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Appendix A. Data appendix

In this appendix, I describe the original data sources used in this paper and present
summary statistics for the main variables in the empirical analysis.

A. 1 Peerage records

Peerage records have chronicled the family histories of the peerage of Britain
and Ireland since Arthur Collins published his Peerage in 1710. Many follow-up
genealogical studies have updated his work. Among them, three peerage records
stand out: Burke’s Peerage and Baronetage, Debrett’s The Peerage of the United
Kingdom and Ireland, and Cokayne’s Complete Peerage. The genealogist John
Burke wrote Landed Gentry, a similar record for knights and baronets. This last
piece tends to be quite mythological, the result of centuries of word-of-mouth
information. Oscar Wilde once said, “It is the best thing the English have done
in fiction” (Burke et al. 2005).

For the sake of illustration, Quote A1 trascribes the entry for Charles George
Lyttelton from Cokayne’s Complete Peerage. He was born in 1842 and married
when he was almost 36. He held the titles of Baron of Frankeley and Baron of
Westcoote of Ballymore. Lyttelton was also Viscount Cobham and Baron Cob-
ham, but received this honor only at age 46 on the death of a distant cousin.
Note that the entry provides similar information for his wife, Mary Susan Car-
oline Cavendish. She was 11 years younger and the daughter of the 2nd Baron
Chesham.

Hollingsworth (1964) collected this genealogical material for his study of the
British peerage. He tracked all peers who died between 1603 and 1938 (primary
universe) and their offspring (secondary universe). The primary universe was
defined from Cokayne’s Complete Peerage. The universe of children was found
in a variety of sources: Collins’ Peerage of England, Lodge’s Peerage of Ireland,
Douglas’ Scots Peerage, Burke’s Extinct Peerage and modern peerage editions by
Burke and Debrett. The remaining gaps were filled from a large list of sources,
among which Burke’s Landed Gentry stands out. See Hollingsworth (1964) for
details. The Cambridge Group for the History of Population and Social Structure
now owns the dataset. They re-digitized the 30,000 handwritten original index
sheets in 2001. In its current form, the data comprise approximately 26,000 indi-
viduals. In this paper, I consider a baseline sample of 644 women aged 15 to 35
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in 1861 who ever married.2

Quote A1: Charles Lyttelton, Cockayne’s Complete Peerage

Charles George (Lyttelton), Lord Lyttelton, Baron of Frankley

[1794] also Baron Westoote of Ballymore in the peerage of Ireland [1776]

also a Baronet [1618], s. and h., by 1st wife, b. 27 Oct. 1842; ed. at Eton and at

Trin. Coll., Cambridge; M.P. for East Worcestershire, 1868-74: suc. to the peer-

age, 18 April 1876; Land Commr., 1881-89; suc. as VISCOUNT COBHAM AND

BARON COBHAM, on the death, 26 March 1889, of his distant cousin (the Duke

of Buckingham and Chandos, Viscount Cobham. & c.). under the spec. rem. in

the creation of that dignity. 23 May 1718. He m. 19 Oct. 1878, Mary Susan Caro-

line, 2d da. of William George (Cavendish), 2d Baron Chesham, by Henrietta

Frances. da. of the Rt. Hon. William Saunders Sebright Lascelles. She was b.

19 March 1853.

Cokayne (1893), p. 187

A. 2 Bateman’s Great Landowners

I collected a new dataset of family landholdings in the peerage from Bateman’s
Great Landowners (1883). The book consists of a list of all owners of 3,000 acres
or more by 1876, worth £3,000 a year. Also, 1,300 owners of 2,000 acres or more
are included. It is based in the Return of Owners of Land, 1873; the first complete
picture of the distribution of landed property in the British Isles since William
the Conqueror commissioned the Domesday Book in 1086. The objective of the
Return was to counter the rising public clamor about the overconcentration of land
ownership within the elite. Although the House of Lords stressed the importance
of using reliable and independent data to refute the attacks, the Return was not
without inaccuracies (Bateman 1883: preface). Bateman revised and corrected
these errors. Several great landowners, however, felt disparaged. They wrote
letters with outrage and demands for the immediate correction of the acres and
rents assessed to them. Lord Overstone, for example, complained that “this list
is so fearfully incorrect that it is impossible to correct it” (Bateman 1883: 348).
Bateman’s estimates, therefore, should be taken as a lower bound for the wealth
of great landowners in late nineteenth-century Britain and Ireland.

In terms of coverage, Bateman’s book includes 400 peers and 1,288 commoners
in England and Wales (Bateman 1883, Appendix VI, p. 515). Hence, commoners
represent three quarters of the great landowners listed in Bateman. That said,
these 1,288 commoner great landowners own 8,497,690 acres. The 400 peers own
5,728,979 acres. In other words, commoners own 60 percent of the total acreage
surveyed in Bateman.

For the sake of illustration, Quote A2 transcribes the entry for Charles George
Lyttelton from Bateman (1883). He owned 6,939 acres scattered throughout his

2I exclude second-marriages, women married to foreigners, and members of the royal family.
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estates in Worcestershire and Herefordshire. His gross annual rents from land ex-
ceeded £10,200 a year. Lyttelton attended Eton and Trinity College, Cambridge.
He was a member of Brook’s, a gentleman’s liberal club, and sat in Parliament for
Worcestershire. The letter S denotes that he was the head of, or head of a junior
branch of, a family that held land in England since the time of Henry VIII. He
succeeded to the Lyttelton barony in 1876.

Quote A2: Charles Lyttelton, Bateman’s Great Landowners (1883)

*** LYTTELTON, Lord, Hagley Hall, Stourbridge. S

Coll. Eton, Trin. Cam. Worcester . . 5,907 . 9,170
Club. Brooks’s. Hereford . . 1,032 . 1,093

b. 1842, s. 1876, m. 1878. 6,939 . 10,263
Sat for E. Worcestershire.

Bateman (1883), p. 285

From this source, I constructed a new dataset on family landholdings in the
peerage. Note that family landholdings refer to the landholdings of an individual’s
birth family. To construct this dataset, I followed three steps:

First, I digitized all 596 peers and peers’ sons who appear both in Bateman’s
book and the Hollingsworth dataset. Second, I coded 353 of their wives’ families.
This number is lower because some coded men did not marry or married landless
commoners. From these two steps, I found both spouses’ family landholdings for
227 couples in my baseline sample. Third, I searched the remaining spouses in the
baseline sample, finding 97 additional couples. Overall, I match 324 out of 644
women in the baseline sample and their husbands.

A. 3 Burke’s Heraldic dictionary

I complement the Hollingsworth (2001) dataset with information on family seats,
which are recorded in heraldic dictionaries. These dictionaries are summarized
peerage records that contain additional information at the family level: religious
affiliation, motto, coat of arms, and family seats. The most relevant source for
my purposes is Burke’s Heraldic Dictionary (1826). Many fathers of women in
the baseline sample are recorded as owners of these family seats. Therefore, the
family seats in Burke (1826) correspond, in general, to the seats where the women
under analysis grew up and lived most of the year. Moreover, country seats were
expensive to build and representative of long lineages. They generally remained
in the hands of the same family generation after generation until the 1870s, when
the aristocracy started to decline. Therefore, the seats in Burke (1826) can also be
used to locate individuals born before or after this source was published. Quote A3
shows the entry in Burke (1826) for the Baron Lyttelton. The Lyttelton’s family
seat was Hagley Park, an eighteenth century house in Hagley, Worcestershire.

From this source, I gathered 694 seats for 498 peerage families who appear
both in Burke’s Heraldic Dictionary and in the Hollingsworth dataset. I then geo-
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Quote A3: Lord Lyttelton, Burke’s Heraldic Dictionary (1826)

Arms—Quarterly: first, ar. a chev. between three escallops sa.; second, ar. a

bend, cottised sa. within a bordure engr. gu. bezantée for Westcote; third,

gu. a lion, rampant, within a bordure, engr. or, for Burley; fourth, France and

England, quarterly, within a bordure, goboay, ar. and az. for Plantagenet [...].

Motto—Ung Dieu, ung roy.

Seat—Hagley Park, Worcestershire.

Burke (1826), p. 115-116

coded all seats using GeoHack. When a seat was not found, I used the coordinates
from the nearest town, which sometimes was listed in Burke (1826). Note that
some families owned more than one seat. For example, of the 279 women in the
baseline sample with a family seat in England, two had 4 seats, 22 had 3 seats, 58
had 2 seats, and 197 had one seat.

A. 4 Member of Parliament (MP) elections from thepeerage.com

I construct a new dataset on elections of Members of Parliament (MP) for the
House of Commons. To do so, I use thepeerage.com. This website, run by Darryl
Lundy, is a genealogical survey of the peerage of Britain, i.e., an online version
of the peerage records described in Section A1. Specifically, the website provides
biographies for all members of the peerage. These biographies state whether an
individual was ever elected MP.

Since my aim is to evaluate whether a woman’s marriage to a commoner af-
fected her birth family’s political power, I hand-collected 674 biographies of the
fathers and the brothers of women in my baseline sample. Specifically, I consider
the brothers and fathers of women aged 15 to 35 in 1861 who ever married and
who have a family seat in England (N=279). As I explain in the paper, the sample
is restricted to England because only there I have education provision data which I
use in Section IV.B in the paper. I also collect the biographies of those who where
family heads in the 1870s, when state education was introduced in England.

For the sake of illustration, Figure A4 shows the entry in thepeerage.com

for one of the sampled brothers: William Compton, 5th Marquess of Northamp-
ton. Specifically, William was the second brother of Katrine Cecilia Compton
(1845–1913), who was aged 15 at the start of the interruption, attended a fully-
functioning Season afterwards, and married an Earl in 1870. Concomitantly,
William’s biography suggests that he had a brilliant political career. He was
elected to the House of Commons at the 1885 general election as a Liberal MP for
Stratford-on-Avon, a constituency formerly known as South-Warwickshire. This
constituency is barely 7 miles away from William’s family seat, Compton Viny-
ates. Hence, this election suggests that William (and his family) held some local
political power, although admittedly he was MP for this constituency one year
only. The biography also reports that he was elected MP for Barnsley, Yorkshire,
in a by-election in 1889. He served there until 1897. Finally, between 1912 and
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Figure A4: William Compton, 5th Marquess of Northampton,
thepeerage.com

1913, William was Lord Lieutenant in Warwickshire—the county where his family
seat is located. This reinforces the idea that him and his family had local political
power around their seat. Unfortunately, thepeerage.com does not systematically
provide the appointment dates for positions other than MP. Hence, I cannot use
them in Section IV.A, where I test whether a family’s political power was reduced
after a woman’s marriage to a commoner.

Using regular expressions, I identify whether an individual was elected MP, the
year when he was elected, the constituency for which he sat, whether he was elected
in the family seat’s county, and how many years he served. Overall, my dataset
spans 27 general elections and 97 by-elections between 1776 and 1910, contains
information on 305 different MP elections, and covers 205 different constituencies.

A. 5 Education data from Goni (2017)

To evaluate whether the Season and its implied sorting patterns affected public
policies, I study the introduction of state education in England after Forster’s 1870
Act. The data comes from the Reports of the Committee of Council on Education.
These annual reports are “the most significant single source in existence for the
study of elementary education, particularly on State interest in public education,
during virtually the whole long reign of Victoria” (Stephens 1985). Importantly,
the reports are suited for analysis at the regional and local level, since most of
the evidence is broken down by counties and districts. Specifically, the reports
detail the activities of School Boards—the local bodies in charge of raising taxes
for state education.

For the sake of illustration, Figure A5 transcribes the 1877-78 report for School
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Boards in Leicestershire. In all but three School Boards the main, sometimes the
only, source of income were funds raised from rates (column 2). Specifically,
rates were wealth taxes set by local School Boards in each Poor-law district and
borough. The second source of income for School Boards were the grants from
the Committee of Council on Education (column 1). These grants depended to a
large extent on students’ results in the reading, writing, and arithmetics national
exams. The other sources of income were school fees (column 4) and books sold
to students (column 5). Overall, School Boards had plenty of powers to decide
how to spend all these funds: They built new state schools and paid teacher’s
salaries, school fees for the poorest children, and other state-school expenditures.
They could also subsidize existing private schools (e.g., Voluntary schools run by
the Church of England).

Figure A5: Report from the Committee of Council on Education,
Leicestershire, 1877-78.

1. 2a. 2b 3. 4. 5.
Grants
from the Amount Rate Amount

Committee paid to per £ on received
of Council Treasurer Rateable Contribu- Books

on by Rating Value of tion from School sold to
School Board and County Education Authority District Districts Fees Children

Leicester. £ s. d. £ s. d. £ s. d. £ s. d. £ s. d.

Leicester 2,684 0 10 4,500 0 0 3.25 . . . 2,166 4 8 112 14 7
Anstey 140 6 11 200 0 0 14.75 . . . 105 5 2 . . .
Bagworth – – – – – – – – – – – – – –
Barrow-on-Soar . . . 20 0 0 0.5 . . . . . . . . .
Buckminster and Sewstern, U.D. . . . 15 0 0 3 . . . . . . . . .
Coston and Garthorpe, U.D. 17 4 2 126 10 0 8 . . . 13 5 7 5 11
Desford . . . 121 1 0 5 . . . 32 8 8 2 3 1
Dunton Basset 64 6 0 63 0 0 5.5 . . . 38 14 0 1 9 4
Easton Magna, U.D. 17 5 8 320 0 0 11 . . . 23 5 0 1 13 5
Foxton 11 7 6 225 0 0 14.25 . . . 17 18 4 2 13 2
Gaddesby 32 15 0 65 0 0 5.75 . . . 22 5 4 1 19 9
Great Dalby 36 19 2 80 0 0 6.25 . . . 34 4 6 1 5 5
Hinckley 139 0 0 350 0 0 5 . . . 87 18 5 14 16 5
Lockingtopn, U.D. – – – – – – – – – – – – – –
Loughborough 168 4 8 500 0 0 3 . . . 179 1 0 . . .
Nailstone 34 12 0 80 0 0 3.25 . . . 33 10 1 . . .
Oadby 62 15 0 115 0 0 5.5 . . . 55 8 6 . . .
Odstone and Barton-in-the Beans,
U.D. 30 2 3 21 14 0 1.5 . . . 48 1 4 . . .

Peckleton 23 10 2 55 0 0 3.75 . . . 12 8 4 13 1
Ratby 100 13 6 217 10 0 6.5 . . . 48 18 0 5 0 5
Seagrave . . . 80 0 0 4 . . . . . . . . .
Somerby . . . 110 0 0 10 . . . 14 8 8 . . .
Thornton . . . 52 15 0 3 . . . . . . . . .
Thorpacre, U.D. . . . 14 0 9 0.5 . . . . . . . . .
Upper and Nether Broughton, U.D. . . . 49 19 1 2 . . . 17 14 9 14 6
Walton-on-the-Wolds 17 12 0 30 0 0 3 . . . 9 13 8 . . .
Wigston Magna 105 10 6 300 0 0 4 . . . 104 5 6 . . .

Source: Committee of Council on Education (1878), p. 144.

Goñi (2021) computerized the rate per £ (i.e., the tax rate) set by all 1,433
School Boards in England between 1872 and 1878 (column 2b). He also geo-
referenced each School Board using GeoHack. In this paper, I evaluate education
provision by 943 School Boards located in a 10-mile radius of 387 family seats in
England, i.e., the family seats of women in the baseline sample. To measure local
education provision, I compute the average tax rate set in a 10-mile radius of each
family seat.

In addition, I hand-collected the data on total funds raised from taxes by each
of these 943 School Boards (i.e., the data in column 2a in Figure A5). I use this
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to show that my results are similar when I measure state-education provision with
tax rates and with the total funds raised from taxes (see online appendix B11).

A. 6 Descriptive statistics

Here I present summary statistics of the main variables. First, I describe the base-
line sample and provide descriptives for Section III. Second, I describe the family
seats data. Third, I present the variables used to test whether the interruption of
the Season affected the political power of the peerage (Section IV.A). Finally, I
focus on the education-provision variables used in Section IV.B.

Section III descriptives. Throughout the paper, my baseline sample are all
peers’ daughters who ever married and who were aged 15 to 35 in 1861, when
the Season’s interruption began. This includes women who could potentially have
married during the interruption, although with different risks, determined by their
age. Specifically, Section III, uses three samples:

• Baseline sample (N=644). This sample includes women aged 15-35 in 1861
who ever married. It excludes second marriages, women marrying foreigners,
and members of the royal family.3

• Women married in the landed elite (N=324). This sample includes women
in the baseline sample for which Bateman (1883) lists both spouses’ family
landholdings,4 and

• Married and unmarried women (N=765). To evaluate the effect of the Sea-
son on celibacy, this sample includes women in the baseline sample and
women aged 15-35 in 1861 who never married. To avoid counting women
who died at an early age as celibate, I exclude women dying before age 35.5

The sample size corresponds to what is infered from the rate of convertion
of invitations to royal parties into marriages. Between 1851 and 1875, 116,030
invitations for royal parties were issued and accepted. Concomitantly, there was a
total of 796 marriages in which the wife was a peer’s daughter. This implies that
every 150 invitations were converted into one marriage. Note that the baseline
sample includes women born over 20-years. On average, one would expect 4,641
invitations per year, amounting to a total of 92,820 invitations over a 20-years
period. Given that every marriage is associated to around 150 invitations, we
would expect to see around 620 marriages (31 per year).

Table A1 presents summary statistics for these three samples. The baseline
sample descriptives suggest that peers’ daughters aspired to marry peers’ sons,
and vice versa. Only 65 percent of women married a commoner. Although this
number may seem large at first sight, note that the peerage was an extremely small
group. Around 1900, only one in 3,200 people in Britain (0.03% of the population)

3See Tables 2 (Panel A, cols. [1], [2]); 3 (Panel A, cols. [1], [3]); 4; and 5; and Figure 7
4See Tables 2 (Panel A, cols. [3] to [5]); 3 (Panel A, cols. [5], [7], and [9]); and Figure 8
5See Table 2, Panel A (col. [6]).

7



was an aristocrat; in Europe, the proportion was one in 100 (Beckett 1986: 35-40).
Hence, a 35% rate of endogamy within this very small group is actually a large
figure. Similarly, 26% of peer’s daughters in this sample married the heir to a
peerage. Given that in Britain only heirs inherited titles, this was an important
margin of marriage quality.

Table A1: Summary statistics

Baseline sample: women aged 15-35 in 1861 who ever married
Married in Including

Baseline landed elite unmarried

mean sd mean sd mean sd

Married a commoner 0.65 0.48 0.47 0.5 . .
Married an heir 0.26 0.44 0.41 0.49 . .
Difference in spouses’ landholdings:

in percentile rank (absolute value) . . 28.90 21.64 . .
in percentile rank (husband − wife) . . -3.32 35.98 . .
wife married down . . 0.53 0.5 . .

Celibacy . . . . 0.23 0.42
Treatment (synthetic prob.)† 11.1% 7.29 12.0% 7.16 11.3% 7.21
Married in 1861–63 0.14 0.35 0.15 0.36 . .
Duke’s, marquis’, earl’s daughter 0.49 0.50 0.61 0.49 0.46 0.50
Viscount’s, baron’s daughter 0.51 0.50 0.39 0.49 0.54 0.50
Birth order (excluding heirs) 3.69 2.66 3.79 2.76 3.87 2.73
Peerage of England 0.59 0.49 0.57 0.50 0.58 0.49
Peerage of Scotland 0.11 0.31 0.11 0.32 0.11 0.31
Peerage of Ireland 0.30 0.46 0.31 0.46 0.31 0.46

Observations 644 324 765

†synthetic prob. (%) to marry during Season interruption, based on marriage probs. in “normal times.”

Notes: The baseline sample excludes second marriages, women marrying foreigners, and members of the royal
family. Unmarried women excludes those dead before age 30.

In the paper, I test whether sorting was affected by the interruption of the
Season (1861–63). My treatment variable, hence, captures a woman’s exposure to
the interruption. Specifically, the treatment variable is the synthetic probability to
marry in 1861–63, given a woman’s age in 1861. This synthetic probability is based
on the percentage of women marrying at each age in “normal times” (i.e., before
the interruption). In the baseline sample, the average synthetic probability to
marry in 1861–63 is 11.1 percent, and has a standard deviation of 7.29. Note that
the synthetic probability is a good predictor of the actual percentage of women
married in 1861–63: 14 percent. This suggests that social norms regarding age at
marriage were not altered during the interruption. In other words, women did not
defer marriage decisions until the Season resumed.

I also report summary statistics for my control variables: half of the women
in the baseline sample are dukes’, marquis’, or earls’ daughters (vs. viscounts’
or barons’ daughters). Most came from a family with an English peerage (60%),
followed by Irish (30%) and Scottish (11%) peerages. Finally, the average daughter
was the 3rd to 4th child (excluding heirs).

Next, I restrict the sample to women married in the landed elite, i.e. mar-
riages for which Bateman (1883) lists both spouses’ family landholdings. Note
that most of the lost observations (81 percent) correspond to women marrying
landless commoners. This selected sample allows me to evaluate whether the Sea-
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son’s interruption also affected sorting within the landed elite, that is, at the top
of the distribution. Being a representative sample for the top of the distribution,
some covariates are different to the ones described above. Specifically, there are
more dukes’, marquis’, or earls’ daughters than viscounts’ or barons’ daughters.
That said, other covariates, e.g., birth order and the peerage of origin, are not
significantly affected. Most importantly, my treatment variable, i.e., the synthetic
probability to marry in 1861–63, does not change substantially in this selected
sample. Neither does the proportion of women who married in 1861–63. Alto-
gether, this suggests that the interruption of the Season affected women in this
selected sample similarly to women in the baseline sample.

To measure sorting by landholdings, I use three variables based on the differ-
ence between spouses’ family landholdings. Why do I use family landholdings?
Under strict primogeniture, marrying a spouse from a family with few landhold-
ings would only matter if he was the heir. However, as discussed in Section I, the
aristocrats’ inheritance system granted younger brothers (and sisters) a yearly al-
lowance proportional to the size of the family estates. Hence, marrying a non-heir
from a family with few landholdings implied an economic loss.

Specifically, the first measure of sorting by landholdings that I use is the dif-
ference between spouses’ percentile rank in acres, in absolute value. A value of
zero indicates that both spouses’ families are in the same percentile of the distri-
bution, larger values indicate less sorting. On average, there is a 28.9 percentile
rank difference in my sample. Next, I look at the difference between husband’s
minus wife’s family landholdings, in percentile ranks. On average, women married
husbands 3 percentile ranks poorer.

Finally, the table also reports summary statistics for a third sample including
women who never married. I use this sample to evaluate whether the interruption
of the Season affected marital rates. On average, celibacy is around 23 percent.
Note that this excludes women who married but died before age 35 (including
them reduces celibacy, but only by one percentage point). Moreover, the treat-
ment variable, i.e., the synthetic probability to marry in 1861–63, is similar to the
other two samples. The remaining covariates are almost identical to the baseline
sample of married women, suggesting that selection is not a major issue.

Family seats descriptives. I complement the data described in Table A1 with
information on 694 seats for 498 peerage families from Burke (1826). Figure A6
shows the geographical location of family seats. The peerage was dispersed over
the British Isles and seats were quite isolated from each other. The majority of
seats were located in England, especially in the South East region.

I use this geo-referenced information in two ways. First, I use it to evaluate
local education provision around peer’s family seats. Light green circles in Figure
A6 highlight the seats used to evaluate education provision in Section IV.B. Over-
all, these seats also cover most of the territory, in this case, England. The sample
is restricted to England because only there I have education-provision data. More
descriptives are provided below.

Second, I use the geo-referenced data on family seats to construct a covariate
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Figure A6: Country seats. The sample is 694 country seats from 498

peerage families listed in Burke’s Heraldic Dictionary. Green circles highlight the
sample used in Section 5: seats (in England) of women aged 15–35 in 1861.

measuring the distance between each seat and London. This covariate is important
because attending the Season may have been more costly for women living further
away. Although families usually rented a house in London for the entire Season,
some stayed in their country estates and travelled there for specific events. Specif-
ically, I measure the shortest aerial distance between a woman’s family seat(s)
and London, in miles. When a woman has more than one family seat, I take the
minimum distance.

