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Appendix I Additional NIH Details

A NIH Funding Channels

The application process generates groups of applications in three dimensions, which following
Azoulay et al. (2019b), I refer to as Disease (per the Institute the application is submitted
to for funding, i.e., National Cancer Institute), Science (per the peer review group charged
with evaluating the quality of the application, i.e., Bacterial Pathogenesis) and Time (per the
fiscal year the application is submitted). Applications are peer reviewed per their Science-
Time group and compete for funding per their Disease-Time group. These Disease-Science-
Time (D-S-T) groupings are used to construct counterfactuals in the analysis of Section 4.
Importantly, there are no explicit restrictions on the types of science that may be submitted
to these competitions, so long as it fits within the NIH’s broad objectives. “The NIH’s mission
is to uncover new knowledge that will lead to better health for everyone. Simply described,
the goal of NIH research is to acquire new knowledge to help prevent, detect, diagnose, and
treat disease and disability.”1

Because RFAs are reviewed by a stand-alone peer review group convened just for the RFA,
they are technically each unique D-S-T groupings. Thankfully, the NIH Center for Scientific
Review (CSR) publishes broader sets of peer review groups, which RFA review groups are
assigned to in the administrative data. These “Integrated Review Groups” allow me to
match each RFA to a corresponding D-S-T, with the “S” now defined by the Integrated
Review Groups. See the CSR for further details.2 These D-S-Ts are used to define the
time-specific research area fixed effects included in the analyses of Section 4.

B RFA Generation and Empirical Relevance

Discussions with the NIH staff responsible for managing RFAs indicated two major forces:
political and programmatic. As evidence of the political influence, the NIH’s annual Congres-
sional appropriation bills regularly include “soft earmarks,” where members request research
on specific topics. Hegde and Sampat (2015) find evidence that these diseases referenced by

1This is an approximation of the official funding process, which is outlined here: https://goo.gl/blLuuU,
accessed July 12, 2017.

2https://goo.gl/PmYp2P, accessed July 12, 2017.
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Congress often appear as the focus of grants awarded via RFAs.3 Whether this relationship
would lead my elasticity estimates to be over- or underestimates of the population average de-
pends on whether Congressional preferences are correlated with positive or negative features
of the science (from scientists perspective). Hegde and Sampat’s (2015) findings indicate that
disease advocacy lobbying is a key driver of Congressional preferences, and that this lobbying
is positively correlated with both disease burden and scientific opportunities, which would
suggest a positive correlation between these unobservables, scientists’ preferences and RFA
generation. However, it is important to note that although Congress may request research
on, for example, a specific disease, the nature of RFA mechanisms and their historical use by
NIH staff is such that they rarely target a single topic. In effect, this means that Congress’s
influence will be mixed and muted by the programmatic concerns detailed next. As example,
consider the case of the Zika virus outbreak in 2016-17. Unsurprisingly, following this event,
the Zika virus appeared in both the Congressional appropriations bill as a requested topic
(See: H. Rept. 114-699) and as a part of an RFA (See: https://goo.gl/zQhmN6, accessed
July 12, 2017). But notably, the RFA in which a vaccine for Zika is requested is actually a
broader request for “Countermeasures Against Select Pathogens,” to include a large number
of antimicrobial-resistant bacteria or emerging viral pathogens.

On the other hand, the programmatic reasons cited by NIH staff revolve largely around
targeting unobservables that are, if anything, likely negatively correlated with scientists’
preferences. The staff repeatedly referenced how RFAs are developed to fill “portfolio gaps,”
or in other words, areas of science where the NIH did not have active grants. These intentions
are mirrored in this remark from Thomas Insel, the director of the National Institute of
Mental Health (NIMH), who describes the purpose of RFAs as follows4:

“The NIMH uses RFAs to [1] focus on innovation and high-risk science that may suffer
in peer review of unsolicited applications ... [2] open up fields that have been relatively
neglected ... [3] develop specific, integrated programs that may not be created via
unsolicited grants”

Each of these goals revolve around identifying underserved aspects of science, therefore, areas
of science relatively less preferred by scientists. This would suggest a negative correlation
between any underling trends and the use of RFAs. Whether this correlation is meaningful
enough to be empirically relevant is explored throughout the paper.

