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Online Appendix

A Proofs of Propositions and Other Claims

Proposition 1: In general the slope of dPr( zn1>0|z̃n0)
dz̃n0

will be given by:

dPr (zn1 > 0| z̃n0)
dz̃n0

= g (qn1|n)
dqn,1

dz̃n0
+

@G (qn1|n)
@n

dn

dz̃n0
(A.1)

Focusing on the first term in the expression for dPr (zn1 > 0| z̃n0) /dz̃n0 in (A.1), we have:

dqn,1

dz̃n0
=

@v (z̃n1 � T (z̃n1) +B1 (z̃n1) , z̃n1;n)

@z̃n1

dz̃n1

dz̃n0
+

@v (z̃n1 � T (z̃n1) +B1 (z̃n1) , z̃n1;n)

@n

dn

dz̃n0

=
@v (z̃n1 � T (z̃n1) +B1 (z̃n1) , z̃n1;n)

@n

dn

dz̃n0
(A.2)

When agents are unrestricted in their intensive margin earnings choice, we can set the first term on the right
side of (A.2) to zero. For those with z̃n0 < z

AET or z̃n0 > z
AET +�z we have:

@v (z̃n1 � T (z̃n1) +B1 (z̃n1) , z̃n1;n) /@z̃n1 = 0

due to the envelope theorem.32 For those with z
AET  z̃n0  z

AET + �z, we have dz̃n1/dz̃n0 = 0, since
z̃n1 = z

AET for everyone in this set—i.e. these agents bunch at zAET . Substituting for dqn1/dz̃n0 in (A.1)
using (A.2), we have:

dPr (zn1 > 0| z̃n0)
dz̃n0

= g (qn1|n)
@v (z̃n1 � T (z̃n1) +B1 (z̃n1) , z̃n1;n)

@n

dn

dz̃n0
+

@G (qn1|n)
@n

dn

dz̃n0
(A.3)

when individuals are able to adjust on both the intensive and extensive margins.
Our smoothness assumptions imply that this slope is continuous, and in particular it is continuous at

z
AET since n, qn1, z̃n1, T (·) and @G ( q̄nj |n) /@n are all continuous in z̃n0 at zAET . Furthermore, g (·) and

@v/@n are likewise continuous in their arguments. Thus, we have:

lim
z̃n0!zAET+

dPr (zn1 > 0| z̃n0)
dz̃n0

= lim
z̃n0!zAET�

dPr (zn1 > 0| z̃n0)
dz̃n0

(A.4)

That is, the employment probability does not exhibit any change in slope at zAET , even though the ANTR
does feature such a discontinuity.

Proposition 2: If z̃n1 ⌘ z̃n0, the general expression for dPr (zn1 > 0| z̃n0) /dz̃n0 from (A.1) still holds.
However, we now have a slightly di↵erent expression for the critical level of fixed costs, which is now evaluated
at z̃n0, implying qn1 ⌘ v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)� v

0. Accordingly, we have a di↵erent expression
for dqn1/dz̃n0 relative to (A.2). Since z̃n1 = z̃n0 for everyone, we have:

dqn1

dz̃n0
=

@v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)

@z̃n0
+

@v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)

@n

dn

dz̃n0
(A.5)

where the key di↵erence is that @v/@z and @v/@n are evaluated at z̃n0 instead of z̃n1. For those with z̃n0 < z
⇤,

since B1 (·) = B0 (·) and z̃n1 = z̃n0, it is still the case that @v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n) /@z̃n0 = 0

32In this and other similar expressions elsewhere we evaluate the partial derivative of v with respect to z allowing both
earnings and consumption to change via the budget constraint, but holding n constant.
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due to the envelope theorem. However, the first term in (A.5) for those with z̃n0 > z
AET is now:

@v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)

@z̃n0
= (1� ⌧0 � db) vc + vz

= �n


(1� ⌧0 � db) +

vz

vc

�
(A.6)

where �n ⌘ vc, and vc and vz are the partial derivatives of v (·) with respect to c and z, respectively,
evaluated at (z̃n0 � T1 (z̃n0) +B1 (z̃n0) , z̃n0;n), and db is the benefit reduction rate above z

AET .

Thus, we now have:

dPr (zn1 > 0| z̃n0)
dz̃n0

=

8
>><

>>:

g (qn1|n)
@v(z̃n0�T (z̃n0)+B1(z̃n0),z̃n0;n)

@n
dn

dz̃n0
+ @G( qn1|n)

@n
dn

dz̃n0
, if z̃n0 < z

AET

g (qn1|n)
h
�n

h
(1� ⌧0 � db) + vz

vc

i
+ @v(z̃n0�T (z̃n0)+B1(z̃n0),z̃n0;n)

@n
dn

dz̃n0

i

+ @G( qn1|n)
@n

dn
dz̃n0

,

if z̃n0 � z
AET

(A.7)
Note also that:

lim
z̃n0!zAET+

vz (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)

vc (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)
= � (1� ⌧0) (A.8)

where we have used the first order condition for z̃n,0 and the fact that lim
z̃n0!zAET+

B1 (z̃n0) = B0

�
z
AET

�
. We

now have the following expression for the di↵erence in slopes at zAET :

lim
z̃n0!zAET+

dPr (zn1 > 0| z̃n0)
dz̃n0

� lim
z̃n0!zAET�

dPr (zn1 > 0| z̃n0)
dz̃n0

= lim
z̃n0!zAET+

g (qn1|n) · �n


(1� ⌧0 � db) +

vz

vc

�

= g
�
qnAET 1|nAET

�
· �nAET [(1� ⌧0 � db)� (1� ⌧0)]

= �db · �nAET · g
�
qnAET 1|nAET

�

(A.9)

where qnAET 1, n
AET , and �nAET all refer the individual for whom z̃n0 = z

AET .

Estimation of Kink with Measurement Error: In Section 3.2, we argue that in the case of measurement
error, i.e. ⇡ (z̃0, vit) < 1, we estimate a lower bound on our elasticity. Here we formally demonstrate
this result. Recall that our relationship between earnings at age 60 and desired earnings at ages 63-64 is
z
60 = z̃0it + pitvit. We assume that the joint distribution of (p, v), conditional on z

60, is continuous and
continuously di↵erentiable in z

60 at z60 = z
AET . Consider the estimated kink in employment, as a function

of earnings at age 60, i.e. the numerator in equation (3), using z
60 as the running variable. Denote this as

�
RKD:

�
RKD ⌘ lim

z60
i !zAET+

@ Pr
�
zit > 0| z60i

�

@z
60
i

� lim
z60
i !zAET�

@ Pr
�
zit > 0| z60i

�

@z
60
i

Let the potential deviation in desired earnings, v, have a distribution with the CDF M (v| z) and pdf
m (v| z), conditional on z

60 = z. The sample with z
60 = z

AET that we use to estimate our kink is comprised
of two groups. The first group draws pit = 0 with probability ⇡

�
z
AET

, v
�
, and therefore have z̃0it = z

AET .
The second draw pit = 1 with probability 1 � ⇡

�
z
AET � v, v

�
and therefore have z̃0it = z

AET � vit. We

47



therefore have the following observed kink in employment:

�
RKD =

Z
⇡
�
z
AET

, v
�
"

lim
z60
i !zAET+

@ Pr
�
zit > 0| z60i

�

@z
60
i

� lim
z60
i !zAET�

@ Pr
�
zit > 0| z60i

�

@z
60
i

#
m
�
v| zAET

�
dv

+

Z �
1� ⇡

�
z
AET � v, v

��
"

lim
z60
i !zAET+

@ Pr
�
zit > 0| z60i

�

@z
60
i

� lim
z60
i !zAET�

@ Pr
�
zit > 0| z60i

�

@z
60
i

#
m
�
v| zAET

�
dv

=

Z
⇡
�
z
AET

, v
� 

lim
z̃i0t!zAET+

@ Pr (zit > 0| z̃i0t)
@z̃i0t

� lim
z60
i !zAET�

@ Pr (zit > 0| z̃i0t)
@z̃i0t

�

| {z }
�̂(zAET )

m
�
v| zAET

�
dv

+

Z ⇢ �
1� ⇡

�
z
AET � v, v

��
·


lim

z̃i0t!zAET+�vit

@ Pr (zit > 0| z̃i0t)
@z̃i0t

� lim
z̃i0t!zAET��vit

@ Pr (zit > 0| z̃i0t)
@z̃i0t

�

| {z }
�̂(zAET�v)

m
�
v| zAET

��
dv

= ⇡̄ · �̂
�
z
AET

�
+ (1� ⇡̄)

Z
1� ⇡

�
z
AET � v, v

�

1� ⇡̄
�̂
�
z
AET � v

�
m
�
v| zAET

�
dv

where

⇡̄ =

Z
⇡
�
z
AET

, v
�
m
�
v| zAET

�
dv

�̂ (z) = lim
z̃i0t!z

@ Pr (zit > 0| z̃i0t)
@z̃i0t

� lim
z̃i0t!z

@ Pr (zit > 0| z̃i0t)
@z̃i0t

That is, ⇡̄ is the probability that pit = 0 among individuals with z
60
i = z

AET and �̂ (z) is the kink in
employment at z that would be estimated if desired earnings, z̃i0t, were observed.

Given our assumptions on smoothness in heterogeneity and assuming the only locally relevant kink in
the budget is at zAET , we have:

�̂ (z) =

⇢
� if z = z

AET

0 if z 6= z
AET

Here � is the kink in employment among those who face a kink, as defined in equation (14). Thus, we have:

�
RKD = ⇡̄ · �

It follows that if ⇡ (z, v) < 1, i.e. we have measurement error in desired earnings when using z
60 as a proxy,

then we estimate a lower bound on our elasticity when using the formula in equation (14). In other words,
the estimated kink among those with age 60 earnings near zAET reflects a weighted average of the subset of
individuals who will actually face the kink at ages 63-64 and the subset who will not. Furthermore, when
⇡ (z, v) = 0, i.e. there is no persistence in earnings from age 60 to ages 63-64, we expect no employment
kink. Note, we only require that the distribution of v be smooth as a function of z60. Thus, we can allow
for cases where v is not mean zero, e.g. where there is a systematic change in mean desired earnings from
age 60 to ages 63-64. Note as well that we can relax the assumption that the only kink in the tax schedule
is at zAET and can instead assume that the set of other possible kinks is of measaure zero.

B Model Extensions

B.1 Extension to Two or More Discrete Job Choices

We begin by focusing on two key options within the menu of positive earnings: one at the interior optimum
in state 0, z̃n0, and another “next-best” job at an alternative level of earnings, z̃nbn . This allows for an
arbitrary number (whether finite or infinite) of discrete choices that are less preferred than the “next-best”
job. The model can also be easily extended to allow for the possibility that multiple earnings levels give the
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same “next best” utility level as z̃nbn .
Before showing this result more formally, we briefly illustrate the intuition. Consider an individual whose

optimal earnings is just above z
AET under a linear tax and no benefit reduction above z

AET , i.e. in the
absence of the kink. For the moment, suppose this person can either earn just above z

AET or exit. Now,
we introduce a kink at zAET . The e↵ect of the kink on the average net of tax rate for the person just above
z
AET is vanishingly small. So, if this person now decides to exit, they must have been virtually indi↵erent

between z
AET and exiting prior to the kink. Now, lets suppose instead that a part-time job is available

at some earnings partway between 0 and z
AET . Also, suppose that in the absence of the kink, the person

continues to earn just above z
AET , rather than exiting or taking the part-time job. By revealed preference,

we learn that the job earning just above z
AET is preferred to the part-time job. Furthermore, since we have

establised that this person is virtually indi↵erent between earning just above zAET or exiting, it follows that
exiting is also preferred to the part-time job. Thus, when we again introduce the kink, the features of the
part-time job are irrelevant for the decision to exit or not. If, in the absence of the kink, exiting is preferred
to the part-time job, it will continue to be preferred once the kink is introduced.