Unfortunately, including this covariate mechanically restricts the sample to
women with family seats recorded in Burke (1826). Specifically, I have information
on family seats for 484 observations in the baseline sample (75%), 260 observations
in the women married in the landed elite sample (80%), and 565 observations in
the married and unmarried women sample (74%). Note that the % success rate
in matching observations is similar across samples, suggesting that this sample
restriction will not entail selection issues.

Table A2 provides summary statistics for women with at least one family seat
recorded in Burke (1826). They are very similar to the baseline sample described
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before. For example, there was a similar proportion marrying commoners (0.62
vs. 0.65 before) and heirs (0.27 vs. 0.26 before). The difference between spouses’
landholdings is similar to the one reported before, both in absolute value (29.61
vs. 28.9 before) and in terms of husband’s minus wife’s landholdings (-4.86 vs.
-3.32 before). The celibacy rate is also as high as before (0.22 vs. 0.23 before).
Importantly, the treatment variable and the proportion of women marrying in
1861–63 is the same here to the baseline sample, suggesting that the Season’s
interruption affected women with and without a recorded family seat similarly.
The only significant difference is that dukes’, marquis’, and earls’ daughters are
more likely to have a recorded family seat.

On average, women with a recorded family seat lived 183–187 miles away from
London. As illustrated in Figure A6, this suggests that the family seats of the
peerage were dispersed over Britain. Importantly, the distance to London is simi-
lar across the three samples (baseline; married in the landed elite; and including
unmarried). In other words, none of these sample choices seems to alter the geo-
graphical distribution of my observations.

Table A2: Summary statistics, women with a family seat

Sample: women with a recorded family seat

Married in Including
Baseline landed elite unmarried

mean sd mean sd mean sd

Married a commoner 0.62 0.49 0.46 0.50 . .
Married an heir 0.27 0.45 0.40 0.49 . .
Difference in spouses’ landholdings:

in percentile rank (absolute value) . . 29.61 22.21 . .
in percentile rank (husb. − wife) . . -4.86 36.74 . .
wife married down . . 0.55 0.5 . .

Celibacy . . . . 0.22 0.41
Treatment (synthetic prob.)† 11.1% 7.28 12.1% 7.22 11.3% 7.19
Married in 1861–63 0.14 0.35 0.13 0.34 . .
Distance to London (in miles) 187.8 139.8 186.3 138.4 183.6 140.6
Duke’s, marquis’, earl’s daughter 0.60 0.49 0.68 0.47 0.57 0.50
Viscount’s, baron’s daughter 0.40 0.49 0.32 0.47 0.43 0.50
Birth order (excluding heirs) 3.74 2.70 3.76 2.79 3.98 2.81
Peerage of England 0.53 0.50 0.52 0.50 0.52 0.50
Peerage of Scotland 0.14 0.34 0.14 0.35 0.13 0.33
Peerage of Ireland 0.33 0.47 0.34 0.48 0.35 0.48

Observations 484 260 565

†synthetic prob. (%) to marry during Season interruption, based on marriage probs. in “normal times.”

Notes: All samples are restricted to women with at least one family seat recorded in (Burke 1826) The baseline
sample are all peers’ daughters aged 15 to 35 in 1861 who ever married. It excludes second marriages, women
marrying foreigners, and members of the royal family. Married in the landed elite includes women in the
baseline sample whose family landholdings and whose husband’s family landholdings are listed in Bateman
(1883). Including unmarried consists of women in the baseline sample and women aged 15-35 in 1861 who never
married. It excludes those who died before age 30.

Descriptives political power. In Section IV.A in the paper, I test whether
the Season’s interruption and the increase in women’s marriages to commoners
affected the political power of the peerage. Specifically, I collect data on MP
elections from thepeerage.com and look at whether the blood relatives of women
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marrying a commoner were less likely to be elected MP in the House of Commons.
Here I present descriptive statistics for these variables.

I consider women in my baseline sample with a family seat in England. The
sample is restricted to England because only there I have education-provision data
for Section IV.B. My first political variable indicates, whether any brother of a
sampled woman was elected MP after her marriage. Second, I look at how many
years these brothers served altogether. Third, I assess whether they were elected
MP in the family seat’s constituency. This proxies for an individual’s local political
power, which could affect policies implemented locally—e.g., the introduction of
state education (Stephens 1998). Finally, I also evaluate the political power of the
head of a woman’s birth family (henceforth, family head). Specifically, I assess
whether the person who was the family head in the 1870s—when state education
was introduced—was elected MP and how many years he served.

Table A3 presents the summary statistics. The average woman had three
brothers. After her marriage, 40 percent of women had at least one brother elected
MP, 20 percent had one brother elected MP in the family seat’s county, and 18
percent had a family head who served as MP. Altogether, their brothers served
4.76 years as MP and 1.84 years as MP in the family seat’s county. Similarly, after
a woman’s marriage, her family head served on average 1.39 years as MP. Note
that the number of observations is 270 for all variables based on the MP elections
of brothers. This is because 9 women had no brothers.

Women in this sample are similar to women with at least one family seat.
Specifically, the proportion of women marrying a commoner, the proportion of
dukes’, marquis’, and earls’ families, and birth order are similar. Logically, the
distance between family seats and London is lower than before, as now the sample
excludes women with a seat in Wales, Ireland, and Scotland. That is, it excludes
women living further away from London. The average synthetic probability to
marry in 1861–63 is now lower. That said, the sample provides enough women with
high exposure to the Season to identify its effects. For example, the percentage of
women aged 19 to 22 in 1861—that is, the most exposed cohorts—is 18.78 here
vs. 19.71 in the baseline sample.

My regressions also include a covariate capturing a family’s previous political
power. This is defined as the political variables described above, but considering
only the MP elections of a woman’s father before her marriage. Note that using
the MP elections of her brothers before her marriage would understate a family’s
previous political power, e.g., for women with brothers under age 21 who were
not eligible for MP elections. This covariate controls for the unlikely possibility
that, as Parliament met in 1861–63, the daughters of MPs moved to London with
them and attended private balls during the interruption (see Section III.A). The
descriptive statistics suggest that fathers held slightly more political power (before
a woman’s marriage) than brothers did (after a woman’s marriage). As suggested
by Figure A7, though, this secular trend is due to the loss of political power after
the Great Reform Act of 1832, and not closer to the period under study—i.e., the
interruption of the Season and education provision in the 1870s.

The table also provides descriptive statistics for the county characteristics used
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Table A3: Summary statistics for marriage and political power

Sample: Women in the baseline sample with a family seat in England

mean sd min max N source

Family’s political power
after woman’s marriage:

Any brother is MP 0.42 0.49 0 1 270 thepeerage.com

All brother’s MP years 4.76 8.61 0 65 270 thepeerage.com

Any brother is local MP 0.23 0.42 0 1 270 thepeerage.com

All brother’s local MP years 1.84 5.30 0 51 270 thepeerage.com

Family head is MP‡ 0.18 0.38 0 1 279 thepeerage.com

Family head’s MP years‡ 1.39 3.90 0 22 279 thepeerage.com

Married a commoner 0.59 0.49 0 1 279 Hollingsworth
Treatment (synthetic prob.)† 11.38% 7.23 1.57 22.83 279 Hollingsworth

Controls:
Duke, marquis, earl’s family 0.58 0.49 0 1 279 Hollingsworth
Viscount, baron’s family 0.42 0.49 0 1 279 Hollingsworth
Number of brothers 3.34 1.84 1 10 270 Hollingsworth
Woman’s birth order (excl. heirs) 3.71 2.67 1 14 279 Hollingsworth
Distance to London (miles) 92.15 56.06 3.82 239.6 279 Burke

Family’s political power
before woman’s marriage:

Father is MP 0.44 0.50 0 1 270 thepeerage.com

Father’s MP years 5.56 8.63 0 50 270 thepeerage.com

Father is local MP 0.29 0.46 0 1 270 thepeerage.com

Father’s local MP years 2.90 6.94 0 50 270 thepeerage.com

Family head is MP‡ 0.22 0.42 0 1 279 thepeerage.com

Family head’s MP years‡ 2.62 5.74 0 37 279 thepeerage.com

County controls:
% working in manufacturing 54.3 14.0 33 86 39 Hechter (1976)
income p.c. (in logs) 2.7 0.3 2.24 3.30 39 Hechter (1976)
% voting conservative, 1885 47.0 7.7 32 67 39 Hechter (1976)
% non-conformists 13.7 5.7 4 36 39 Hechter (1976)
religiosity 0.87 0.07 0.69 0.95 39 Hechter (1976)

†synthetic prob. (%) to marry during Season interruption, based on marriage probs. in “normal times.”
‡refers to the person who was family head in the 1870s.

Notes: The baseline sample are all peers’ daughters aged 15 to 35 in 1861 who ever married. This table restricts the
baseline sample to women with at least one recorded family seat in England (Burke 1826).

in the regression analysis. I consider the proportion of people working in man-
ufacturing in each county, log income per capita (p.c.), the percentage voting
conservative in the general elections of 1885, the percentage of non-conformists,
and religiosity. These covariates are from Hechter (1976) and cover 39 counties in
England. There is substantial variation in these covariates across counties. For
example, Durham employed 86 percent of the workers in manufacturing in the
1870s, at a time when only 33 percent worked in manufacturing in Rutland. Kent
was the richest county in per capita terms. The percentage of non-conformists,
the people voting conservative, and religiosity also varied across England.
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Figure A7: MP elections overtime. The sample are the brothers and
fathers of women in my baseline sample. I exclude families with no seat in
England and, for illustration, show only the 1825–1885 period. Lines date

Reform Acts (1832, 1867, 1884) and general elections. MPs in between are from
by-elections.

Figure A7 and Table A4 provide fine-grain descriptive statistics for the MP
elections in my sample. Table A4 shows that, on average, family seats in my
baseline sample were only 8.27 miles from an enfranchised constituency’s cen-
troid (std. dev. 5.14). The Table also summarizes the MP elections by type of
constituency. Overall, my dataset covers 305 MP elections for 205 different con-
stituencies. Out of these, 159 elections are for brothers and 146 for fathers of the
sampled women (i.e., women in the baseline sample with a seat in England). Be-
tween 90 to 95% of the MPs were elected for county and borough constituencies.
Few of the MP elections correspond to rotten boroughs. This is important, as rot-
ten boroughs had a very small electorate, and hence, may be unrepresentative of
the MP’s local political power—although they certainly provided political power
in the House of Commons. Note also the most of the MPs for rotten boroughs are
fathers. The reason is that rotten boroughs were abolished in the 1832 Reform
Act, before most of the brothers of women in my baseline sample (i.e., aged 15-
35 in 1861) were born or had reached the age of majority. Specifically, only one
brother in my dataset was elected for any rotten borough: John Ponsonby, 5th
Earl of Bessborough. He was elected for Bletchingley and High Ferrers in 1831,
before his sister’s marriage in 1858. In other words, my variables capturing a fam-
ily’s political power after a woman’s marriage do not incorporate MP elections in
rotten boroughs.
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Table A4: MP elections, by type of constituency

Panel A. Distance from family seat to closest enfranchised constituency:

mean std. dev. max

Distance (in miles) 8.27 5.14 25.37

Panel B. MP elections, by type of constituency:

all fathers brothers

County constituency (%) 47.5 40.0 54.4
Borough constituency (%) 44.3 46.9 41.9
District of Burghs constituency (%) 2.0 1.4 2.5
Cinque Port constituency (%) 0.3 0.7 0.0
University constituency (%) 0.3 0.7 0.0
Rotten borough (%) 5.6 10.3 1.3

Total number of MP elections 305 145 160

Notes: Panel A considers distance to enfranchised constituencies; i.e., excludes
rotten boroughs. I geo-reference each constituency with: (i) its centroid when
provided in wikipedia; (ii) its largest urban center. Panel B shows the number of
MP elections of fathers and brothers of women in the baseline sample (i.e., aged
15-35 in 1861) with a seat in England.

Finally, Figure A8 provides evidence that a woman’s marriage to a commoner
reduced her birth family’s political power. It considers the sample of peerage
families described in Section IV.A and reports the number of brothers elected
MP before and after their sister’s marriage. The thin blue line (thick red line)
is for women who married in the peerage (married a commoner). Before the
marriage, both groups had the same number of MPs. Ten and twenty years after
it, however, the number of MPs was much lower for families in which a woman
married a commoner.

Descriptives education provision. In Section IV.B in the paper, I evaluate the
impact on public policy of the increase in women’s marriages to commoners and
the loss of political power associated with the Season’s interruption. Specifically,
I look at the introduction of state education documented by the Reports of the
Committee of Council on Education. Here I provide descriptive statistics on the
main variables used in the analysis.

Figure A9 maps the location of all the 1,433 School Boards operating in Eng-
land between 1872 and 1878. The circles are proportional to the tax rate set
by each School Board. The figure suggests that School Boards spread over Eng-
land. There is substantial variation in tax rates within smaller geographic units,
although in general it seems that School Boards in the south levied larger taxes.
For example, in Queenborough—a small town in Kent—rates were, on average, at
14 percent between 1872 and 1878. At the same time, in Forton, Lancashire, taxes
were at 0.2 percent of the rateable value. Highlighted in green is the sample of 943
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Figure A8: Marriage and political power. The sample are women in
the baseline sample (i.e., aged 15-35 in 1861) and their brothers. I exclude
families without a seat in England. Lines are the total number of brothers

elected Members of Parliament (MP) before and after their sister’s marriage.
The thin blue line (thick red line) is for those whose sister married in the peerage

(married a commoner).

School Boards used in Section IV.B. These are the School Boards within 10-miles
of the family seats (in England) of women in my baseline sample. In terms of
geographical location and tax rates, these School Boards are representative for all
England.

Finally, Table A5 provides summary statistics for the variables used in Section
IV.B in the paper. Since education was provided locally, the unit of analysis is
a family seat (and the area around it). Specifically, I consider 387 family seats
in England of women in my baseline sample—i.e., aged 15-35 in 1861 who ever
married. Note that, since some families owned more than one seat, the number of
observations is larger than before. Of the 279 women in the baseline sample with
a family seat in England, two had 4 seats, 22 had 3 seats, 58 had 2 seats, and 197
had one seat. Hence, the total number of seats is 387.

My measure of education provision is the average tax rate set by all School
Boards within a 10-miles radius of each seat. Within a 10-miles radius of the
average family seat, there were 8 School Boards and tax rates were 2.3%. The
standard deviation of tax rates is 1.08, suggesting that there was substantial varia-
tion across England. In online appendix B11 I consider the total funds raised from
taxes (instead of the tax rate). The average School Board in my sample raised
£159, which were then invested in building and running state schools, subsidizing
private schools, paying the fees for the poorest children to attend school, etc.6

6This figure excludes School Board in large cities, which raised substantially larger funds
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Figure A9: School Boards. Red: 1,433 School Boards in England
(1872–1878). Green: sample used in Section 5, that is, School Boards within a

10-miles radius of the family seats (in England) of women in the baseline sample.

The measures capturing the political power in each family seat have almost
identical means and standard deviations as before. Forty percent of the sampled
family seats had at least one brother elected MP after his sister’s marriage, 17
percent had one brother elected MP in the family seat’s county, and 17 percent
had a family head who served as MP. In the average family seat, these brothers all
together served 5 years as MP and 1.68 years as MP in the family seat’s county.
Similarly, in the average seat, the family head served 1.27 years as MP after a
woman’s marriage. Note that the number of observations is lower for all variables
based on the MP elections of brothers. The reason is that in 17 seats there were
only women, i.e., they had no brothers. In addition, the variables capturing the
political power in each family seat before a woman’s marriage are also similar to
the ones described above.

than rural School Boards.
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Table A5: Summary statistics for determinants of education provision

Sample: Family seats in England (and 10-miles area around it) of women in the baseline sample

mean sd min max N source

Tax rate in 1872–78 (% average) 2.30 1.08 0.2 7 387 RCCE
Funds raised from taxes (£) 159.0 137.7 26.4 1,226.4 387 RCCE
Number of School Boards 8.41 5.33 1 34 387 RCCE

Political power in family seat
after woman’s marriage:

Any brother is MP 0.43 0.50 0 1 374 thepeerage.com

All brother’s MP years 5.03 8.92 0 65 374 thepeerage.com

Any brother is local MP 0.17 0.37 0 1 374 thepeerage.com

All brother’s local MP years 1.68 5.22 0 51 374 thepeerage.com

Family head is MP‡ 0.17 0.37 0 1 387 thepeerage.com

Family head’s MP years‡ 1.27 3.77 0 22 387 thepeerage.com

Woman in seat married a commoner 0.57 0.50 0 1 387 Hollingsworth
Treatment (synthetic prob.)† 11.51% 7.15 1.57 22.83 387 Hollingsworth

Controls:
Duke, marquis, earl’s family 0.61 0.49 0 1 387 Hollingsworth
Viscount, baron’s family 0.39 0.49 0 1 387 Hollingsworth
Number of brothers 3.24 1.77 1 10 374 Hollingsworth
Woman’s birth order (excl. heirs) 3.67 2.65 1 14 387 Hollingsworth
Distance to London (miles) 95.22 61.21 3.82 279.5 387 Burke

Political power in family seat
before woman’s marriage:

Father is MP 0.45 0.50 0 1 374 thepeerage.com

Father’s MP years 5.94 8.46 0 50 374 thepeerage.com

Father is local MP 0.24 0.42 0 1 374 thepeerage.com

Father’s local MP years 2.63 6.53 0 50 374 thepeerage.com

Family head is MP‡ 0.23 0.42 0 1 387 thepeerage.com

Family head’s MP years‡ 2.80 5.89 0 37 387 thepeerage.com

County controls (see Table A3)

†synthetic prob. (%) to marry during Season interruption, based on marriage probs. in “normal times.”
‡refers to the person who was family head in the 1870s.

Notes: The sample are the family seats in England of women in the baseline sample (i.e., all peers’ daughters aged 15 to
35 in 1861 who ever married). RCCE stands for Reports of the Committee of Council on Education.

As for marriage patterns, in 57 percent of the family seats one woman married
a commoner. In the average seat, a woman’s synthetic probability to marry in
1861–63 was 11.51%. These means are similar to the ones reported for the baseline
sample, especially when restricted to women with a recorded family seat.

Regarding the control variables, the proportion of dukes’, marquis’, and earls’
families, the number of brothers, women’s birth order, and the distance to London
is consistent with the statistics in Table A3.7 Finally, my regressions also control
for the set of county characteristics described in Table A3.

Altogether, the summary statistics presented here are similar to those in the
baseline sample and to those in the sample of women with a seat in England. This
suggests that treating a family seat as the unit of observation should not alter my
main results significantly.

7Note that the maximum distance between a family seat and London is now larger. The
reason is that now I treat each seat as a different observation. Before, when a woman had more
than one family seat I took the minimum distance to London.
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Appendix B. Robustness

This appendix provides the following robustness checks:

B1. Synthetic probability based on alternative benchmark cohorts (p. 19).
B2. Non-parametric estimates for marriage cohorts (p. 22).
B3. Contingency tables separating wives’ titles (p. 26).
B4. Extended contingency tables (p. 27).
B5. Synthetic probability vs. synthetic hazard rate (p. 33).
B6. Synthetic probability and ages at marriage (p. 34).
B7. Correlation with distance to London (p. 35).
B8. Political power and sorting by landholdings (p. 36).
B9. Political power: women and their brothers (p. 37).
B10. Political power: families where men married commoners (p. 38).
B11. Robustness for education provision (p. 43).

B. 1 Synthetic probability based on alternative benchmark cohorts.

This appendix reports estimates of equations (2) and (3) using alternative def-
initions of my treatment, that is, the synthetic probability to marry during the
interruption of the Season (1861–63).

Specifically, a woman’s synthetic probability to marry during the interruption
is based on (i) her age in 1861–63 and (ii) the probability to marry at each age
in a benchmark cohort who married in normal times. Here I define the treatment
using six different benchmark cohorts:

(a) Peers’ daughters born in 1815–30 (baseline definition);

(b) Peers’ daughters born in 1810–25;

(c) Peers’ daughters born in 1820–35;

(d) Peers’ daughters married in 1845–60;

(e) Peers’ daughters married in 1840–55;

(f) Peers’ daughters married in 1835–50.

As in the main text, all benchmark cohorts exclude women married after 1861 and
dead before age 30. Table B1 includes the baseline set of controls and Table B2
adds the distance between the family seat and London (hence, it restricts the
sample to women with a recorded family seat).
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Table B1: Synthetic probability based on alternative benchmark cohorts.

Spouses’ landholdings (rank percentile)

Married a Married Difference Difference Married Never
Commoner an heir (abs. value) (husb-wife) down married

[1] [2] [3] [4] [5] [6]

A. Baseline Treatment: synthetic probability to marry in 1861–63 based on women born in 1815-30

Treatment 0.005** -0.004** 0.524** -0.516** 0.009*** 0.002
(0.002) (0.002) (0.196) (0.225) (0.003) (0.002)
[0.043] [0.033] [0.029] [0.043] [0.010] [0.227]

B. Alternative Treatment: synthetic probability to marry in 1861–63 based on women born in 1810–25

Treatment 0.005** -0.004* 0.576** -0.655*** 0.011*** 0.002
(0.002) (0.002) (0.236) (0.214) (0.003) (0.002)
[0.059] [0.071] [0.035] [0.008] [0.004] [0.263]

C. Alternative Treatment: synthetic probability to marry in 1861–63 based on women born in 1820–35

Treatment 0.004** -0.003** 0.427** -0.460** 0.008*** 0.002
(0.002) (0.001) (0.176) (0.178) (0.002) (0.002)
[0.030] [0.035] [0.037] [0.018] [0.005] [0.280]

D. Alternative Treatment: synthetic probability to marry in 1861–63 based on women married in 1845–60

Treatment 0.004** -0.003** 0.411** -0.416** 0.007*** 0.002
(0.002) (0.001) (0.162) (0.166) (0.002) (0.001)
[0.035] [0.051] [0.028] [0.020] [0.006] [0.277]

E. Alternative Treatment: synthetic probability to marry in 1861–63 based on women married in 1840–55

Treatment 0.004** -0.003** 0.465** -0.460** 0.008*** 0.002
(0.002) (0.002) (0.183) (0.182) (0.002) (0.002)
[0.044] [0.052] [0.032] [0.020] [0.005] [0.328]

F. Alternative Treatment: synthetic probability to marry in 1861–63 based on women married in 1835–50

Treatment 0.004* -0.003* 0.506** -0.502** 0.009*** 0.002
(0.002) (0.002) (0.195) (0.189) (0.002) (0.002)
[0.076] [0.081] [0.027] [0.022] [0.005] [0.346]

Controls YES YES YES YES YES YES
Observations 664 664 324 324 324 765
Model probit probit OLS OLS probit probit

Notes: This table reports estimates of equations (2) and (3). The treatment (T ) is the synthetic probability
to marry during the Season’s interruption (1861–63), based on the probability to marry at a given age in
“normal times.” Formally, Tt = p(t)+p(t+1)+p(t+3), where t, t+1, and t+2 index a woman’s age in 1861,
1862, and 1863; and p(t) is the probability to marry at age t in a benchmark cohort who married before the
interruption. Each panel uses a different benchmark cohort. All benchmark cohorts exclude women married
after 1861 and dead before age 30. The samples used in the estimation are defined in Table 2. Controls are an
indicators for dukes’/marquis’/earls’ daughters and English titles, and birth order. Standard errors clustered
by birth year in parenthesis; p-values from the bootstrap-t procedure (Cameron et al. 2008) in brackets; ***
p<0.01, ** p<0.05, * p<0.1.
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Table B2: Synthetic probability based on alternative benchmark cohorts, controlling for
distance to London.

