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O.1 Proof of Theorem 1

Proof. We first prove sufficiency. Let J be an integer and fix some `j ∈ {1, . . . , L} and tj ∈ R for

each j = 1, . . . , J . Under Assumption 1, the distribution of productivity satisfies

P
[
Z`j (tj , v) ≤ zj ,∀j = 1, . . . , J

]
= P

[
max
i=1,2,...

Qi(v)Ai`j (tj , v) ≤ z`j ,∀j = 1, . . . , J

]
= P

[
Qi(v)Ai`j (tj , v) ≤ z`j ,∀j = 1, . . . , J, ∀i = 1, 2, . . .

]
= P

[
Qi(v) ≤ min

j=1,...,J

z`j
Ai`j (tj , v)

,∀i = 1, 2, . . .

]
= P

[
Qi(v) > min

j=1,...,J

z`j
Ai`j (tj , v)

, for no i = 1, 2, . . .

]
,

where we take 1/0 =∞. This last expression is a void probability. We can use the marking theorem

for Poisson processes (see Kingman, 1992) to calculate this void probability. In particular, under

Assumption 2 and Assumption 3 we can take {Qi(v), t∗i (v)}i=1,2,... as a base Poisson process and

take the stochastic process {Ai`(t, v)}`=1,...,L,t∈R as a mark of the i’th point. Then, by the marking
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theorem, the collection {Qi(v), t∗i (v), {Ai`(t, v)}`=1,...,L,t∈R}i=1,2,... is itself a Poisson process and

E
∞∑
i=1

1{Qi(v) > q, t∗i (v) ≤ t, Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J}

=

∫ ∞
q

∫ ∞
−∞

P
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
θq−θ−1dqΛ(dt∗)

= q−θ
∫ ∞
−∞

P
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
Λ(dt∗).

Using this result for the mean measure,

P
[
Qi(v) > min

j=1,...,J

z`j
Ai`j (tj , v)

, for no i = 1, 2, . . .

]
= exp

[
−
∫ ∞
−∞

∫
RJ+

∫ ∞
minj=1,...,J

zj
aj

θq−θ−1dqdP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
Λ(dt∗)

]

= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(
aj
zj

)θ
dP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
Λ(dt∗)

]
.

Now, let υj ≥ 0 for each j = 1, . . . , J . The distribution of maxj=1,...,J υjZ`j (tj , v) is

P
[

max
j=1,...,J

υjZ`j (tj , v) ≤ z
]

= P
[
Z`j (tj , v) ≤ z/υj ∀j = 1, . . . , J

]
= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(υjaj
z

)θ
dP
[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
dΛ(t∗)

]

= exp

[
−
∫ ∞
−∞

∫
RJ+

max
j=1,...,J

(υjaj)
θ dP

[
Ai`j (tj , v) ≤ aj ∀j = 1, . . . , J | t∗i (v) = t∗

]
Λ(dt∗)z−θ

]
.

Therefore, maxj=1,...,J υjZ`j (tj , v) is distributed Fréchet and productivity is a max-stable process.

Moreover, if we take J = L, `j = j and tj = t for each j = 1, . . . , L, we have

P [Z`(t, v) ≤ z`,∀` ∈ L] = exp

[
−
∫ ∞
−∞

∫
RL+

max
`∈L

(
a`
z`

)θ
dP [Ai`(t, v) ≤ a` ∀` ∈ L | t∗i (v) = t∗] dΛ(t∗)

]

= exp

[
−
∫ t

−∞

∫
RL+

max
`∈L

(
a`
z`

)θ
dP [Ai`(t, v) ≤ a` ∀` ∈ L | t∗i (v) = t∗] dΛ(t∗)

]

= exp

[
−
∫
RL+

max
`∈L

(
a`
z`

)θ
dM(a1, . . . , aL; t)

]
,

where the second line uses the fact that applicability is zero at any time before an idea’s discovery

time, and the final line uses the definition ofM . Therefore, at any moment in time t, the distribution

of productivity across production locations is max-stable multivariate Fréchet with scale T`(t) ≡∫
aθ`dM(a1, . . . , aL; t) and correlation functionG(x1, . . . , xL; t) ≡

∫
max`=1,...,N

aθ`
T`(t)

x`dM(a1, . . . , aL; t).

It remains to show that productivity is a measurable stochastic process. From Assumption 1,

productivity satisfiesZ`(t, v) = maxi=1,2,...Qi(v)Ai`(t, v), and t 7→ Ai`(t, v) is measurable by Assumption 3.

Since the maximum of a countable collection of measurable functions is measurable, productivity
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is a measurable stochastic process.

