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In this online appendix we consider the more general model in which the sender’s

utility is state-dependent, and so the per-period utility is v : A × Ω → R. As in the

state-independent case, for any prior µ such that V ∗(µ) > v∗(µ) the function V ∗(µ) is

supported on two priors, µ ∈ [0, 1] and µ ∈ [0, 1]. Note that the function v∗ is piece-wise

linear,9 as is its concavification V ∗.

Now, consider a prior µ ∈ [xq−1, xq]. For every λ ∈ [0, 1] and action a ∈ A let

v(λ, a) = λv(1, a) + (1− λ)v(0, a). The piece-wise linearity of V ∗ implies that one of the

following five cases must hold:

Case 1: V ∗(µ) = v∗(µ).

Case 2: (µ, V ∗(µ)) lies on the line joining (xk−1, v(xk, ak)) with (xm−1, v(xm−1, am)) for

some k ≤ q ≤ m.

Case 3: (µ, V ∗(µ)) lies on the line joining (xk, v(xk, ak)) with (xm, v(xm, am)) for some

k ≤ q ≤ m.

Case 4: (µ, V ∗(µ)) lies on the line joining (xk−1, v(xk−1, ak)) with (xm, v(xm, am)) for

some k ≤ q ≤ m.

Case 5: (µ, V ∗(µ)) lies on the line joining (xk, v(xk, ak)) with (xm−1, v(xm−1am)) for

some k ≤ q ≤ m.

The necessary and sufficient conditions under which V (µ) = V ∗(µ) are determined

by whether the beliefs µ and µ, which support V ∗(µ), are on the left or right endpoints

of the respective intervals Jk and Jm on which they lie. In particular, if the supporting

beliefs are on the left endpoints or on the right endpoints of both respective intervals,

then the conditions and arguments are nearly identical to the state-independent case. In

9To see this, recall that in any interval of beliefs [xi−i, xi] for i ∈ {1, . . . , `}, the agents’ optimal

action is ai. For any λ ∈ [xi−i, xi], the sender’s indirect utility is thus the linear v∗(λ) = λ · v(1, ai) +

(1− λ) · v(0, ai).
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contrast, if the supporting beliefs are on different endpoints of their respective intervals,

then V (µ) = V ∗(µ) if and only if µ = 0 and µ = 1 (in which case full revelation

is optimal). The following theorem tightly characterizes the conditions under which

V (µ) = V ∗(µ).

Theorem 2. V ∗(µ) = V (µ) if and only if one of the following conditions is true:

• Case 1 holds.

• Case 2 holds and |Jk| ≥ |Jm| and |Jm| ≥ |Ji| for every integer i ∈ (k,m).

• Case 3 holds and |Jm| ≥ |Jk| and |Jk| ≥ |Ji| for every integer i ∈ (k,m).

• Case 4 holds with k − 1 = 0 and m = l.

The intuition for the proof of Theorem 2 is the following. If µ = 0 and µ = 1, then

V ∗(µ) can be attained by choosing the information structure that fully reveals the state.

On the other hand, suppose that µ > 0, µ < 1, and Jk < Jm, and that µ lies on the left

endpoint of Jk and µ on the right endpoint of Jm. In this case, in order for the public

belief to get sufficiently close to µ, there must be a sufficiently strong positive signal

s. However, this signal will prevent the public belief from getting close to µ: whenever

the belief starts to approach µ from the left, an agent who obtains signal s will take an

action ar for r > m, thereby “overshooting” past the desired belief µ. The other cases,

such as µ lying on the right endpoint of Jk and µ on the left endpoint of Jm, suffer from

the same problem.

We first adapt the proof of Proposition 1 to apply also to state-dependent utility.

Proof. Assume that the two conditions are satisfied for β, β. Let δ > 0 be the value

guaranteed by Lemma 2 and let ϕ = ym−1−η, ϕ = yk−η, α = lr−1(ϕ), and α = lr−1(ϕ).

Let F be an information structure that is guaranteed in Lemma 4 such that αF = α,

αF = α and 2ε < δ. We note that ϕ−ϕ = yk−η+η−ym−1. By assumption ϕ−ϕ > |Ji|

for every integer i ∈ (k,m). Therefore, Lemma 2 implies that for every equilibrium of

the corresponding game, µ∞ ∈ [0, xk) ∪ (xm−1, 1] with probability 1.

We claim that for a sufficiently small ε > 0 it holds for any equilibrium σ that if the

public belief µt ≤ xm−1, then µt+1 < β. To see this note that by the choice of ϕ it holds

that if λ ∈ [0, 1] such that lr(λ) ≤ ym−1, then

lr(λ) + ϕ = lr(λ) + yk − η ≤ ym−1 + ym − η < ym.
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Hence if the public belief µt ≤ ym−1, then the posterior probability pt of agent t after

receiving his private signal satisfies pt < xm. Hence with probability one agent t plays

an action aj such that j ≤ m. Therefore Lemma 4 implies that µt+1 ≤ xm−1 + ε. Thus

for a sufficiently small ε > 0 we have µt+1 ≤ β.

