥ (F (t1)−F (t))×

(
v(bC1 , t|b1)−cbC1

)
, a lower bound for this total profit change

is:

(F (t1)− F (t))×
[
v(bC1 , t|b1)− cbC1

]
− (1− F (t1))×

[
v(bC1 , t1|b1)− v(bC1 , t|b1)

]
But the latter expression is strictly positive by 10. Thus, changing the prices from p∗ to p

is strictly profitable. This is a contradiction that completes the proof of the claim. Q.E.D.

Proof of Claim 2. The proof of this claim is similar to that of the previous claim with

some minor differences. Similar to the proof of the previous claim, assume that (B∗, p∗)

takes the form described in Remark 2. I show that if t2 < t∗(b2), then one can find pricing

strategy p(·) such that π(B∗, p) > π(B∗, p∗). To this end, consider seller strategies (B∗, p)

and (B′, p′) where B′ = {b2} and p′ = v(b2, t2). Note that given B′ only includes one bundle,

p′ basically reduces to a real number rather than a function.

Observe that under (B′, p′), types t2 and above purchase b2 while others purchase nothing.

If t2 < t∗(b2), then by quasi-concavity, the the seller will strictly profit by increasing p′ from

v(b2, t2) to v(b2, t) for any t ∈ (t2, t
∗(b2)]. Formally, the following profit change is strictly

positive.

(1− F (t))×
[
v(b2, t)− v(b2, t2)

]
− (F (t)− F (t2))

[
v(b2, t2)− cb2

]
> 0 (12)

The first term in the above accounts for the now higher margin from types [t, 1] while

the second represents the set of types [t2, t) for whom the margin v(b2, t2) − cb2 is now lost

due to the price increase. The above inequality holds for any t ∈ (t2, t
∗(b2)] but let us fix a

t that is also smaller than t̂2 described in equation 8 and that satisfies β(t|B∗, p∗) = b2.

Now let us construct p from p∗ in the following way:

∀b ∈ B∗ : p(b) = p∗(b) +
(
v(b2, t)− v(b2, t2)

)
Before describing the profit change from this change in pricing, note that p∗(b) = v(b, t2)

for any b ∈ B2. This is by continuity, by the fact that all types to the left of t2 prefer ∅ over
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any b ∈ B2, and the fact that types arbitrarily close to t2 from the right prefer b over ∅.
Now let us examine the profit change due to changing (B∗, p∗) to (B∗, p). First note that

types [t, 1] will not change their choices due to this price change. This is simply because: (i)

preferences between any pair of non-empty bundles do not change given then uniform price

increase; so those who buy anything after the price change will buy the same bundle as they

did before the price change. And (ii) type t (as well as types above it) prefers b2 over ∅
because p(b2) = p∗(b2) +

(
v(b2, t)− v(b2, t2)

)
= v(b2, t).

As a result of choices not changing for types [t, 1], the profit change from those type is

given by: (1 − F (t)) ×
[
v(b2, t) − v(b2, t2)

]
, exactly equal to its corresponding term from

equation 12.

The second component of the profit change is due to the fact that types [t2, t) may no

longer purchase any bundle due to the price increase. As the worst case scenario, I will work

with the possibility that all types [t2, t) switch to ∅.9 In this case, this profit change to the

firm from this types, which we again denote ∆, will be given by:

∆ = −
∫ t

τ=t2

[
p∗
(
β∪(τ |B∗, p∗)

)
− cβ∪(τ |B∗,p∗)

]
f(τ)dτ

In words, for every type τ ∈ [t2, t) who switches to ∅ from bundle β∪(τ |B∗, p∗) ∈ B2, the

monopolist foregoes a margin of p∗(b)−cb. Given that for all b ∈ B2 we have p∗(b) = v(b, t2),

this lost margin is in fact equal to the “net value” of b at t2: ∀b ∈ B2 : v(b, t2) − cb ≤
v(b2, t2)− cb2 . But we chose b2 to be the bundle in B2 with the highest such net value, and

hence, the highest lost margin: ∀b ∈ B2 : v(b, t2) − cb ≤ v(b2, t2) − cb2 . Thus, the profit

loss is weakly smaller (i.e., net profit change is weakly larger) when types t switch to ∅ from

different members of B2, compared to the case where they all switch from b2. This puts a

lower bound on the net profit change ∆:

∆ ≥ −
∫ t

τ=t2

[
v(b2, t2)− cb2

]
f(τ)dτ

= −(F (t)− F (t2))
[
v(b2, t2)− cb2

]
Thus, the overall profit change has the following lower bound:

(1− F (t))×
[
v(b2, t)− v(b2, t2)

]
− (F (t)− F (t2))

[
v(b2, t2)− cb2

]
9This is the “worst case scenario” because if there are types who still purchase some b ∈ B∗, the firm will

profit from them.
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But this is what we know to be strictly positive from equation 12. Thus, the change of

strategy from (B∗, p∗) to (B∗, p) is guaranteed to deliver a strict profit improvement. This

contradiction completes the proof of this claim and hence the theorem. Q.E.D.
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