Spouses’ landholdings (rank percentile)

Married a Married Difference Difference Married Never
Commoner an heir (abs. value) (husb-wife) down married

[1] [2] [3] [4] [5] [6]

A. Baseline Treatment: synthetic probability to marry in 1861–63 based on women born in 1815-30

Treatment 0.006** -0.005** 0.512** -0.537** 0.009*** 0.002
(0.002) (0.002) (0.213) (0.221) (0.003) (0.002)
[0.039] [0.021] [0.037] [0.059] [0.047] [0.282]

B. Alternative Treatment: synthetic probability to marry in 1861–63 based on women born in 1810–25

Treatment 0.007** -0.005** 0.552** -0.666*** 0.011*** 0.003
(0.003) (0.002) (0.252) (0.229) (0.004) (0.002)
[0.041] [0.022] [0.052] [0.016] [0.032] [0.305]

C. Alternative Treatment: synthetic probability to marry in 1861–63 based on women born in 1820–35

Treatment 0.005*** -0.004** 0.411** -0.518** 0.008*** 0.002
(0.002) (0.002) (0.196) (0.184) (0.003) (0.002)
[0.016] [0.027] [0.064] [0.024] [0.029] [0.364]

D. Alternative Treatment: synthetic probability to marry in 1861–63 based on women married in 1845–60

Treatment 0.005*** -0.004** 0.394** -0.457** 0.007*** 0.002
(0.002) (0.001) (0.180) (0.171) (0.003) (0.002)
[0.019] [0.021] [0.054] [0.037] [0.036] [0.389]

E. Alternative Treatment: synthetic probability to marry in 1861–63 based on women married in 1840–55

Treatment 0.006** -0.004** 0.442** -0.484** 0.007*** 0.001
(0.002) (0.002) (0.203) (0.187) (0.003) (0.002)
[0.027] [0.017] [0.055] [0.032] [0.040] [0.476]

F. Alternative Treatment: synthetic probability to marry in 1861–63 based on women married in 1835–50

Treatment 0.005** -0.004** 0.480** -0.497** 0.008*** 0.002
(0.002) (0.002) (0.211) (0.199) (0.003) (0.002)
[0.046] [0.023] [0.046] [0.029] [0.042] [0.466]

Distance to London YES YES YES YES YES YES
Controls YES YES YES YES YES YES
Observations 484 484 260 260 260 565
Model probit probit OLS OLS probit probit

Notes: This table reports estimates of equations (2) and (3). The treatment (T ) is the synthetic probability to
marry during the Season’s interruption (1861–63), based on the probability to marry at a given age in “normal
times.” Formally, Tt = p(t)+p(t+1)+p(t+3), where t, t+1, and t+2 index a woman’s age in 1861, 1862, and
1863; and p(t) is the probability to marry at age t in a benchmark cohort who married before the interruption.
Each panel uses a different benchmark cohort. All benchmark cohorts exclude women married after 1861 and
dead before age 30. The samples used in the estimation are defined in Table 2. Controls are an indicators for
dukes’/marquis’/earls’ daughters and English titles, and birth order and the distance between the family seat
and London (hence, the sample is restricted to women with a recorded family seat). Standard errors clustered by
birth year in parenthesis; p-values from the bootstrap-t procedure (Cameron et al. 2008) in brackets; *** p<0.01,
** p<0.05, * p<0.1.
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B. 2 Non-parametric estimates for marriage cohorts.

Section III.D shows that the interruption of the Season (1861–63) reduced sorting
for women at risk of marriage–that is, for women with a high synthetic probability
to marry in 1861–63. Here, I show similar effects for women who actually married
during the interruption. Specifically, I compare two cohorts of peers’ daughters:
women marrying during the three-year interruption (treatment group) vs. women
marrying three years before (control group). I use non-parametric methods based
on contingency tables and Kolmogorov-Smirnov distribution tests to evaluate the
interruption’s effect on, respectively, sorting by title and landholdings.

Admittedly, the decision to marry in 1861–63 is potentially endogenous. Yet,
this specification is interesting in two respects: First, it evaluates whether the
estimates in Section III.D are driven by women marrying around 1861–63 or, in
contrast, by women affected by the interruption but marrying long after. More
generally, if the effects in this specification (based on marriage cohorts) are similar
to those in Section III.D (based on age cohorts), it would suggest that the pressure
to marry young was strong. In other words, that women could not select them-
selves into marrying during the interruption, delay marriage plans, or anticipate
them.

First, I show that the Season’s interruption reduced sorting by title. Table B5
presents the contingency tables. The wife’s title is arrayed across rows i and the
husband’s title across columns j. Each cell reports observed frequencies (O) and
expected frequencies under random matching (E).

The table suggests that when the Season ran smoothly noble women sorted
in the marriage market. Consider the control group, i.e., women marrying in the
three years before the interruption. Twenty-one out of 60 dukes’, marquises’, and
earls’ daughters (henceforth, DME’s daughters) married peers’ heirs (35 percent).
If matching had been random, only 16.8 of these marriages would have taken place
(28 percent). In contrast, barons’ and viscount’s daughters (henceforth, BV’s
daughters) were more likely to marry a commoner than under random matching.
The patterns are clearly different for the treatment cohort, that is, the cohort
married during the interruption of the Season. First, DME’s and BV’s daughters
married commoners at similar rates. Second, the observed frequencies are similar
to the expected frequencies. In other words, the sorting patterns of this cohort
resemble random matching.

Table B6 compares sorting patterns across cohorts using the chi-squared tests
of association described in Section III.D (see equations (5) and (6)). For women
in the control group, the Pearson’s chi-squared test of association (χ2) rejects the
null hypothesis that marriages were randomly set. That is, women who married
before the interruption of the Season sorted in terms of titles. In contrast, the null
cannot be rejected for the treatment group, that is, for those marrying during the
interruption of the Season. Col. [3] confirms that there is a significant difference in
sorting patterns between the treatment and the control group: when the Season
worked smoothly, women sorted in the marriage market; when the Season was
interrupted, marriage was random with respect to title.

Compared to the results in Section III.D, the non-parametric tests are of similar

22



Table B3: Contingency tables, treatment based on marriage cohorts

A. Control group (Season): peers’ daughters marrying in 1858–60
Husband’s rank at age 15:

Peer’s Peer’s
Comm. Gentry son heir N

Wife: Baron/Viscount’s O 36 3 2 4 45
daughter E 26.5 3.3 5.2 9.9

Duke/Earl/Marquis’ O 20 4 9 17 50
daughter E 29.5 3.7 5.8 11.1

N 56 7 11 21 95

B. Treatment group (Season): peers’ daughters marrying in 1861–63
Peer’s Peer’s

Comm. Gentry son heir N

Wife: Baron/Viscount’s O 22 6 3 10 41
daughter E 18.4 8.0 4.2 10.4

Duke/Earl/Marquis’ O 17 11 6 12 46
daughter E 20.6 9.0 4.8 11.6

N 39 17 9 22 87

Note: Each cell reports observed frequencies (O) and expected frequencies under random match-
ing (E); E =

ni×nj

N , where ni is the number of counts in the ith row, nj is the number of counts
on the jth column, and N is the total number of counts in the table.

magnitude. Especially, the tests are very similar for the treatment cohorts (i.e.,
women marrying in 1861–63 here, women with a high synthetic probability to
marry in 1861–63 in Section III.D). In addition, note that both the sample size
and the cell frequencies are smaller than those in Section III.D, Table 5. That
said, the reported estimates are not a byproduct of the smaller sample size. For
a 2 by 4 contingency table, the Pearson’s chi-squared test requires no cells with
zero count and an expected cell count of five or more in at least 6 cells. Both
conditions are satisfied. Furthermore, the likelihood ratio test, which is accurate
for small samples, confirms the results.8

To evaluate whether cohorts exhibit positive or negative assortative matching
in titles, Table B6 also presents Kendall’s rank correlation coefficients (τb). Note
that Kendall’s coefficient ranges between -1 (negative association) and +1 (pos-
itive association). In the control group, that is, when the Season ran smoothly,
Kendall’s rank correlation is positive and significantly different from zero: higher-
titled women married men with higher titles. In other words, there was posi-
tive assortative matching. This result vanishes when the Season was interrupted:
Kendall’s rank correlation is small and not significantly different from zero for the
treatment group. Again, col. [3] shows that there is a significant difference in the
Kendall’s rank correlation between the treatment and the control group. Positive
assortative matching disappeared when the Season was interrupted.

8Formally, the likelihood ratio statistic is χ2
LR = 2

∑r
i=1

∑c
j=1Oi,j · ln

(Oi,j

Ei,j

)
.
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Table B4: Sorting by title, non-parametric tests based on marriage cohorts.

Control group Treatment group Difference
(m. in 1858–60 ) (m. in 1861–63 )

[1] [2] [1]-[2]

Pearson’s chi-squared 17.0*** 3.0 14.0*
[0.001] [0.389] [0.058]

Likelihood ratio chi-squared 18.0*** 3.0 15.0**
[0.000] [0.384] [0.046]

Kendall’s rank correlation 0.39*** 0.12 0.28***
[0.000] [0.262] [0.002]

N 95 87 182

Note: This table presents non-parametric tests for contingency table B5. The sample is
all peers’ daughters marrying in 1858–63, excluding second marriages and women married
above 40. Pearson’s and likelihood ratio test the null that marriages were random with
respect to title. Kendall’s rank corr. ranges between -1 (negative assortative matching) and
+1 (positive assortative matching). To compare statistics (col. [3]), I convert them into
Spearman’s correlations and use Fisher’s Z transformation (Rosenberg 2010). To address the
small sample, I report the Likelihood ratio test and bootstrap the distribution of τb; p-values
in brackets; *** p<0.01, ** p<0.05, * p<0.1

Next, I present non-parametric estimates for the effect of the interruption on
sorting by landholdings. As before, the sample is restricted to women marrying
in the landed elite—i.e., those for which Bateman (1883) list both spouses’ family
landholdings. My measure of sorting is the difference between wife’s and husband’s
percentile rank in landholdings. Specifically, I perform a two-sample Kolmogorov-
Smirnov test for the equality of distributions, where I compare this measure for
women marrying in 1861–63 (treatment group) vs. women marrying three years
before (control group).

Figure B1, presents the results. The top-panel shows the difference between
spouses’ percentile ranks, in absolute value. When the Season worked smoothly,
spouses were similar in terms of landholdings. For example, 50 percent of the mar-
riages in the control group were between spouses ranked less than 18 percentiles
away. In contrast, only 30 percent of women married during the interruption of the
Season had husbands within 18 percentiles. The Kolmogorov-Smirnov test shows
that the difference between spouses’ rank in landholdings is significantly smaller
for the control group. In other words, the interruption of the Season reduced
sorting by landholdings.

As before, the disruption in sorting patterns is mostly driven by women mar-
rying down. The bottom panel shows the difference between husband and wife in
percentile ranks. Hence, negative values correspond to women marrying poorer
husbands. Women marrying during the interruption were more likely to marry
down than women who had married three years before. In this case, however, the
Kolmogorov-Smirnov test cannot reject the null that the distributions are equal.
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Figure B1: Sorting by landholdings, K-S tests based on marriage cohorts.
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B. 3 Contingency tables separating wives’ titles.

This appendix presents non-parametric estimates for contingency tables that dis-
aggregate wife’s titles. In the main text, I followed Hollingsworth who grouped
dukes’, marquis’, and earls’ daughters in one category, and barons’ and viscounts’
daughters in another. Here I construct contingency tables with dukes’, marquis’,
earls’, viscounts’, and barons’ daughters as separate categories. To infer these title,
I use a string variable in the Hollingsworth dataset (father’s form of address) and
biographical data from thepeerage.com. Results are robust: Higher-titled women
married higher-titled husbands only when the Season was operative—sorting by
title resembles random matching for cohorts exposed to the interruption.

Table B5: Contingency tables separating wives’ titles

Panel A. Low-Treatment cohorts (T < 80th percentile)†

Husband’s rank at age 15:
Commoner Gentry Peer’s son Peer’s heir N

Wife: Baron’s O 121 34 19 43 217
daughter E 111.6 27.0 20.7 57.7

Viscount’s O 40 1 1 6 48
daughter E 24.7 6.0 4.6 12.8

Earl’s O 91 20 20 60 191
daughter E 98.2 23.7 18.3 50.8

Marquis’ O 14 8 6 20 48
daughter E 24.7 6.0 4.6 12.8

Duke’s O 3 2 4 10 19
daughter E 9.8 2.4 1.8 5.0

N 269 65 50 139 523

Panel B. High-Treatment cohorts (T ≥ 80th percentile)†

Husband’s rank at age 15:
Commoner Gentry Peer’s son Peer’s heir N

Wife: Baron’s O 23 10 5 9 47
daughter E 24.9 7.0 4.3 10.9

Viscount’s O 12 1 0 1 14
daughter E 7.4 2.1 1.3 3.2

Earl’s O 23 5 5 13 46
daughter E 24.3 6.8 4.2 10.6

Marquis’ O 2 1 0 0 3
daughter E 1.6 0.4 0.3 0.7

Duke’s O 4 1 1 5 11
daughter E 5.8 1.6 1.0 2.5

N 64 18 11 28 121
†Treatment (T ) is synthetic prob. to marry in 1861–63, based on marriage probs. in “normal times”

Note: The baseline sample is all peers’ daughters aged 15-35 in 1861 who ever married, excluding second-
marriages, women married to foreigners, and members of the royal family (N=644). Each cell reports
observed frequencies (O) and expected frequencies under random matching (E).
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Table B6: Non-parametric tests for contingency Table B5

Low-Treatment High-Treatment Difference
[1] [2] [1]-[2]

Pearson’s chi-squared (χ2) 51.58*** 14.31 37.3***
[0.000] [0.281] [0.000]

Likelihood ratio chi. (LR−χ2) 54.80*** 16.08 38.7***
[0.000] [0.188] [0.000]

Kendall’s rank correlation (τb) 0.18*** 0.07 0.11
[0.000] [0.366] [0.105]

N 523 121 644
†Treatment (T ) is the synthetic prob. to marry in 1861–63, based on previous cohort

Note: This table presents non-parametric tests of association between spouses’ titles (see
contingency tables in B5). The baseline sample is all peers’ daughters aged 15-35 in
1861 who ever married, excluding second-marriages, women married to foreigners, and
royal family members (N=644). Low (High) treatment cohorts are women with T < 80th
percentile (T ≥ 80th p). Pearson’s and likelihood ratio χ2 test the null that marriages
were random with respect to title. Kendall’s τb ranges between -1 (negative assortative
matching) and +1 (positive assortative matching). To compare statistics across cohorts
(col. [3]), I convert them into Spearman’s correlation coeffs. and compare them using
Fisher’s Z transformation (Rosenberg 2010). To address the small sample, I report the
LR−χ2 association test and bootstrap the distribution of τb; p-values in brackets; ***
p<0.01, ** p<0.05, * p<0.1

B. 4 Extended contingency tables.

This appendix examines the robustness of the non-parametric results when (i)
men and women who did not marry and (ii) men who failed to marry peers’
daughters are incorporated into the analysis of sorting by title. First, I present
the extended contingency tables considering these two populations (Table B7).
Next, I discuss the main differences with respect to Table 4 in the main text
and how these differences may affect my non-parametric estimates: chi-squared
statistics and Kendall’s rank correlations. Finally, I present chi-squared statis-
tics and Kendall’s rank correlations that incorporate the two previously omitted
populations (Table B8).

Table B7 shows two extended contingency tables incorporating (i) men and
women who did not marry and (ii) men who failed to marry peers’ daughters. As
before, I separate high- and low-treatment cohorts according to the wife’s synthetic
probability to marry during the interruption (i.e., in the top quintile vs. below
it). The wife’s title is arrayed across rows i, their husbands’ titles are arrayed
across columns j, and each cell reports the observed frequency of marriages (O).
Differently from Table 4, here the sample are all matrimonies in the Hollingsworth
dataset where the wife was aged 15–35 in 1861. Note that this includes all peer’s
daughters aged 15–35 in 1861 who ever married (the baseline sample, which I
used in Table 4) as well as non-peer daughters aged 15–35 in 1861 who married
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a peer’s son or a peers’ heir. Unfortunately, I do not observe the four top-left
cells, which correspond to marriages between commoner or gentry husbands and
commoner or gentry women. The reason is that the Hollingsworth dataset only
includes marriages where one spouse is related to the peerage. That said, most of
these omitted marriages were not the result of the matching technology embedded
in the Season, and hence, are not relevant for this study. Finally, the table also
reports the number of unmarried peers’ sons and peers’ heirs (see last column)
as well as unmarried Baron/Viscount’s and Duke/Earl/Marquis’ daughters (see
bottom row) who were aged 15 to 35 in 1861.

Table B7: Alternative contingency tables

Panel A. Low-Treatment wife cohorts (T < 80th percentile)†

Husband’s rank at age 15:
Comm-
oner

Gentry Peer’s
son

Peer’s
heir

Total Total +
unmarr.

Wife: Commoner’s daughter N.A. N.A. 213 241 454 454
Gentry’s dau. N.A. N.A. 42 53 95 95
Baron/Viscount’s dau. 161 34 20 49 264 346
Duke/Earl/Marquis’ dau. 108 31 30 90 259 318

Total 269 65 305 433 1,072 -
Total + unmarried 269 65 380 450 - 1,305

Panel B. High-Treatment wife cohorts (T ≥ 80th percentile)†

Husband’s rank at age 15:
Comm-
oner

Gentry Peer’s
son

Peer’s
heir

Total Total +
unmarr.

Wife: Commoner’s daughter N.A. N.A. 49 68 117 117
Gentry’s dau. N.A. N.A. 8 11 19 19
Baron/Viscount’s dau. 34 11 5 10 60 88
Duke/Earl/Marquis’ dau. 30 7 6 18 61 71

Total 64 18 68 107 257 -
Total + unmarried 64 18 93 110 - 323

Note: The sample is all matrimonies where (a) the wife was aged 15 to 35 in 1861 and (b) one spouse was
a peers’ offspring; Each cell reports observed frequencies (O); N.A.: not available in the Hollingsworth
dataset.

Relative to Table 4 in the main text, this contingency table presents two main
differences. First, it considers four additional cells for matrimonies between peer’s
sons and commoner’s daughters, peer’s sons and gentry’s daughters, peer’s heirs
and commoner’s daughters, and peer’s heirs and gentry’s daughters (i.e., the four
top-right cells). This can affect the degree of sorting captured by the chi-squared
statistics and by Kendall’s rank correlation if marriage patterns differ substantially
in these additional cells. For example, the chi-squared statistics in the main text
suggests that wives’ and husbands’ titles were only associated for cohorts with a
low-exposure to the interruption (see Table 5). If, in these additional cells, sorting
was stronger for cohorts with a high- than with a low-exposure to the interruption,
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the overall chi-squared tests may look different, and the conclusion above may be
reversed. At first sight, this does not seem to be the case. Focusing only on the
top-right four cells across Panels A and B, we do not see substantial differences in
sorting: Gentry’s daughters were more likely to marry peer heirs and less likely to
marry peers’ sons than commoner’s daughters, both in cohorts with a high- and
with a low-exposure to the interruption. Nevertheless, I examine this possibility
formally in Table B8.

The second main difference is that here I consider unmarried men and woman.
Can this affect the corresponding chi-squared and Kendall’s rank correlations?
Kendall’s rank correlation is based on the number of concordant, discordant, and
tied marriages (see equation (6) for details). Hence, estimates are not affected
whether unmarried individuals are included or not. Chi-squared tests, however,
can be affected when unmarried individuals are included. The reason is that chi-
squared tests compare the observed marriages in each cell to the expected marriages
under a random-matching counterfactual (see equation (5)). Specifically, for each
cell i, j, the number of expected marriages under random matching is:

Ei,j =
ni × nj
N

where ni is the number of counts in the ith row, nj is the number of counts on
the jth column, and N is the total number of counts in the table. In words, the
expected number of marriages between women of title i and men of title j is equal
to the total number of women of title i (ni) times the random-matching probability
to encounter a men of title j. This random-matching probability is

nj

N
, with nj

being the number of men of title j and N interpreted as the total number of men
available in the marriage market.

Whether unmarried men and women are included or not changes the number of
counts in the rows, ni, and columns nj (i.e., it affects the marginal distributions) as
well as the total number of men available in the marriage market, N . Hence, even
if the omission of unmarried women and men does not alter observed marriages,
it can affect the random-matching counterfactual. Note that omitting men who
failed to marry peers’ daughters (i.e., men in the four additional cells described
above) also affects the marginal distribution of nj and the total number of men, n.
Hence, it can also affect the random-matching counterfactual and the chi-squared
statistics.

To address the issues listed above I calculate non-parametric estimates for
Table B7’s extended contingency tables. That is, I include unmarried men and
women and men who failed to marry peers’ daughters into the analysis. Formally,
the Pearson’s chi-squared test of association (χ2), the Likelihood-ratio chi-squared
(χ2

LR), and the Kendall’s rank correlation (τb) are, respectively:

χ2 =
∑

[i,j]∈C

(Oi,j − Ei,j)2

Ei,j
,

29



χ2
LR = 2

∑
[i,j]∈C

Oi,j · ln
(Oi,j

Ei,j

)
, and

τb =
Q−D√

(N(N − 1)/2− twom)(N(N − 1)/2− tmen)

where Oi,j are the observed number of marriages in cell {i, j}. Ei,j are the ex-
pected number of marriages under random matching in cell {i, j}. These are
calculated according to the equation above. Q, D, and t are the number of con-
cordant, discordant, and tied pairs of observations in the set of cells [i, j] ∈ C
(see Section III.D for more details). Finally, [i, j] ∈ C are the set of cells under
analysis, which can include all cells in the contingency table or specific cells (e.g.,
cells corresponding to peers’ daughters).

I consider different scenarios regarding (i) the set of cells C used to construct
the chi-squared tests and the Kendall’s rank correlation (henceforth, sample of
marriages) and (ii) who is included in the calculation of the expected frequencies,
E (henceforth, sample for random-matching counterfactual). Considering different
samples of marriages allows me to evaluate marital sorting and the effects of the
interruption of the Season separately for peer’s daughters—my baseline sample—
and for peers’ daughters and peers’ sons. In turn, I consider different samples for
the random-matching counterfactual because there is not ‘right’ way to construct
such a counterfactual. For example, the random-matching counterfactual in Ta-
ble 4 is based on (randomly) re-allocating the set of married peer’s daughters to
the set of their husbands. That is, it assumes that the set of men and women in the
marriage market is well-approximated by the observed marriages. Instead, includ-
ing unmarried peer’s daughters and all married and unmarried peers’ sons would
be equivalent to (randomly) re-allocating all these individuals into a matrimony.
That is, it would assume a marriage rate of 100% and no voluntary celibacy. A
priori, it is not clear which of the two reflects better a random-matching scenario
with low search costs. Rather than choosing one specific random-matching coun-
terfactual and defending its underlying assumptions, I consider different scenarios
in which the random-matching counterfactual is constructed in different ways.