Formally, let vnbn be the utility level associated with the next-best level of earnings:

v
nb
n ⌘ v

�
z̃
nb
n � T

�
z̃
nb
n

�
+B

�
z̃
nb
n

�
, z̃

nb
n ;n

�
(B.10)

As it is possible that the kink lowers utility at z̃n0 while leaving utility at z̃nbn una↵ected, the probability of
working in state 1 is one minus the probability that non-employment is preferred to both the earnings level
z̃n0 and the earnings level z̃nbn of the next-best job:

Pr (zn1 > 0| z̃n0) = 1� Pr
�
v
0 � v

nb
n � qn1 and v

0 � v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)� qn1

�

= 1� Pr
�
v
0 � v

nb
n � qn1

�� qn1 < qn1

�
· Pr (qn1 < qn1)

= 1� Pr
�
v
0 � v

nb
n � qn1

�� qn1 < qn1

�
· [1�G ( q̄n1|n)] (B.11)

The slope of the employment function is now a more complex expression:

dPr (zn1 > 0|z̃n0)
dz̃n0

= �
dPr

�
v
0 � v

nb
n � qn1|qn1 < qn1

�

dz̃n0
[1�G (qn1|n)]

+Pr
�
v
0 � v

nb
n � qn1

�� qn1 < qn1

�
·

dG (qn1|n)

dz̃n0

�
(B.12)

We now explore under what conditions this slope reduces to that of our earlier model in Section 6.3, in
which intensive margin earnings in state 1 are constrained at their state 0 level. We will show in general that
this is true for those with state 0 earnings below z

AET . Next, we show that for those with state 0 earnings
just above zAET , the slope is likewise una↵ected relative to the model in Section 6.3, as long as the next-best
job o↵ers a level of earnings that is discretely di↵erent than the new interior optimum z

AET .

Consider individuals earning z̃n0 < z
AET in state 0. We first focus on the term Pr

�
v
0 � v

nb
n � qn1|qn1 < qn1

�
.

We can show the following for the agents in this set for whom qn1 < qn1:

v
0

> v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)� qn1

= v (z̃n0 � T (z̃n0) +B0 (z̃n0) , z̃n0;n)� qn1

> v
nb
n � qn1 (B.13)

where in the first line we used the fact that qn1 < qn1 and the definition of qn1 in equation (11). In the
second line we used the fact that B1 (z̃n0) = B0 (z̃n0) for individuals with z̃n0 < z

AET . In the third line we
used the fact that v (z̃n0 � T (z̃n0) +B0 (z̃n0) , z̃n0;n) � v

nb
n due to revealed preference in state 0. It follows

that:

Pr
�
v
0 � v

nb
n � qn1

�� qn1 < qn1, z̃n0 < z
AET

�
= 1

)
dPr

�
v
0 � v

nb
n � qn1

�� qn1 < qn1, z̃n0 < z
AET

�

dz̃n0
= 0 (B.14)
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In other words, if an individual with state 0 earnings below z
AET prefers the outside option in the absence

of the next-best job, she would continue to prefer it in the presence of the next-best job.
Using the results in (B.14), we can simplify the expression in (B.12), for those with z̃n0 < z

AET :

dPr (zn1 > 0| z̃n0)
dz̃n0

=
dG (qn1|n)

dz̃n0

= g (qn1|n)
@v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)

@n

dn

dz̃n0
+

@G (qn1|n)
@n

dn

dz̃n0
(B.15)

where the second line follows from equation (A.7). Thus, the presence of a menu of discrete options does not
a↵ect the results for those with z̃n0 < z

AET . Intuitively, after the introduction of a kink, the individual’s
state 0 optimal earnings amount z̃n0 is still available, at the same level of utility, and thus is the only positive
earnings level relevant for extensive margin decisions.

Now consider individuals with z̃n0 � z
AET and recall that we are ultimately interested in the change in

slope of the employment rate at z
AET . Any change in the slope of the employment function at z

AET will
depend on the following limit:

lim
z̃n0!zAET+

dPr (zn1 > 0| zn0)
dzn0

=

"
� lim

z̃n0!zAET+

dPr
�
v
0 � v

nb
n � qn1

�� qn1 < qn1

�

dz̃n0

#
⇥
1�G

�
qnAET 1|nAET

�⇤

+


lim

z̃n0!zAET+
Pr(v0 � v

nb
n � qn1

�� qn1 < qn1)

�✓
dG(qnAET 1|nAET )

dz̃n0

◆
(B.16)

Note the following:

lim
z̃n0!zAET+

Pr
�
v
0 � v

nb
n � qn1

�� qn1 < qn1

�
= lim

z̃n0!zAET+
Pr

�
v
0 � v

nb
n � qn1

��

v
0 � v (z̃n0 � T (z̃n0) +B1 (z̃n0) , z̃n0;n)� qn1

�

= Pr
�
v
0 � v

nb
nAET � qnAET 1

��

v
0 � v

�
z
AET � T

�
z
AET

�
+B0

�
z
AET

�
, z

AET ;nAET
�
� qnAET 1

�

= 1 (B.17)

In the second line, we used the fact that lim
z̃n0!zAET+

z̃n0 = z
AET and B1

�
z
AET

�
= B0

�
z
AET

�
, and the final

line follows from revealed preference: zAET was initially chosen over the next-best job.
We require that in the neighborhood of zAET the earnings level o↵ered at the next-best job be discretely

di↵erent than that of the state 0 job; thus, we assume that:

lim
z̃n0!zAET+

z̃
nb
n 6= z

AET (B.18)

This assumption rules out alternative jobs that can be made arbitrarily close to the level of state 0 earnings.
Intuitively, if this were not so then individuals earning just above z

AET in state 0 would be able to replicate
intensive margin adjustment, which we have shown smooths out any kink in the employment function that
would otherwise exist.

The assumption in (B.18) implies that the limit in (B.17) is reached at some level of state 0 earnings
strictly above z

AET . That is, as we approach z
AET from above, the probability that preferring the outside

option without an alternative job implies preferring it in the presence of the next-best job plateaus at 1 at
some point before reaching z

AET . Thus, we have:

lim
z̃n0!zAET+

dPr
�
v
0 � v

nb
n � qn1

�� qn1 < qn1

�

dz̃n0
= 0 (B.19)
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As before, (B.17) and (B.19) can be used to simplify (B.16) as follows:

lim
z̃n0!zAET+

dPr (zn1 > 0|z̃n0)
dz̃n0

= lim
z̃n0!zAET+

dG (qn1|n)
dz̃n0

= g (qnAET 1|n⇤)


� db · �n⇤

+
@v

�
z̃nAET 0 � T (z̃nAET 0) +B1 (z̃nAET 0) , z̃nAET 0;n

AET
�

@n

dn

dz̃n0

�

+
dG

�
qnAET 1|nAET

�

dn

dn

dz̃n0
(B.20)

where the second line follows from equation (A.7). Combining (B.20) and (B.15), we have the same result
as equation (13) of Section 6.3, i.e. our earlier model with z̃n1 = z̃n0. Note that this result features as a
special case the scenario in which the agent has the choice among a full-time job at z̃n0, a part-time job as
some lower level of earnings, or not working.

B.2 Allowing for both Bunching at the Kink in the Budget Set and a Kink in

the Employment Rate

As discussed in Section 6.5, our baseline models with either completely constrained earnings levels or discrete
but limited earnings options do not allow for bunching, which is in clear violation of the empirical evidence
(See Gelber et al., 2020). In this section we outline two separate cases where it is possible to observe bunching
among a subset of individuals and also a kink in the employment rate overall. In both cases, we establish
that the observed elasticity that is estimated is a lower bound for the structural elasticity among everyone
near the kink in the budget set.

B.2.1 Model with Mixture of Types

One approach to capturing both bunching and a kink in the employment probability is to posit a model
with two types of individuals: Type A that can adjust on the intensive margin, and Type NA that can-
not (e.g. Kleven and Waseem, 2013). We have shown that among Type A agents, the employment
function has a continuous slope. Among Type NA agents, the slope is discontinuous at z

AET . Let
⇡
AET
NA = Pr

�
NA| z̃n0 = z

AET
�
be the probability of being Type NA conditional on having earnings at

z
AET in state 0. It follows that:

lim
z̃n0!zAET+

dPr (zn1 > 0| z̃n0)
dz̃n0

� lim
z̃n0!zAET�

dPr (zn1 > 0| z̃n0)
dz̃n0

= �⇡
AET
NA · db · gNA

�
qnAET 1|nAET

�
(B.21)

where gNA (·) is the pdf of fixed costs among Type NA agents. In this sense, our estimate of the extensive
margin elasticity is attenuated by a factor ⇡AET

NA and can therefore be considered a weak lower bound on the
elasticity among Type NA agents with state 0 earnings zAET . Among Type A agents who earn above zAET

in state 0, there may also be a response to the kink that increases gradually above zAET as in Figure 1 Panel
B, but our method only picks up responses among Type NA agents. Nonetheless, the observed elasticity is
a lower bound on the elasticity among all of those earning z

AET in state 1:

⌘̂ =
�̂

↵
· 1� a

Pr (zn1 > 0| z̃n0 = zAET )
= ⇡

AET
NA · ⌘AET

NA  ⇡
AET
A · ⌘AET

A + ⇡
AET
NA · ⌘AET

NA = ⌘
AET (B.22)

In principle it would be possible to use the observed elasticity ⌘̂, together with an estimate of the fraction
constrained ⇡

AET
NA , to estimate the structural elasticity among constrained agents, ⌘AET

NA = ⌘̂/⇡
AET
NA . However,

estimating ⇡
AET
NA requires more restrictive assumptions, including assuming that types A and NA have the

same distribution of q and n, as we explain in Appendix B.3. Our observed elasticity remains of interest
regardless of the underlying proportion of agents displaying di↵erent types of behavior, both in the sense that
policy-makers are interested in the raw employment e↵ects of changing policy parameters like the average
tax rate, and in the sense that it reflects a lower bound on the structural elasticity.
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B.2.2 Model with a Fixed Cost of Intensive Margin Adjustment

In an alternative model of intensive margin frictions, individuals face a fixed cost of adjusting earnings on
the intensive margin in response to variation in the tax schedule (see Gelber et al. (2020 ), for a detailed
exposition of this model). Such frictions could reflect a variety of factors, including lack of knowledge of a tax
regime, the cost of negotiating a new contract with an employer, or the time and financial cost of job search.
With a fixed intensive margin adjustment cost individuals will only adjust if the utility gain of intensive
margin adjustment exceeds the fixed cost. Recall that for individuals earning z̃n0 < z

AET there is no change
in the tax schedule from state 0 to state 1, and therefore z̃n1 = z̃n0. Gelber et al. (2020) show that due
to the fixed cost of intensive margin adjustment individuals with z̃n0 > z

AET for whom z̃n0 is su�ciently
close to z

AET will also prefer to keep earnings fixed across the two tax schedules, i.e. z̃n1 = z̃n0. The reason
is that the utility gain from adjusting on the intensive margin converges to zero as z̃n0 approaches z

AET :
the optimal level of earnings is zAET in state 1 for this group. In this case, in a close enough neighborhood
around z

AET , individuals behave as in Section 6.3, and our results from Section 6.3 follow. In other words, a
fixed cost of intensive margin adjustment can rationalize the assumption that some individuals do not adjust
to z

AET in state 1, and it follows that the observed elasticity reflects the structural elasticity.33

B.3 Jointly Estimating the Structural Elasticity among Constrained Types and

⇡AET
B

In the model presented in Section B.2, we may wish to estimate the structural elasticity among constrained
types, ⌘AET

NA . We may be able to use data on extensive margin responses between states 0 and 1 along
with evidence on intensive margin responses in state 1 to perform this decomposition. In particular, we
continue to draw on the kink in employment in state 1. We also use the amount of bunching in the second
period, which is related to intensive margin response among those who are not constrained. In addition,
we estimate a second kink, this time in the average net-of-tax rate in state 1. The idea is that we have
an analytical expression for this kink under complete frictions. The extent to which the observed kink in
the average net-of-tax rate deviates from that quantity is a function of the share of the sample that faces
intensive margin frictions. Finally, this method will require more restrictive assumptions on the underlying
primitives, as explained below.