Similarly, if µt ≥ xk, then µt ≥ β. Lemma 4 further guarantees that if µt ∈ (xm−1, β]

and at = am, then |µt+1 − µt| ≤ ε. Similarly if µt ∈ [β, xm−1) and at = ak, then

|µt+1 − µt| ≤ ε. This, together with the fact that all points λ ∈ (β, β) are continuation

points, implies that µt reaches (β − ε, β) ∪ (β, β + ε) with probability one. Since ε < δ

whenever µt reaches (β− ε, β)∪ (β, β+ ε) the martingale stops. Therefore we must have

that µ∞ ∈ (β − ε, β) ∪ (β, β + ε) for every equilibrium σ as desired. Hence the pair

0 ≤ β < µ < β ≤ 1 is feasible.

We now prove Theorem 2.

Proof. We first show, using Proposition 1, that the conditions of Theorem 1 are sufficient.

We begin with the case where µ ∈ (xq−1, xq) and V ∗(µ) = v∗(µ). In this case, it is

optimal not to reveal any information. Assume next that µ = xq−1, where we can

assume that q > 1. Let ε be sufficiently small such that ϕε = xq−1 + ε < xq. Let

ϕ ∈ (xq−2, xq−1) be such that yq−1 − lr(ϕ) < yq − yq−1. By Proposition 1, the pair

(ϕ, ϕε) is feasible for all sufficiently small ε. Let Fε be the information structure that

guaranteed by Proposition 1, for which µ∞ ∈ (ϕ − ε/2, ϕ + ε/2) ∪ (ϕε − ε/2, ϕε + ε/2)

with probability 1 in any equilibrium σ. Note that Eσ[µ∞] = µ, that the distance of µ

from (ϕ − ε/2, ϕ + ε/2) is bounded away from zero, and that the distance of µ from

(ϕε−ε/2, ϕε+ε/2) approaches zero when ε→ 0. Therefore, when ε→ 0 the probability

that µ∞ lies in (ϕε− ε/2, ϕε + ε/2) approaches 1. This implies that the expected utility

of the sender lies arbitrarily close to V ∗(µ). Similar considerations can be applied when

µ = xq. This concludes case 1.

If case 4 holds, the fully revealing information structure is optimal for the sender.

Assume that case 2 holds (case 3 is similar). We start with considering the case

where 0 < xk−1 and |Jk| > |Jm| > |Ji| for every integer i ∈ (k,m). Let ηδ = lr(xk−1) + δ

and ηδ = lr(xm−1)+δ. Let xδk−1 = lr−1(ηδ) and xδm−1 = lr−1(ηδ). We claim that the pair

(xδk−1, x
δ
m−1) is feasible for all sufficiently small δ > 0. To see this we show that the two
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conditions of Proposition 1 hold. The second condition holds since yk − ηδ + ηδ − ym−1
approaches |Jk| as δ → 0. Similarly, the first condition holds for all sufficiently small

δ > 0 since |Jm| > |Jk| and since ηδ − ym−1 = ηδ − yk−1 = δ.

Therefore, (xδk−1, x
δ
m−1) is feasible for all sufficiently small δ > 0. By assumption, for

every ε > 0 there exists F such that µ∞ ∈ (xδk−1 − ε, xδk−1 + ε) ∪ (xδm−1 − ε, xδm−1 + ε)

with probability one in every equilibrium of the herding game. Note that (xδk−1, x
δ
m−1)

approaches (xk−1, xm−1) as δ goes to 0. Therefore since E[µ∞] = µ we must have that

Pσ

(
µ∞ ∈ (xδk−1−ε, xδk−1 +ε)

)
approaches xm−1−µ

xm−1−xk−1
and Pσ

(
µ∞ ∈ (xδm−1−ε, xδm−1 +ε)

)
approaches µ−xk−1

xm−1−xk−1
as δ and ε go to zero. This means that the actions on which

the population cascades are ak with probability approaching xm−1−µ
xm−1−xk−1

and am with

probability approaching µ−xk−1

xm−1−xk−1
. This approximates the Bayesian persuasion solution

to any desired precision.

The case where xk−1 = 0 is shown similarly, by observing that (δ, xm−1 +δ) is feasible

for all sufficiently small δ > 0.

We next show that the converse hold. Namely, we start with case 2 and show that if it

holds and either |Ji| > |Jm| for some integer i ∈ (k,m) or |Jm| > |Jk|, then V ∗(µ) > V (µ)

(the converse for case 3 is shown similarly).