Table B8 presents Pearson’s chi-squared test of association (χ2), the Likelihood-
ratio chi-squared (χ2

LR), and the Kendall’s rank correlation (τb) for the high- and
low-treatment contingency tables in Table B5. In Panel A, I consider my baseline
scenario (corresponding to Table 4 in the main text). That is, the sample of mar-
riages and the sample for random-matching counterfactual are peer’s daughters
aged 15-35 in 1861 who ever married. As explained in the main text, the two
chi-squared tests and the Kendall’s rank correlation are much larger for the low-
than for the high-treatment cohort (see col. [3]). This suggests that sorting by
title was reduced when the Season was interrupted.
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Table B8: Non-parametric tests for contingency Table B7

Panel A.
Sample of marriages: baseline
Sample for random-matching counterfactual: baseline

Low-Treatment High-Treatment Difference

Pearson’s chi-squared (χ2) 24.6 [0.000]*** 3.50 [0.320] 21.1 [0.000]***

Likelihood ratio chi. (LR−χ2) 24.9 [0.000]*** 3.60 [0.315] 21.3 [0.000]***

Kendall’s rank correlation (τb) 0.20 [0.000]*** 0.11 [0.191] 0.09 [0.164]

Panel B.
Sample of marriages: baseline
Sample for random-matching counterfactual: baseline + excluded peers

Low-Treatment High-Treatment Difference

Pearson’s chi-squared (χ2) 298.6 [0.000]*** 76.4 [0.000]*** 222.2 [0.000]***

Likelihood ratio chi. (LR−χ2) 278.9 [0.000]*** 70.7 [0.000]*** 208.2 [0.000]***

Kendall’s rank correlation (τb) 0.200 [0.000]*** 0.11 [0.191] 0.090 [0.164]

Panel C.
Sample of marriages: baseline
Sample for random-matching counterfactual: baseline + excluded peers + unmarried

Low-Treatment High-Treatment Difference

Pearson’s chi-squared (χ2) 310.9 [0.000]*** 81.8 [0.000]*** 229.0 [0.000]***

Likelihood ratio chi. (LR−χ2) 83.20 [0.000]*** 22.8 [0.000]*** 60.40 [0.000]***

Kendall’s rank correlation (τb) 0.200 [0.000]*** 0.11 [0.191] 0.090 [0.164]

Panel D.
Sample of marriages: baseline + excluded peers
Sample for random-matching counterfactual: baseline + excluded peers

Low-Treatment High-Treatment Difference

Pearson’s chi-squared (χ2) 385.0 [0.000]*** 97.56 [0.000]*** 287.5 [0.000]***

Likelihood ratio chi. (LR−χ2) 694.9 [0.000]*** 175.7 [0.000]*** 519.2 [0.000]***

Kendall’s rank correlation (τb) 0.175 [0.000]*** 0.104 [0.208] 0.07 [0.103]

Panel E.
Sample of marriages: baseline + excluded peers
Sample for random-matching counterfactual: baseline + excluded peers + unmarried

Low-Treatment High-Treatment Difference

Pearson’s chi-squared (χ2) 374.7 [0.000]*** 98.81 [0.000]*** 275.9 [0.000]***

Likelihood ratio chi. (LR−χ2) 454.9 [0.000]*** 115.9 [0.000]*** 338.9 [0.000]***

Kendall’s rank correlation (τb) 0.175 [0.000]*** 0.104 [0.208] 0.071 [0.103]

†Low-Treatment (High) if wife’s synthetic prob. to marry in 1861–63 is T < 80th percentile (T ≥ 80th
percentile); ‘Baseline’: peers’ daughters aged 15–35 in 1861 who ever married; ‘Excluded peers’: peers’
sons and peers’ heirs who married a non-peers’ daughters aged 15–35 in 1861; ‘Unmarried’: unmarried
peers’ sons and daughters aged 15–35 in 1861; p-values in brackets; *** p<0.01, ** p<0.05, * p<0.1.
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Next, Panel B presents non-parametric estimates for the baseline sample of
marriages (i.e., peer’s daughters aged 15-35 in 1861 who ever married). To calcu-
late the random-matching counterfactual, it also considers peers’ sons and peers’
heirs who did not marry a peers’ daughter. That is, it evaluates sorting along the
same cells as in Table B5, but considers an extended sample for the random-
matching counterfactual. Under this alternative specification, the chi-squared
tests increase substantially for both the low- and the high-treatment cohorts.9

That said, the difference between high- and low-treatment cohorts is robust. The
chi-square statistic for the low-treatment cohort is four times larger than that for
the high-treatment cohort. This suggests that, under this alternative calculation
of the random-matching counterfactual, sorting by title decreased for cohorts ex-
posed to the interruption of the Season. Finally, note that the Kendall’s rank
correlation is the same as in Panel A, as this statistic does not rely on a random-
matching counterfactual.

Panel C considers the baseline sample of marriages (i.e., peer’s daughters aged
15-35 in 1861 who ever married) but calculates the random-matching counterfac-
tual with an even larger sample: now, all unmarried peers’ daughters and all mar-
ried and unmarried peers’ sons are used for the random-matching counterfactual.
Relative to Panel A, the chi-squared tests increase for both the cohort exposed to
the interruption and the cohort not exposed. As before, however, the Pearson’s
chi-squared test and the Likelihood-ratio chi-square are significantly larger for the
latter.

Finally, Panels D and E consider all the cells in Table B7. That is, they
evaluate marital sorting and the effects of the interruption for all women in the
Hollingsworth dataset who were aged 15–35 in 1861. This includes all peer’s
daughters aged 15–35 in 1861 who ever married (the baseline sample) as well as
non-peer daughters aged 15–35 in 1861 who married a peer’s son or a peers’ heir.
For the random-matching counterfactual, Panel D considers the same set of ob-
servations, and Panel E also includes unmarried peers’ daughters and unmarried
peers’ sons and heirs. Again, the main conclusions are robust to these alterna-
tive specifications: the chi-squared tests increase for both the cohort exposed to
the interruption and the cohort not exposed. That said, cohorts exposed to the
interruption of the Season display substantially lower statistics, suggesting that
sorting by title declined. Importantly, since these panels consider a different sam-
ple of marriages, the Kendall’s rank correlation could be different from that in
Panel A. However, the differences are negligible. As before, in the low-treatment
cohort the Kendall’s rank correlation is 0.175 and significantly different from zero:
higher-titled women married men with higher titles. In other words, there was

9By adding more peers’ sons and peers’ heirs, the random-matching probability to marry
them increases substantially. Hence, the difference between observed and expected frequencies
increases in the bottom-right cells, which in turn magnifies the degree of sorting. Note, however,
that if the random-matching counterfactual could also include gentry and commoner’s who failed
to marry a peers’ daughter, then the expected probability to marry a peers’ sons and peers’ heirs
would decrease again. Consequently, the levels of the chi-squared coefficients would converge
to those in Panel A. Unfortunately, gentry and commoners are only listed in the Hollingsworth
dataset when they married a peers’ daughter.
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positive assortative matching. This result vanishes when the Season was inter-
rupted: Kendall’s rank correlation is only 0.1 and not significantly different from
zero for the high-treatment cohort. A one-sided test rejects the null hypothesis
that Kendall’s rank correlation was higher for the high-treatment cohort. That
said, I cannot reject the null that the high- and low-treatment have the same
Kendall’s rank correlation, with a p-value of 0.103.

In sum, non-parametric results are qualitatively robust to the inclusion of
unmarried men and women and of men who failed to marry a peers’ daugh-
ter. Considering an extended contingency table and computing random-matching
counterfactuals taking into account unmarried men and women increases in the
chi-squared tests across cohorts. That said, Kendall’s rank correlations remain
unaffected and the chi-squared tests are still substantially larger for cohorts with
a low-exposure to the interruption of the Season. This confirms the result that
sorting by title decreased for cohorts exposed to the interruption of the Season.

B. 5 Synthetic probability vs. synthetic hazard rate.

Defining the treatment as the synthetic probability (Tt) is preferable to measures
based on hazard rates. The hazard rate is defined as the probability of marrying
at a given age conditional on not having married before. In my setting, this would
be the probability of marrying during the interruption (1861–63) conditional on
being single.

Formally, the synthetic hazard to marry in 1861–63 would be:

Ht = p(t|st−1 = 1) + p(t+ 1|st = 1) + p(t+ 2|st+1 = 1) ,

where s indicates singlehood; t, t+1, and t+2 index a woman’s age in 1861, 1862,
and 1863 respectively; and p(t|st−1 = 1) is the probability of marrying at age t
conditional on being single at age t − 1 in normal times. That is, the synthetic
hazard captures the risk of marrying in 1861–63 for those who remained single,
but not for those who had married before. This is problematic, as Ht tends to
be high for higher ages. Hence, many older women who actually married before
1861 would be assigned a high treatment. In contrast to the synthetic probability,
T , can be seen as the ex ante probability (the probability at birth or at the start
of the courting process) to marry during the interruption. Hence, T captures
the risk of marrying in 1861–63 independently of whether a woman was single
or not during the interruption. In other words, T is independent of a woman’s
endogenous marriage decisions.

To solve the aforementioned problems with the hazard measure H, one could
weight it with an age-specific probability to be single in normal times. That is,

H ′t = Prob(st−1 = 1) · p(t|st−1 = 1) + Prob(st = 1) · p(t+ 1|st = 1) +

+ Prob(st+1 = 1) · p(t+ 2|st+1 = 1) .

This is equivalent to the synthetic probability, T , proposed in equation (1).
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B. 6 Synthetic probability and ages at marriage

Table B9 presents estimates of equation (3) for the baseline sample, where the
dependent variable is a woman’s age at marriage and the age difference between
spouses. Results show that women who—based on marriage behaviour in “nor-
mal times”—were at risk of marriage in 1861–63 did not marry at an older age.
Specifically, increasing a woman’s synthetic probability to marry in 1861–63 by
one standard deviation (7.3 pp) increases her age at marriage by only 0.1 years (c.
36 days), a difference that is not statistically different from zero. Similarly, the
age difference between spouses is not significantly associated with the treatment
variable. Altogether, this evidence strongly suggests that the social norms that
circumscribed courting to young ages in normal years did not change during the
three years in which the Season was interrupted.

Table B9: Alternative outcome variables based on age at marriage.

Age at Age at Age difference between spouses
marriage marriage husband − wife absolute value

Treatment† 0.014 0.016 0.010 -0.016 0.020 0.002
(0.031) (0.032) (0.040) (0.043) (0.033) (0.030)

Dist. to London . -0.005* . 0.002 . 0.001
. (0.003) . (0.002) . (0.002)

Observations 644 484 644 484 644 484
R-squared 0.014 0.022 0.004 0.006 0.005 0.006
Mean DP 25.11 25.15 6.85 6.88 7.43 7.42
Controls YES YES YES YES YES YES
†synthetic prob. (%) to marry at interruption, based on marriage probs. in normal times.

Note: This tabe uses the baseline sample (all peers’ daughters aged 15-35 in 1861 who ever married, excluding

second marriages, women married to foreigners, and members of the royal family); Controls are indicators for

dukes’/marquis’/earls’ daughters and for English titles, and birth order excluding heirs; Standard errors clustered

by marriage year in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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B. 7 Correlation with distance to London.

Figure B2: Distance to London, marrying a commoner, and family
landholdings.
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Note: Baseline sample of women aged 15-35 in 1861 who ever married and whose birth-family

seat was in England. *** p<0.01, ** p<0.05, * p<0.1
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B. 8 Political power and sorting by landholdings.

Table B10: Dep. variable is a family’s political power after woman’s marriage

Any All Any All Family Family
brother brothers’ brother is brothers’ head head’s
is MP MP years local MP local years is MP MP years

[1] [2] [3] [4] [5] [6]

Panel A. Effect of woman marrying a commoner (baseline):

coef. -0.54*** -18.40** -0.47** -11.0** -0.49*** -7.83**
CLR p-val [0.004] [0.033] [0.037] [0.025] [0.006] [0.019]

{0.025} {0.015} {0.102} {0.010} {0.007} {0.013}
F-stat stg.1 3.4 3.4 3.4 3.4 3.3 3.2
Obs. 270 270 270 270 279 279

Panel B. Effect of difference in spouses’ family landholdings (abs. value):

coef. -0.013*** -0.469** -0.012** -0.275** -0.012* -0.140*
CLR p-val [0.003] [0.03] [0.046] [0.049] [0.056] [0.089]

{0.033} {0.037} {0.068} {0.182} {0.141} {0.094}
F-stat stg.1 1.6 1.6 1.7 1.6 1.4 1.5
Obs. 145 145 145 145 150 150

Panel C. Effect of difference in spouses’ family landholdings (wom − husb.):

coef. -0.008*** -0.433** -0.007** -0.245** -0.008* -0.123*
CLR p-val [0.004] [0.035] [0.042] [0.022] [0.056] [0.098]

{0.017} {0.035} {0.055 } {0.097} {0.144} {0.079}
F-stat stg.1 1.7 2 2 2.5 1.7 1.7
Obs. 145 145 145 145 150 150

Panel D. Effect of woman marrying down by family landholdings (indicator):

coef. -0.53*** -17.12** -0.42** -9.83** -0.44* -4.95*
CLR p-val [0.009] [0.036] [0.043] [0.034] [0.057] [0.081]

{0.017} {0.033} {0.049} {0.109} {0.136} {0.073}
F-stat stg.1 1.3 1.5 1.6 1.8 1.4 1.5
Obs. 145 145 145 145 150 150

Baseline co. YES YES YES YES YES YES
County co. YES YES YES YES YES YES
N. brothers YES YES YES YES NO NO
Polit. before YES YES YES YES YES YES
Model IVprobit IV IVprobit IV IVprobit IV

†Instrument: synthetic probability to marry during interruption.

Notes: The sample is women in the baseline sample (aged 15-35 in 1861) with a family seat in
England. Each panel presents IV estimates for the effect of a woman’s marriage outcome on
her birth family’s political power. Sample in Panels B–D exclude women for which Bateman
(1883) does not list both spouses’ family landholdings. The dependent variables (family’s
political power) , baseline and county controls, “N. brothers,” and “Polit. bef.” are defined
in Table 6. First-stage results not reported; CLR p-values (Moreira 2003) in square brackets
and CLR p-values clustered by family in curly brackets; ***p<0.01, **p<0.05, *p<0.1
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B. 9 Political power: women and their brothers.

Table B11: Marriage and political power: Families where women were exposed to the
interruption but brothers married before 1861.

Panel A: Second-stage. Dep. var: Family’s political power after woman’s marriage

Brother MP Brother local MP Fam. head MP 1870s
indicator years indicator years indicator years

[1] [2] [3] [4] [5] [6]

Wom. married -0.57** -17.85*** -0.48* -8.55** -0.48*** -7.81**
a commoner [0.045] [0.002] [0.078] [0.02] [0.009] [0.04]

Panel B: First-stage. Dep. Variable: Woman married a commoner

Treatment† 0.012** 0.011** 0.012** 0.012** 0.012** 0.012**
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Birth order YES YES YES YES YES YES
F-statistic 4.3 4.3 4.3 4.3 2.1 2.1

Observations 152 152 152 152 208 208
Controls YES YES YES YES YES YES
N. brothers YES YES YES YES NO NO
Polit. before YES YES YES YES YES YES
Mean dep.
var. in A 0.41 3.47 0.22 1.4 0.17 1.31
Model IVprobit IV IVprobit IV IVprobit IV
†synthetic prob. (%) to marry during interruption, based on marriage probs. in “normal times.”

Notes: This table presents IV estimates of equations (8) and (9). The sample is defined as in Table
6, but limited to families where the brothers (cols. [1] to [4]) and the family heads (cols. [5] and
[6]) married before 1861, and hence, were not directly affected by the Season’s interruption. See
Table 6 for details on the covariates. Panel A reports p-values based on Moreira’s (2003) conditional
likelihood ratio (CLR) in brackets; Panel B reports standard errors in parenthesis; *** p<0.01, **
p<0.05, * p<0.1
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Figure B3: Age difference between brothers and sisters.
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Note: This figure shows the age difference between the sisters and brothers used in Table 6.

Specifically, I consider women in the baseline sample with a family seat in England (N=270) and

their brothers. The left Panel shows the kernel-weighted distribution of age differences, the right

panel shows a box plot where adjacent lines are the lower and upper adjacent values; the box

indicates the 25th and the 75th percentiles; and the central line is the median. Results suggest

that birth years do not overlap excessively. In other words, the brothers of women exposed to

the interruption of the Season were not necessarily affected by it themselves.

B. 10 Political power: families where men married commoners.

In Section IV.A, I estimate an instrumental variables’ model with the interruption
of the Season as a source of exogenous variation in peer-commoner intermarriage.
Specifically, I show that peerage families in which women married commoners lost
political power in the following decades. Here I show that families in which men
married a commoner also lost political power.

To do so, I consider an alternative sample: peerage families in which at least
one man married during the interruption of the Season. I collect a dataset with
all the biographical entries for men married in 1861–63 and their brothers (off-
spring universe, N=288). Then, I collected the same information for their fathers
(fathers universe, N=101). Using regular expressions, I identify their political ap-
pointments in local offices, the government, religious or a judicial appointments,
diplomacy or colonial posts, and positions in the royal household.

Identifying all the public appointments would involve a close examination of
389 biographies. Instead, I consider only the public posts held by the universe of
fathers. In this way, I am able to see if the average offspring in the family achieved
the same political power as his father. Table B12 lists all the positions considered.
I classify positions into seven categories: Local offices, appointments to posts
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related to the government, positions related to a religious or a judicial career,
appointments related to diplomacy or the colonies, and positions in the royal
household. I am particularly interested in for local appointments, government
offices, and religious posts. The reason is that the provision of public schooling
in Britain was highly decentralized. Each School Board had plenty of powers
to set tax rates on their own district. The members of School Boards, in turn,
were elected by cumulative voting. This ensured some representation for local,
politically powerful landowners as well as for religious authorities (Stephens 1998).

My strategy is to compare political appointments across generations. If peer-
commoner intermarriage reduced a family’s political power, I expect fathers to
have more political appointments than their sons in families where a men married
a commoner in 1861–63. Formally, this is a difference-in-differences model, where
the effect of peer-commoner intermarriage on political power is captured by:[

E(P offspring
j |Mj = 0)− E(P father

j |Mj = 0)
]
−[

E(P offspring
j |Mj = 1)− E(P father

j |Mj = 1)
]
.

where P are public appointments; j indexes families in which a man married
during the interruption of the Season; and Mj indicates if the family intermarried
with commoners. To capture plausibly exogenous variation, Mj = 1 if a man of
family j married a commoner during the interruption, and Mj = 0 if a male of
family j married a commoner during the interruption.

Figure B4 presents the results graphically. Panel A shows that members of
families in which a man married in the peerage had, on average, the same number
of appointments as their fathers. The picture looks different for families in which a
man had married a commoner during the interruption. In these families, offspring
were appointed to one fewer public post than their fathers. The loss of political
power was large for local and religious appointments. This is relevant, as the
officials who could influence education provision typically held such appointments
(Goñi 2021). Hence, families marrying commoners held less power and influence
to distort the provision of state education.10

One concern is that I might be artificially assigning a higher number of ap-
pointments to individuals who held one post, but were appointed several times to
it. Consider the following example: Mr. A was a Member of Parliament (MP)
between 1865 and 1875. In contrast, Mr. B was elected MP three times: in 1865–
1866, in 1870–72, and in 1875. With my methodology, I would consider Mr. B as
having thrice the political power of Mr. A. Figure B4, Panel B addresses this by
using indicators instead of the total number of appointments. Results suggest that
the members of families in which a man married in the peerage had, on average,
access to the same public positions as their fathers. In contrast, the members of
families in which a men married out in 1861–63 had access to 20 percent fewer
positions than their fathers. Again, the loss of political power was particularly
important for local appointments, government and religious offices.

10Note that I exclude women as they were not appointed to public posts in Victorian Britain.
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Figure B4: Loss of political power, men. The sample is 389 men marrying

during the interruption of the Season (1861–63), their brothers, and their fathers. Blue bars

(red bars) are for 32 (79) families in which a man married the daughter of a peer (commoner)

in 1861–63. In the top panels, bars indicate the number of public appointments of the father

minus the average number of appointments of all the offspring (Panel A), of the heirs (Panel

C), and of the younger sons (Panel E). The bottom panels show the corresponding difference

between fathers and offspring but using position indicators rather than counts for the number

of appointments to each position. All panels exclude offspring who died before 21 and consider

positions held by the universe of fathers.
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The remaining Panels show that the result is robust to comparing the political
power of fathers to that of their heirs and to that of their younger sons. Obviously,
heirs had, on average, better access to political offices than their younger brothers.
However, results suggest that both heirs and younger brothers were less politically
relevant than their fathers if a family member had married a commoner in 1861–
63. This is so for the total number of appointments and for indicator variable
equal to one if the person held a public position at least once.

The result in Panels C to F further adds to the robustness of the results.
Specifically, the fact that the effects are qualitatively similar for older and younger
brothers suggests that the results are not driven by a secular decline in the prob-
ability of peers having political appointments.

Table B12: Political appointments

Panel A. Local appointments (local)

Custos Rotulorum Keeper of a county’s records; highest civil officer
Lord Lieutenant Monarch’s representative in a county
Deputy Lieutenant (D.L.) Assistant to the Lord Lieutenant
Chief Secretary of Ireland Ireland; subordinate to Lord Lieutenant
High Sheriff Monarch’s judicial representative in the county
Sheriff Monarch’s judicial representative in cities/boroughs
Warden of the Stannaries Judicial and military functions in Cornwall
Constable Governor of a royal castle
Governor of Ireland
Burgess of Glasgow

Panel B. Office appointments (office)

Great Offices of State Lord High Steward, Lord Chancellor, Lord of the Trea-
sury, Lord President of the Council, Lord Privy Seal,
Lord Great Chamberlain, Lord High Constable, Earl
Marshal, First Lord of the Admiralty

Cabinet position Prime Minister, Secretary of the Treasury, Home De-
partment, Home Secretary, Paymaster General, Pres-
ident of the Board of Trade, Vice-President Board of
Trade

Privy Council (P.C.) Advisor to the Sovereign
Other Chairman of the Customs Board, Commisioner of Na-

tional Education, Deputy Chairman Customs Board

Panel C. Religious (relig.)

Bishop, Canon Residentiary, Chaplain, Dean, Rector, Ecclesiastical Commissioner, Lord
High Commissioner of the General Assembly of the Church of Scotland

Panel D. Judicial appointments (judicial)

Attorney-General, Barrister, Crown Prosecutor, Justice of Peace (J.P.), Master in Chan-
-cery, Queen’s Counsel (Q.C.) / King’s Counsel (K.C.), Solicitor-General, Treasurer of
the Inner Temple
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Table B12: Political appointments (continuation)

Panel E. Foreign appointments (foreign)

Diplomatic Ambassador, Minister, Secretary of Embassy, Secretary
of Legation, Envoy, Under-Secretary of Foreign Affairs

Colonial Colonial Secretary, Under-Secretary of Colonies, Gov-
ernor of Madras

Panel F. Royal Household (house.)

Treasurer of the Household
Lord of the Bedchamber Assisting, waiting, etc. for the King
Lord in Waiting Peers who hold office in the royal household
Gold Stick in Waiting Attends Monarch on ceremonial occasions
Groom-in-Waiting Assisting, waiting, etc.
Equerry Nominally in charge over stables

Panel G. Other

Member of Parliament (MP), President of the Highland Agricultural Society, Chief
Commissioner of Woods and Forests, First Commissioner of Woods and Forests

Notes: The positions considered are those held by the universe of fathers of men who married
a commoner during the interruption of the Season (1861–63). The only exception are the Great
Offices of State, which include them all. In detail, the positions Earl Marshal, Lord Great
Chamberlain, Lord High Constable, and Lord President of the Council are the only ones who
were not held by any individual in the universe of parents. Removing them does not alter the
results.
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B. 11 Robustness for education provision.

Table B13: Determinants of investments in state education, robustness checks.

(Second-stage) effect on Av. Tax rates for education of...

[1] [2] [3] [4] [5] [6] [7]

Woman Any All Any All Family Family
married a brother is brothers brother is brothers head is head
commoner MP MP years local MP local years MP MP years

Panel A. Baseline results:

coef. 2.66*** -1.69*** -0.12** -8.20** -0.27*** -1.86** -0.62**
CLR p-val (0.007) (0.002) (0.033) (0.023) (0.008) (0.017) (0.043)
F, 1st stg 4.33 10.0 6.16 10.74 5.85 1.68 3.16

Panel B. 50x50 mi. grid fixed effects:

coef. 1.76*** -1.13** -0.06** -3.00* -0.16** -1.58*** -0.31**
CLR p-val (0.006) (0.016) (0.045) (0.054) (0.034) (0.007) (0.021)
F, 1st stg 1.98 5.24 3.06 5.63 3.30 1.56 1.73

Panel C. Excluding School Boards in cities:

coef. 2.30** -1.52*** -0.10* -6.49* -0.23** -1.64** -0.41*
CLR p-val (0.018) (0.006) (0.064) (0.055) (0.019) (0.033) (0.096)
F, 1st stg 4.33 10.04 6.16 10.74 5.85 1.68 3.16

Panel D. Relax 10-miles area of influence:

coef. 0.62** -0.45*** -0.03* -1.60* -0.06** -0.48** -0.12*
CLR p-val (0.026) (0.006) (0.054) (0.061) (0.022) (0.031) (0.099)
F, 1st stg 4.33 10.04 6.16 10.74 5.85 1.68 3.16

Obs. 387 374 374 374 374 387 387
Baseline co. YES YES YES YES YES YES YES
County co. YES YES YES YES YES YES YES
N. brothers NO YES YES YES YES NO NO
Polit. before NO YES YES YES YES YES YES
Birth order YES YES YES YES YES YES YES
(in 1st stage)

This table reports robustness checks for estimates in Table 7. Panel A reports baseline
results. In Panel B, I include fixed effects for seats in the same 50-by-50 miles grid cell.
That is, I estimate the effects using variation across seats which are exposed to similar
local conditions. Panel C excludes School Boards in cities to show that the effects are not
driven by urbanization. Finally, Panel D relaxes the assumption that the peerage exerted
political influence over a 10-miles radius around their family seats. Specifically, I consider
all seat-School Board dyads in England. The dependent variable is the weighted average tax
rate, where weights decay exponentially by the distance between each School Board and the
corresponding seat. Specifically, weights are exp(−distance/14.43), where 14.43 is set such
that School Boards 10 miles away from a seat receive a weight of 0.5; *** p<0.01, ** p<0.05,
* p<0.1.
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Table B14: Determinants of state education, measured with total funds raised
from taxes.