For notational convenience, define the set R =
�
n| zAET

< zn,0 < z
AET +4z

 
as the set of individuals

in state 0 with earnings in the range that bunches under a kink in the absence of intensive margin frictions.
Define NR,0 as the number of individuals in this range in state 0. As before, denote Type A earners as those
who can adjust on the intensive margin and Type NA earners as those who cannot, in state 1. Define NRA,0

and NRNA,0 as the number of Type A and Type NA earners in the set R, respectively. It follows that:

NR,0 = NRA,0 +NRNA,0

Similarly, define NR,1 as the number of individuals in the set R that are still employed in state 1. That is�
n| zAET

< zn,0 < z
AET +4z, zn,1 > 0

 
. Again, define NRA,1 and NRNA,1 as the number of Type A and

Type NA earners in the set R that are also employed in state 1. Again, we have:

NR,1 = NRA,1 +NRNA,1

Finally, define NBunch as the number of individuals in the set R that bunch in state 1. Note that:

NBunch = NRA,1

We can show the following:

Pr
�
zn,1 > 0| zAET

< zn,0 < z
AET +4z

�
= Pr (zn,1 > 0|n 2 R)

=
�
1� ⇡

AET
NA

�
Pr (zn,1 > 0|n 2 R,A)

+⇡
AET
NA Pr (zn,1 > 0|n 2 R,NA)

33If there is heterogeneity in the fixed cost of intensive margin adjustment, then as long as the fixed cost is strictly positive
then the above still holds in a neighborhood near zAET .
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Define N0 as the total number of people in the labor force in state 0 and define N1 as the number of these
people also in the labor force in state 1. If we define B as the share of all such earners bunching in state 1,
then we have:

B =
NBunch

N1

=
NRA,1

N1

=
NRA,1

NRA,0

NRA,0

NR,0

NR,0

N0

N0

N1

=
Pr (zn,1 > 0|n 2 R,A)

�
1� ⇡

AET
NA

�
⇥ Pr

�
z
AET

< zn,0 < z
AET +4z

�

Pr (zn,1 > 0| zn,0 > 0)

In addition, if we assume that Type A and Type NA individuals have the same preferences and di↵er only
in the ability to adjust to z

AET , then the only di↵erence in employment exit between the two groups is due
to the lack of intensive margin adjustment on the part of the Type NA agents. In this case, we can show
the following:

Pr (zn,1 > 0|n 2 R,B) =

Z zAET+4z

zAET

dPr (zn,1 > 0| z̃n0 = ⇣, NA)

dz̃n0
h0 (⇣) d⇣

=

Z zAET+4z

zAET


dPr (zn,1 > 0| z̃n0 = ⇣, A)

dz̃n0
+ �n


(1� ⌧0 � db) +

vz

vc

�
g ( q̄n,1|n)

�
h0 (⇣) d⇣

= Pr (zn,1 > 0|n 2 R,A) +

Z zAET+4z

zAET


�n


(1� ⌧0 � db) +

vz

vc

�
g ( q̄n,1|n)

�
h0 (⇣) d⇣,

where h0 (·) is the density of earnings z̃n0 in state 0. The second line follows from equation (A.7). We will

use a first-order approximation, assuming �n

h
(1� ⌧0 � db) + vz

vc

i
g ( q̄n,1|n) is constant in the set R. Then

we have:

Z zAET+4z

zAET


�n


(1� ⌧0 � db) +

vz

vc

�
g ( q̄n,1|n)

�
h0 (⇣) d⇣ ⇡ �db · �nAET · g

�
q̄nAET ,1

��n = n
AET

� Z zAET+4z

zAET

h0 (⇣) d⇣

=
�
RKD

⇡
AET
NA

· Pr
�
z
AET

< zn,0 < z
AET +4z

�

Generally, �n and vz/vc are decreasing over this range. If g ( q̄n,1|n) is also weakly decreasing, then our first-
order approximation will overstate the di↵erence between Pr (zn,1 > 0|n 2 R,NA) and Pr (zn,1 > 0|n 2 R,A).

Now, consider estimating the following:

�
ATR ⌘ lim

z̃n0!zAET+

dE [ 1� [[T (zn,1)�B1 (zn,1)]� [T (0)�B1 (0)]] /zn,1| z̃n0, zn,1 > 0]

dz̃n0

� lim
z̃n0!zAET�

dE [ 1� [[T (zn,1)�B1 (zn,1)]� [T (0)�B1 (0)]] /zn,1| z̃n0, zn,1 > 0]

dz̃n0

which is the di↵erence at the exempt amount z
⇤ in the slope of the average net-of-tax rate in state 1, as

a function of state 0 earnings, among the set of individuals who do not exit employment between states 0
and 1. Note that since Type A individuals bunch, the average tax rate is constant for this group. Thus, the

53



di↵erence in the slope will be zero for this group. For the Type NA individuals, the di↵erence will be:

�
ATR
NA =


d (1� [[T (zn,1)�B1 (zn,1)]� [T (0)�B1 (0)]] /zn,1)

dzn,1

�d (1� [[T (zn,1)�B0 (zn,1)]� [T (0)�B0 (0)]] /zn,1)

dzn,1

�����
zn,1=zAET

=


d ([[B0 (zn,1)�B1 (zn,1)]� [B0 (0)�B1 (0)]] /zn,1)

dzn,1

�����
zn,1=zAET

=
B

0
0

�
z
AET

�

zAET
�

B0

�
z
AET

�

(zAET )2
�

B
0

1

�
z
AET

�

zAET
+

B1

�
z
AET

�

(zAET )2

= �
B

0

1

�
z
AET

�
�B

0

0

�
z
AET

�

zAET

= � db

zAET

As a result, the average in the di↵erence in slopes for the total group will be:

�
ATR =

NRA,1

NR,1
· 0 + NRNA,1

NR,1
·
✓
� db

zAET

◆

=
NR,0

NR,1

NRNA,0

NR,0

NRNA,1

NRNA,0
·
✓
� db

zAET

◆

=
Pr (zn,1 > 0|n 2 R,NA)⇡AET

NA

Pr (zn,1 > 0| zAET < z̃n0 < zAET +4z)

✓
� db

zAET

◆

We thus have four equations:

Pr
�
zn,1 > 0| zAET

< zn,0 < z
AET +4z

�
=
�
1� ⇡

AET
NA

�
Pr (zn,1 > 0|n 2 R,A) + ⇡

AET
NA Pr (zn,1 > 0|n 2 R,NA)

B =
Pr (zn,1 > 0|n 2 R,A)

�
1� ⇡

AET
NA

�
⇥ Pr

�
z
AET

< zn,0 < z
AET +4z

�

Pr (zn,1 > 0| zn,0 > 0)

�
RKD =

Pr (zn,1 > 0|n 2 R,NA)� Pr (zn,1 > 0|n 2 R,A)

Pr (zAET < zn,0 < zAET +4zAET ) /⇡AET
NA

�
ATR =

Pr (zn,1 > 0|n 2 R,B)⇡AET
NA

Pr (zn,1 > 0| zAET < zn,0 < zAET +4z)

✓
� db

zAET

◆

and four unknowns: 4z, ⇡
AET
NA , Pr (zn,1 > 0|n 2 R,A) and Pr (zn,1 > 0|n 2 R,NA). We do not have a

closed form solutions for either Pr
�
zn,1 > 0| zAET

< zn,0 < z
AET +4z

�
or Pr

�
z
AET

< zn,0 < z
AET +4z

AET
�
.

However, if we estimate a flexible polynomial for the employment rate and for the density in state 0, we
can numerically solve for ⇡

AET
NA . This can be combined with ⌘̂ to recover ⌘

AET
NA . This requires additional

assumptions relative to our estimate of the observed elasticity, which is a non-parametric lower bound on
the structural elasticity.

B.4 Fully Dynamic Extension of the Model

In this section we briefly demonstrate under what conditions our results continue to hold once our model is
extended to a multi-period setting with forward-looking agents. We again have two states of the world, state
0 and state 1. In this multi-period model, the tax and benefit schedule is the same across the two states for
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periods 1, . . . , t � 1. However, in period t, there is no benefit reduction rate in state 0 and a kink at zAET

in state 1 created by a benefit reduction rate on earnings above z
AET . The tax and benefit schedules are

once again the same across the two states during periods t+ 1, . . . , T . (For simplicity we assume here that
the tax and benefit schedules across the two states are once again the same during periods t+ 1, . . . , T , but
the model can be easily extended to assume that in each of these periods there is no benefit reduction rate
in state 0 and a kink at zAET in state 1.)

We assume that preferences and the economic environment yield a dynamic programming problem as
follows. In each period, individuals maximize:

ut (cnjt, znjt;n) = v (cnjt, znjt;n)� qnjt · 1 {znjt > 0}+ Vt (Anjt, znjt;n) (B.23)

subject to a dynamic budget constraint:

cnjt = (1 + rt�1)Anj,t�1 + znjt � T (znjt) +Bj (znjt)�Anjt (B.24)

where Anjt is the level of assets at the end of period t. The value function for the next period, Vt (·), may
depend on the level of assets passed forward and potentially the level of earnings in the current period. For
example, working today may have some e↵ect on the choice set in the next period.

We once again index individuals by their counterfactual earnings in period t in state 0, and we focus on
the probability of having positive earnings in period t in state 1, conditional on the counterfactual earnings
level in state 0: Pr (zn1t > 0| z̃n0t). In addition to the assumptions we have made above in Section 6.2, we
assume that the value function Vt (·) is C

1 in A, z, and n. Agents choose c, z, and A to maximize utility.
The outside value of not working in period t, v0 (Anj,t�1), depends on the current level of assets and includes
the continuation value of future periods. Finally, the distribution of fixed costs of working, G (q|n, t), now
depends on the time period as well.