Assume first that |Ji| > |Jm| for some integer i ∈ (k,m). Note that for an information

structure F , in order for the event µ∞ ∈ (xm−1 − ε, xm−1 + ε) to hold with positive

probability in equilibrium σ we must have that αF approaches 1
2

with ε. Alternatively,

for every ε > 0 there exists a δ(ε) > 0 such that if αF ≤ 1
2
−ε, then V (µ) ≤ V ∗(µ)−δ(ε).

Let ε0 = 1/2− lr−1(− |Ji|−|Jm|
2

).

We consider two cases. If F is such that αF ≤ 1
2
− ε0, then by the above we have

that V (µ) ≤ V ∗(µ) − δ(ε0). Otherwise, αF > 1
2
− ε0/2 and lr(αF ) ≥ − |Ji|−|Jm|

2
. We

note that lr(αF ) ≤ |Jm| for otherwise, by Lemma 1 we must have that µ∞ 6∈ [xm−1, xm]

with probability one and the utility for the is bounded away from V ∗(µ). Hence, any

point λ ∈ [xi−1, xi] with lr(λ) ∈ [yi−1 + |Ji|−|Jm|
2

, yi − |Jm|] is a cascade point. Thus,

in any equilibrium, if the public belief reaches a point µt such that lr(µt) ∈ [yi−1 +

|Ji|−|Jm|
2

, yi−|Jm|], then learning stops and µ∞ = µt. Thus, whenever µt satisfies lr(µt) ≥

yi−1 + |Ji|−|Jm|
2

, it cannot down-cross lr−1(yi−1 + |Ji|−|Jm|
2

) and reach [xk−1, xk]. Therefore

if µt ∈ [xi−1, xi], then it holds with positive probability that µ∞ ∈ [xi−1, xi]. This

demonstrates that µ∞ ∈ [xi−1, xi] holds with positive probability. Hence the sender’s
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utility is bounded away from V ∗(µ).

We next show that if |Jk| > |Jm|, then V (µ) < V ∗(µ). As before, for every ε > 0

there exists a δ(ε) such that if αF ≤ 1
2
− ε, then V (µ) ≤ V ∗(µ) − δ(ε). Let ε0 =

1/2 − lr−1(− |Jk|−|Jm|
4

). If F is such that αF ≤ 1
2
− ε0, then by the above we have that

V (µ) ≤ V ∗(µ)− δ(ε0). Otherwise, αF >
1
2
− ε0/2 and lr(αF ) ≥ − |Jk|−|Jm|

4
. We note that

lr(αF ) ≤ |Jm| for otherwise we would have that µ∞ 6∈ [xm−1, xm] with probability one and

the sender’s utility will be bounded away from V ∗(µ). Hence, any point λ ∈ [xk−1, xk]

with lr(λ) ∈ [yk−1 + |Ji|−|Jk|
4

, yk − |Jm|] is a cascade point.

Thus, if the public belief reaches a point µt such that lr(µt) ∈ [yk−1+
|Ji|−|Jk|

4
, yk−|Jm|],

then learning stops and µ∞ = µt. This implies that if µ ≥ yk − |Jm|, then µt ≥

yk − |Jm| − |Jm|−|Jk|
4

for every t. This is true since lr(αF ) ≥ − |Jk|−|Jm|
4

. Hence, the

sender’s utility is bounded away from V ∗(µ).

Finally, we show that if Case 4 holds and either k − 1 6= 0 or m 6= l, then V (µ) 6=

V ∗(µ). We show this for the case k − 1 6= 0 (m 6= l is similar). Let F be an information

structure. If F is such that αF ≤ 1
2
− ε, then, by Lemma 1, in any equilibrium σ the

limit µ∞ 6∈ [xk−1, xk−1 + r), for sufficiently small r > 0, with probability one, and hence

V (µ) ≤ V ∗(µ)− δ(ε0). Similarly, if F is such that αF ≥ 1
2

+ ε, then by Lemma 1 it holds

for sufficiently small r > 0 that in any equilibrium σ the limit µ∞ 6∈ [xm − r, xm] with

probability one and hence V (µ) ≤ V ∗(µ) − δ(ε0). In contrast, if both αF ≥ 1
2
− ε and

αF ≤ 1
2

+ε, then for some constant r(ε) > 0 all points [xm−1+r(ε), xm−r(ε)] are cascade

point. In addition, r(ε) goes to zero as ε goes to zero. This implies that for sufficiently

small ε it holds that µ∞ < xm − r for some r > 0 and V (µ) < V ∗(µ). Hence in any case

we have that V (µ) < V ∗(µ).
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