Panel A: Second stage Total education funds raised from taxes
by av. School Board within 10 miles of family seat

log(funds) log(funds) log(funds) log(funds) log(funds) log(funds) log(funds)
[1] [2] [3] [4] [5] [6] [7]

Wom. marr. 1.75*** . . . . . .
a commoner (0.008)

[0.066]
Any brother . -1.18*** . . . . .
is MP (0.001)

[0.018]
All brothers’ . . -0.11** . . . .
MP years (0.028)

[0.081]
Any brother . . . -15.02** . . .
is local MP (0.019)

[0.106]
All brothers’ . . . . -0.20*** . .
local MP year (0.010)

[0.072]
Family head . . . . . -1.33** .
is MP (0.015)

[0.053]
Family head . . . . . . -1.288**
years MP (0.028)

[0.128]

Panel B: First stage Political power in family seat after woman’s marriage

Woman Any All Any All Family Family
marr. a brother brothers’ brother brothers’ head is head’s
common MP MP year local MP local year MP MP year

Treatment† 0.008** -0.008*** -0.170*** -0.004* -0.085** -0.009*** -0.054**
(0.027) (0.01) (0.006) (0.086) (0.018) (0.001) (0.046)
[0.056] [0.03] [0.008] [0.053] [0.008] [0.005] [0.05]

Birth order YES YES YES YES YES YES YES
F-stat 4.33 10.0 6.16 10.74 5.85 1.68 3.16

Obs. 387 374 374 374 374 387 387
Baseline co. YES YES YES YES YES YES YES
N. brothers NO YES YES YES YES NO NO
Pol. before NO YES years YES years YES years
†synthetic prob. (%) to marry during Season interruption.

Notes: This table reports IV estimates of eq. (8) and (10) (col. [1]) and of eq. (11) and (12)
(cols. [2] to [7]). The Dep. Var. in Panel A is the total education funds raised from taxes
(instead of the tax rate). Funds are in logs and exclude School Boards in cities. As before, I
use women in the baseline sample with a family seat in England. The unit of observation is a
family seat (and the area around it). Baseline controls, number of brothers, and “Pol. before”
(the family’s political power before a woman’s marriage) are identical to Table 7. Parenthesis
report p-values (first stage) and CLR p-values adjusted for weak IV (second stage). Brackets
report CLR p-values adjusted for family clusters; ***p<0.01, **p<0.05, *p<0.1.
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Figure B5: Funds raised from taxes and other measures of state-education.

BDF

BRK

BKMCAM

CHS

CON
CULDBY

DEV

DOR

DUR

ESS

GLS
HAM

HEFHRT
HUN KENLAN

LEI

LIN

NFK

NTH NBL

NTT

OXF

RUT

SAL
SOM

STS

SFK
SRY

SSX

WAR

WES

WIL

WOR

YKS

0
10

0
20

0
30

0

to
ta

l e
xp

en
d.

 in
 s

ta
te

 s
ch

oo
ls

(p
en

ce
 p

er
 c

hi
ld

)

10 40 70 100 130 160
funds raised from taxes

(pence per child)
correlation = 0.94***

BDF

BRK

BKM

CAM

CHS

CUL

DBY

DEV

DOR

DUR

ESS

GLS

HAM

HEFHRT

HUN
KEN

LAN

LEILIN

NFK

NTH
NBL

NTT

OXF
RUT

SAL

SOM

STS

SFK
SRY

SSX

WAR

WES

WIL

WOR

YKS

.1
.2

.3
.4

.5
.6

.7

st
at

e 
/ p

riv
at

e 
sc

ho
ol

s
(ra

tio
)

10 40 70 100 130 160
funds raised from taxes

(pence per child)
correlation = 0.58***

BDF

BRK

BKM

CAM

CHS

CON

CUL

DBY

DEV

DOR

DUR

ESS

GLS

HAM

HEFHRTHUN

KEN

LAN

LEI

LIN

NFK

NTH

NBL

NTT

OXF

RUT

SAL

SOM

STS

SFK
SRY

SSX

WAR

WES

WIL

WOR

YKS

0
20

00
40

00
60

00

te
ac

he
rs

' s
al

ar
y

(p
en

ce
 p

er
 te

ac
he

r)

10 40 70 100 130 160
funds raised from taxes

(pence per child)
correlation = 0.82***

BDF
BRK BKM

CAM

CHS

CON

CUL

DBY

DEVDOR

DUR

ESS
GLS

HAM
HEFHRT

HUN

KEN

LAN
LEI

LIN
NFK

NTH

NBL
NTT

OXF

RUT
SAL

SOM

STS

SFK

SRY
SSX

WAR

WES

WIL

WOR
YKS

70
75

80
85

na
tio

na
l a

rit
hm

. e
xa

m
(%

 p
as

s)

10 40 70 100 130 160
funds raised from taxes

(pence per child)
correlation = 0.49***

Note: The sample is 38 historic counties in England (excluding the London area). Data is

available for different periods: funds from rates (1871–94), expenditures in state schools (1879-

94, except 1880), the ratio of state to private schools (1879-98), expenditure on teacher’s salaries

(1878), and exam results (1879-90). The data is from Goñi (2021).
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Appendix C. Instrumental variables estimation for men

This appendix estimates the effect of the Season on men. In the first part of
the appendix, I provide evidence that the interruption of the Season is a valid
instrument for peers’ sons—despite the fact that the social pressure to marry
young was less acute than that for women. Specifically, I show that peers’ sons
who married during the interruption where neither negatively selected nor the
black sheep in the family. That said, male aristocrats were not so pressured to
marry young as women, and hence, it is less obvious how to define the treatment
variable or whether to base it on their age in 1861. In the second part of this
appendix, I present an instrumental variables’ strategy to overcome these issues.

C. 1 The interruption of the Season and men

Admittedly, men were not so pressured to marry young as women. One possibility
is that in some peerage families a son delayed marriage until the Season resumed,
while another (the “black sheep”) selected to marry during the interruption (1861–
63). This appendix discusses anecdotal and empirical evidence which strongly
suggests that this was not the case.

First, as discussed in Section III.A, it is unlikely that men (and women) an-
ticipated marriages or waited for the Season to resume because the timing and
duration of the interruption were unpredictable. Nobody expected Prince Albert
to die in 1861 or royal balls in the Season to resume in 1864.

Second, male aristocrats who chose to marry during the three-year interruption
of the Season are not different in terms of observable characteristics to those who
married three years before and three years after. One revealing observable is
the birth order. The first-born son inherited the family’s title and landholdings.
Although his brothers were entitled to an allowance raised from the family estate,
there was an obvious advantage in being the first-born. Hence, if those who
married during the interruption were the family’s “black sheep,” we would expect
fewer first-born peers’ sons to marry during the interruption. Figure C1, Panel
A shows that this was not the case. Forty percent of peers’ sons marrying during
the interruption were first-born sons a similar percentage than three years before
the interruption and larger than three years after. The latter strongly suggests
that first-born sons did not defer marriage decision until the Season resumed in
1864. In addition, Figure C1, Panel B shows that the share of dukes’, marquis’,
and earls’ sons marrying during the interruption is identical to that in the three
years before or the three years after. In other words, men coming from the lower
ranks of the peerage did not select to marry during the interruption.

Third, I compare ages at marriage of all peers’ sons married during the inter-
ruption and their brothers. If, within a peerage family, some sons delayed marriage
until the Season resumed, while others (the “black sheep”) selected to marry dur-
ing the interruption, we would expect large differences in marriage ages between
brothers. To explore this possibility, I estimate a (family) fixed-effects model:

Ageatmarriagei,j = β ˆInterruptioni,j + muj +BirthOrderi,j + εi,j,

46



Figure C1: No selection for peers’ sons.
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where i indicates individuals (peers’ sons); j indicates families; Interruption is
equal to one if i married in 1861–63 and zero otherwise; and µ are family fixed
effects. By including family fixed effects, I effectively capture variation in age at
marriage between brothers who married during the interruption and brothers who
did so in normal times. Since birth order, especially being a first-born, may be
an important determinant of marriage choices, I also include a set of birth-order
indicators (among brothers). I estimate this model for all peers’ sons who married
during the interruption and their brothers.

Table C1 reports the results. I find that men who married during the inter-
ruption did so at a very similar age than their brothers who married in normal
times. Specifically, my estimate for the coefficient β is very small (it corresponds
to half a year) and not significantly different from zero.
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Table C1: Dependant Variable: Age at mariage.

[1] [2]

Married during interruption (1861–63) -0.545 -0.545
(1.035) (1.050)

Observations 258 258
% correct 0.49 0.49

Birth order indicators YES YES
Family fized effects YES YES
Cluster no by family

Note: Sample are all peers’ sons who married in 1861 and their
brothers who married in normal times. Constants are not reported.
Standard errors clustered by family are in parentheses; *** p<0.01,
** p<0.05, * p<0.1.

Altogether, this evidence suggests that male aristocrats did not negatively
select to marry during the interruption of the Season. Because its timing and du-
ration were unpredictable, men could not delay marriage until the Season resumed
despite the lower social pressure to marry young as compared to women.

C. 2 Instrumental variables’ specification

Here I present an instrumental variables’ model to estimate the effects of the
Season for men. In the previous section, I showed evidence suggesting that the
interruption of the Season is a valid instrument for peers’ sons. That said, male
aristocrats were not so pressured to marry young as women, and hence, it is
less obvious how to define the treatment variable or whether to base it on their
age in 1861 as in the main text. To overcome this, I use a different empirical
strategy. In detail, I exploit an additional, more subtle source of disruption to the
Season over a longer time window: changes in the size of the marriageable cohort.
The idea is that smaller cohorts potentially attracted less people to attend the
Season, disrupting its well-functioning. At the same time, it is unlikely that male
aristocrats delayed or anticipated their marriage decisions as a result of these
subtle changes. Under these premises, I estimate an instrumental variables model
with the interruption of the Season and changes in the size of the marriageable
cohort as sources of exogenous variation in attendance at the Season.

I begin by defining the sample, presenting the econometric specification, and
providing evidence to support the identifying assumptions.

My baseline sample are all peers and peers’ offspring marrying in 1851–75.
Relative to Section III, this sample is different in two respects: First, it covers
a longer time window. This is necessary to capture sufficient variation in cohort
sizes and its (more subtle) effects on the Season.11 Second, the sample here is

11In some specifications, I estimate an IV model with the Season’s interruption as the only
instrument (i.e., I do not include the cohort size instrument). There, I the longer time window is
not needed, and hence, I restrict the sample to peers and peers’ offspring marrying in 1858–66,
i.e., those marrying during the interruption, three years before, and three years after. Results
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based on marriage cohorts instead of age cohorts. Again, the reason is that men
were not as pressured to marry young as women, and hence, it is less obvious
which age cohorts are in the marriage market at different points in time.

The treatment variable capturing the Season’s “intensity” in each year is the
number of attendees at royal parties, At. I treat it as an endogenous variable:12

At = Z′tρ+ V′tη + d1851t + νt , (1)

where Zt is the vector of instruments. It includes an indicator for the interruption
of the Season (1861–63) and the size of the marriageable cohort—i.e., the number
of peers’ daughters aged 18–24 at year t.13 Vt includes alternative predictors: the
sex ratio, the proportion of similar potential partners in the market, and the length
of the railway network. The latter is the number of miles of railway in Britain
and Ireland each year and is based on Mitchell (1988), Ch.10, Table 5. Since in-
dustrialists’ riches were partly associated with the railway sector (see Rubinstein
1977), the length of the railway proxies for the desirability of industrialists in the
marriage market. In addition, it may capture the effect of commuting costs asso-
ciated to attending the Season’s key events. To address the latter more precisely,
I show that results are robust to controlling for the distance from the family seat
to London. To account for the time effects described in Figure 3, Vt also includes
a time trend, decade fixed effects, and an indicator for the Great Exhibition in
1851. Table C13 in this appendix provides detailed descriptions on all covariates.

The effect of the Season on marital sorting is captured by coefficient β in

Pr
(
yi,t|Ât,Vt,Xi,t

)
= Φ

(
β Ât + V′tλ+ X′i,tδ

)
, (2)

where yi,t is a discrete outcome for individual i marrying in year t (e.g., married a
commoner) and φ is the CDF of the standard normal distribution. For continuous
outcomes, I estimate

Yi,t = B Ât + V′tΛ + X′i,t∆ + εi,t , (3)

where the dependent variable is the difference between husband’s and wife’s con-
tinuous characteristic Y (e.g., difference in acres). In both models, Xi,t is a vector
of individual controls, including title, age at marriage, or birth order.

Next, I discuss the identifying assumptions; i.e., that the instruments are rel-
evant and that the exclusion restriction is satisfied. In Section III.A and Ap-
pendix C1, I show that the interruption of the Season satisfies these assumptions
for both men and women. The size of the cohort is also a relevant instrument:

are robust to using the full sample in these specifications too (available upon request).
12One possibility is that when intermarriage increased, more parties were organized to restore

sorting. The relation between attendance to the Season and sorting could also be driven by
economic factors; e.g., a drop in land value would impoverish the nobility, reduce attendance,
and increase marriages to wealthy commoners to alleviate debts.

13I choose the 18-24 age range because (a) eighteen was a common date at which women were
presented at court—i.e., announced to the marriage market (Davidoff 1973); and (b) after age
24, the probability to marry decreased sharply (see, e.g., Figure 4).
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First-stage estimates suggest that it is positively and strongly correlated with at-
tendance at the Season. In other words, larger cohorts attracted more people to
the London Season. Figure C2 explores further this correlation. Specifically, the
Figure displays de-trended values for both the cohort size instrument and atten-
dance at the Season between 1851 and 1875. Two patterns emerge: First, there
is substantial variation in the size of the cohort from year to year. Overall, the
instrument ranges between cohorts of 237 to 286, with a standard deviation of 15
individuals (6 percent of the mean).14 Second, the figure suggests that when a
large cohort reached marriageable age, attendance to the Season increased. For
example, note that whenever the size of the cohort was above the trend, so was
attendance to the Season (with the exception of the interruption in 1861–63).
Finally, note that the variation in cohort size is magnified by the Season’s increas-
ing returns to scale (see results below). Since the matching technology was more
efficient under a larger number of participants, small changes in the size of the
cohort could lead to large changes in attendance and large effects on sorting pat-
terns. Altogether, this suggests that the instrument likely satisfies the relevance
condition.

Figure C2: Cohort size instrument and Season attendance.
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The size of the marriageable cohort is plausibly exogenous, as no one plans
how many children to have based on projections of marriage market conditions
20 years in the future. That said, the exclusion restriction would be violated if

14While the average marriageable cohort in 1851–75 was of 262 women, the five largest cohorts
range between 278 to 286. In other words, they are 6 to 10 percent larger.
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changes in the size of the cohort also affected local, decentralized marriage markets,
which emerged around peers’ family seats during the months when the Season was
inactive. This scenario is unlikely for four reasons: First, Gautier et al. (2010)
and Botticini and Siow (2011) show that local, decentralized marriage markets
are typically not subject to increasing returns to scale. That is, they are not
affected by changes in the size of the cohort. Second, it is unlikely that the
instrument affects local marriage markets outside the London Season because the
size of the cohort does not vary much locally. Only when aggregated nationwide is
the variation meaningful. In other words, marriage behavior would not be affected
unless the marriage market was centralized. Third, as I exploit two instruments,
I use the Sargan test. Across specifications, I cannot reject that the cohort-size
instrument is exogenous. Fourth, appendix C5 shows that the bias of the IV
estimates would be small even if the cohort size instrument had some correlation
with unobservables that affect marriages.

Finally, changes in the size of the cohort may affect marriage outcomes in local
markets if they distort sex ratios or if they affect the composition of a cohort, e.g.,
in terms of titles or family landholdings. To address this, I include a broad set of
covariates capturing sex ratios and the composition of a cohort. For example, I
include the ratio of heirs to peers’ daughters, the proportion of similar partners in
the marriage market in terms of social class, land class (both in terms of acreage
and land rents), and geographical origin.15 Formally, the inclusion of these covari-
ates guarantees that the conditional independence assumption holds, i.e., that,
conditional on the regression covariates, the size of the cohort has no direct effect
on marriage outcomes other than by affecting attendance to the Season.

C. 3 Results

Table C2, Panel B presents first-stage estimates. Columns [2] and [5] confirm that
the interruption of the Season accounts for much of the variation in attendance
in 1858–66. In columns [3] and [6], I add the second instrument and I use the
full sample (1851–75). Estimates show that the size of the marriageable cohort is
positively correlated with attendance at the Season: One additional marriageable
woman attracted around 70 people to royal parties. Across specifications, the
F-test is large enough to eliminate concerns about weak instruments.

Panel A presents second-stage estimates for the effect of the Season on the rate
of intermarriage with commoners. First, I consider the sample of peers’ daughters
as a validation exercise. In short, I want to evaluate whether the IV specification
used here delivers similar results to my benchmark estimates in Section III.B for a
comparable sample of women. Using exogenous variation from the interruption of
the Season alone (col. [2]), I find that increasing the number of attendees by five
percent—250 additional attendees—would decrease the probability of the average
peer’s daughter marrying a commoner by ca. one percentage point.16 The results
are very similar when I include exogenous variation in attendance from changes

15See Table C13 for details on how each variable is constructed.
16In cols. [2] and [3] I use a narrow time window (1858–66) to show that the effects are driven

by the interruption of the Season and not by events happening towards the end of the sample.
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in cohort size (col. [3]) and I use the full sample (1851–75). Overall, these results
are consistent with those of Section III.B, lending credibility to the IV approach
used here to estimate the effects of the Season on men.

Cols. [4] to [6] show that the Season also affected male aristocrats, although
the effects are weaker than those for women. IV estimates suggest that increasing
attendance by five percent—250 additional attendees—decreases the probability
of marrying a commoner by 0.5–1 percentage points. However, in the full specifi-
cation the estimated coefficient is not significantly different from zero (col. [6]).

The coefficients of the control variables suggest that higher-titled individuals
were less likely to marry commoners and that peers’ daughters were pressured to
marry young: growing a year older is associated with an increase in the probability
of marrying a commoner by 2%. The railway network is positively associated with
peer-commoner intermarriage. One possible explanation is that as the railway
expanded and the riches of industrialists grew, their daughters became more at-
tractive despite their lack of landholdings. Furthermore, I find a weak association
between the ratio of heirs to peers’ daughters and the probability of marrying a
commoner for women. This suggests that primogeniture generated an imbalance
against women. Since only first-born males inherited the title, women competed
for a limited number of heirs, while heirs had an ampler choice of peers’ daughters.
Overall, the IV model correctly predicts the probability of marrying a commoner
in 70-75% of cases. The IV and probit marginal effects are very similar, suggesting
that the endogeneity bias might be small. In addition, the Sargan test implies that
I cannot reject the exogeneity of the instruments.

Table C3 estimates the effect of the Season on sorting by landed wealth. I
restrict the sample to male great landowners; i.e., peers and peers’ sons in Bateman
(1883). First, I evaluate the probability to marry a bride from a family in the
same wealth class, according to Bateman’s categories.17 The IV estimates in
Panel A show a strong, positive effect of the Season on this sorting measure: 250
additional attendees increase the probability to marry in the same class by 1 to 2
percentage points (cols. [2] and [3]). These effects are not the result of an arbitrary
definition of classes. In cols. [4] to [6], I consider a continuous sorting measure:
the difference between spouses’ percentile rank of acres, in absolute value. A
value of zero indicates that both spouses are in the same percentile, larger values
indicate less sorting. Estimates suggest that 250 additional attendees at the Season
would reduce this measure of mismatch by 0.6 to 0.7 percentiles. Overall, the IV
estimates are similar when using exogenous variation from both instruments or
from the interruption of the Season alone. Panel B repeats the exercise using land
rents as a measure of landed wealth. The dependent variable is the probability to
marry a bride in the same or in a contiguous decile of the land-rents distribution
(cols. [1] to [3]) and the difference between spouses’ percentile rank of land rents,
in absolute value (cols. [4] to [6]). The effects are similar to those in Panel A: 250
additional attendees increase the probability that spouses earn similar land rents
by 2.25 percentage points, and decrease mismatch by 0.4 to 0.7 percentiles.

17Classes are: > 100,000 acres, 50,000 to 100,000 acres, 20,000 to 50,000 acres, 10,000 to
20,000 acres, 6,000 to 10,000 acres, and 2,000 to 6,000 acres.
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Table C2: Attendance to the Season and peer-commoner intermarriage, IV estimation.

[1] [2] [3] [4] [5] [6]

Panel A: Second stage Dep. Variable: Married a commoner

Women Men

probit IVprobit IVprobit probit IVprobit IVprobit

Attendees Season (100’s) -0.003*** -0.003*** -0.003*** -0.002* -0.004** -0.002
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Observations 775 279 775 979 361 979
% correct 70 71 69 75 76 75
Sargan test . . 1.7 . . 2.46

. . (p=0.43) . . (p=0.3)

Individual co. YES YES YES YES YES YES
Cohort co. YES NO YES YES NO YES
Decade FE YES YES YES YES YES YES
Trend YES YES YES YES YES YES
Sample years 1851–75 1858–66 1851–75 1851–75 1858–66 1851–75

Panel B: First stage Dep. Variable: Attendees at the Season (100’s)

Interruption (1861–63) – -48.9*** -32.0*** – -49.5*** -32.4***
– (10.5) (7.9) – (10.4) (7.6)

Marriage cohort size – 0.7*** – 0.7***
– (0.2) – (0.2)

Sample years – 1858–66 1851–75 – 1858–66 1851–75
F-test – 21 69 – 23 75
Cohort controls – NO YES – NO YES
Decade FE and trend – YES YES – YES YES
Indicator for Great Exhibition (1851) YES YES – YES YES

Note: The sample for Panel A is all peers and peers’ offspring first-marrying in the sample years. “Attendees
Season (100’s)” is the number of attendees at royal parties in the Season, in hundreds. Individual controls
are indicators for title at age 15 (i.e., Commoner, Barons’/Viscounts’ offspring, Dukes’/Marquis’/Earls’ offspring,
Barons’/Viscounts’ heir, and Dukes’/Marquis’/Earls’ heir), age at marriage, and an indicator for English peerages.
For women, I also include birth order excluding heirs. Cohort controls are railway length, sex ratios, and the
proportion of similar partners in the market: number of peers’ offspring aged ± 2 in the same social class. For
women, I also includes the ratio of heirs to peers’ daughters. See appendix Table C13 for detailed descriptions.
Constants are not reported. Standard errors clustered by year are in parentheses; *** p<0.01, ** p<0.05, *
p<0.1.
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Note that the effect on sorting by landed wealth is stronger than on peer-
commoner intermarriage. This is due to differences in market depth: there were
more peers’ daughters than daughters of great landowners. The Season, a match-
ing technology that facilitated encounters, was indispensable to meet the latter.18

Admittedly, titles and land were not the only components of socio-economic
status. Spouses may have sorted by the antiquity of the lineage, the peerage’s
prestige, the possession of hunting woods, etc. To estimate the effects of the
Season on sorting by socio-economic status broadly defined, I construct a peck-
ing order; i.e., I order all individuals according to a general socio-economic in-
dex. The index is the first principal component from six variables: rank in
the peerage (baron/viscount’s son; earl/duke/marquis’ son; baron/viscount’s heir;
earl/duke/marquis’ heir), peerage of the title (England, Ireland, or Scotland),
acreage, land rents, ownership of woods, and the antiquity of the lineage (whether
the family held land since the time of Henry VIII). For wives, I also include a
variable indicating if they were heirs or co-heirs. Since women did not inherit
peerage titles, this variable mostly refers to other assets (e.g., personal property)
inherited by women of commoner origin. My measure of sorting is the difference
between spouses’ ranking, in absolute value. A value of zero indicates that the nth
ranked man is married to the nth ranked woman, larger values indicate less sort-
ing by socio-economic status. IV estimates show that the Season reduced spouses’
differences in socio-economic status (Panel C). In the full specification, increasing
attendance at the Season by 600–1,000 people would allow male aristocrats to
marry a wife eight positions closer in the pecking order (col. [6]). Given that, on
average, spouses are separated by ca. 80 positions, moving eight positions closer
corresponds to a ten-percent increase in sorting by socio-economic status.