The first-order conditions when earnings are positive are now:

vz + Vz = �� (1� T
0 (z) +B

0 (z))

vc = VA = � (B.25)

where � is the marginal utility of wealth. Using these conditions, we can show that there will still be bunching
in response to a kink among those who can adjust on the intensive margin. As before, individuals will work
if the utility conditional on working exceeds that of not working:

v (c̃njt, z̃njt;n) + Vt

⇣
Ãnjt, z̃njt;n

⌘
� v

0 (Anj,t�1)� qnjt > 0 (B.26)

where the “⇠” denotes optimal levels conditional on working. The probability of working in period 1 is still:

Pr (zn1t > 0| z̃n0t) = G (qn1t|n, t) (B.27)

where now:

qn1t ⌘ v (c̃n1t, z̃n1t;n) + Vt

⇣
Ãn1t, z̃n1t;n

⌘
� v

0 (An1,t�1) (B.28)

We now show under what conditions our main results still hold in this dynamic setting. First, the slope
of the employment rate will still be:

dPr (zn1t > 0| z̃n0t)
dz̃n0t

= g (qn1t|n, t)
dqn1t

dz̃n0t
+

dG (qn1t|n, t)
dn

dn

dz̃n0t
(B.29)

We will have a new expression for the first term on the right of equation (B.29). After substituting for c̃n1t
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in (B.28) using the dynamic budget constraint in (B.24) we have:

dqn1t

dz̃n0t
=

2

4
@v

⇣
(1 + rt�1) Ãn1,t�1 + z̃n1t � T (z̃n1t) +B1 (z̃n1t)� Ãn1t, z̃n1t;n

⌘

@z̃n1t
+

@Vt

⇣
Ãn1t, z̃n1t;n

⌘

@z̃n1t

3

5 dz̃n1t

dz̃n0t

+

2

4
@v

⇣
(1 + rt�1) Ãn1,t�1 + z̃n1t � T (z̃n1t) +B1 (z̃n1t)� Ãn1t, z̃n1t;n

⌘

@Ãn1t

+
@Vt

⇣
Ãn1t, z̃n1t;n

⌘

@Ãn1t

3

5 dÃn1t

dz̃n0t

+

2

4
@v

⇣
(1 + rt�1) Ãn1,t�1 + z̃n1t � T (z̃n1t) +B1 (z̃n1t)� Ãn1t, z̃n1t;n

⌘

@n
+

@Vt

⇣
Ãn1t, z̃n1t;n

⌘

@n

3

5 dn

dz̃n0t

+

2

4
@v

⇣
(1 + rt�1) Ãn1,t�1 + z̃n1t � T (z̃n1t) +B1 (z̃n1t)� Ãn1t, z̃n1t;n

⌘

@Ãn1,t�1

�
@v

0
⇣
Ãn1,t�1

⌘

@An1,t�1

3

5 dAn1,t�1

dz̃n0t

= [(1� T
0 (z) +B

0
1 (z)) vc + vz + Vz]

dz̃n1t

dz̃n0t
+ [�vc + VA]

dÃn1t

dz̃n0t
+ [vn + Vn]

dn

dz̃n0t

+
⇥
(1 + rt�1) vc � v

0
A

⇤ dAn1,t�1

dz̃n0t

(B.30)

For those with z̃n0t < z
AET or z̃n0t > z

AET +�z, we can use the first-order conditions in (B.25) to show
that the first term in (B.30) equals zero when agents are able to adjust on the intensive margin as in Section
6.2. For those with z

AET  z̃n0t  z
AET +�z

⇤, the first term in (B.30) equals zero: dz̃n1t/dz̃n0t = 0 since
z̃n1t = z

AET for everyone in this latter set due to bunching. Additionally, the second term in (B.30) equals
zero for everyone, due to the first-order condition in (B.25) for saving.

Thus, when agents are able to adjust on both the intensive and extensive margin we have:

dPr (zn1t > 0| z̃n0t)
dz̃n0t

= g (qn1t|n, t)

0

@

2

4@v (c̃n1t, z̃n1t;n)

@n
+

@Vt

⇣
Ãn1t, z̃n1t;n

⌘

@n

3

5 dn

dz̃n0t

+

2

4(1 + rt�1)
@v (c̃n1t, z̃n1t;n)

@c̃n1t
�

@v
0
⇣
Ãn1,t�1

⌘

@An1,t�1

3

5 dAn1,t�1

dz̃n0t

1

A+
dG (qn1t|n, t)

dn

dn

dz̃n0t

(B.31)

Note that n, q̃n,1, z̃n,1, Ãn,1, and T1(·) are all continuous in z̃n0t at z
AET . Furthermore, our smoothness

assumptions imply that g (·), @v/@n, @V/@n, @n/@z̃n0t, and @G
�
qn,1

��n, t
�
are likewise continuous in their

arguments. We additionally assume that @An1,t�1/@z̃n0t is continuous at z⇤; we discuss below the conditions
under which this assumption holds and argue that they are satisfied in our setting. Given these assumptions,
our original result follows when there are intensive margin adjustments:

lim
z̃n0t!zAET+

dPr (zn1t > 0| z̃n0t)
dz̃n0t

� lim
z̃n0t!zAET�

dPr (zn1t > 0| z̃n0t)
dz̃n0t

= 0 (B.32)

We now turn to the case in which we make the same assumptions, except that individuals are not able
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to adjust on the intensive margin, as in Section 6.3. We now have:

dqn1t

dz̃n0t
=

2

4
@v

⇣
(1 + rt�1) Ãn1,t�1 + z̃n0t � T (z̃n0t) +B1 (z̃n0t)� Ãn1t, z̃n0t;n

⌘

@z̃n0t
+

@Vt

⇣
Ãn1t, z̃n0t;n

⌘

@z̃n0t

3

5

+

2

4
@v

⇣
(1 + rt�1) Ãn1,t�1 + z̃n0t � T (z̃n0t) +B1 (z̃n0t)� Ãn1t, z̃n0t;n

⌘

@Ãn1t

+
@Vt

⇣
Ãn1t, z̃n0t;n

⌘

@Ãn1t

3

5 dÃn1t

dz̃n0t

+

2

4
@v

⇣
(1 + rt�1) Ãn1,t�1 + z̃n0t � T (z̃n0t) +B1 (z̃n0t)� Ãn1t, z̃n0t;n

⌘

@n
+

@Vt

⇣
Ãn1t, z̃n0t;n

⌘

@n

3

5 dn

dz̃n0t

+

2

4
@v

⇣
(1 + rt�1) Ãn1,t�1 + z̃n0t � T (z̃n0t) +B1 (z̃n0t)� Ãn1t, z̃n0t;n

⌘

@Ãn1,t�1

�
@v

0
⇣
Ãn1,t�1

⌘

@An1,t�1

3

5 dAn1,t�1

dz̃n0t

= [(1� T
0 (z) +B

0
1 (z)) vc + vz + Vz] + [�vc + VA]

dÃn1t

dz̃n0t
+ [vn + Vn]

dn

dz̃n0t

+
⇥
(1 + rt�1) vc � v

0
A

⇤ dAn1,t�1

dz̃n0t

(B.33)

where the primary di↵erence from (B.30) is that earnings are fixed at z̃n0t. We still have the second term
dropping out of the expression in (B.33), as assets, Ãn1t, are optimally chosen even when earnings are fixed.
Furthermore, for those with z̃n0t  z

AET we have T1 = T0, and thus the first term also drops out among
this group due to the envelope theorem. Note that for those with z̃n0t � z

AET we can rewrite:

(1� T
0 (z) +B

0
1 (z)) vc + vz + Vz = �


(1� ⌧0 � db) +

vz + Vz

vc

�
(B.34)

Similar to our less dynamic model above in Section 6.3, we therefore have:

dPr (zn1t > 0| z̃n0t)
dz̃n0t

=

8
>>>>>>>>>><

>>>>>>>>>>:

g (qn1t|n, t)
⇣
[vn + Vn]

dn
dz̃n0t

+
⇥
(1 + rt�1) vc � v

0
A

⇤ dAn1,t�1

dz̃n0t

⌘

+ dG( qn1t|n,t)
dn

dn
dz̃n0t

if z̃n0t < z
AET

g (qn1t|n, t)
⇣
�n

h
(1� ⌧0 � db) + vz+Vz

vc

i
+ [vn + Vn]

dn
dz̃n0t

+
⇥
(1 + rt�1) vc � v

0
A

⇤ dAn1,t�1

dz̃n0t

⌘
+ dG( qn1t|n,t)

dn
dn

dz̃n0t

if z̃n0t � z
AET

(B.35)
We note the following limit, making use of the first-order condition in (B.25):

lim
z̃n0t!zAET+

vz

⇣
(1 + rt�1) Ãn1,t�1 + z̃n0t � T (z̃n0t) +B1 (z̃n0t)� Ãn1t, z̃n0t;n

⌘
+ Vz

⇣
Ãn1t, z̃n0t;n

⌘

vc

⇣
(1 + rt�1) Ãn1,t�1 + z̃n0t � T (z̃n0t) +B1 (z̃n0t)� Ãn1t, z̃n0t;n

⌘ = � (1� ⌧0)

(B.36)
Maintaining our smoothness assumptions for this section, we thus have our original result when earnings in
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state 1 are constrained (z̃n1t = z̃n0t):

lim
z̃n0t!zAET+

dPr (zn1t > 0| z̃n0t)
dz̃n0t

� lim
z̃n0t!zAET�

dPr (zn1t > 0| z̃n0t)
dz̃n0t

= lim
z̃n0t!zAET+

g (qn1t|n, t) · �n


(1� ⌧0 � db)

+
vz + Vz

vc

�

= �db · �n⇤ · g
�
qnAET 1t|nAET

, t
�

(B.37)

As in Appendix B.1, this result easily generalizes to the case of multiple, discrete job options away from
z
⇤AET . The kink in this case can be used to calculate an extensive margin elasticity, as in equation (14).
Returning to our assumption that @An1,t�1/@z̃n0t is continuous at z̃n0t = z

AET , we view this as a natural
assumption in our setting. First, if agents act as if the tax change is unanticipated, then this is assumption
holds: in this case the slope of expected lifetime wealth is continuous at the kink. Many contexts will
feature unanticipated changes in taxes. In our empirical application, Gelber et al. (2013) show that prior
to being subject to the AET, individuals do not appear to act as if they anticipate the later imposition of
the AET (consistent with the myopia suggested in Gelber, Isen, and Song, 2016). If the tax change were
anticipated they would bunch at z

AET in anticipation of the later imposition of the kink (due to the fixed
cost of adjustment), but empirically we do not observe such behavior. Thus, they do not appear to anticipate
its imposition, so our empirical application appears consistent with this case. Moreover, in our setting, we
test for kinks in predetermined or placebo outcomes, including measures of the employment rate at ages 56,
57, 60, and 61, as well as demographic variables. We show in Section 5.3 that predetermined variables as a
function of age 60 earnings do not exhibit systematic discontinuities in their slopes at the exempt amount,
consistent with our assumption of continuity in @An1,t�1/@z̃n0t at z̃n0t = z

AET .
Second, even if some individuals in our context acted as if the imposition of the AET were anticipated,

if the AET is also actuarially fair and other sources of lifetime wealth are also smooth, then @An1,t�1/@z̃n0t

should be smooth at z̃n0t =z
AET

. It is commonly understood that the AET is approximately actuarially fair
(e.g. Diamond and Gruber, 1999), and thus this assumption should approximately hold. Note that even if
the AET is actuarially fair on average—but better than actuarially fair in expectation for some types and
worse for others—it is possible that @An1,t�1/@z̃n0t is continuous at z̃n0t = z

AET , even though we also we
observe a non-zero substitution e↵ect of the incentives created by the AET when individuals are later subject
to it. For example, if the AET is worse than actuarially fair for those who are particularly responsive to the
substitution incentives created by the AET, then we could see a reduction in earnings or employment due to
a bunching or extensive margin response to the substitution incentives created by the AET once individuals
have claimed, even though @An1,t�1/@z̃n0t is continuous at at z̃n0t = z

AET
.