Necessity follows from Theorem 3.1 and Proposition 4.1 in Wang and Stoev (2010). The second

result ensures that productivity is separable in probability, which, combined with first result, implies

that a minimal spectral representation exists with respect to a standard Lebesgue space.

Let {Z`(t, v)}(`,t)∈L×R be a max-stable process that is independent and identically distributed across

v ∈ [0, 1]. Denote the background probability space by (Ω,F ,P). Further assume that productivity

is measurable—for each fixed ω ∈ Ω the map (`, t) → Z`(t, v) is (Borel) measurable. Then by

Theorem 3.1 and Proposition 4.1 in Wang and Stoev (2010), and the equivalence of extremal integral

spectral representations to De Haan (1984) spectral representations (see Stoev and Taqqu, 2005),

there exists a θ > 0, a standard Lebesgue space ([0, 1],B([0, 1]), µ), measurable functions s 7→
A`(t, s) for each (`, t) ∈ L×R with

∫ 1

0
A`(t, s)

θdµ(s) <∞, and a Poisson process {Qi(v), si(v)}i=1,2,...

for each v with intensity θq−θ−1dqdµ(s) such thatZ`(t, v) = maxi=1,2,...Qi(v)A`(t, si(v)). Moreover,

the mapping (`, t, s)→ A`(t, s) can be taken to be jointly B(L× R)⊗ B([0, 1])-measurable.

Since s → A`(t, s) is measurable, we can define a stochastic process {Ai`(t, v)}(`,t)∈L×R for each i

and v such thatAi`(t, v) = A`(t, si(v)) for all ` and twhich is independent ofQi(v) and independent

and identically distribution across i (since {Qi(v), si(v)}i=1,2,... is Poisson with intensity θq−θ−1dqdµ(s)).

The joint measurability of (`, t, s) → A`(t, s) then implies that Ai`(t, v) : Ω → R is B(L × R)-

measurable for each ω ∈ Ω. In other words, {Ai`(t, v)}(`,t)∈L×R is a measurable stochastic process

for each i = 1, 2, . . . and v ∈ [0, 1].

Next, define t∗i (v) ≡ min`∈L inf{t ∈ R | Ai`(t, v) > 0}, which is a hitting time. Since {Ai`(t, v)}(`,t)∈L×R
is measurable and adapted to its natural filtration, it has a progressively-measurable modification.

Taking {Ai`(t, v)}(`,t)∈L×R as this modification, by the debut theorem (Bass, 2010, 2011), t∗i (v) is

then a stopping time and is therefore a well-defined random variable that is adapted to the natural

filtration of {Ai`(t, v)}(`,t)∈L×R. As a result, the function s→ min`∈L inf{t ∈ R | A`(t, s) > 0} ≡ τ(s)

is measurable. Then by the mapping theorem for Poisson processes (see Klenke, 2013, Theorem

24.16), {Qi(v), t∗i (v)}i=1,2,... is a Poisson process with intensity θq−θ−1dqΛ(dt) where Λ(B) ≡ µ(τ−1(B))

for each B ∈ B(R).

Finally, we get finite moments by applying Campbell’s theorem (see Kingman, 1992):

∫ t

∞
E
[
Ai`(t, v)θ | t∗i (v) = t∗

]
Λ(dt∗) = E

∞∑
i=1

1{Qi(v) > 1, t∗i (v) ≤ t}Ai`(t, v)θ

= E
∞∑
i=1

1{Qi(v) > 1}Ai`(t, v)θ = E
∞∑
i=1

1{Qi(v) > 1}A`(t, si(v))θ =

∫ 1

0

A`(t, s)
θdµ(s) <∞.
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O.2 Proof of Proposition 1

Proof. Using the definition of the correlation function G in (6), we calculate

T`(t)W`(t)
−θG`(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t)

=

∫
1

{
W`(t)

a`
≤ Wl(t)

al
∀l 6= `

}(
W`(t)

a`

)−θ
dM(a1, . . . , aL; t)

=

∫
1

{
al ≤

Wl(t)

W`(t)
a` ∀l 6= `

}(
W`(t)

a`

)−θ
dM(a1, . . . , aL; t)

=

∫ ∞
0

(
W`(t)

a`

)−θ
M

(
W1(t)

W`(t)
a`, . . . ,da`, . . . ,

WL(t)

W`(t)
a`

)
=

∫ ∞
0

(
W`(t)

a`

)−θ
M`

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`,

with

G(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t) =

L∑
`=1

T`(t)W`(t)
−θG`(T1(t)W1(t)−θ, . . . , TL(t)WL(t)−θ; t).