Panel D shows that the Season matched spouses from distant geographical
origins. For every 250 additional attendees, the probability of marrying a wife
from within 100 miles decreases by 1-2 percentage points, and the distance between
spouses’ seats increases by around 4 miles. This is consistent with the fact that,
by centralizing the marriage decisions in London, the Season allowed singles from
all over the country to meet, to court, and, eventually, to marry.

Finally, Table C4 reports estimates controlling for the distance from an indi-
vidual’s family seat to London. Specifically, I estimate the IV model in equations
(1)–(2) and (1)–(3) using the full sample of individuals marrying in 1851–75 and
the two instruments: the interruption of the Season and changes in cohort size.
Compared to before, the sample is smaller because it is restricted to families with
seats recorded in Burke (1826).

As stressed in Section III.B, this covariate is potentially important because at-
tending the Season may have been more costly for those living further away. How-
ever, the estimates suggest that peer-commoner intermarriage, sorting by acres,
and sorting by socio-economic status is not significantly associated to the distance
from London. Only the probability of marrying in the same land rents class (col.
[5]) displays a significant association with the distance to London.

18This is line with the fact that some people are willing to disregard education to marry within
caste, but do not do so in equilibrium if the market is sufficiently deep (Banerjee et al. 2013)
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Table C3: Attendance to the Season and other sorting patterns, IV estimation for men.

[1] [2] [3] [4] [5] [6]
probit IVprobit IVprobit OLS IV IV

Panel A. Sorting by landholdings (acres)
Wife in same land class Mismatch

Attendees Season (100’s) 0.005*** 0.003** 0.008*** -0.205 -0.268** -0.224**
(0.002) (0.001) (0.002) (0.122) (0.112) (0.112)

Observations 257 101 257 171 63 171
% correct 84 83 84 . . .
F-stat first stage - 23 66 - 19 72
Sargan test, p-value . . 0.2 . . 0.5

Panel B. Sorting by landholdings (land rents)
Wife in same land class Mismatch

Attendees Season (100’s) 0.008*** 0.009*** 0.009*** -0.209** -0.278*** -0.167*
(0.001) (0.002) (0.002) (0.101) (0.107) (0.086)

Observations 257 101 257 171 63 171
% correct 77 74 77 . . .
F-stat first stage - 23 64 - 19 75
Sargan test, p-value . . 0.9 . . 0.5

Panel C. Sorting by socio-economic status, constructed using PCA
Mismatch

Attendees Season (100’s) - - - -0.659** -1.396* -0.745**
- - - (0.316) (0.744) (0.343)

Observations - - - 170 62 170
F-stat first stage - - - - 19 76
Sargan test, p-value . . 0.7

Panel D. Geographic endogamy
Wife < 100 miles Distance in miles

Attendees Season (100’s) -0.007*** -0.004** -0.007* 1.17* 1.51*** 1.80**
(0.003) (0.002) (0.004) (0.62) (0.29) (0.74)

Observations 167 63 167 167 63 167
% correctly predicted 68 63 68 . . .
F-stat first stage - 28 55 - 28 55
Sargan test, p-value . . 0.2 . . 0.4

Individual controls YES YES YES YES YES YES
Cohort controls YES NO YES YES NO YES
Decade FE and trend YES YES YES YES YES YES
Interruption IV - YES YES - YES YES
Cohort size IV - NO YES - NO YES
Sample years 1851-75 1858-66 1851-75 1851-75 1858-66 1851-75

Note: The sample is married peers and peers’ sons listed in (Bateman 1883) (Panels A to C) or whose family
seat and wife’s family seat is in Burke (1826) (Panel D). “Wife in same land class” is based on 6 classes in Panel
A (>100,000 acres; 50,000 to 100,000; 20,000 to 50,000; 10,000 to 20,000; 6,000 to 10,000; and 2,000 to 6,000,
Bateman 1883: 495) and on the probability of marrying in the same decile or a contiguous decile of the land
rent’s distribution in Panel B. “Mismatch” is the absolute value of the difference in spouses’: percentile rank of
acres and land rents (Panels A and B), and socio-economic status rank (Panel C). This excludes men marrying
wives whose family is not in Bateman (1883). In Panel C, dep. vars. are based on the minimum aerial distance
between spouses’ seats. Individual controls are age at marriage and an indicator for English titles in all Panels,
acres (Panel A), land rents (Panel B), all variables in the PCA (Panel C), and title at age 15 (Panel D). Cohort
controls are railway length, sex ratios, and the proportion of similar partners in the market: women aged 18–24
from each man’s acres class (Panel A), land rents’ class (Panels B and C), and women aged ± 2 whose family
seat is in the same first-level NUTS in England and Wales, electoral region in Scotland, or province in Ireland
(Panel D). See appendix Table C13 for details. s.e. clustered by year; *** p<0.01, ** p<0.05, * p<0.1
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In addition, the main estimates for the effect of the Season on sorting are ro-
bust. After controlling for the distance to London, I find that increasing the num-
ber of attendees at the Season reduces peer-commoner intermarriage for peers’
daughters (col. [1]). As before, attendance to the Season is not so strongly as-
sociated to peer-commoner intermarriage for men (col. [2]). In contrast, largely
attended Seasons increased sorting by acres (cols. [3] and [4]), by land rents (cols.
[5] and [6]), and by a socio-economic index computed using p.c.a (col. [7]).

C. 4 Extensions

Here I extend the analysis of the IV model described above. First, I show that the
matching technology embedded in the Season displays increasing returns to scale.
I then stratify my dataset by observables in order to identify the segments of the
peerage for which the effects of the Season are more pronounced. Next, I look
at fertility rates of matched couples and their degree of consanguinity to examine
whether the Season had any effects on match quality. Finally, I examine the role
of homophilic preferences as an important determinant of marital sorting.

Increasing returns to scale. Here, I evaluate whether the matching technology
embedded in the Season displays increasing returns to scale. Consider a meeting
function M(p), where p are the number of participants and M gives the number of
encounters. M(p) displays increasing returns to scale if the number of encounters
grows more than proportionally to the number of participants. This prediction
is hard to test empirically, as we typically observe matched couples and not the
number of encounters. To overcome this, I exploit a well-established implication
of search models: a larger number of encounters is associated with an increase
in positive assortative matching (Burdett and Coles 1997). In other words, if
positive assortative matching grows more than proportionally to the number of
participants, this suggests that the number of encounters has increased, and hence,
that the matching technology displays increasing returns to scale. In my setting,
I evaluate whether the effects of the Season on marital sorting are stronger for
largely attended Seasons.

Specifically, I use the IV probit model in equation 2 to estimate nonlinear
marginal effects of attendance to the Season. Figure C3 presents the results for
the probability of marrying in the same class in terms of acres and land rents.
When the Season is largely attended, bringing in additional guests has a larger
marginal effect. In other words, the Season was subject to increasing returns: as
more people attended, singles met at a higher speed, and sorting strengthened.

This result is important in two respects. On the one hand, it validates the
identifying assumptions. By affecting attendance, the size of the marriageable
cohort could distort or reinforce the efficiency of the Season. In contrast, the local,
decentralized markets where people courted when the Season was inactive do not
typically display increasing returns to scale, and hence, were not affected by the
size of the cohort. On the other hand, whether the matching technology displays
decreasing, constant, or increasing returns to scale has important implications.
Will a shortage of singles decrease marriage rates? Will sorting grow at a slower
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Figure C3: Increasing returns to scale, Probit estimation.
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Note: This figure plots the marginal effect of 100 additional Season attendees using the probit

IV model in 1 and 2. Marginal effects are evaluated at different values of attendance (x-axis)

and at the means of all other covariates. Dashed lines are 90% confidence intervals.

or faster rate than the number of users of online matching sites? Gautier et al.
(2010) and Botticini and Siow (2011) estimate returns to scale in marriage markets
by comparing the city and the countryside. In contrast, I consider a matching
technology that not only pooled singles together, but explicitly facilitated their
introduction and courtship. In this respect, my results provide better insights for
matching technologies such as online sites and speed-dating events.

In addition, this result suggests a potential explanation to why fertility booms
tend to echo over time. If the marriage market displays increasing returns to scale,
a “boom” cohort may encounter partners more easily, and hence, marry at higher
rates, earlier on, etc. As a consequence, the fertility of this large cohort may be
boosted. The importance of this channel for fertility booms, however, is a question
for future research.

Sample stratification. Next, I compare the effects of the Season across differ-
ent segments of the peerage. Because my sample is not large enough to perform
stratifications at a fine-grain level, I subdivide the sample into only two subgroups
of approximately equal size. First, I subdivide the sample of great landowners
married in 1851–75 (N=257) into heirs (N=126) vs. non-heirs (N=131) and com-
pare estimates of equation systems (1) and (2); (1) and (3) for each subgroup. I
then perform the same exercise dividing the sample into landowners with an acres
above (N=130) vs. below the median (N=127), with land rents above (N=128)
vs. below the median (N=129), and with my PCA socio-economic status index
above (N=129) vs. below the median (N=128).

Table C5 presents the results. I find stronger and more tightly identified effects
for individuals of higher socio-economic position. When the Season was
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(exogenously) well-attended, sorting by landholdings (rows [1] and [3]), land rents
(rows [2] and [4]), and socio-economic ranking (row [5]) in general increased more
for peers’ heirs and for landowners in possession of larger estates.19

In contrast, the effect of the Season on geographic endogamy, i.e., the distance
between spouses’ family seats, comes from lower-status individuals. Non-heirs,
lesser landowners, and individuals with low socio-economic index married spouses
from farther away when the Season ran smoothly. This suggests that heirs’ younger
brothers were not reduced to staying at their country seats. They also partici-
pated in the Season, courted, and married women from all over Britain and Ireland.

Match quality. Does the matching technology affect the quality of the match?
Next, I evaluate the effects of the London Season on two measures that proxy for
match quality: the degree of consanguinity between spouses and fertility.

Consanguinity is a good proxy for match quality. Although the genetic risks
associated with consanguinity are debated (Bittles 2012), there is an old stigma
on cousins marrying. For example, Charles Darwin, who was married to his first
cousin Emma Wedgwood, was deeply concerned with the health of his ten children.
In Goñi (2015), I show that the London Season prevented consanguinity. When
the Season was interrupted after the death of Prince Albert and Queen Victoria’s
mother, cousin marriage flourished. In particular, as marriage decisions shifted
to the local marriage markets, the children of the nobility faced a reduced pool
of proper singles. In these circumstances, many considered marrying within their
extended family to secure a noble match. The percentage of people marrying
their second cousin increased by a factor of five, from 0.5 percent the years before
and after the interruption (i.e., 1859–60 and 1864–67), to almost three percent in
1861–63. These matches were of poorer quality: their children were more likely
to die before reaching marriage age; they had fewer children; and they were 50
percent more likely to be childless.

Alternatively, one could evaluate the quality of the match by looking at how
many children couples produced. Among noblemen, producing enough children to
ensure succession is paramount. Not all couples were equally successful. Take, for
example, the marriage of the Duke of Northumberland to Edith Campbell: they
had 13 children, ten of them after an heir was born. Other couples may not have
been so eager to visit each other’s chambers.20

Table C6 reports the coefficients from a regression of fertility on attendance at
the Season. In cols. [1] and [2], the dependent variable is the number of children
born to each couple. Results are modest and not significant when I instrument
attendance at the Season with its interruption in 1861–63 and with the size of the
cohort. In cols. [3] and [4], I consider the number of births per year of fertile-
marriage lifetime (i.e., between ages 15 and 40). Results are small but significant:

19There are only two exceptions: The effect on sorting by SES index is strong for non-heirs,
and the probability of marrying in one’s land-rent class is stronger for those with a small SES.

20Marital happiness is difficult to measure, especially since divorce was not common at the
time. Although the Divorce and Matrimonial Causes Act of 1857 allowed divorce on the grounds
of adultery, between 1851–75 only 31 peers and peers’ offspring actually divorced. The number
of children born to a couple, instead, can serve as a proxy for match quality.
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100 additional guests in the Season increased by 0.002 the number of births per
year, which is equivalent to 0.1 standard deviations. In cols. 5 and 6, I look at a
measure that takes into account the biological maximum fertility of women: births
relative to the births that a Hutterite women would have produced. Hutterites
are a traditionalist Christian church fellowship that rejects birth control, and,
thus, can be taken as a proxy for unconstrained fertility (Clark 2007; Voigtlander
and Voth 2013). OLS and IV results suggest that when the Season ran smoothly,
matched couples were closer to the Hutterites—that is, to the biological maximum
fertility: 250 additional guests at royal parties increased the number of children
born, relative to Hutterites, by one percentage point.

Table C6: The Season and the quality of the match (1851–75)

[1] [2] [3] [4] [5] [6]

Dep. Variable: Number of births

total per year relative to Hutterites

OLS IV OLS IV OLS IV

Attendees Season 0.025** 0.020 0.002*** 0.002*** 0.004** 0.004**
(0.011) (0.014) (0.001) (0.001) (0.002) (0.002)

Observations 466 479 466 479 462 474
R-squared 0.098 0.087 0.068
Sargan test . 1.30 . 1.10 . 0.18

. p=0.5 . p=0.6 . p=0.9

Individual controls YES YES YES YES YES YES
Marriage market co. YES YES YES YES YES YES
Decade FE YES YES YES YES YES YES
Year trend YES YES YES YES YES YES
Interruption IV - YES - YES - YES
Cohort size IV - YES - YES - YES
F-stat from first stage - 20.9 - 20.9 - 20.9

Note: The sample is all peers and peers’ daughters first marrying in 1851–75. I exclude women marrying over
age 30 and women having one or no children. The former might have been hard-pressed to have children before
age 35, when fertility sharply declines, biasing the estimates upwards. The latter may have been infertile or
had difficulties produceing an heir, biasing the estimates downwards. Columns [1] and [2] report marginal
effects of 100 additional attendees at the Season on the total number of births. In Columns [3] and [4], the
dependent variable is the number of births per year, considering the number of years a woman was effectively
married between ages 15–40. Columns [5] and [6] consider the number of births relative to the births that an
average Hutterite woman would have had in her place. Hutterites marital fertility rates are 0.55 for ages 20–24,
0.502 for 25–29, 0.447 for 30–34, 0.406 for 35–39, and 0.222 for 40–44 (Clark 2007). I exclude women for whom
the Hutterite counterfactual does not produce more than one child. Individual controls include indicators of
social position at age 15, age at marriage, birth order (excluding heirs), and an indicator for English titles.

Marriage market controls include sex ratio and railway length. See Table C13 in this appendix for detailed
descriptions. Columns [2], [4], and [6] use the first stage reported in Table C2, Panel B. Standard errors
clustered by year are in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Altogether, this suggests that the matching technology embedded in the Sea-
son had positive effects on match quality: it reduced the degree of consanguinity
between spouses, and matched couples presented slightly better fertility records.
The estimated effects, however, are much smaller than the effects on sorting by
social position or riches. Marriages in the Season were, after all, not so much a
matter of love as an important social and economic arrangement.
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Homophilic preferences. Homophily—a preference for others who are like
ourselves—may lead to assortative matching in the marriage market. In this sub-
section, I show that, in contrast to sorting by socio-economic status, sorting with
respect to political ideology is explained by homophilic preferences and is not
affected by search costs or marriage market segmentation.

Table C7 cross-tabulates the spouses’ political ideology. To do so, I use the
fact that most peers belonged to political clubs: Brook’s, Reform, and Devonshire
were liberal clubs, and Carlton, Jr. Carlton, Conservative, and St. Stephen’s were
Tory clubs (Bateman 1883: 497). Specifically, I proxy a husband’s and a wife’s
ideology by the allegiance of the club they or their families belonged to.

In most cases, husband and wife shared the same political views. For example,
39 percent of liberal husbands married wives from liberal families, while under
a random assignment, only 29 percent of them would have married a wife with
the same ideology. Aggregate statistics confirm these patterns, although they
also suggest that sorting in this dimension was not as strong as sorting by social
position.

Figure C4 plots the probability of marrying a like-minded partner over time.
Political endogamy seems to be independent of the number of attendees at royal
parties, and it was not affected by the interruption of the Season. Therefore, I
conclude that in contrast to sorting by socio-economic status, sorting by political
ideology was driven mainly by homophilic preferences, independent of search costs
and marriage market segmentation.

Table C7: Marriage and political preferences (1817–75)

Wife’s father or brother

Husband: Liberal club Tory club N

Liberal club observed 39.5 60.5 43
expected 29.3 70.7
difference 10.2* -10.2*

Tory club observed 24.7 75.3 97
expected 29.3 70.7
difference -4.6* 4.6*

N 41 99 140

Pearson chi-squared (1): 3.15* (0.08)
Gamma test : 0.33 (0.17)

Note: The sample comprises all 142 peers and peers’ sons who (1) first
married in 1817–75; (2) are listed in (Bateman 1883); (3) belonged to a
political club; and (4) married a wife who had a relative in a political club.
I include individuals marrying from 1817 onwards to increase the sample
size. Brook’s, Reform, and Devonshire are liberal Clubs; Carlton, Junior
Carlton, Conservative, or St. Stephen’s are Tories (Bateman 1883: 497);
*** p<0.01, ** p<0.05, * p<0.1
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C. 5 Robustness

In this section, I examine the robustness of the results for men. I begin by estimat-
ing the reduced-form effect of the Season’s interruption. Then, I use alternative
measures of the London Season. Next, I explore the validity of the cohort size
instrument. To do so, I first assess the bias of the estimates in case the cohort
size instrument is “plausibly” exogenous—i.e., it has some correlation with unob-
servables that are influencing marriage outcomes. Second, I gauge the potential
effect of unobserved variables using an insight from Altonji et al. (2005). Finally,
I show that results are robust to a “classic” IV specification where all covariates
(i.e., individual-level and time-varying covariates) are included in the first stage.

Reduced-form effects of the interruption. Here I provide reduced-form esti-
mates of the interruption of the Season on marriage outcomes for men. Formally,
i estimate

Pr
(
yi,t| ˆInterruptiont,Vt,Xi,t

)
= Φ

(
β ˆInterruptiont + V′tλ+ X′i,tδ

)
,

where yi,t is a discrete outcome for individual i marrying in year t (e.g., married
a commoner); Vt includes alternative predictors: sex ratios, the proportion of
similar potential partners in the market, and the length of the railway network;
and Xi,t is a vector of individual controls, including title, age at marriage, and
birth order. For continuous outcomes (e.g., missmatch in acres) I estimate the
analogous OLS regression.

Table C8 reports the results. As in the baseline estimates, I find that the inter-
ruption of the Season increases peer-commoner intermarriage for peers’ daughters
(col. [1]) and is also associated to peer-commoner intermarriage for men (col.
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[2]). In contrast, when the Season functioned smoothly, men sorted more by acres
(cols. [3] and [4]), by land rents (cols. [5] and [6]), and by a socio-economic index
computed using p.c.a (col. [7]).

Alternative measures of the Season. Table C9 examines the robustness of
my results to using alternative measures of attendance at the London Season.
Column [1] reports the baseline estimates using attendees at all royal parties as
the independent variable. Alternatively, column [3] uses the number of attendees
at balls and concerts, the quintessence of the Season. The reported marginal
effects are slightly stronger, except for those capturing the effect on geographic
sorting (i.e., the probability that the wife is in the same region and the distance
between spouses’ family seats).

A potential weakness of my analysis is that noblemen who were hard-pressed
to marry into well-positioned families could have been more eager to attend the
Season. If this happened more when the size of the marriageable cohort was larger,
the estimates from the equation systems (1) and (2); (1) and (3) would be biased.
To account for this possibility, columns [2] and [4] use invitations issued to royal
parties instead of the actual number of attendees. Marginal effects and standard
errors are robust to this alternative measure of the Season.

Plausibly exogenous instrument. A key assumption of my identification strat-
egy is that my instruments affect marriage outcomes only through the Season. In
Section III.A in the paper, I argue that the interruption of the Season in 1861–63
satisfies the exclusion restriction. Here, I evaluate whether this is also the case for
variation in the size of the cohort.

The Sargan tests in Tables C2 and C3 cannot reject the instrument’s exo-
geneity. Note that the test assumes that at least one instrument is valid. Since
the Season’s interruption after the deaths of Victoria’s mother and husband is
arguably an exogenous shock, the Sargan test is informative for the cohort size
instrument.

In addition, my results are not very sensitive to a hypothetical correlation
between the size of the cohort and unobservables affecting marriage outcomes. To
show this, I rewrite equations (1) to (3) as a two-stage least-square system:

At = ρ Cohort sizet + P (1861–63)t + V′tη + X′i,tδ + νt

yi,t = β Ât + V′tλ+ X′i,tδ + γ Cohort sizet + εi,t,

where γ is the direct effect of the size of the cohort on marriage outcomes—i.e., the
effect that does not go through attendance at royal parties, captured by coefficient

ρ. In this simple case, β(γ) = β(γ = 0) +
γ

ρ
, where

γ

ρ
is the bias from violating

the exclusion restriction. Table C10 reports the effects of the Season for different
values of γ.
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Table C9: Alternative measures of attendance to the Season

[1] [2] [3] [4]

Independent variable capturing the effect of the Season:

Attendees at Invited at Attendees at Invited at
royal parties royal parties balls and balls and

(baseline) concerts concerts
Dependent variable:

Husband is a commoner -0.003*** -0.003*** -0.005*** -0.005***
(0.001) (0.001) (0.001) (0.001)

Wife in same land class, acres 0.008*** 0.007*** 0.008*** 0.007***
(0.002) (0.002) (0.002) (0.002)

Wife in same land class, rents 0.009*** 0.008*** 0.009*** 0.008***
(0.002) (0.002) (0.002) (0.002)

Mismatch in acres -0.224** -0.21* -0.266** -0.245**
(0.112) (0.107) (0.116) (0.11)

Mismatch in land rents -0.167* -0.158* -0.204** -0.191**
(0.086) (0.082) (0.084) (0.078)

Mismatch in SES, using PCA -0.740** -0.685** -0.897* -0.827*
(0.343) (0.327) (0.472) (0.445)

Wife in same region -0.007* -0.007* -0.005 -0.005
(0.004) (0.004) (0.006) (0.006)

Distance btw. spouses’ seats 1.787** 1.668** 1.407* 1.266
(0.732) (0.708) (0.851) (0.792)

Note: This table reports IV marginal effects of the number of guests at the Season (in 100s of guests)
on the corresponding marriage outcome in the rows. Each column defines guest in a different manner.
Regression samples and covariates are described in Tables C2 and C3. First-stage results are reported in
Table C2, Panel B. Standard errors clustered by year are in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Across specifications, the estimated coefficients and the standard errors do not
vary much when γ < 0.1 · β and γ < 0.5 · β. The bias is meaningful only under a
large violation of the exclusion restriction—i.e., when the direct effect of the cohort
is almost the same as the effect of the Season. Although these results do not allow
me to make inferences about my estimates, they suggest that for plausible small vi-
olations of the exclusion restriction, the cohort size instrument would still be valid.