Third, in the case that the imposition of the tax change is anticipated—which could be consistent with
the data if the AET is actuarially fair on average—we could interpret our estimated elasticity as a marginal-
utility-of-wealth-constant elasticity. In this case our paper then can fit into a broader literature estimating
Frisch elasticities (see Chetty et al., 2013, for a review), and provides a novel estimate of a Frisch elasticity
using transparent variation from the RKD. (Following Chetty et al. (2012) we call this extensive margin
elasticity, holding the marginal utility of lifetime wealth constant, a Frisch elasticity, while recognizing that
extensive margin Frisch elasticities are technically not defined because non-participants do not locate at an
interior optimum.)

Fourth, even in the case in which the AET is not actuarially fair, we can estimate an elasticity that
represents the response to a parametric shift in the entire wage profile; as Blundell and MaCurdy (1999) and
others point out, this is the most relevant for policy evaluation of the impacts of permanent shifts in the entire
wage profile and will reflect a combination of income and substitution e↵ects. We have run several numerical
simulations to gauge the quantitative importance of anticipatory savings for the continuity of @An1,t�1/@z̃n0t

at z̃n0t = z
AET , and we find that extensive margin estimates using this method are little a↵ected by a lack of

smoothness in An1,t�1.34 Furthermore, since predetermined variables do not show systematic discontinuities

34Results from our simulations are available upon request. We continue to recover the extensive margin elasticity in a
dynamic model when intensive margin adjustment is constrained and we observe the correct, counterfactual running variable.
We estimate an attenuated version of the true elasticity when intensive margin adjustment is constrained and we use lagged
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in their slopes as a function of age 60 earnings, this issue again does not appear to a↵ect the validity of the
smoothness assumption underlying our empirical design. We view our method as most easily applicable in
settings in which the data are consistent with such interpretations of the parameters and the smoothness
assumptions appear to be satisfied.

B.4.1 Explicitly Modeling Actuarial Adjustment in the Context of the Dynamic Model

Thus far, we have abstracted from the impact of actuarial adjustment of future benefits on the behavioral
response to the AET. In this section, we explicitly incorporate this feature of the AET and highlight how
our estimator is a↵ected. We maintain the setup of the dynamic model above with the following alterations.
First, the dynamic program now involves choosing earnings to maximize:

ut (cnjt, znjt;n) = v (cnjt, znjt;n)� qnjt · 1 {znjt > 0}+ Vt

�
Anjt +B

PDV
njt (znjt) , znjt;n

�
(B.38)

Relative to our previous case, the value function, Vt (·) , is now a function of total assets, i.e. the sum of
savings, Anjt, and the present discounted value of all future Social Security benefits, BPDV

njt (znjt). These
benefits are potentially a↵ected by the current level of earnings. The dynamic budget constraint is as before:

cnjt = (1 + rt�1)Anj,t�1 + znjt � T (znjt) +Bj (znjt)�Anjt (B.39)

The flow of benefits, Bjt (znjt), does potentially vary across states, due to the presence of the AET in state
1. The first-order conditions are now:

vz + Vz = ��
�
1� T

0 (z) +
⇥
B

0 (z) +B
PDV 0 (z)

⇤�

vc = VA = � (B.40)

where B0
jt (z) is the marginal e↵ect of earning more on the current flow of benefits, i.e. the benefit reduction

rate (BRR). It takes the following form in state 1:

B
0 (z) =

⇢
0 if z < z

AET

�db if z � z
AET (B.41)

Finally, BPDV 0 (z) is the e↵ect of increasing current earnings on the future stream of benefits from OASI.
B

PDV 0 (z) similarly takes the form:

B
PDV 0 (z) =

⇢
0 if z < z

AET

db
PDV if z � z

AET (B.42)

Note that when the adjustment is actuarially fair, we have db = db
PDV . In this version of the model, we

also express the outside utility as a function of savings and OASI benefits:

v
0 = v

0
�
Anj,t�1, B

PDV
nj,t�1

�
(B.43)

Using similar steps as in the basic dynamic model above, we have the following expression for the
(potential) kink in the employment rate at z⇤, when intensive margin earnings are constrained:

lim
z̃n0t!zAET+

dPr (zn1t > 0| z̃n0t)
dz̃n0t

� lim
z̃n0t!zAET�

dPr (zn1t > 0| z̃n0t)
dz̃n0t

= �
�
db� db

PDV
�
·�nAET ·g

�
qnAET 1t|nAET

, t
�

Here we make explicit that an additional necessary condition for finding a kink in the employment rate is that
db 6= db

PDV , either because the AET is not actually fair, or perhaps, because individuals do not pay attention
to actuarial adjustment. The sign of dbPDV is non-negative, as the actuarial adjustment never reduces future
benefits, but dbPDV can be smaller than db if adjustment is not full. It can also be larger than db for those
with high life expectancies, in which case there will be a positive kink in the slope of the employment

earnings as a proxy for the running variable, though our simulations show that the extent of attenuation is slight. If anything,
this slight attenuation again strengthens our case that the elasticity is large, as the lower bound we estimate is itself large.
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function. In our applications above, we have e↵ectively assumed db
PDV = 0 for illustrative purposes and

following previous literature, although our method can easily accomodate alternative assumptions. Since we
do find a kink in the employment rate empirically (and also find intensive margin bunching), this assumption
is validated.

B.5 Model Extension: Joint Claiming and Employment Decision

A specific feature of our empirical context is that whether or not individuals face a kink is endogenous. That
is, if an agent does not claim, she faces a linear budget set. We now extend the model to our particular
empirical application, so that the model includes this trade-o↵ between facing a kink or delaying claiming. To
model claiming, we introduce additional notation. We model claiming in a somewhat “reduced form” fashion,
but our model easily generalizes to the previous dynamic setting, in which we can explicitly incorporate the
e↵ects of claiming Social Security on the timing and magnitude of Social Security benefits in di↵erent periods,
as well as the resulting e↵ects on wealth and savings. In our case, when j = 0 an individual faces a linear tax
schedule whether or not she claims. However, when j = 1 an individual faces a kinked tax schedule when
claiming Social Security or a linear schedule when not claiming Social Security. We focus on our version
of the model in which intensive margin adjustments are constrained, i.e. z̃n1 ⌘ z̃n0, and we will determine
whether a kink in the probability of working still occurs when claiming is endogenous.

First, we will denote v
0
n ⌘ v(z̃n0 � T (z̃n0) + B0(z̃n0), z̃n0, n) as the flow utility (net of the fixed cost

of working) when earning z̃n0, facing no benefit reduction rate, and claiming in state 0. Next, we denote
v
1
n ⌘ v(z̃n0�T (z̃n0)+B1(z̃n0), z̃n0, n), i.e. the net flow utility when earning z̃n0, facing the benefit reduction
rate db above z

AET , and claiming in state 1. As before, v0 is the utility received when claiming Social
Security and not working, in either state 0 or state 1. Next, we specify utility when claiming is delayed. The
payo↵ when not working and not claiming Social Security is v0+✓n, in both state 0 and state 1. Likewise, the
payo↵ when working and not claiming Social Security is v0n+�n, again in either state 1 or state 0. Thus, the
parameters ✓ and � capture the relative change in utility when claiming is delayed. These can be considered
to capture the income e↵ect of delaying claiming. We leave these parameters relatively unrestricted, and
thus they may represent an increase in lifetime wealth when delaying claiming increases lifetime benefits (for
example due to the actuarial adjustment being better than actuarially fair), or they may represent a utility
decrease for those facing liquidity constraints, for example.

In addition to n we now have three parameters that capture unobserved heterogeneity, (�, ✓, q). We allow
these variables to have a relatively unrestricted, joint distribution, which we represent with a conditional,
joint density of � and ✓, m(�, ✓|q, n) and our previous marginal density of q, g(q|n). The joint density of
(�, ✓, q) is thereforem(�, ✓|q, n)·g(q|n). We extend our assumption of smoothness in unobserved heterogeneity
to the joint distribution of (�, ✓, q), conditional on n .

In State 1, our model will now feature comparisons among four discrete choices: (1) working while
claiming, v1n � qn; (2) not working while claiming, v0; (3) working while not claiming v

0
n + �n � qn; and

(4) not working while not claiming, v0 + ✓n. We will additionally denote critical values of our unobservable
parameters, which arise when comparing the various discrete options. As before, when comparing working
while claiming to not working while claiming, the expression for indi↵erence is v1n � qn = v

0, which implies
a critical value for q, qn ⌘ v

1
n � v

0. Similarly, when comparing working while not claiming to not working
while not claiming, the expression for indi↵erence is v0n + �n � qn = v

0 + ✓n. We can write this in terms of
�n as �n = ✓n + qn � (v0n � v

0) = ✓n + qn � q
0
n, where q

0
n ⌘ v

0
n � v

0 is an analogous critical value for q in
state 0 when claiming.

Furthermore, for those who are indi↵erent between working while claiming and not working while not
claiming, we have v

1
n � qn = v

0 + ✓n. This implies a critical value for ✓n : ✓n = qn � qn. Symmetrically,
for those who are indi↵erent between not working while claiming and working while not claiming, we have
v
0 = v

0
n + �n � qn, with a critical value for �n : �n = q

0
n � qn. Indi↵erence between working while

claiming and working while not claiming implies v
1
n � qn = v

0
n + �n � qn, and a critical value for �n is:

�n = v
1
n � v

0
n ⌘ �vn. Finally, indi↵erence between not working while claiming and not working while not

claiming implies v0 = v
0 + ✓n or ✓n = 0.

Using our previous results, the envelope theorem implies the following:

@q
0
n

@z̃n0
=

@v
0
n

@z̃n0
= 0 (B.44)
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Additionally, we have:

@q̄n

@z̃n0
=

@�vn

@z̃n0
=

@v
1
n

@z̃n0
=

8
>><

>>:

�n

h
(1� ⌧0) +

vz
vc

i
if z̃n0 < z

AET

�n

h
(1� ⌧0 � db) + vz

vc

i
if z̃n0 � z

AET

(B.45)

B.5.1 Claiming Decision

We now characterize the claiming probability and derive an expression for a kink in the claiming probability
at z̃n0 = z

AET . The probability of claiming can be expressed as follows:

Pr (claim| z̃n0) =

Z q

�1

Z q�q

�1

Z �v

�1
m (�, ✓| q, n) g (q|n) d�d✓dq

+

Z 1

q

Z 0

�1

Z q�q0

�1
m (�, ✓| q, n) g (q|n) d�d✓dq (B.46)

The first term integrates over the values of q for which working while claiming is preferred to not working
while claiming, q 2 [�1, q]. The next two integrals restrict attention to values of ✓ that render not working
while not claiming dominated by working while claiming, i.e. ✓ 2 [�1, q � q] and values of � that similarly
render working while not claiming dominated by working while claiming, i.e. � 2 [�1,�v]. The second
term integrates over values of q for which not working while claiming is preferred to working while claiming,
q 2 [q,1]. Over this range we restrict analysis to ✓ 2 [�1, 0] and � 2 [�1, q � q], i.e. values that render
not claiming dominated by not working while claiming.