C Other Relevant NIH Policies

One difference of note regarding RFA and open applications is that after the review and
funding decision open applications that fail may be revised and resubmitted again as an
open application at a future date. Conversely, the first RFA award decisions are final, so
applications may be revised and resubmitted but as an open application. However, because

3This channel of influence was confirmed by NIH staff, who noted that these formal requests were often
reinforced by direct communications (i.e., phone calls with staffers, on-site visits).

4Excerpted from: https://goo.gl/2zfPru, accessed July 12, 2017.
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applications initially submitted to RFAs and then resubmitted as an open application are
not linked in the NIH data it would be difficult to accurately track such applications. But for
the purposes of the following analyses, because this option value of applications is equivalent
I only examine outcomes for the first (new) application, and note that whether the option
is valued by scientists will not introduce any bias.

Another policy of note is that both successful RFA and open grants may re-apply for con-
tinued funding after the initial funding duration expires, but I focus only on first-year direct
costs because this feature applies to both mechanisms, and examining the lifetime value of
grants potentially introduces selection concerns as more successful projects are more likely
to both pursue these continuation grants and receive them.

In addition to RFAs, NIH also releases “Program Announcements” to solicit certain types
of science. However, these calls are not accompanied by set-aside funds made specifically
available for competition and in practice vary widely in their format. These announcements
are used to facilitate efforts beyond traditional research projects such as conferences, training
grants, and other integrated efforts.

There is one variant of the program announcements (Program Announcements with Set-aside
funds (PASs)) that I include as a part of the RFA set because for all intents and purposes
these mechanisms behave exactly the same as RFAs. This fact was confirmed in discussions
with NIH staff. I focus my analyses on RFAs (and PASs) because of their well-defined
properties both in terms of scientific scope and set-aside funding.
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D Example RFA

The following is excerpted from the RFA at the following link: https://goo.gl/peirW6, ac-
cessed July 12, 2017. For the list of currently active NIH RFA’s and other funding opportu-
nities, visit https://goo.gl/hks3K4.

Figure I.1: Development of New Technologies Needed for Studying the Human Microbiome
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Appendix II Medical Subject Heading Indexing & Data
Construction

Medical Subject Heading (MeSH) terms comprise the National Library of Medicine’s (NLM)
hierarchical dictionary. They provide a useful way to classify “types” of science and generate
units of observation fit for econometric analyses (cf. Azoulay et al. 2010). Details on the con-
struction and maintenance of MeSH is available at https://www.nlm.nih.gov/mesh/.

The process by which the NLM assigns MeSH terms to documents includes both machine
and human review. The algorithm underling the machine assignment step is publicly avail-
able (https://ii.nlm.nih.gov/MTI/), with an interactive version of the software available
as well (https://meshb.nlm.nih.gov/MeSHonDemand). This indexer can extract the MeSH
terms relevant to a body of biomedical text, effectively classifying each abstract into a set
of discrete types of science. Using the RFA announcement from the previous section as
example, the MTI identified the following MeSH terms as relevant: “Computational Biol-
ogy”, “Human Body”, “Chimerism”, “Industrial Development”, “Biofilms’, “Goals’, “Genomics’,
“Metagenomics’, “Sequence Analysis, DNA’, “Genome’, “DNA’, “Cell Separation’, “Micro-
biota’, “Bias’, and “Complex Mixtures”. These terms very intuitively capture the goals of
this particular RFA.

The MTI fared well with the abstract of this particular paper. It identifies the following
terms as relevant: “National Institutes of Health (U.S.)”, “Biomedical Research”, “Financial
Support”, “Financial Management” and “Elasticity”. Although the MeSH term for elasticity
refers not to the economic concept but the mechanical process of resistance and recovery,
illustrating the limitations of generalizing this tool.

In the analyses using MeSH terms, I control for each MeSH term’s position within the MeSH
hierarchy using a set of dummy variables that describe each terms’ distance (in terms of
number of nodes) from its respective top node. Furthermore, I interact this metric with an
indicator for each of the seven top nodes to allow this effect to vary within each major set.
This eliminates variation that arises simply because certain terms are broader than others
(i.e., “Neoplasms,” which is 1 nodes from the top node, versus “Large Granular Lymphocytic
Leukemia,” which is 6 nodes from the top).