Assessing selection on unobservables. Here, I evaluate the size of the endo-
geneity bias in the absence of instrumentation. Note that the IV and raw marginal
effects reported in Tables C2 and C3 are quite similar, suggesting that the bias
is, in fact, small.

The endogeneity bias will be large if there is substantial unobserved heterogene-
ity. To assess the potential effect of unobserved variables, I use the insight from Al-
tonji et al. (2005) that selection on observables can be used to gauge the potential
bias from unobservables. The strategy involves examining how much the coefficient
of interest changes as control variables are added and then inferring how strong the
effect of unobservables has to be to explain away the estimated effect. Formally,
consider two individual regressions of the form yi,t = β At + V′tλ + X′i,tδ + εi,t.
In one regression, Vt and Xi,t include only a subset of control variables. Call the
coefficient of interest in this “restricted” regression βR. In the other regression,
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Table C10: IV estimates for plausibly exogenous cohort size instrument

Baseline γ = .1 · β γ = .25 · β γ = .5 · β γ = .75 · β
[1] [2] [3] [4] [5]

β̂(γ) for Husband -0.010*** -0.012*** -0.014** -0.018** -0.022**
is a commoner (0.004) (0.004) (0.005) (0.007) (0.01)

β̂(γ) for Wife in 0.034*** 0.038*** 0.046*** 0.057*** 0.069***
same acres class (0.01) (0.011) (0.014) (0.018) (0.023)

β̂(γ) for Wife in 0.031*** 0.036*** 0.042*** 0.054*** 0.065***
same rents class (0.006) (0.007) (0.009) (0.013) (0.017)

β̂(γ) for Mismatch -0.224** -0.251** -0.291* -0.359* -0.43*
in acres (0.112) (0.127) (0.150) (0.190) (0.230)

β̂(γ) for Mismatch -0.167* -0.187* -0.217* -0.267* -0.317*
in rents (0.086) (0.097) (0.115) (0.144) (0.174)

β̂(γ) for Mismatch -0.740** -0.829** -0.962** -1.185** -1.407**
in SES (0.343) (0.390) (0.463) (0.6) (0.712)

β̂(γ) for Wife -0.027* -0.030* -0.036* -0.045* -0.054*
in same region (0.015) (0.017) (0.020) (0.025) (0.030)

β̂(γ) for Distance 1.787** 2.028** 2.390** 2.994** 3.597**
between seats (0.732) (0.840) (1.009) (1.304) (1.606)

Note: This table reports IV point estimates β̂(γ) for the effects of the number of attendees at royal
parties (in 100s) on the corresponding marriage outcome in the rows. Each column assumes different

values for γ, the direct effect of the cohort size instrument on marriage outcomes—i.e., Yi,t = βÂt +
X′i,tλ + V′tδ + γ Cohortt + εi,t in the second stage described in Section C of the paper. Regression

samples and covariates are described in Tables C2 and C3. First-stage results are reported in Table
C2, Panel B. Robust standard errors are in parentheses; *** p<0.01, ** p<0.05, * p<0.1

covariates include the “full set” of controls. The corresponding coefficient is βF .
The ratio βF/(βR−βF ) reflects how large the selection on unobservables needs to
be (relative to observables) for results to become insignificant.

Table C11 suggests that the endogeneity bias arising from unobserved hetero-
geneity is small. Of the 24 ratios reported,21 none is less than one. The ratios
range from 1.2 to 68.5, with a mean ratio of 5.8. For example, when the restricted
set of controls includes only time effects, the effect of unobservables would have
to be ca. two times larger than the effect of the covariates to explain away the
impact of the Season on the probability of peers’ daughters marrying commoners.

Classic IV specification. In Section III, I use a triangular IV model in which the
treatment and the instruments vary at the year level, whereas marriage outcomes
are measured at the individual level. Specifically, I exclude the individual-level
covariates from the first stage and estimate the recursive equation systems (1)
and (2); and (1) and (3) using the STATA user-written command cmp (Roodman
2015). As opposed to ivprobit, the command cmp is suitable for triangular IV
models.

Here, I estimate a “classic” IV model including all covariates in the first stage
and show that results are robust. Formally, the number of attendees at royal

21Ratios for the distance between spouses’ seats are not reported because Table C3 already
makes clear that the endogeneity bias is strong in this dimension.
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parties in a given year, At, is treated as an endogenous variable and modeled as

At = Z′tρ+ V′tη + Xi,t + νt , (4)

where Zt is the vector of instruments. It includes an indicator for the interruption
of the Season (1861–63) and the size of the marriageable cohort—measured as the
number of peers’ daughters between ages 18 and 24 at year t, and an indicator
for 1851, the year of the Great Exhibition. The vector Vt includes alternative
predictors such as the sex ratio or the length of the railway network—a proxy for
commuting costs. The vector also includes a time trend, and decade fixed effects,
which, together with the an indicator for 1851 should account for the time effects
described in Figure 3.

The effect of the Season on sorting along discrete characteristics (e.g., social
class) is captured by coefficient β in

Pr
(
yi,t|Ât,Vt,Xi,t

)
= Φ

(
β Ât + V′tλ+ X′i,tδ

)
, (5)

where yi,t is an outcome for individual i marrying in year t (e.g., married a com-
moner) and φ is the CDF of the standard normal distribution. For continuous
characteristics, I estimate

Yi,t = B Ât + V′tΛ + X′i,t∆ + εi,t , (6)

where the dependant variable is the difference between husband’s and wife’s con-
tinuous characteristic Y (e.g., difference in acres). In both models, Xi,t is a vector
of individual controls, including social status, age at marriage, or birth order.

Table C12 presents the results of this IV model including all covariates in the
first stage. Panel A presents the effect of the Season on the rate of intermarriage
with commoners. As before, columns [1] to [3] only consider women. The results
are consistent with those of Sections C in the appendix and III.B in the main text:
the Season was a key determinant of sorting by social position among women. For
example, using exogenous variation from the interruption of the Season alone (col.
[2]), I find that increasing the number of atendees by five percent—250 additional
attendees—decreases the probability of the average peer’s daughter marrying a
commoner by ca. one percentage point. Cols. [4] to [6] show that the Season
is negatively associated with the rate of peer-commoner intermarriage for peers
and peers’ sons, although the IV effects are smaller than those for women and not
significantly different from zero (col. [6]).

Panels B and C confirm that the effects of the Season on sorting by landed
wealth are largely robust to this alternative specification. In the full specification,
every 250 additional attendees would increase the chances of men marrying within
the same wealth class by 2 (acreage) and 2.25 (land rents) percentage points. In
cols. [4] to [6], I consider a continuous measure of sorting: the absolute value
of the difference between spouses’ acreage in percentiles. Every 250 additional
attendees at royal parties would decrease this measure of mismatch by 0.6 (acres)
and 0.4 (land rents).
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Table C12: Robustness using standard IV

[1] [2] [3] [4] [5] [6]

Panel A: Spouse is a commoner
Women Men

probit IVprobit IVprobit probit IVprobit IVprobit

Attendees Season (100’s) -0.003*** -0.003*** -0.003*** -0.002* -0.004** -0.002
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Observations 775 279 775 979 356 979
F-stat from first stage . 21 67 . 22 78
% correctly predicted 70 71 70 75 76 75
Sargan test (p-val) . . p=0.22 . . p=0.28

Panel B: Wife in same land class (acres) Mismatch (acres)

probit IVprobit IVprobit OLS IV IV

Attendees Season (100’s) 0.005*** 0.003** 0.008*** -0.205 -0.278*** -0.227**
(0.002) (0.001) (0.002) (0.122) (0.106) (0.108)

Observations 257 101 257 171 63 171
F-stat from first stage . 19 70 . 18 81
% correctly predicted 84 83 84 . . .
Sargan test (p-val) . . p=0.33 . . p=0.46

Panel C: Wife in same land class (land rents) Mismatch (land rents)

probit IVprobit IVprobit OLS IV IV

Attendees Season (100’s) 0.008*** 0.010*** 0.009*** -0.209** -0.284*** -0.167**
(0.001) (0.003) (0.002) (0.101) (0.100) (0.082)

Observations 257 101 257 171 63 171
F-stat from first stage . 19 68 . 18 82
% correctly predicted 77 80 77 . . .
Sargan test (p-val) . . p=0.96 . . p=0.59

Panel D: Mismatch (pca)

OLS IV IV

Attendees Season (100’s) -0.66** -1.48** -0.75**
(0.32) (0.71) (0.33)

Observations 170 62 170
R-squared 0.5 0.5
F-stat from first stage . 15 87
Sargan test (p-val) . . p=0.38

Panel E: Wife < 100 miles Distance in miles

probit IVprobit IVprobit OLS IV IV

Attendees Season (100’s) -0.007*** -0.004** -0.007* 1.169* 1.514*** 1.788**
(0.003) (0.002) (0.004) (0.622) (0.275) (0.719)

Observations 167 60 167 167 62 167
F-stat from first stage . 36 63 . 36 63
% correctly predicted 68 68 68
Sargan test (p-val) . . p=0.12 . . p=0.51

Individual controls YES YES YES YES YES YES
Marriage market controls YES NO YES YES NO YES
Decade FE and trend YES YES YES YES YES YES
Sample years 1851-75 1858-66 1851-75 1851-75 1858-66 1851-75

Note: Samples and covariates are defined in Tables C2 and C3. Standard errors are in parentheses;
*** p<0.01, ** p<0.05, * p<0.1.
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In Panel D, I consider the pecking order defined in Section C. Specifically, my
measure of sorting is the absolute value of the difference between the ranking of a
male aristocrat and the ranking of his wife—i.e., when the measure is 0, it indicates
that the ith ranked man is married to the ith ranked woman. When the measure
takes larger values, it indicates less sorting. Whether I use exogenous variation
in attendance due to the interruption of the Season, or the full set of instruments
including changes in cohort size, I find that attendance at the Season increases
sorting. Increasing attendance by 600 people would allow male aristocrats to
marry a wife four to nine positions closer in the pecking order. Given that the
mean difference between spouses’ socio-economic rank is ca. 80 positions, this
corresponds to a five to ten percent increase in sorting. These effects are very
similar to those estimated in Section C using a triangular IV model.

Finally, Panel E shows that the results on geographic sorting are similar for
this alternative specification. As before, for every 250 additional attendees, the
probability of marrying a wife from within 100 miles decreases by 1-1.75 percentage
points, and the distance between spouses’ seats increases by around 4 miles.
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C. 6 Variable definitions

Table C13: Definition of main regression variables

Dependent variables

Spouse is a commoner Spouse was neither a peer nor the son of a peer. Note that in
Britain members of the gentry were considered commoners.

Wife in same class
(acres)

Wife’s family is in the same land class (acres). Classes are:
>100,000 acres; 50,000 to 100,000; 20,000 to 50,000; 10,000 to
20,000; 6,000 to 10,000; and 2,000 to 6,000 (Bateman (1883): 495).

Wife in same class
(rents)

Wife’s family is in the same decile or a contiguous decile of the
distribution of land rents.

Mismatch (acres) Absolute value of the difference in spouses’ acreage percentile.

Mismatch (land rents) Absolute value of the difference in spouses’ land rents percentile.

Mismatch (PCA) Absolute value of the difference in SES ranking based on principal
component analysis.

Wife < 100 miles Indicator for spouses whose family seats are located within 100
miles.

Distance btw. seats Aerial distance in miles between spouses’ family seats.

Independent variables and instruments

Attendees (100s) Numbers attending royal parties during the London Season in a
given year (in hundreds).

Aged 22 in 1861 Whether a woman was 22 on March 31, 1861—when the interrup-
tion of the Season started

Interruption (1861–
63)

Indicator for years 1861–63, when the Season was disrupted by
Queen Victoria’s mourning.

Marriage cohort size Number of peers’ daughters aged 18–24 in a given year.
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Table C13: Definition of main regression variables (continuation)

Covariates

Proportion of similar
partners in the mar-
ket (social status)

Percentage of people of the opposite sex aged± 2 years in the same
social class as individual i. Social classes are (i) duke, marquis,
or earl; (ii) baron or viscount; (iii) baronet; (iv) knight; and (v)
commoner.

Proportion of similar
partners in the mar-
ket (acres)

Percentage of women aged 18–24 in the same class (acres) as
landowner i. Classes are: >100,000 acres; 50,000 to 100,000;
20,000 to 50,000; 10,000 to 20,000; 6,000 to 10,000; and 2,000
to 6,000 (Bateman 1883: 495).

Proportion of similar
partners in the mar-
ket (land rents)

Percentage of women aged 18–24 in the same decile or a contiguous
decile of the distribution of land rents as landowner i.

Relative size of local
marriage market

Percentage of women aged ± 2 years whose family seat is in the
same NUTS1 (England & Wales), electoral region (Scotland), or
province (Ireland) as landowner i’s seat.

Sex ratio Number of peers and peers’ sons aged 19–25 to peers’ daughters
aged 18–24. When women are underreported, I assume that the
number of women was 0.95 times the number of men born in the
same year.

Ratio of heirs to
peers’ daughters

Number of peers’ heirs aged 19–25 to peers’ daughters aged 18–
24. When women are underreported, I assume that the number of
women was 0.95 times the number of men born in the same year.

Railway length Miles of railway in Britain and Ireland in a given year (Mitchell
1988, Ch.10, Table 5).

Social position Indicators for each of the following social positions: Commoner,
Barons’/Viscounts’ offspring, Dukes’/Marquis’/Earls’ offspring,
Barons’/Viscounts’ heir (at age 15), and Dukes’/Marquis’/Earls’
heir (at age 15).

Birth order (exc.
heirs)

Birth order among all siblings excluding heirs.

Acreage (percentile) Percentile in the distribution of acres from Bateman (1883) (i.e.,
percentile among all peers and peers’ offspring owning more than
2,000 acres, worth £2,000 a year by 1876).

Land rents (per-
centile)

Percentile in the distribution of land rents from Bateman (1883)
(i.e., percentile among all peers and peers’ offspring owning more
than 2,000 acres, worth £2,000 a year by 1876).

Ownership of woods Whether the family was in possession of woods.

Land since Henry
VIII

Indicates that the family is listed in Shirley’s “Noble and Gentle
Men of England” as holding land in England since the time of
Henry VII.

Age at marriage Age at marriage, based on birth and marriage dates.

English title Father held a title in the peerage of England (as opposed to a
Scottish or Irish peerage).

Indicator for 1851 Indicator for 1851, year of the Great Exhibition in London.
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Appendix D. Additional descriptive evidence

This appendix discusses the importance of land as a source of wealth after the
Industrial Revolution and compares the peerage and the top one percent in the
United States today.

D. 1 Landownership after the Industrial Revolution

Despite the advent of the Industrial Revolution, the lion’s share of wealth was
in the hands of the peerage (Cannadine 1990), who could be seen as the top one
percent—or rather, the top 0.03 percent—of late-nineteenth century Britain. Here
I present additional evidence suggesting that wealth was extremely concentrated
in the hands of few landowners by the 1870s. Specifically, Figure D1 plots the
percentage of people leaving £1,000,000 or more, by source of wealth. The data are
from Rubinstein (1977). In the first half of the nineteenth century, 95 percent of all
millionaires were landowners. The percentage remained around 80 percent until
the 1870s. At the turn of the century, land was still the principal source of wealth.
Although the share of millionaires who earned their fortunes in the manufacturing,
food, drink, or tobacco industries grew over time, it was not until the twentieth
century that this source of wealth became more important than landownership.
The percentage of people earning their fortunes in commerce follows a similar
pattern. Finally, professionals and public administrators always represented the
smallest share of millionaires.

Several anecdotes illustrate this pattern. In the 1890s, the London estates
of the Duke of Westminster were worth £14 million, at a time when the typical
manufacturer left around £100,000 and the richest businessman left no more than
£6 million. The catch-up process took a long time: businessmen began to leave
estates exceeding that of Westminster only in the 1920s (Rubinstein 1977: 104).

This evidence is consistent with previous work analyzing the evolution of in-
equality in Britain in the long run. Long and Ferrie (2013) show low rates of
occupational mobility in the nineteenth century. Clark and Cummins (2015) fol-
low a different approach. Tracking wealth at death of people with rare surnames,
they conclude that the top of the wealth distribution in England has remained
largely unchanged since 1800. According to this view, the Industrial Revolution
did not seem to accelerate social mobility.
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assigned to the occupation in which they made their fortune, based on biographical evidence.

Source: Rubinstein (1977)

D. 2 The peerage vs. the top 1 percent

Admittedly, this paper looks at a very specific population living in a very specific
historical setting. Can the study of the British peerage in the nineteenth century
tell us something about modern-day elites? Table D1 compares the nineteenth-
century British peerage to the people at the top 1 percent of the income distri-
bution in the United States today. Both elites are immensely rich. The average
annual income of an individual in the top 1 percent is $1,300 thousand (Wolff
2013). The average British peer listed in (Bateman 1883) as a great landowner
earned £23,400 a year. To calculate the equivalent in current US dollars, I first
multiply this number by the percentage increase in the retail price index from
1870 to 2008. Then, I use a 1.5 pound-to-dollar exchange rate. This gives me
an annual income of about $2,500 thousand. Peers’ incomes were almost double
those of the top 1 percent.

In terms of marriage outcomes, both elites are remarkably similar. According
to Bakija et al. (2012), 12.5 percent of members of the top 1 percent never marry.
The corresponding percentage for peers and peers’ sons is 15.2. Interestingly,
marital sorting is also similar across groups. Among the top 1 percent, 24 percent
marry spouses in top-notch jobs: executives, managers, supervisors, financial pro-
fessionals, lawyers, business operations specialists, scientists, entrepreneurs, and
skilled salespeople (excluding real estate). This percentage is almost the same as
the proportion of peers and peers’ sons marrying a peer daughter between 1851
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and 1875, 25.8 percent.
Finally, the top 1 percent and the peerage show similar support for liberal

policies (by the standards of their times). Combined Gallup polls between 2009
and 2011 indicate that 20 percent of the very wealth identify themselves as lib-
erals (Saad 2011). Similarly, 20.7 percent of peers listed in Bateman (1883) as
great landowners were members of liberal clubs such as Brook’s, Reform, and De-
vonshire (Bateman 1883: 497). The support for conservative policies, however,
was clearer among peers; 55.2 percent of them belonged to Tory clubs (Carlton,
Junior Carlton, Conservative, or St. Stephen’s), while only 39 percent of the top
1 percent call themselves conservatives.

Table D1: The British peerage and the top 1 percent in the United States today

US top 1 percent British peerage

Not married (%) 12.5 Not married (%) 15.2

Spouse in top-notch job (%) 24 Spouse is peer daughter (%) 25.8

Liberal (%) 20 Member of a liberal club (%) 21.0

Conservative (%) 39 Member of a tory club (%) 56.1

Average annual income ($) 1,300k Rents from land (1870 £) 23.4k
Rents from land (2008 $) 2,500k

Notes for the top 1 percent : The sample for rows 1 and 2 is all households with incomes
above $295,000 (excluding capital gains), as reported by the Statistics of Income division of
the Internal Revenue Center in 2005 (Bakija et al. 2012: Table 4). Row 2 restricts the sample
to married individuals. Rows 3 and 4 consider households surveyed in the Gallup polls in
2009–11 with incomes of at least $516,633, which corresponds to the top 1 percent in 2010
based on data from the Tax Policy Center. Row 4 uses households in the top 1 percent from
the 2010 Survey of Consumer Finances (Wolff 2013)
Notes for the peerage: The sample for row 1 is peers and peers’ sons born in 1820–45 living
more than 35 years (i.e., marriageable in 1851–75). Row 2 considers peers and peers’ sons first
marrying in 1851–75. Rows 3 to 5 consider peers and peers’ sons first marrying in 1851–75
and listed in Bateman (1883) as great landowners. See the text for details.
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Appendix E. Conceptual framework appendix

This section develops a basic conceptual framework for understanding the de-
terminants of marital sorting. I construct a two-sided search model that builds
on Burdett and Coles (1997) and incorporate endogenous market segmentation.
Using this model, I derive testable implications for the effect of a reduction in
search costs and an increase in market segmentation on the strength of marital
assortative matching.

E. 1 Baseline two-sided search model

Consider a market populated with a continuum of ex-ante heterogeneous men and
women who wish to form long-term partnerships. Agents are characterized by their
socio-economic status: x for men and y for women. Let x and y be distributed
according to F (x) and G(y) over [0, 1]. The corresponding density functions are
f(x) and g(y). All agents agree on how to rank one another. When a type x man
matches with a type y woman, the former receives utility y and the latter receives
utility x,

ux(y) = y ∀x ∈ [0, 1]
uy(x) = x ∀y ∈ [0, 1].

Therefore, I follow Collin and McNamara (1990), Smith (1995), Bloch and
Ryder (2000), Burdett and Coles (1997), and Eeckhout (1999) and assume utility
to be nontransferable.

Time is discrete and patience is determined by a discount factor β > 0. All
men and women start their lives as singles, a state that yields no payoff. Because
of search costs, it takes time for agents to meet. The rate at which contacts are
made is determined by a matching function. Given the measures of men (λm)
and women (λw), the number of encounters is given by αM(λm, λw), where α is
the efficiency of the matching function and M is increasing in both its arguments.

I define µw(λm, λw, α) =
αM(λm, λw)

λw
as the encounter rate for single women

(analogous for single men).
When two singles meet, they decide whether to propose or not. A match is

formed when both propose to each other. These agents then leave the pool of
singles but are automatically replaced by two clones. This guarantees that the
distributions G and F are time invariant.22

I now define optimal behavior for any woman y. Although being single is
undesirable, it does not necessarily mean that a woman will match with the first
person she meets. It might be wise to wait until a proper proposal comes. Thus,
V (y), the value of being unmatched for women y, depends on the probability of

22In the context of the Season, this assumption is justified by the fact that when the daughter
of a noblemen gets married, her younger sister replaces her by coming out in the Season.
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eventually encountering “acceptable” agents. Formally,

(1−β)V (y) = β µw(λm, λw, α) Ω(y)

∫ 1

0

max

〈
x

1− β
− V (y), 0

〉
dF (x|y) , (E.7)

where Ω stands for the proportion of males who propose to her; F (x|y) is the

distribution of their socio-economic status; and
x

1− β
is the value function for a

woman of type y married to a man of type x.

A woman y will agree to marry a man x if and only if
x

1− β
≥ V (y); that is, she

uses a reservation strategy. Note that reservation strategies will be nondecreasing
in type. Consider two women with types yh and yl, where yh > yl. Men accepting
woman yl will also be willing to marry woman yh. Therefore, she cannot fare
worse in the marriage market than any lower ranked women—i.e., V (yh) ≥ V (yl).
(Burdett and Coles 1997) used this argument to find a unique equilibrium, which
they called the Class Partition Equilibrium:

Proposition 1 (Class Partition Equilibrium.) The marriage equilibrium consists
of a sequence of strictly decreasing reservation strategies {an}N

w

n=0 for women and

{bn}N
m

n=0 for men, where a0 = b0 = 1 and for all n ≥ 1, an and bn satisfy

an =
β

1− β
µw(λm, λw, α)

∫ an−1

an
[x− an]f(x)dx (E.8)

and

bn =
β

1− β
µm(λm, λw, α)

∫ bn−1

bn
[x− bn]g(x)dx . (E.9)

Proof: This proof follows Burdett and Coles (1997) and goes by induction. For
the basis step, consider the problem faced by the most desirable woman (y = 1).
All men will propose to her, so Ω(1) = 1 and F (x|1) = F (x) ∀x. Hence, her

optimal reservation match is r(1) = β
1−βµw(λm, λm, α)

∫ 1

r(1)
[x − r(1)]f(x)dx. The

reservation strategy for the most attractive man, ρ(1), is derived analogously. Note
that r(1) < 1, ρ(1) < 1, r(1) = a1, and ρ(1) = b1 as defined in Proposition 1.