Consider the slope of Pr (claim| z̃n0), which can now be expressed as:

dPr (claim| z̃n0)
dz̃n0

=
@ Pr (claim| z̃n0)

@z̃n0
+

@ Pr (claim| z̃n0)
@n

dn

dz̃n0
(B.47)

Given our assumptions regarding smoothness and our results above, we know that the second term will be
continuous at z̃n0 = z

AET . We therefore focus on the first term in this expression. Leibniz’s rule implies:

@ Pr (claim| z̃n0)
@z̃n0

=

Z q

�1

Z q�q

�1

@�vn

@z̃n0
m (�vn, ✓| q, n) g (q|n) d�d✓dq

+

Z q

�1

@qn

@z̃n0

"Z �v

�1
m (�, q � q| q, n) d�

#
g (q|n) dq

+
@qn

@z̃n0

"Z 0

�1

Z �v

�1
m (�, ✓| q, n) d�d✓

#
g (q|n)

�
Z 1

q

Z 0

�1

@q
0
n

@z̃n0
m
�
q � q

0
, ✓
�� q, n

�
g (q|n) d✓dq

� @qn

@z̃n0

"Z 0

�1

Z �v

�1
m (�, ✓| q, n) d�d✓

#
g (q|n) . (B.48)

Rearranging terms, and using the fact that @q0/@z̃n0 = 0 and @q/@z̃n0 = @�v/@z̃n0 = �

h
(1� ⌧0 +B

0(z) + vz
vc

i
,

we have:

@ Pr (claim| z̃n0)
@z̃n0

= �


(1� ⌧0 +B

0(z) +
vz

vc

�
⇥

(Z q

�1

"Z q�q

�1
m (�v, ✓| q, n) d✓ +

Z �v

�1
m (�, q � q| q, n) d�

#
g (q|n) dq

)

(B.49)
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Finally, the kink in the probability of claiming can be expressed as:

lim
z̃n0!z⇤+

@ Pr (claim| z̃n0)
@z̃n0

� lim
z̃n0!z⇤�

@ Pr (claim| z̃n0)
@z̃n0

= � (B.50)

where

� = lim
z̃n0!zAET+

�


(1� ⌧0 � db) +

vz

vc

�
·
(Z q

�1

"Z q�q

�1
m (�v, ✓| q, n) d✓ +

Z �v

�1
m (�, q � q| q, n) d�

#
g (q|n) dq

)

= �db · �nAET ·
(Z q

�1

"Z q�q

�1
m
�
0, ✓| q, nAET

�
d✓ +

Z 0

�1
m
�
�, q � q| q, nAET

�
d�

#
g
�
q|nAET

�
dq

)
(B.51)

and where we used the results from Section 6.3 and the fact that lim
z̃n0!zAET

�vn = 0.

The two integrals in the expression can be interpreted as joint probabilities. The first is the joint
probability that (1) working while claiming is preferred to not working while claiming, (2) working while
claiming is preferred to not working while not claiming, and (3) the individual is indi↵erent between working
while claiming and working while not claiming, i.e. �n⇤ = �vn⇤ = 0. The second term is the joint probability
that (1) working while claiming is preferred to not working while claiming, (2) working while claiming is
preferred to working while not claiming, and (3) the individual is indi↵erent between working while claiming
and not working while not claiming, i.e. ✓nAET = qnAET �qnAET . Note that the probabilities are conditional
on n = n

AET .
Thus, there will be a downward kink in the probability of claiming, which increases with the size of the

kink and the size of two key sets of marginal claimants. The first set are on the margin of moving from
working while claiming to working while not claiming, and the second set are on the margin of moving from
working while claiming to not working while not claiming. Finally, note that the kink only a↵ects claiming
among those for whom working while claiming is optimal. Therefore, the only relevant shifting is from
working while claiming to either state of not claiming.

B.5.2 Extensive Margin Response with Endogenous Claiming

We now consider the extensive margin choice of whether to work, allowing for an endogenous claiming
response. The probability of having positive earnings in state 1 is now:

Pr (zn1 > 0| z̃n0) =

Z q

�1

"Z q�q

�1

Z 1

�1
m (�, ✓| q, n) d�d✓ +

Z 1

q�q

Z 1

✓+q�q0
m (�, ✓| q, n) d�d✓

#
g (q|n) dq

+

Z 1

q

Z 0

�1

Z 1

q�q0
m (�, ✓| q, n) d�d✓ +

Z 1

0

Z 1

✓+q�q0
m (�, ✓| q, n) d�d✓

�
g (q|n) dq

(B.52)

The probability is comprised of four terms. The first two terms correspond to values of q that render working
while claiming preferable to not working while claiming. The first term in this set captures individuals for
whom working while claiming also dominates not working while not claiming. In this case, the individual
will always work, regardless of the value of �. The second term captures individuals for whom not working
while not claiming dominates working while claiming. In this case, only those who prefer working while not
claiming to not working while not claiming will work. The second set of terms likewise covers the two settings
in which not working while claiming dominates working while claiming, but the individual still decides to
work. Put another way, an agent will work when max(v1n � q, v

0
n + � � q) > max(v0, v0 + ✓).

As in the case of claiming above, we focus on the discontinuity in the partial derivative of this probability,
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@ Pr (zn1 > 0|z̃n0) /@z̃n0. Leibniz’s rule again implies:

@ Pr (zn1 > 0| z̃n0)
@z̃n0
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⇢
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(B.53)

Once again relying on the fact that @q
0
/@z̃n0 = 0 and @q/@z̃n0 = @�v/@z̃n0 = �

h
(1� ⌧0 �B

0 (z)) + vz
vc

i
,

we can rearrange terms to yield:
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The kink in the probability of having positive earnings can now be expressed as:

lim
z̃n0!zAET+

dPr (zn1 > 0|z̃n0)
dz̃n0

� lim
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where

� = lim
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and where again we have used the fact that lim
z̃n0!zAET

�vn = 0.

The first term in this expression is an attenuated version of our previous kink in the probability of
working. The extra term can be interpreted as the probability of claiming among the marginal labor force
participants, i.e. those for whom qnAET = qnAET . The integral covers the range of values for � and ✓ that
render working while claiming preferable to either not working while not claiming or working while not
claiming. Since the individual is indi↵erent between working while claiming and not working while claiming,
this also implies that claiming is preferable to not claiming among this set of agents. The second term may
be recognized as one component of the kink in claiming. In particular, the integral captures individuals who
prefer working while claiming to not working while claiming, and prefer working while claiming to working
while not claiming, but are indi↵erent between working while claiming and not working while not claiming.
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The kink in the budget set while working and claiming shifts this marginal individual to not claiming, at
which point not working becomes optimal.

Thus, endogenizing claiming has two e↵ects on the kink in the probability of positive earnings. First,
it attenuates this behavioral response, because the kink only a↵ects those who claim. Second, it amplifies
the behavioral response if there are individuals who are shifted to not claiming, and prefer to not work
conditional on not claiming, but to work conditional on claiming. In this case, we cannot generally conclude
whether our estimate of the participation elasticity is a lower bound or an upper bound. However, we detail
below two approaches for establishing an upper bound on the (negative) behavioral response of participation
under certain restrictions on the parameters (i.e. a lower bound on the absolute value of the participation
response).

B.5.3 Bounding the Behavioral Response

One method for establishing a bound involves imposing an additional restriction on unobserved heterogeneity.
In particular, we can assume that �n · ✓n � 0, i.e. the signs of � and ✓ are the same. In this case, delaying
claiming must cause utility when working and not working to either both increase or both decrease, although
the absolute value of the change in utility can be di↵erent across the two states. This assumption makes
intuitive sense, as we are restricting analysis to the case in which earnings are fixed at z̃n0. In this case,
delaying claiming does not a↵ect employment, and delaying claiming only a↵ects utility through its direct
e↵ect on either current disposable income, or (in a dynamic setting) lifetime benefits. This would be the
case, for example, if delaying claiming has the same e↵ect on wealth, regardless of working status. The
assumption rules out cases in which, for example, working a↵ects life expectancy in a way that changes the
sign of the e↵ect of delaying claiming on lifetime benefits, or a case in which working relaxes a borrowing
constraint and the e↵ect of delaying claiming on utility therefore changes sign, conditional on working.

If our assumption holds, we can show the following:

Z q

�1

Z 0

�1
m
�
�, q̄ � q| q, nAET

�
g
�
q|nAET

�
d�dq = 0 (B.57)

The reason why this probability becomes zero is as follows. First, we are restricting attention to values of
q  q. In addition, we are fixing the value of ✓ = q � q � 0. However, we are also restricting analysis to
individuals for whom �  0. Given our assumption that the signs of � and ✓ must be the same, this set must
be of measure zero.

In this case, we can simplify our two kinks above as follows:

� = �db · �nAET ⇥
Z q

�1

Z q�q

�1
m
�
0, ✓| q, nAET

�
g
�
q|nAET

�
d✓dq (B.58)
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(B.59)

The kink in participation we estimate is now a weak upper bound on a negative kink (i.e. the absolute value
of the kink in participation we estimate is a lower bound on the kink that would obtain absent a claiming
response). This implies that our observed elasticity will be a lower bound. Note that the probability of
claiming that attenuates the behavioral response is local to marginal labor force participants, i.e. q = q, and
thus is not the same as the population probability of claiming at z̃n0 = z

AET .
If we are not willing to impose the above restrictions on the joint distribution of � and ✓, we can still

achieve a lower bound. Using the results from the previous two sections, we have:
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Again, this di↵erence in kinks provides an upper bound on the negative kink in participation. Note that
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this bound is not guaranteed to be negative. However, in cases in which the kink in claiming is relatively
negligible—as appears to be the case in our empirical application—it is possible to establish a non-trivial
upper bound on the kink and, by extension, a lower bound on the employment elasticity. Furthermore, if
there is no detectable kink in claiming, then simply rescaling the kink in employment by the share claiming
is su�cient to adjust for endogenous claiming.

C Procedure for estimating excess mass

As we explain in Gelber, Jones, and Sacks (2013), we seek to estimate the “excess mass” at the kink, i.e.
the fraction of the sample that locates at the kink under the kinked tax schedule but not under the linear
tax schedule. Following a standard procedure in the literature (e.g. Saez, 2010; Chetty, Friedman, Olsen,
and Pistaferri, 2011), we estimate the counterfactual density (i.e. the density in the presence of a linear
budget set) by fitting a smooth polynomial to the earnings density away from the kink, and then estimating
the “excess” mass in the region of the kink that occurs above this smooth polynomial.

Specifically, for each earnings bin zi, we calculate pi, the proportion of the sample with earnings in the
range [zi � k/2, zi + k/2). The earnings bins are normalized by distance-to-kink, so that for zi = 0, pi is the
fraction of all individuals with earnings in the range [0, k). To estimate bunching, we assume that pi can be
written as:

pi =
DX

d=0

�d · (zi)d +
kX

j=�k

� · 1{zi = j}+ "i (C.61)

and run this regression (where 1 denotes the indicator function and j denotes the bin). This equation
expresses the earnings distribution as a degree D polynomial, plus a set of indicators for each bin within k�

of the kink, where � is the bin width. In our empirical application, we choose D = 7, � = 500 and k = 6
as our baseline (so that six bins are excluded from the polynomial estimation). We control for a baseline
seventh-degree polynomial through the density following Chetty, Friedman, Olsen, and Pistaferri (2011).
The parameter � reflects the excess density near the kink.

Our measure of excess mass is M̂ = 2k�, the estimated excess probability of locating at the kink (relative
to the polynomial term). This measure depends on the counterfactual density near the kink, so to obtain a
measure of excess mass that is comparable at the kink, we scale by the predicted density that we would obtain
if there were a linear budget set. This is just the constant term in the polynomial, since zi is the distance

to zero. Thus, our estimate of normalized excess mass is B̂ = M̂
�̂0

. We calculate standard errors using the

delta method. We calculate the density in each bin by dividing the number of beneficiaries in the bin by the
total number of beneficiaries within the bandwidth; note that this normalization should not a↵ect the excess
normalized mass or the estimated density, because dividing by the total number of beneficiaries within the

bandwidth a↵ects the numerator (i.e. M̂) and denominator (i.e. �̂0) of the expression for B̂
⇣
= M̂

�̂0

⌘
in equal

proportions and therefore should have no impact on bB.