For the analyses of Section 2.4, I restrict the sample to include only MeSH terms from the
seven major categories that cover purely “scientific” topics: Anatomy; Organisms; Diseases;
Chemicals and Drugs; Analytical, Diagnostic and Therapeutic Techniques, and Equipment;
Psychiatry and Psychology; Phenomena and Processes.5 I then include MeSH terms that
(1) appear at least once in the NIH application data, (2) occur no more than once in an
RFA. Criterion (1) ensures that I examine only MeSH terms at real risk of being pursued
by NIH applicants and criterion (2) eliminate any variation in the data that may arise from
repeated treatments over the time period I examine.

5The other major categories are: Disciplines and Occupations; Anthropology, Education, Sociology, and
Social Phenomena; Technology, Industry, and Agriculture; Humanities; Information Science; Named Groups;
Health Care; Publication Characteristics; Geographicals.
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The cross-sectional distributions of treated and control terms are presented in Figure II.2.

Figure II.2: Distribution of Scientific Subjects, Treated & Control
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Appendix III Direction, Similarity & the pmra Algo-
rithm

A Choice of Direction & the Role of Similarity

Broadly speaking, there are two main reasons why redirections would be difficult in this
setting: they require both tangible (i.e., equipment) and intangible costs (i.e., preferences,
cognition). With this in mind, the elasticity I estimate is a behavioral parameter in that its
magnitude is driven by these tangible and intangible aspects.

In the biomedical sciences, the pecuniary costs of adjustment are substantial; individual
pieces of lab equipment routinely cost in excess $100,000. And human capital theory has
long appreciated the limitations of specialized knowledge (e.g., Becker 1962), with much
emphasis placed on the potential for one’s prior endeavors to shape and constrain their
search and evaluation of new ideas (Nelson and Winter 1982; Gavetti and Levinthal 2000;
Boudreau et al. 2016). Beyond any potential cognitive constraints, scientists have been
seen to exhibit preferences over the nature of their work (Stern 2004), and be influenced by
social forces (Stuart and Ding 2006; Ding et al. 2006). But notably, many of these studies
focus on discrete changes in direction often primarily related to commercialization activities,
and not directional adjustments in general. Certainly the commercial transition is one of
obvious economic impact, but results on the decisions of direction before commercialization
or with regards to the type of science have been very limited to date. Bhattacharya and
Packalen (2011) examine the direction of basic science more broadly using the occurrence
of biomedical terms in publications to classify the direction of science as a whole, and find
that in the aggregate biomedical scientists do appear to pursue fields related to diseases with
higher prevalence as well as those with an increasing underlying fertility.

Two studies that examine the movement of scientists across fields use journal article re-
tractions (Azoulay et al. 2015) and untimely deaths (Azoulay et al. 2019a) as shocks to
individuals and fields, respectively. Both papers use the algorithm described below to esti-
mate the degree of scientific redirection, although their implementation relies on publications
which means that only successful (per publications) redirection is observed (and the latter is
also true of Bhattacharya and Packalen’s (2011) analyses). The authors find that following
these events, which essentially remove barriers to operating in a particular type of science
(e.g., lower competition or fewer “gate-keepers”), scientists from neighboring fields enter. My
paper builds on this literature by estimating the costs of scientific redirection in general and
before outcomes are realized.

B pmra Algorithm Details

Lin and Wilbur (2007) develop a topic-based similarity model based on Bayes’ Theorem
that estimates the probability that an individual is interested in document a given expressed
interest in document b, or in other words, what is the likelihood that a and b are scientifically
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similar. They focus on the following relationship:

Pr(a|b) ∝
N∑
j=1

Pr(a|sj) Pr(b|sj) Pr(sj),

where {s1, ..., sN} denotes the entire set of mutually exclusive topics that could possibly be
contained within a, b, or any other document of interest. Lin and Wilbur (2007) then make
assumptions about the underlying arrival rates of terms within documents (Poisson) and
how likely the occurrence of a term within a document actually reflects the true nature of
that document. From these assumptions, the authors arrive at a topic weighting function,
wj,x, that describes that how important a topic sj is to any document x, and a document
scoring function, Sim(a, b), that quantifies the similarity between a and b, given by:

wj,x =λj,x ×

√
1

fj

Sim(a, b) =
N∑
j=1

wj,a × wj,b,

where fj is the frequency that topic sj occurs in the universe and λj,x is based on a series of
Poisson arrival rate parameters and the number of times that topic sj occurs in document x.
Intuitively, two documents are more likely to be similar when they both use topics that are
rare (1/fj ↑) many times (λj,x ↑). The authors estimate, optimize and experimentally confirm
parameters within λj,x to align with human assessments. Loosely speaking, this approach is
analogous to the cosine similarity approach previously used to estimate scientific similarity
(i.e., Boudreau et al. (2016)), here, weighted by the rarity of intersecting topics.