Note also that if the most desirable woman (y = 1) or man (x = 1) is willing to
accept an individual, then that individual shares the same reservation strategy as
the most desirable of her sex. Consider a man of type x ∈ [r(1), 1]. Since the most
desirable woman is willing to marry him, all women will be willing to marry him,
and, hence, Ω(1) = 1 and G(y|x) = G(y) ∀y. This implies that ρ(x) = ρ(1). The
same is true for women of type y ∈ [ρ(1), 1]. Redefine a1 ≡ r(1) and b1 ≡ ρ(1).
It follows clearly that men with x ∈ [a1, 1] and women with y ∈ [b1, 1] form an
endogamic marriage class (class 1), in that agents in this class only marry members
of this same class and reject all others.

Now, assume that for n − 1, men with x ∈ [an−1, an−2] and women with y ∈
[bn−1, bn−2] form an endogamic marriage class (class n− 1), in that agents in this
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class only marry members of this same class, reject individuals of lower type, and
are rejected by those in class n− 2.

For the inductive step, consider the most desirable women not in class n− 1,
y′ + ε = bn−1 for an arbitrarily small ε > 0. By the inductive assumption, she is
rejected by class n−1 men. However, for all the men with x < an−1, she is the best
available suitor. Thus, they all will propose to her. That is, Ω(y′) = F (an−1). The

density function of these men under class n − 1 is given by f(x)
F (an−1)

for x ≤ an−1.

Substituting this into equation (E.7) yields:

r(y′) =
β

1− β
αM(λm, λw)

λw

∫ an−1

r(y′)

(x− r(y′))f(x)dx .

Similarly, for men x′ + ε = an−1, Ω(x′) = G(bn−1) and g(y)
G(bn−1)

for y ≤ bn−1. Thus,

ρ(x′) =
β

1− β
αM(λm, λw)

λm

∫ bn−1

ρ(x′)

(y − ρ(x′))g(y)dy .

Again, redefine r(y′) ≡ an (ρ(x′) ≡ bn), which denotes the lowest type man
(woman) acceptable to the most desired women (man) not in class n − 1. Since
r(·) (ρ(·)) is nondecreasing, all women (men) not in class n− 1 will propose to a
man (woman) with x ≥ an (y ≥ bn). Men satisfying x ∈ [an, an−1] and women
with y ∈ [bn, bn−1] form marriage class n: they only accept each other, reject those
of lower type, and are rejected by those in class n− 1. Q.E.D.

Under this simple preference specification in which one’s type affects her payoff
only through whom she can match with, positive assortative matching arises nat-
urally.23 The highest ranked men and women form endogamic marriage classes,
while individuals in the lower tail of the socio-economic distribution, although
preferring to marry top partners, are “forced” together. Sorting will therefore be
stronger in equilibria with a larger number of smaller classes.24 I use this intuition
to define the degree of sorting in a marriage equilibrium.

Definition 1 (Sorting) A marriage equilibrium {an}N
w

n=0, {bn}N
m

n=0 displays a larger

degree of sorting than an equilibrium {ân}N̂
w

n=0, {b̂n}N̂m

n=0 if an ≥ ân and bn ≥ b̂n

for all n, holding with inequality for some n, and N i ≥ N̂ i for i = m,w.

23More generally, a class partition equilibrium arises when utility is non-transferable and
preferences are multiplicatively separable—i.e., ui(x, y) = f1(x) · f2(y) for i = x, y (Eeckhout
1999).

24To illustrate this, consider two extreme cases. If there is only one marriage class, all agents
marry the first person they meet; the characteristics of your spouse are completely independent
of your own. That is, there is no sorting at all. Instead, consider an equilibrium in which people
only marry those who look exactly like themselves. In this case, there are an infinite number of
“singleton” marriage classes, leading to perfect positive assortative matching.
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E. 2 Implications of a reduction in search costs

Because of search frictions, it takes time for agents to meet. Here I consider two
ways in which the matching technology can increase the rate at which contacts
are made, and, thus, reduce search costs: a more efficient matching technology
and an increase in market depth. Formally, I assume that the encounter rate

µi(λ
m, λw, α) =

αM(λm, λw)

λw
for i = {w,m} is increasing in α and in λi. Thus,

I depart from the standard assumption in the literature of constant returns to
scale.25 26

How is marital sorting affected by such reduction in search costs? The main
trade-off that agents face in this model is between marrying sooner to enjoy mar-
riage flow utility and waiting to get a proper match. As search costs are reduced,
the value of waiting increases; singles reject more offers and end up forming a
larger number of smaller classes in equilibrium. In other words, sorting increases.
Figure E1 gives an example of how the class equilibrium changes as the match-
ing technology becomes more efficient and as participation rates increase. In this
example, populations are symmetric, λm = λw = λ, and types are uniformly dis-
tributed on [0, 1], F (x) = G(x) = x. The matching function is M(λ) = λ2, so the
encounter probability is subject to increasing returns to scale. Equilibrium classes

are, thus, a0 = 1 , an = an−1 −
√

1−β
βαλ

(√
1− β + 2βαλan−1 −

√
1− β

)
. Assuming

that λ = 1 and the discount factor β is 0.8, an increase in the efficiency of the
matching technology from α = 0.5 to α = 1 increases the number and decreases
the size of the equilibrium marriage classes (Panel A). Similarly, an increase in
the mass of participants from λ = 1 to λ = 1.5 also leads to more sorting in the
marriage market (Panel B).

Proposition 2 generalizes this result:

Proposition 2 As the matching technology becomes more efficient (larger α) and
as the measure of men and women increases (larger λm, λw), the degree of sorting
in equilibrium increases.

Proof: This proof follows (Bloch and Ryder 2000). According to Proposition 1,
class bounds are such that

an − β

1− β
αM(λm, λw)

λw

∫ an−1

an
(x− an)f(x)dx = 0 .

25Other models departing from the constant returns to scale assumption include Mortensen
(1988), Chiappori and Weiss (2006), Anderberg (2002), and Gautier et al. (2010). In my context,
this choice is justified by the fact that noble families from all over the country moved to London
to get their offspring married, which hints at the existence of some sort of increasing returns to
scale in the matching technology embedded in the Season.

26The clone replacement assumption—i.e., the fact that matched agents are automatically
replaced by two clones in the pool of singles—is crucial in order to avoid multiple equilibria once
I introduce increasing returns to scale.
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Panel A: Encounter speed (α)

x

y

β = 0.8; λ = 1; and α = 0.5

β = 0.8; λ = 1; and α = 1.0

Panel B: Num. of attendees (λ)

x

y

β = 0.8; λ = 1.0 ; and α = 0.5

β = 0.8; λ = 1.5 ; and α = 0.5

Figure E1: Comparative statics on search costs
This figure displays the equilibrium defined in Proposition 1 with symmetric populations, λm =

λw = λ, and types uniformly distributed on [0, 1], F (x) = G(x) = x. The matching function is

M(λ) = λ2, so the encounter probability is subject to increasing returns to scale.

Using the implicit function theorem, the Leibniz integral rule, and some rearrange-
ment, I find that

∂an

∂α
=

β

1− β
M(λm, λw)

λw
∫ an−1

an
(x− an)f(x)dx

1 +
β

1− β
αM(λm, λw)

λw
[F (an−1)− F (an)]

≥ 0 .

Similarly, if the matching technology is subject to increasing returns to scale—i.e.,
∂M(λm,λw)/λw

∂λw
> 0 then

∂an

∂λw
=

β

1− β
α
∂M(λm, λw)/λw

∂λw
∫ an−1

an
(x− an)f(x)dx

1 +
β

1− β
αM(λm, λw)

λw
[F (an−1)− F (an)]

≥ 0 .

The proof now goes by induction. For the basis step (n = 1), note that
∂a1

∂α
> 0

and
∂a1

∂λw
> 0. Assume that for n−1,

∂an−1

∂α
≥ 0 and

∂an−1

∂λw
≥ 0. For the inductive

step note that
dan

dα
=
∂an

∂α
+

∂an

∂an−1

∂an−1

∂α
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and
dan

dλw
=
∂an

∂λw
+

∂an

∂an−1

∂an−1

∂λw
.

By the inductive hypothesis,
∂an−1

∂α
≥ 0 and

∂an−1

∂λw
≥ 0. Also, using the implicit

function theorem, Leibniz integral rule, and some rearrangement, it can be shown
that

∂an

∂an−1
=

β

1− β
αM(λm, λw)

λw
(an−1 − an)f(an−1)

1 +
β

1− β
αM(λm, λw)

λw
[F (an−1)− F (an)]

≥ 0 .

Therefore,
dan

dα
≥ 0 and

dan

dλw
≥ 0. A similar argument shows that

dbn

dα
≥ 0 and

dbn

dλm
≥ 0 for all n = 1, ..., Nm. Q.E.D.

Furthermore, if the increase in the encounter rate is large enough, the equilib-
rium might reach perfect assortative matching—i.e., the nth ranked woman marries
the nth ranked man.

Proposition 3 (Adachi 2003) As search costs become negligible, the set of equi-
libria converges to the set of stable matches derived under the deferred acceptance
algorithm (Gale and Shapley 1962), with perfect assortative matching.

Proof: This proof follows Bloch and Ryder (2000). For ease of exposition, assume
men and women are symmetric—i.e., λ ≡ λm = λw, and F (x) = G(y) ∀x = y ∈
[0, 1]. I start by defining the set of stable matches under the deferred acceptance
algorithm (Gale and Shapley 1962).

Definition 2 A matching is a one-to-one measure-preserving mapping from the
set of men to the set of women. A matching is optimal if it maximizes total utility.
A matching σ is unstable if there exists a blocking couple (x,y) in which both x and
y are individually better off together than with the agent to which they are matched
under σ—i.e., y > σ(x) and x > σ−1(y). The Gale-Shapley deferred acceptance
algorithm yields a stable and optimal matching ν.

Lemma 1 Under the assumption than men and women are symmetric, the Gale-
Shapley deferred acceptance algorithm yields a unique stable and optimal matching
ν such that ν(x) = x.

To proof lemma 1, note that under symmetric populations and since one’s type
does not affects her payoff, any measure-preserving mapping is optimal. Formally,
Uν =

∫ 1

0
xf(x)dx = Uσ =

∫ 1

0
σ(x)f(x)dx for any measure-preserving matching σ,

where U is the total utility.
Consider any measure-preserving matching σ : [0, 1]→ [0, 1] such that σ(x) 6=

ν(x). To show that such mapping σ is not stable, I partition the set of men into
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three disjoint sets: those who are better or under σ, those who are assigned to the
same women under σ and ν, and those that prefer their ν assignment.

X = {x ∈ [0, 1] : σ(x) > ν(x)}

Y = {x ∈ [0, 1] : σ(x) = ν(x)}

Z = {x ∈ [0, 1] : σ(x) < ν(x)}

Since σ and ν are measure preserving and σ(x) 6= ν(x), X and Z have a
positive measure. Now note that σ−1(x0) = σ−1(ν(x0)) = x1 can be interpreted
as a mapping assigning to any man x0 the man x1 whom, under σ, is matched to
x0’s partner under ν.

Clearly, σ−1(Y ) = Y , since these are the men whose assigned women do no
change under σ and ν. Hence, σ−1(X∪Z) = X∪Z. I now show that σ−1(X) 6= X.
Suppose x1 = σ−1(x0) ∈ X ∀x0 ∈ X. Then σ(x1) = ν(x0) > ν(x1). Since ν(x) =
x ∀x, xo > x1. Hence, σ−1 would map X into a proper subset of X. Therefore, for
σ−1 to be measure preserving, there must be a full measure x ∈ Z : σ−1(x) ∈ X.
But if σ−1(x) ∈ X, then x > σ−1(x) so that woman ν(x) = x prefers x to her
match according to σ. Further, since x ∈ Z, σ(x) < ν(x) so man x prefers woman
ν(x) = x to his current match σ(x). This couple (x, x) is indeed a blocking couple,
implying that σ 6= ν is unstable.

Finally, to show that ν(x) = x is stable, consider any blocking couple (x, y) :
y 6= x. If y > x, then the women prefers ν−1(y) = y to x. If y < x, it is the
man who prefers ν(x) = x to y. This implies that the set of blocking couples for
ν(x) = x is empty. This concludes the proof of lemma 1.

Once equipped with Lemma 1, it is straightforward to show that as search
costs disappear, the marriage equilibrium converges to ν(x) = x. According to
Proposition 2, as α increases, marriage classes in equilibrium become smaller.
Formally,

an =
β

1− β
αM(λ)

λ

∫ an−1

an
(x− an)f(x)dx

is such that
∂an

∂α
≥ 0. Similarly, using the implicit function theorem, the Leibniz

integral rule, and some rearrangement,

∂an

∂β
=

β

(1− β)2

αM(λ)

λ

∫ an−1

an
(x− an)f(x)dx

1 +
β

1− β
αM(λ)

λ
[F (an−1 − F (an)]

≥ 0 .

Now I show that
dan

dβ
≥ 0 by induction. Clearly, for a1,

∂a1

∂β
> 0. For any n > 2,

dan

dβ
=
∂an

∂β
+

∂an

∂an−1

∂an−1

∂β
≥ 0 since

∂an

∂β
≥ 0,

∂an

∂an−1
≥ 0 as shown in the proof

of Proposition 2, and
∂an−1

∂β
≥ 0 by the inductive hypothesis.
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As search costs disappear, that is, as the matching efficiency α and the dis-
count factor β increase, the class bounds an collapse to two sequences {x}x∈[0,1].
The highest-type men and women x = 1 consequently adopt a threshold strategy
such that they only match with agents of type x = 1. The highest ranked men
and women not in class 1 again adopt a threshold strategy such that they only
match with the highest ranked agents not in class 1. Iteration of this argument
gives rise to ν(x) = x, the unique stable and optimal matching derived by the
Gale-Shapley deferred acceptance algorithm (Lemma A1). Q.E.D.

Two testable implications follow from propositions 2 and 3. When the London
Season was well-attended, the children of the nobility should marry others who are
closer in the “pecking order”. Instead, when the Season was disrupted after the
deaths of Prince Albert and Queen Victoria’s mother, I expect to observe much
less sorting in terms of social status and landed wealth.

E. 3 Implications of market segmentation

In this section, I introduce endogenous segregation in the model and evaluate
its effects on marital sorting. Although segregation in the marriage market is
common, this feature is not usually incorporated into two-sided models of marriage
search. Bloch and Ryder (2000) and Jacquet and Tan (2007) stand as notable
exceptions.

Henceforth, for ease of exposition, I assume that the male and female popu-
lations are symmetric—i.e., that λm = λw = 1 and F (x) = G(x) ∀x ∈ [0, 1]. I
introduce a market maker to the economy who proposes excluding the least de-
sirable suitors from the marriage market by charging a participation fee p. Each
agent can then decide whether to go to the exclusive marketplace and avoid meet-
ing these suitors at a cost p or to remain in the unrestricted marriage market. I
call an equilibrium in which the least desirable suitors are excluded a segregation
equilibrium.

Definition 3 A segregation equilibrium is a measurable subset (z, 1] such that for
all x ∈ (z, 1], Ṽ (x) − p ≥ V (x), where Ṽ and V are the corresponding values of
searching in the exclusive and the unrestricted marriage markets, respectively.

Since the matching technology has increasing returns to scale, this model is
subject to multiple equilibria. I show that a segregation equilibrium exists by
constructing one. I first define the marriage equilibria in the unrestricted and
exclusive markets under segregation. After that, I calculate the equilibrium fee
p∗. Finally, I show that under segregation no agent has an individual incentive to
switch from the exclusive to the unrestricted market, or vice versa.

Provided that the segregation equilibrium exists, the unrestricted marriage
market is characterized by a mass F (z) of individuals distributed according to
f(x)

F (z)
. The equilibrium takes the form of a class partition {an}Nn=0 in which the

cluster’s bounds an are defined according to Proposition 1. Similarly, the exclusive
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marriage market would be populated with 1 − F (z) individuals distributed over
f(x)

1− F (z)
. The equilibrium will also take the form of a class partition {ã}Ñn=0.

The participation fee p has to be such that agents of type z do not want to
switch to the exclusive marriage market. Note that a type z agent would be the
most desirable individual in the unrestricted market. Thus, her value of search
there would correspond to the value of search in the top class [a1, z]

V (z) =
β

1− β
αM(F (z))

F (z)

∫ z

V (z)
(x− V (z))

f(x)

F (z)
dx .

In contrast, in the exclusive marriage market, z would be on the lowest class

[z, ãÑ ], with a value of search of

Ṽ (z) =
β

1− β
αM(1− F (z))

1− F (z)

∫ ãÑ

z
(x− z) f(x)

1− F (z)
dx .

Therefore, for the segregation equilibrium to exist, the participation fee has to be
such that p∗ = ˜V (z)− V (z).

Now I show that with this p∗ and under the belief that types above z participate
in the exclusive marriage market, all agents of type x < z have an individual
incentive to remain in the unrestricted market. First, consider all agents in [a1, z).
Following the intuition in Proposition 1, they will behave in the same way as z
in the unrestricted marriage market, since there they are desired by the highest-
type of the opposite sex. So, the value of searching for a mate in the unrestricted
market is such that V (x) = V (z) = a1 for all x ∈ [a1, z). Alternatively, if agents in
[a1, z) switched to the exclusive marriage market, they would at most be included

in the last marriage class, as agent z. It could even be the case that ãÑ > x
for some x ∈ [a1, z), which means that nobody in the exclusive marriage market
would marry them. In such a case, she would only marry agents of type x < z
who also had switched markets and therefore have a value of search Ṽ (x) ≤ Ṽ (z).
Altogether, this implies that for all x ∈ [a1, z), V (x) ≥ Ṽ (x)− p∗, and, thus, they
prefer the unrestricted market.

This result is not so clear for men and women in the second class of the unre-
stricted market—i.e., x ∈ [a2, a1). If, for example, the exclusive marriage market

is such that ãÑ < z, it might be that some of these individuals of type x ∈ [a2, a1)

are x > ãÑ . In that case, they would be accepted by the lowest class within
the exclusive marriage market, implying V (x) < V (z) = Ṽ (z) − p∗ = Ṽ (x) − p∗.
Therefore, in order to have a segregation equilibrium, it must be that z = ãÑ . If
this assumption holds, then Ṽ (x) < Ṽ (z), implying that V (x) > Ṽ (x)− p∗ for all
x < a1. In other words, individuals of type x < a1 also prefer to remain in the
unrestricted market.

Finally, I show that no type with x > z has an incentive to switch markets.
Consider first the individuals of type x ∈ [z, ãÑ−1), that is, in the lowest marriage

class of the exclusive market. For them, Ṽ (x) = ãÑ−1 = Ṽ (z). If they instead
switch to the unrestricted marriage market, they will be the most attractive types
there, in the top class. Thus, V (x) = V (z). It then follows that Ṽ (x)− p = V (x).
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Since the equilibrium cluster’s bounds ãn are nondecreasing in x, for all x > ãÑ−1,
the value of searching in the exclusive market is such that Ṽ (x) > ãÑ−1 = Ṽ (z).
Then, Ṽ (x)− p > Ṽ (z)− p = V (z) = V (x); that is, all types with x > z prefer to
pay the fee p∗ and attend the exclusive market. This concludes the construction
of the segregation equilibrium. Q.E.D

To produce clear-cut comparative statics, I need to impose more structure on
the matching technology. To see why, consider a technology where the fraction
of the population that is matched increases too fast with respect to the measure
of agents. In such a case, segregation will have two effects: first, it will reduce
the number of participants and consequently the speed of encounters between
remaining singles. Second, segregation will restrict the choice set and soften the
congestion externality imposed by agents who meet but will never match. Since I
am interested in understanding the second effect, I impose a limit on the degree
of increasing returns to scale:

2α
M(λ)

λ
≥ αMλ(λ) > α

M(λ)

λ
. (E.10)

Therefore, I assume that the matching technology is less than quadratic: the num-
ber of matches increases by a factor less than 4 when the number of participants
in the market doubles (Jacquet and Tan 2007).

How would the marriage equilibrium in the exclusive marriage market be af-
fected by an increase in segregation? Under equation E.10, segregation affects
sorting through restricting the choice set to more similar individuals, but also
by reducing the congestion externality. As agents do no longer meet others with
whom they would never match, the rate at which singles meet proper types in-
creases. This will increase the value of waiting, will lead to more rejections in the
marriage market, and, finally, to an increase in sorting.

Figure E2 gives an example of how the class equilibrium changes as lower-
ranked individuals are excluded from the market. The model is calibrated for
the case of symmetric populations (λm = λw) and uniform distributions on [0, 1],
F (x) = G(x) = x. The matching function is M(λ) = λ1.1, so the encounter
probability is subject to increasing returns to scale but matched agents do not
increase too fast with respect to the measure of agents—i.e., 2αM(λ)

λ
≥ αM ′(λ) >

αM(λ)
λ

. Equilibrium classes in the exclusive marriage market are, thus, ã0 = 1

, ãn = ãn−1 − (1−z)2
√

1−β
βαM(1−z)

(√
1− β + 2βαM(1−z)

(1−z)2 ãn−1 −
√

1− β
)

. Assuming that

λ = 1 and the discount rate β is 0.8, an increase in the segmentation from α = 0
to α = 0.24 leads to more sorting: on the one hand, the choice set is restricted to
more similar individuals. On the other hand, the congestion externality, the time
agents spent meeting types x < z with whom they will never marry, is reduced.
This leads to an increase in class bounds, and, therefore, to an increase in sorting
in the exclusive marriage market.

Proposition 4 generalizes this result:
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Proposition 4 As segregation increases (larger z), the degree of sorting in equi-
librium increases.

Proof: From Proposition 1, it is clear that marriage classes in the exclusive
market are defined such that:

ãn − β

1− β
α
M(1− F (z))

[1− F (z)]2

∫ ãn−1

ãn
(x− ãn)f(x)dx = 0 .

Using the implicit function theorem, Leibniz integral rule, and some rearrange-
ment, I find that

∂ãn

∂z
=

f(z)
β

1− β
1

[1− F (z)]2

[
2αM(1− F (z))

1− F (z)
− αMλ(1− F (z))

] ∫ ãn−1

ãn
(x− ãn)f(x)dx

1 + α
β

1− β
M(1− F (z))

[1− F (z)]2
∫ ãn−1

ãn
(x− ãn)f(x)dx

.

Since, by assumption
2αM(1− F (z))

1− F (z)
≥ αMλ(1− F (z)), it follows that

∂ãn

∂z
≥ 0.

The proof now goes by induction. For the basis step (n = 1), note that
∂ã1

∂z
≥ 0.

Assume that for n− 1,
∂ãn−1

∂z
≥ 0. For the inductive step note that

dãn

dz
=
∂ãn

∂z
+

∂ãn

∂ãn−1

∂ãn−1

∂z
.

By the inductive hypothesis,
∂ãn−1

∂z
. Also, as shown in the proof of Proposition 2,

∂ãn

∂ãn−1
=

β

1− β
αM(1− F (z))

1− F (z)
(ãn−1 − ãn)f(ãn−1)

1 +
β

1− β
αM(1− F (z))

1− F (z)
[F (ãn−1)− F (ãn)]

≥ 0 .

Therefore,
dãn

dz
≥ 0. Q.E.D.

In the empirical analysis, I test Proposition 4 by looking at how marriage
behavior responded to the interruption of the Season after the death of Prince
Albert and Queen Victoria’s mother. Because royal parties were canceled, poor
and insignificant suitors were not fully screened out, that is, marriage market
segmentation was reduced.
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x

y

β = 0.8; λ = 1; α = 1; and z = 0.00

β = 0.8; λ = 1; α = 1; and z = 0.24

Figure E2: Comparative statics on market segmentation
This figure displays the equilibrium in the exclusive marriage market when a matchmaker can

induce segregation by imposing a participation fee p. In this example, populations are symmetric,

λm = λw = λ, and types are uniformly distributed on [0, 1], F (x) = G(x) = x. The matching

function is M(λ) = λ1.1, so the encounter probability is subject to increasing returns to scale but

matched agents do not increase too fast with respect to the measure of agents—i.e., 2αM(λ)
λ ≥

αM ′(λ) > αM(λ)
λ .
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