D Method of Adjusting for Measurement Error

Our baseline estimates treat 60 earnings as a perfect proxy for desired earnings at age 63. However, earnings
change from year-to-year, even at ages not subject to the earnings test, so it is natural to think that desired
earnings would change as well. Such changes imply that our baseline first stage estimate of the kink in
ANTR (at age 63) given age 60 income is too large—i.e. measurement error in our running variable will lead
to an attenuated first stage, and therefore a larger elasticity estimate. This appendix describes our approach
to correcting for this measurement error, both in estimation and inference. We also present simulations
validating the approach.

D.1 Estimation

In general, we estimate the extensive margin elasticity with the following plug-in estimator:

⌘̂ =
�̂PE

↵̂ANTR
· µ̂ANTR

µ̂PE

, (D.62)
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where �̂PE is the estimated kink in positive earnings (the reduced form), ↵̂ANTR is the estimated kink in
ANTR (the first stage kink), µ̂PE is the estimated probability of employment at the threshold (in the data),
and µ̂ANTR is the estimated average ANTR at the threshold. In our baseline estimate we impute the ANTR
at age 63 using age 60 earnings, and estimate ↵̂ANTR from an RK of this imputed value on age 60 distance.
We now present an alternative approach where we calibrate an earnings growth process, and use that process
to simulate the first stage, which yields estimates for ↵̂ANTR and µ̂ANTR.

D.1.1 Calibrating and drawing from the earnings growth distribution

Before simulating the first stage, we must calibrate earnings growth from age 60 to age 63. We consider
three earnings growth distributions. All three are based on the earnings growth from age 59 to age 60. We
chose these ages because data from ages even earlier than age 59 may involve very di↵erent dynamics, as
most people are not yet approaching retirement. Later ages are also unsuitable because observed earnings
may have responded endogenously to the earnings test.

The first earnings growth process assumes that earnings growth rates are perfectly correlated from one
year to the next, with the one-year distribution given by the age 59 to 60 growth rate distribution shown in
Figure 8, Panel A; call this distribution H. To draw from the earnings growth distribution, we simply draw
a one-year growth rate ri from H, and then obtain a three-year growth rate as (1 + ri)3 � 1. Our second
earnings growth process is identical except it assumes that earnings growth is perfectly independent instead
of perfectly persistent. To draw from the earnings growth distribution in this case, we therefore take three
draws ri1, ri2 and ri3 from H, and obtain the three-year growth rate as (1 + ri1)(1 + ri2)(1 + ri3)� 1.

In the third approach, we assume that earnings growth rates are conditionally independent given a time
invariant type. Specifically, we divide people up into eight categories determined by gender and quartiles of
permanent income, defined as average annual income between ages 35 and 55. We use these ages because
annual earnings are not recorded prior to 1950, so starting at 35 ensures that we can properly define perma-
nent income. We assume that income growth is normally distributed conditional on type, and we estimate
the mean and variance of income growth (at ages 59 to 60) given type. We do this calibration using the SSA
Earnings Public Use File (EPUF), which contains a one-percent sample of SSA earnings histories (Social
Security Administration 2011). To draw from this distribution, we first draw a type for each person (using
the observed probabilities in the public use file) and then draw three earnings growth rates, ri1, ri2 and ri3

from the type-specific distribution. The three-year growth rate is (1 + ri1)(1 + ri2)(1 + ri3)� 1.

D.1.2 Simulating the first stage

Given a calibrated earnings growth process, we simulate the first stage in the following steps:

1. Resample from the distribution of age 60 earnings, shown in Figure 2 (assuming an exempt amount of
$10,000). This yields a data set on age 60 earnings, zi, corresponding to the running variable used in
our analysis.

2. For each observation, draw from the calibrated earnings growth distribution and simulate earnings
forward three years (as explained above). This yields a value of age 63 earnings and distance to the
exempt amount, z⇤i , for each observation.

3. Given z
⇤
i , find the ANTR at age 63, ANTR

⇤
i , using the statutory formula.

4. Estimate an RK of age 63 ANTR
⇤
i on zi, using the main bandwidth in estimation ($2,800). Record

the estimated kink and the mean ANTR
⇤
i at Zi = 0.

For each calibrated earnings growth process, we repeat this simulation 1,000 times. We obtain ↵̂ANTR

and µ̂ANTR as the average kink and mean ANTR across these 1,000 iterations. We then plug these values
into Equation (D.62) to obtain our elasticity estimate for each iteration.

D.2 Inference

We consider two approaches to inference. As our elasticity estimate is a nonlinear function of other estimates,
we report an approximation for delta method standard errors. Implementing delta method standard errors
requires that we estimate the asymptotic covariance of the first stage and reduced form, but limited access
to administrative data precludes directly calculating this. Our delta method standard errors therefore
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assume that all estimates are independent. We call this approach the approximate delta method. Under the
independence assumption, the delta method standard error simplifies to

s.e.(⌘) = ⌘

vuutV ar(�̂PE)

�̂
2

PE

+
V ar(↵̂ANTR)

↵̂
2
ANTR

+
V ar(µ̂PE)

µ̂
2
PE

+
V ar(µ̂ANTR)

µ̂
2
ANTR

, (D.63)

where V ar(X̂) is the variance of the estimate. We estimate V ar(�̂PE) and V ar(µ̂PE) using the asymptotic
standard errors of �̂PE and µ̂PE . We estimate V ar(↵̂ANTR) and V ar(µ̂ANTR) using the variance of ↵̂ANTR

and µ̂ANTR across simulation draws.
Because we impose independence of the estimates, the delta method standard errors may be biased, and

the simulation evidence described below indicates that we over reject true null hypotheses. We therefore
consider an alternative approach. Below we simulate data sets based on a statistical model that closely
corresponds to observable moments in our data. Within this statistical model, we can impose the null
hypothesis that ⌘ = 0. Simulations for this model can therefore give us an estimate of the distribution of ⌘̂
under the null hypothesis. Call this distribution F0. Our second approach to inference uses this distribution
to calculate p-values, that is p = 2(1 � F

�1
0 (⌘̂)), where ⌘̂ is our actual elasticity estimate. This guarantees

that we reject the true null five percent of the time, assuming our statistical model of measurement error
model is properly specified.

D.3 Validation

The above procedure yields an elasticity estimate and standard error that adjust for measurement error
stemming from year-to-year earnings growth. We investigate the performance of this procedure in a monte
carlo simulation that closely resembles the data generating process. The basic idea is to impose an elasticity
and measurement error process, simulate many data sets, apply our procedure to each, obtain a distribution
of estimates, and assess the bias and power of our estimator. We find, reassuringly, that our procedure
is approximately unbiased. However the approximate delta method standard errors end up overrejecting
true null hypotheses. As an alternative approach, we therefore construct p-values based on the (simulated)
distribution of estimates under the imposed null hypothesis.

Preliminary Calibration The structural objects in our simulation are the distribution of age 60 earn-
ings, the distribution of growth rates, and the expected value of the outcome given desired earnings and
ANTR. We have already described Section D.1 how we calibrate and draw from the age 60 earnings distri-
bution and the distribution of growth rates. The remaining object to calibrate is the expected value of the
outcome given z

⇤
i and the endogenous regressor.

We calibrate this object to match the empirical relationship between positive earnings and age 60 earnings.
This relationship is shown in Figure E.7, a zoomed out version of Figure 4. Each dot shows the average
probability of positive earnings in each $100 bin of distance to the exempt amount. The simulation assumes
that this probability can be written as a smooth component plus a component which is kinked due to the
kink in the ANTR. That is

E [PEi|z⇤i , ANTR
⇤
i ] = f (z⇤i ) + � ·ANTR

⇤
i , (D.64)

where f is a degree seven polynomial, and � is the key structural parameter, giving the e↵ect of the ANTR on
the probability of positive earnings. In the data, we estimate a reduced form kink of -1.85, which should be
interpreted to mean that for an increase in $1,000 in the running variable, the increase in the probabiltity of
positive earnings is 1.85 percentage points less just the right of the threshold than to the left. This estimate
implies that �

Data = 0.37 (assuming a sharp kink of -5 in ANTR as a function of desired earnings). We
use this value to estimate f . To do so, we define the adjusted variable P̃E as PEi � �

Data · ANTR. We
then regress P̃E on a degree 7 polynomial. We plot the implied values in the absence of the earnings test,
f(z) + �

Data · ANTR, as the dashed line in the figure (where ANTR = 75 is the average net-of-tax rate in
the data in the absence of the AET BRR). We also plot f + �

Data · ANTR in the solid line, to show the
overall fit. Note that, because Appendix Figure E.7 is based on real data, we subtract out the estimated
kink, but in simulating the data, we impose di↵erent values of � to obtain either a zero elasticity or an
elasticity closer to the measurement-error corrected value.

Simulation details for validation exercise The simulation is the same as the process for simulating
the first stage, except we also simulate the outcome, employment, and we let the first stage bandwidth di↵er
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from iteration to iteration. The simulation approach is similar to that used in Card et al. (2017). The
simulation works as follows.

1. Fix the structural parameter � (explained above) and fix the measurement error process.

2. Draw a data set on the observed running variable, Zi; the desired earnings at age 63 relative to the
threshold, Z⇤

i ; the ANTR at age 63 given desired earnings, ANTR
⇤
i , and the outcome PEi, as follows.

(a) Resample from the distribution of age 60 earnings, shown in Figure 2 (and assuming a kink point
of $10,000). This yields a data set on age 60 earnings, zi, corresponding to the running variable
used in our analysis.

(b) For each observation, simulate earnings forward three years according to the calibrated earnings
growth distribution (as explained above). This yields a value of age 63 earnings and distance to
the exempt amount, z⇤i , for each observation.

(c) Given z
⇤
i , find the ANTR at age 63, ANTR

⇤
i , using the statutory formula.

(d) Given z
⇤
i and ANTR

⇤
i , find E[PEi|z⇤i , ANTR

⇤
i ] as

E [PEi|z⇤i , ANTR
⇤
i ] = f (z⇤i ) + � ·ANTR

⇤
i . (D.65)

Where f and � are calibrated as described above.

(e) For each observation, draw a uniform error ei, and set

PEi = 1 {ei  E [PEi |z⇤i , ANTR
⇤
i ]} , (D.66)

where 1 {} is the indicator function.

3. Estimate an RK of PEi on zi, using the CCT procedure to find the bandwidth. Record the �̂PE and
µ̂PE , as well as their standard errors.

4. Estimate an RK of ANTR
⇤
i on zi using the same bandwidth as in step (3). Record the estimated kink

and the mean ANTR
⇤
i at Zi = 0.

5. Repeat steps 2-4 1,000 times, yielding 1,000 sets of estimates.

6. Find the average estimated kink in ANTR and mean ANTR. Obtain the elasticity in each iteration by
dividing using the iteration-specific reduced form and the average first stage kink and mean. Calculate
delta method standard errors (using the asymptotic standard errors of the reduced form and the
standard deviation of estimates in the first stage).

7. Repeat steps 1-6 for each measurement error process (the three described above, as well as a no
measurement error benchmark), and for two assumed structural parameters, � = 0 and � = 1.85.
These parmaeters correspond to an elasticity of zero and 2.41, the latter being five times our baseline
estimate, yielding an elasticity which is roughly our estimate after adjusting for measuring error (as
reported in Appendix Table E.4).