For specific details on the algorithm and how topics are defined, see Lin and Wilbur (2007),
and for a broader overview of how this algorithm is implemented at the National Library of
Medicine, see https://goo.gl/PbvpvW, accessed July 12, 2017.

C Full Application Similarity Distribution, RFA v. Open

D Entry Model Similarity Adjustment

Figure III.4 plots the scientist-application similarity as a function of the scientist-RFA simi-
larity. If the first metric (observable for entrants only) is equivalent to the second (observable
for all), then there should be a 1:1 relationship between these variables and each data point
would lie on the 45 degree line. However, it is clear in Figure III.4 Panel (a) that this is
not the case. It appears that relative (percentage) increases in the scientist-RFA similarity
implies level (absolute) increases in the scientist-application similarity.

Figure III.4 Panel (b) uses a log-transformation of scientist-RFA metric to explore this
log-linear relationship, which fits the data very well. Given the good fit, I predict scientist-
application scores using this log-linear model. This predicted value represents, on average,
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Figure III.3: Distribution of Application-Scientist Similarity Scores
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how large of a redirection each scientist would require to enter an RFA given their observed
scientist-RFA similarity score. This predicted value represents, on average, how large of a
redirection each scientist would require to enter an RFA given their observed scientist-RFA
similarity score.

E Qualitative Interpretation

The following two figures (III.5 and III.6) plot the empirical distribution and statistics of
pmra scores from NIH applications, based on scientists prior publications and their new ap-
plication. The example figures are generated to consider a publication from the biomedical
(III.5) or economics literatures (III.6) as a focal project, e.g., a scientist’s most recent work,
and ask what would that scientist’s next project look like given the NIH sample moments.
The focal projects are plotted at the average pmra score for documents scored against it-
self, with three expected “next projects” plotted at the NIH sample mean and a +/− one
standard deviation increase (more similar) and decrease (less similar) using those publica-
tions approximate pmra scores relative to the focal publication.6 The mean indicates what
the average “next project” would look like, and is flanked by projects at +/− 1 standard
deviation more/less similar. The figures make clear that virologists developing vaccines for
viral diseases and economists studying pharmaceutical R&D tend to keep doing so. Re-
stating the focal result, the analyses suggests that these example scientists (who wrote the
“focal” papers) are indifferent between pursuing the mean next-project instead of the + 1
s.d. next-project and a fourfold increase in NIH grant funding (in expectation).

6The focal publications are plotted at the average pmra score for documents scored against itself, noting
that pmra scores are likelihoods, not percentages.
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Figure III.4: Relationship between Similarity Scores for Entrants
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Figure III.5: pmra Distribution: Biomedical Examples
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2. Raviprakash et al. (2008). A tetravalent dengue vaccine based on a complex adenovirus
vector provides significant protection in rhesus monkeys against all four serotypes of
dengue virus. Journal of Virology, 82(14):6927-6934.

3. Barouch et al. (2001). Elicitation of high-frequency cytotoxic T-lymphocyte responses
against both dominant and subdominant simian-human immunodeficiency virus epitopes
by DNA vaccination of rhesus monkeys. Journal of Virology, 75(5):2462-2467.

4. Peyerl et al. (2005). Use of molecular beacons for rapid, real-time, quantitative moni-
toring of cytotoxic T-lymphocyte epitope mutations in simian immunodeficiency virus.
Journal of Clinical Microbiology, 43(9):4773-4779.

11



Figure III.6: pmra Distribution: Economics Examples

0
.0

1
.0

2
.0

3
De

ns
ity

 o
f A

pp
lic

at
io

ns

0 50 100
Scientific Similarity(Proposed New Objectives , Prior Publications)

Unpacking the advantages of size in 
pharma. research [Cockburn & Henderson 2001]

Effects of Medicare on pharma R&D 
[Blume-Kohout & Sood2013]

Experience and alliances in pharma. 
R&D [Danzon et al. 2005]

Focal Project: Scale, scope, and 
spillovers in drug discovery
[Henderson & Cockburn 1996]

Mean

1 s.d.