Using (12), we have

π`(t) =

∫∞
0

(
W`(t)
a`

)−θ
M`

(
W1(t)
W`(t)

a`, . . . , a`, . . . ,
WL(t)
W`(t)

a`

)
da`∑L

`′=1

∫∞
0

(
W`′ (t)
a`′

)−θ
M`′

(
W1(t)
W`′ (t)

a`′ , . . . , a`′ , . . . ,
WL(t)
W`′ (t)

a`′
)

da`′
.

Then, for `′ 6= `,

∂π`(t)

∂ lnW`′(t)
=

∫ ∞
0

(
W`

a`

)−θ
W`′(t)

W`(t)
a`M``′

(
W1(t)

W`(t)
a`, . . . , a`, . . . ,

WL(t)

W`(t)
a`

)
da`.

These semi-elasticities can be re-expressed as elasticities by dividing by π`(t). We then do a change

of variables from a` to q = W`/a`.

O.3 Independent Max-Stable Fréchet Applicability

To operationalize the closed form for the productivity distribution in Theorem 1, we focus on the

class of models where (conditional) applicability is distributed independent max-stable Fréchet
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with shape σ. In this case, the measure of ideas can be written as

M(a1, . . . , aL; t) = P [Ai1(t, v) ≤ aL, . . . , AiL(t, v) ≤ aL | t∗i (v) ≤ t] Λ(t)

=

∫
exp

[
−

L∑
`=1

(
a`
φ`

)−σ]
dF(σ, φ1, . . . , φL; t)Λ(t), (O.1)

where F is a distribution function for each t, and φσ` is the scale of Fréchet applicability. Due to

max stability, the conditional distribution of max`∈LAi`(t, v)θz−θ` (t, v) is also max-stable Fréchet

with shape σ/θ. As a consequence, we can smooth over the max operator in (3) to get

P [Z1(t, v) ≤ zL, . . . , ZL(t, v) ≤ zL] = exp

−Γ(1− θ/σ)

∫ [ L∑
`=1

(
a`
φ`

)−σ] θσ
dF(σ, φ1, . . . , φL; t)Λ(t)

 .
Note that the sum in this expression converges to a max as σ →∞, undoing the smoothing.

This smoothed version of (3) is convenient because it implies the following closed form for expenditure.

π`(t) =

∫
(W`(t)/φ)−σ∑L
`′=1(W`′(t)/φ)−σ

[
L∑

`′=1

(W`′(t)/φ)
−σ

] θ
σ

dF(σ, φ1, . . . , φL; t).

This demand system is a generalization of the mixed-CES demand system used in Adao et al.

(2017), which arises as the limiting case as θ → 0.

The examples we use throughout the paper imply functional forms for the measure of ideas as in

(O.1). For example, the productivity distribution implied by the case of ideas that are shared across

all locations once they diffuse (all-or-nothing diffusion) corresponds to the case of

F(σ̃, φ1, . . . , φL; t) =

L∑
`∗=1

1{σ̃ ≤ σ, φ`∗ ≤ 1, φ` ≤ 0 ∀` 6= `∗} TND`∗ (t)

Γ(1− θ/σ)Λ(t)

+ 1{σ̃ ≤ σ, φ` ≤ 1 ∀` ∈ L} TD(t)

Γ(1− θ/σ)Λ(t)
.

Using these results, we can derive (9),

− lnP [Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] =

∫
max
`
aθ`z
−θ
` d

L∑
`=1

∫ t

−∞
P[Ai`(t, v) ≤ a` | `∗i (v) = `, t∗i (v) = s]λ`(s)ds

=

L∑
`=1

[∫
aθ`

∫ t

−∞
dF ∗(a` | `∗, s; t)λ`(s)ds

]
z−θ` =

L∑
`=1

[∫
aθ`dM(a1, . . . , aL; t)

]
z−θ` ≡

L∑
`=1

T`(t)z
−θ
` ,
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and (11),

− lnP [Z1(t) ≤ z1, . . . , ZL(t) ≤ zL] =

∫
max
`
aθ`z
−θ
` dM(a1, . . . , aL)

=

L∑
`=1

∫
aθ`z
−θ
` d

[
e−a

−σ
` (1− δ`(t))Λ`(t)

]
+

∫
max
`
aθ`z
−θd

[
L∏

`′=1

e−a
−σ
`′

L∑
`=1

δ`(t)Λ`(t)

]

=

L∑
`=1

Γ(ρ)(1− δ`(t))Λ`(t)z−θ +

(∑
`

z
− θ

1−ρ
`

)1−ρ

Γ(ρ)

L∑
`=1

δ`(t)Λ`(t).
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