Discussion This approach yields a distribution of estimates given known reduced forms and first stages,
and hence we can use it to assess the bias of our estimator, as well as its statistical performance. However,
some elements of this simulation may appear non-standard, and we therefore explain them further. First,
note that we estimate a first stage and reduced form in each iteration, but rather than use a di↵erent first
stage to obtain the elasticity in each iteration, we use the same (average) first stage across all iterations.
This is to parallel our empirical approach, which also uses the average first stage to obtain an elasticity.
Likewise, we use the variance of first stage estimates as our estimated variance of the estimator, as we do
in our main estimator. Second, in our empirical implementation, we set the first stage bandwidth equal to
our reduced form bandwidth. To mimic that approach here, we use a di↵erent first stage bandwidth in each
iteration, corresponding to the reduced form bandwidth from that iteration.
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D.3.1 Results

Our results from two sets of simulations are reported in Appendix Table E.5. The first table reports estimates
using � = 1.85 and the second using � = 0, corresponding to elasticities of 2.41 and 0. The tables report
the mean and SD of the estimated reduced form and first stage kinks, as well as statistics on the estimated
elasticities and the structural parameter �. For comparison, the first column reports on results with no
measurement error. The remaining columns report the three measurement error cases.

We begin by discussing the positive elasticity case, presented in panel A of Appendix Table E.5. This
case, which is based on � = 1.85, is closest to our empirical setting. We find that, although measurement
error attenuates the reduced forms, the mean elasticities are similar across columns and roughly equal to the
true value, 2.41, indicating that the estimator is roughly unbiased and e↵ectively corrects for measurement
error. We reject the truth only between 4.4 and 9.8 percent of the time (with inference conducted via the
approximate delta method as described above). Some amount of bias is perhaps to be expected given that
we use a nonparametric procedure, which trades bias against variance. One possible concern evident in these
results is that the standard errors are fairly large, and, as a result, our power ranges from 42 to 73 percent,
depending on the type of measurement error.

We now next turn to the zero elasticity case in Panel B. Across all specifications, including ones with no
measurement error, the average reduced form kink is slightly negative, because our nonparametric procedure
introduces some bias. We also find that our inference (based on the approximate delta method) ends up
overrejecting the true null hypothesis, with rejection rates of 19-26 percent. We obtain these high rejection
rates even in the absence of measurement error. We therefore conclude that they are a consequence of the
bias in the nonparametric procedure or our inference approach, rather than the measurement error and its
correction per se. However, the overrejection in these simulations implies that we may be likely to obtain
a statistically significant elasticity estimate even if the true elasticity is zero. An alternative approach to
inference can avoid this problem. Specifically, as a complementary approach, we obtain p-values by comparing
our estimated elasticity to the distribution of elasticity estimates obtained in our simulation under the null
hypothesis. These p-values are reported in the last column of Appendix Table E.4.
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Appendix Figure E.1: Earnings Test Real Exempt Amount, 1978 to 1987
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Notes: The figure shows the real value of the exempt amount over time among those 62-64 years old (labeled “Age<65” in the

graph) and those above (labeled “Age>=65”). The AET applied to earnings of claimants from ages 62 to 71 from 1978 to

1982, but only to claimants aged 62 to 69 from 1983 to 1989. All dollar figures are expressed in real 2010 dollars.

Appendix Figure E.2: R-Squared by Placebo Kink Location
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Notes: The figure plots the R-squared of our baseline specification against the “placebo” kink location relative to the exempt

amount, following Landais (2015). The vertical line denotes the actual location of the exempt amount. As described in the

text, we estimate a set of placebo changes in slope in the mean annual age 63 to 64 employment rate, using the same

specification as our main estimates except that we examine the change in slope at placebo locations of the exempt amount

away from the true exempt amount. The figure shows that the R-squared is maximized at the true location of the placebo

kink, supporting our hypothesis that we have found a true kink in the data rather than a spurious underlying nonlinearity in

the relationship between the yearly employment rate at ages 63 to 64 and age 60 earnings. See other notes to Figure 2.
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Appendix Figure E.3: Age 59 Earnings versus Age 60 Earnings, (45 Degree Line Omitted)

Notes: The figure reproduces Panel B of 8, but omits the 45 degree line. See Figure 8 for additional details.
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Appendix Figure E.4: Histogram of Percent Earnings Growth, Ages 28 to 59

Notes: This histogram shows that there is a large mass near zero percent nominal earnings growth from one year to the next

in a wider set of ages, 28 to 59, than we focus on in the main analysis. This indicates that among a broad set of ages, a

substantial mass of individuals have no growth in desired nominal earnings, consistent with the assumptions necessary for our

RKD to estimate a lower bound on the elasticity as described in the main text. This suggests that it should be possible to use

our method, implemented in this case through using lagged earnings to proxy for desired earnings, when studying extensive

margin responses to other policies applying in other age ranges. The figure uses the SSA data we have, covering the 1918 to

1923 cohorts in calendar years from 1951 to 1984. See other notes to Figure 2.
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Appendix Figure E.5: Probability of Positive Earnings at Ages 63 to 64, wider x-axis

50
55

60
P

r(
P

os
iti

ve
 e

ar
ni

ng
s)

, a
ge

s 
63

-6
4

-6 -3 0 3 6
Age 60 distance to exempt amount ($1000s)

Notes: See the notes to Figure 4. This figure is identical to Figure 4, except that the range of the x-axis on this figure runs

from -$6,000 to $6,000. Like Figure 4, this figure also shows a clear, discontinuous change in slope at the exempt amount.

Appendix Figure E.6: Mean Probability of Claiming at Ages 63 to 64

76
76

.5
77

77
.5

78
P

r(
C

la
im

ed
)

-3 -1.5 0 1.5 3
Age 60 distance to exempt amount ($000s)

Notes: The figure plots the mean claiming rate, i.e. the probability someone has claimed by the calendar year of reaching age

t, at ages 63 to 64 averaged, as a function of the distance of age 60 earnings from the exempt amount. The figure shows that

there is no clear visual change in the slope of the claiming rate, and regression evidence supports the same conclusion: a

placebo test in the spirit of Ganong and Jäger (2015) shows p=0.15 for the two-sided test of equality of the coe�cient with

zero. See other notes to Figure 2.
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Appendix Figure E.7: Employment as a Function of Earnings, Actual and Simulated Counterfactual

Notes: Each dot shows the average probability of positive earnings at age 63 in each $100 bin of age 60 distance to the exempt

amount. The dashed black line is the estimated smooth fit after taking out the kink, obtained from a regression of

PE � � ·ANTR on a degree seven polynomial in distance (with �= 0.37 and the fitted values adding back in �75). The

solid red line shows the fitted values including the kink.
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Appendix Table E.1: Robustness of Elasticity Estimates

(1) (2)
Baseline With

Specification Controls
Linear 0.49 0.44

(0.19)*** (0.16)***
N 95,960 104,665
Quadratic 0.64 0.64

(0.27)*** (0.27)***
N 160,785 172,979
Cubic 0.80 0.64

(0.27)*** (0.26)***
N 273,421 326,762

Notes: The table presents robustness checks on the main elasticity estimates in Table 5. The “with controls” column shows

the kink in the employment probability when we control for dummies for year of birth, sex, and race. Robust standard errors,

using the procedure of Calonico, Cattaneo, and Titiunik (2014), are reported in parentheses. The number of individuals

included in each “reduced form” regression (4) is shown below the standard error. See other notes to Table 2.

Appendix Table E.2: RKD Elasticity Estimates using Regression-Based First Stage

(1) (2) (3) (4) (5) (6) (7)
Full Non- High Prior Low Prior

Sample Men Women White White Earnings Earnings
First Stage Kink -4.00 -3.25 -3.99 -3.88 -3.09 -3.76 -3.82

(0.01)*** (0.01)*** (0.01)*** (0.01)*** (0.01)*** (0.01)*** (0.01)***
Elasticity 0.59 0.36 0.60 0.59 0.64 0.62 0.52

(0.23)*** (0.28) (0.26)*** (0.22)*** (0.68) (0.62) (0.21)***
N 95,960 68,971 66,251 93,722 39,271 19,574 101,709

Notes: See notes to Table 5. Relative to Table 5, the elasticities di↵er here because we use a linear RKD to estimate the first

stage kink in the ANTR (reported in the first row), rather than using the analytic expression as in Table 5.

Appendix Table E.3: Elasticity Estimates Accounting for Claiming

(1) (2) (3) (4) (5) (6) (7)
Full Non- High Prior Low Prior

Sample Men Women White White Earnings Earnings
Elasticity 0.63 0.31 0.64 0.61 0.53 0.62 0.53

(0.25)*** (0.24) (0.28)** (0.23)*** (0.56) (0.62) (0.21)***
N 95,960 68,971 66,251 93,722 39,271 19,574 101,709

Notes: See notes to Table 5. As explained in the main text, we calculate these elasticities by inflating the Table 5 elasticities

by 29.9 percent, to account for claiming behavior. Among those with age 60 earnings below the kink, but not more than

$2,797 below the kink, 74.5 percent of the sample claims by age 63, and 79.5 by age 64. We calculate 29.9 percent as

100·(1/[(0.795+0.745)/2]-1).
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Appendix Table E.4: Elasticity Estimates, Adjusted for Measurement Error

Growth Process First-Stage Kink Elasticity Standard Error p-value
Perfect persistence growth rate -0.94 2.37 1.03 0.03
Perfect independence growth rate -1.05 2.18 0.92 0.03
Conditionally independent growth rate -0.81 2.86 1.46 0.06

Notes: Table reports, for the indicated measurement error process, the implied elasticity, as well as the standard error of that

elasticity (obtained via the approximate delta method) and the p-value of the null hypothesis that the elasticity is zero

(obtained via simulating the distribution of estimates under the null hypothesis). See Appendix D for more details.

Appendix Table E.5: Validating the Measurement Error Correction

Assumed growth process Growth rate is:

Perfectly Perfectly Conditionally
Zero Persistent Independent Independent

A. Simulation w/ positive elasticity (⌘ = 2.41)

Mean first stage kink -4.237 -0.914 -0.930 -0.642
Mean reduced form kink -7.940 -1.689 -1.621 -1.141
Mean �̂ 1.874 1.847 1.744 1.778

Mean ⌘̂ 2.425 2.618 2.408 2.472
Mean SE ⌘̂ 0.240 1.049 1.269 1.830
Fraction reject ⌘ = 0 (approximate �-method) 1.000 0.731 0.594 0.415
Fraction reject ⌘ = 2.41(approximate �-method) 0.098 0.073 0.062 0.044

B. Simulation w/ zero elasticity

Mean first stage kink -3.617 -1.094 -1.393 -1.127
Mean reduced form kink -0.065 -0.179 -0.128 -0.141
Mean �̂ 0.018 0.163 0.092 0.126

Mean ⌘̂ 0.021 0.191 0.110 0.151
Mean SE ⌘̂ 0.110 0.365 0.285 0.373
Fraction reject ⌘ = 0 (approximate �-method) 0.172 0.257 0.191 0.189

Notes: The table presents results from a validation exercise, where we use our method for adjusting for measurement error on

simulated data. The first three rows of each panel report, for each measurement error process, the mean first stage kink (in

ANTR), mean reduced form kink (in positive earnings), and mean �̂ (obtained as the ratio of the reduced form kink to the

mean first stage kink), averaging over 1000 simulated data sets. The remaining rows report the mean elasticity estimate, mean

standard error (obtained by the approximate delta method), fraction of iterations in which the null hypothesis ⌘ = 0 is

rejected, and fraction of iterations in which the true ⌘ is rejected.
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