50%

Citations:
1. Henderson & Cockburn (1996). Scale, scope, and spillovers: the determinants of research

productivity in drug discovery. The RAND Journal of Economics, 27(1): 32-59.

2. Cockburn & Henderson (2001). Scale and scope in drug development: unpacking the
advantages of size in pharmaceutical research. Journal of Health Economics, 20(6): 1033-
1057.

3. Danzon et al. (2005) Productivity in pharmaceutical-biotechnology R&D: the role of
experience and alliances. Journal of Health Economics, 24(2): 317-339.

4. Blume-Kohout & Sood (2013). Market size and innovation: Effects of Medicare Part D
on pharmaceutical research and development. Journal of Public Economics, 97: 327-336.
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Appendix IV Controlling for Strategic Interactions

In this setting, scientists observe all RFAs and must incur some costs to enter.7 These costs
are a function of, among other things, the scientific similarity between the individual’s prior
work and the RFA objectives, s. All potential entrants i = {1, 2, ..., N} observe each RFA
j, which are characterized by the total amount of funds available (pj), the expected number
of competitors (n̂ij = {1, 2, ..., N − 1}), a vector of observable characteristics (Xj; e.g., year,
NIH Institute), and all other characteristics valued by scientists but unobservable to the
econometrician (ξij). A “revenue” function W and entry cost function C are based on these
variables8, such that each individual’s expected payoff from entry is given by:

(1) Vij = W (sik , pj , n̂ik , Xk , ξik)− C(Xk , sik , ξik).

Assuming that W is linear in its parameters yields the main estimating equation

(2) 1{Entryij} = F (sij) +G(pj) + δn̂ij + γXj + (ξij + µij).

where µij are i.i.d. mean-zero error terms that capture random noise in scientists’ decisions.
Because each individual is extremely small relative to the full set of potential entrants, I
assume that scientists are atomistic in the sense that they are oblivious to any effect their
particular decision has on the rest of the sample.9

Note that whereas Xj, sij, and ξij enter Equation 1 through bothW and C, they enter Equa-
tion 2 once and in a separable manner. Therefore, I simply interpret the partial derivatives
as encompassing the cumulative costs and benefits of the independent variables.

The elasticity of science with respect to purse size is ε ≡ ∂sij
∂pj

=
∂Vij
∂pj

/
∂Vij
∂sij

. Scientists trade off
the “market size” (pj) for redirections, holding fixed their competitive expectations.

The difficulty in estimating Eq. 2 is that, instead of competitive expectations (n̂ij), only the
realized number of entrants (nij) is observed. Now, if E[ξij | pj, n̂ij, sij,Xj] 6= 0, then each
scientist’s likelihood of entry will be positively correlated. This will create an endogeneity
problem if Equation 2 is estimated with nij instead of n̂ij, where estimates of G will be
biased upwards and then, potentially, F downward.10

To address this issue, I use the procedure for estimating static strategic interactions outlined
by Bajari et al. (2010).11 n̂ij can be estimated empirically if a variable exists that influences
each individual’s strategic choice directly but only influences others’ choices via the indirect

7Scientists also have the outside options of applying to the default open competitions or not at all. I
assume the value of this outside option is fixed conditional on the covariates, which includes time- and
individual-fixed effects.

8The W function also describes the rules by which the purse is allocated amongst entrants.
9That is, there are no general equilibrium effects from any single scientist’s decision. This is very

reasonable given there are roughly 140,000 potential entrants, and about 16,000 unique individuals apply to
the NIH in my data annually.

10This will depend on how correlated scientists preferences are for the unobservable features of RFAs
(ξij). As this correlation increases, so to will the correlation in entry probabilities across the sample, giving
rise to a positive correlation between Pr(Entryij) and nij .

11While there may certainly be dynamics with respect to each scientist’s decision to purse a particular
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effect of those strategic choices. One needs a variable that satisfies this “strategic exclusion
restriction”. In the model outlined above, similarity provides a valid instrument under the
assumption that each scientist’s similarity to an RFA is exogenous and does not directly
influence any other scientists’ behaviors.12

The underlying information structure assumed in this approach is that scientists know (1) the
revenue and cost functions (W (·) and C(·)), (2) the features of the RFA (pj, Xj), and (3) the
number of other scientists (N), their similarities (sij) and the distribution of unobservables
(ξij). Given this information, they can integrate over the distribution of predicted entry
probabilities to form their expectations and then make their entry decisions.13

The estimation procedure is a similar process as follows:

1. Regress entry decision (Entryij = {0, 1}) on the vector of exogenous RFA characteris-
tics: pj , Xj , sij

2. Predict entry probabilities, ̂Pr(Entryik) with parameters from Step 1

3. Sum predicted entry probabilities over each RFA, minus each individual’s entry prob-
ability to estimate n̂ij, given by ñij =

∑N
i′ 6=i

̂Pr(Entryi′j)

4. Estimate Eq. 2 using ñij in place of n̂ij

I estimate the regressions in Steps 1 and 4 via OLS. As is common to these estimators, I
must assume that a single unique equilibrium is played in the data.14 Fixed effects at the
levels of scientists, years and funding Institutes allows for unobserved heterogeneity across
these dimensions.

RFA (e.g., how would moving to topic A effect future research prospects?), the limited recurrence of RFAs
and the massive scale of the default open competitions, which present a future option for funding, suggest
that competitive dynamics are likely not first-order concern. Not at any time in discussions with scientists
who have competed in RFAs did the notion of dynamic strategic interactions arise.

12One mechanism that may invalidate this assumption is if a scientist’s likelihood of communicating with
potential entrants is correlated with their similarity to an RFA. Anecdotal discussions with NIH applications
who have competed in RFAs did not suggest this is relevant.

13These predicted probabilities are often referred to as “conditional choice probabilities”. The two steps
of these methods involve (1) the estimation of the conditional choice probabilities, and (2) the estimation of
the full model including these probabilities. For clarity, I present the approach in four stages.

14I am rather restricted from relaxing this assumption because purse size does not vary within each
RFA, so G is not identified by within-RFA variation which is the sort of variation necessary for a more lax
assumption that a unique equilibrium is played within each RFA.
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Appendix V Motivating Theory

To motivate the analyses, consider a world where each scientist i = {1, 2, ..., N} can costlessly
adjust the trajectories of their research. In this world, they receive the outside option of
0, or can compete for research funding by submitting proposals to one of two competitions
j = {1, 2}, where each a submission’s quality is based on scientists’ random draws from i.i.d.
quality distributions.

In the competitions, funds are allocated based on an award functionW , which is well-behaved
and maps three variables into awards: (1) each submission’s quality qij; (2) the vector of
other submissions qj, where nj ≤ (N − 1) is the number of each submission’s competition;
(3) the total funds available Pj. Realized awards are then given by wij = W (qij,qj, Pj). It is
assumed that ∂W

∂qij
> 0 and ∂W

∂Nj
< 0; higher quality applications in less contested competitions

perform better. Furthermore, assume that each individual is extremely small relative to the
full set of potential entrants, so although individuals may form strategic expectations about
nj, the general equilibrium effects are negligible; scientists are atomistic.15

Let the expected payoff from entry into j simply be Vij = E[wij] − c, where entry costs c
are constant across scientists and competitions. In this case, scientists enter j = 1 if three
conditions hold: (1) Vi1 > 0, (2) E[wi1] > c, and (3) E[wi1] > E[wi2]. Clearly, in equilibrium
both options, regardless of the amount of funds are made available, should see competition
to the point that their expected values are equivalent. If the payoff of entering one of the
competitions is larger, then the “free-range” scientists will simply enter and compete down
the expected value until it equates with the alternative. This world embodies the zero-profit
nature of perfectly competitive markets with free entry.

If the entry costs to one of the competitions is increased, say c1 > c2, then in equilibrium
E[wi1] > E[wi2] and most relevant for the analysis, c1−c2 = E[wi1]−E[wi2]. This implication
is a staple of traditional industrial organization models where markets with higher fixed costs
also have larger profit margins. And thus, with unbiased estimates of expected payoffs in
hand, one can compute the difference in entry costs.

More specifically though, in this setting I am interested in estimating how a certain feature of
these competitions - the degree to which they require scientists to adjust their work - might
influence entry costs, and therefore, create a wedge in expected payoffs. Rewrite Vij to now be
E[wij]− c(sij, ξj) with sij describing the similarity between individual i’s scientific expertise
and the type of science required for entry into j, and ξj capturing the (potentially zero) fixed
value all scientists place on j. First, assume that only this similarity factor influence costs
and thus, ξj = 0. Then it follows that on average c(ŝi1)− c(ŝi2) = Ê[wi1]− Ê[wi2], where x̂
denotes the average of variable x across all i. This relationship implies that ∂Vj

∂ŝij
=

∂Vj

∂Ê[wij ]
,

providing a way to relate the average marginal gains in expected awards to average marginal
differences in similarity - precisely the elasticity of interest: ∂ŝij

∂Ê[wij ]
, or how large of a change

in science can be induced by a given change in funds?
15In the sample used for this analysis, there are roughly 16,000 unique applicants to the NIH per year.
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Taken together, if ξj = 0, and I can empirically estimate (1) the difference in expected awards
between the RFA and open mechanisms that arises from the NIH’s exogenous allocation
decisions and scientists’ endogenous responses (∂Ê[wij]) - the “RFA premium” - as well as
(2) the average level of redirection that RFAs induce beyond what is observed in the open
applications (∂ŝij), then I can identify the elasticity.

However, if ξj 6= 0, then I will instead be estimating c(ŝi1, ξ1) − c(ŝi2, ξ2) and conflate the
costs of changes in s with some fixed costs (or benefits) captured by ξj. In this case I can only
clearly estimate the RFA premium (Ê[wi1]− Ê[wi2]), and will overestimate (underestimate)
the elasticity if ξj > 0 (ξj < 0).
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Appendix VI Robustness Tests and Summary Statistics

Table VI.1: Entry Determinants–Robustness Tests

(All coefficients scaled by 10−4)
Entryij

(1) (2) (3) (4) (5) (6)

Pursej 2.38 4.11 3.73 6.99 2.48 4.73
(0.555) (0.500) (0.00687) (0.00636) (0.00629) (0.00517)

Similarityij 16.2 17.5 9.90 10.9 12.4 15.1
(0.660) (0.694) (3.86) (4.10) (0.525) (0.579)

Competitive –4.84 –4.34 –5.37
Expectationsij (0.275) (0.279) (0.320)

pmra pub. set ≤5 years ≤5 years all
pmra score max max median
Indep. var. transform. std. log std.

Entryij
(7) (8) (9) (10)

Pursej 2.58 4.81 2.36 4.17
(0.640) (0.518) (0.559) (0.503)

Similarityij 16.3 20.0 21.1 23.5
(0.666) (0.756) (0.829) (0.890)

Competitive –6.03 –4.68
Expectationsij (0.338) (0.278)

pmra pub. set all all
pmra score avg. max
Indep. var. transform. std. std.

Note: All models include 20,221,541 Scientist-RFA (ij) pair observations, where the mean entry probability is

5.47×10−4. All specifications include the RFA controls and scientist fixed effects.
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Table VI.2: RFA versus Open Application Robustness Tests: Award Size

log(Award Sizeijst)
(1) (2) (3) (4)

1{RFAj} 0.0824 0.0798 0.199 0.114
(0.0162) (0.0161) (0.0401) (0.0460)

Napplications 8,242 8,691 1,123 1,533
Nscientists 7,445 7,810 529 717
mean(Dep. Var.) 399,237 1,911,925 416,968 2,010,625

Version 1st Year All Year 1st Year All Year
Tot. Costs Tot. Costs Tot. Costs Tot. Costs

Area-Time F.E. Y Y Y Y
Scientist F.E. Y Y

Note: Standard errors clustered within scientists. Estimates of Equation (5) using
alternative specifications and transformations. Total Costs refer to the sum of both
Direct and Indirect costs awarded, with All Year costs referring to the total amount of
funds awarded over the lifespan of the focal grant award.
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Table VI.3: Summary Statistics for Applications Examined in Section 5

Open RFA
(1) (2)

N apps. 367.3 24.87
in group (229.4) (14.96)

N winning apps. 159.1 9.139
in group (97.37) (6.027)

Fiscal Year 2004.0 2003.5
(1.362) (1.488)

$Requested 1,860,198.8 1,868,188.0
(1,155,353.7) (1,282,384.4)

Peer Review Score 198.4 216.6
(51.38) (54.84)

Pr(Win) 0.504 0.468
(0.500) (0.499)

Study involves 0.506 0.427
animals (0.500) (0.495)

Study involves 0.384 0.602
humans (0.486) (0.490)

Study involves 0.256 0.401
children (0.437) (0.490)

Is “New Investigator” 0.259 0.195
(0.438) (0.396)

Has M.D. 0.300 0.378
(0.458) (0.485)

Has Ph.D. 0.821 0.750
(0.383) (0.433)

Year of First R01 1995.8 1995.9
(9.215) (8.839)

Year of First RPG 1995.7 1995.7
(9.215) (8.839)

Pre, N F/L Pubs 17.46 17.26
(16.42) (16.10)

Pre, Avg. F/L JIF 10.26 8.998
(23.56) (20.05)

Pre, Avg. Similarity F/L Pubs 83.11
(123.3)

Post, N F/L Pubs 9.023 10.31
(9.402) (10.35)

Post, Avg. F/L JIF 4.189 4.219
(11.19) (10.70)

Post, Avg. Similarity F/L Pubs 59.06
(100.5)

Obs. 29,488 4,949

Note: Mean, s.d. in parentheses. “F/L” includes only publications where the scientist is the first or last author.

“JIF” is Journal Impact Factor.
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Table VI.4: Grant Productivity–First Stage

1{Winjk}
(1) (2) (3) (4) (5)

Panel A: Open Applications

std(Funding –0.245 –0.246 –0.249 –0.241 –0.267
Distance IVjk) (0.0119) (0.0119) (0.0117) (0.00964) (0.00917)

F-stat. 226.7 226.7 232.12 138.06 138.06
N Obs. 29,488 29,488 29,488 29,488 29,488

Panel B: RFA Applications

std(Funding –0.166 –0.166 –0.168 –0.188 –0.207
Distance IVjk) (0.0130) (0.0130) (0.0129) (0.0153) (0.0149)

F-stat. 51.3 51.3 50.6 57.7 57.7
N Obs. 4,949 4,949 4,949 4,949 4,949
Project X Y Y
People X Y Y
Fund. Group F.E. Y Y

Notes: This table reports the first stage estimates from for Table 3 columns 2–6, with the estimates in Panel A

and B of columns 1 corresponding to the two endogenous variables in Table 3 column 2 (winning an open grant

and an RFA grant). All regressions are based on LASSO selection of covariates, and include institute-year fixed

effects, except for columns 5 and 6 given the funding group fixed effects which are all within institute-years.

Standard errors clustered at funding groups in parentheses.
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Table VI.5: Grant Productivity–Publication Impact

IHS(Avg. Pub. JIFjk)
(1) (2) (3) (4) (5) (6)

1{Win, Openjk} 0.0341 0.0808 0.0752 0.0742 0.0559 0.0708
(0.00682) (0.0322) (0.0320) (0.0278) (0.0271) (0.0257)

1{Win, RFAjk} 0.0240 0.150 0.168 0.0873 0.0482 0.0709
(0.0162) (0.0542) (0.0553) (0.0515) (0.0309) (0.0299)

Semi-elast. Open 0.035 0.084 0.078 0.077 0.057 0.073
Semi-elast. RFA 0.020 0.160 0.181 0.090 0.049 0.073
p-value diff. 0.56 0.21 0.10 0.80 0.79 0.99
N Obs. 28,527 28,527 28,527 28,527 28,527 28,527
I.V. Y Y Y Y Y
F-stat. 289.1 289.1 289.0 4,328.6 7,898.8
Project X Y Y
People X Y Y
Fund. Group F.E. Y Y
LASSO Varsel/poss 5/9 16/31 23/256 5/9 11/354

Notes: This table reports 2SLS estimates from Equation 9. The average applicant published articles with

JIFs of 0.434 post-decision. Project and People X indicates whether covariates specific to the application (i.e.,

funds requested) and/or the applicant (i.e., publication history) are included. LASSO Varsel/poss reports the

number of LASSO selected and possible covariates. All regressions include institute-year fixed effects, except

for columns 5 and 6 given the funding group fixed effects which are all within institute-years. Standard errors

clustered at funding groups in parentheses.
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Figure VI.7: Grant Productivity–Event Studies

(a) Pub. Count–I.V.
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(b) Pub. Count–I.V.
and All Controls
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(c) Pub. Similarity–I.V.
and All Controls
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Notes: This figure plots the RFA/open-specific β coefficients from Equation ??, each relative time period

representing a separate regression. Hollow markers indicate that zero is included in 95 percent confidence

intervals.
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