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A Additional Tables and Figures

Table A.1: Summary statistics

Obs Min Max Mean S.D.

∆ log(1 + Patents) 722 -2.77 3.32 0.18 0.50

Total patents (1990) 722 0 30,227 6,853 8,610

Total patents (2010) 722 0 69,719 9,220 12,716

Average income (1990) 722 18,144 59,698 39,149 8,438

Number of households (1990) 722 520 4,914,645 1,041,053 1,319,922

Number of census tracts 722 1 3031 655.4 821.1

IncSegr (1990) 722 0 27.3 19.2 5.2

IncSegr (2010) 722 0 30.9 21.6 6.5

∆IncSegr 722 -8.3 9.6 2.8 2.1

OccSegr (1990) 722 0 29.7 21.5 4.2

OccSegr (2010) 722 0 30.1 20.7 5.5

∆OccSegr 722 -25.7 20.2 -0.5 2.7

EduSegr (1990) 722 0 48.3 32.0 6.4

EduSegr (2010) 722 0 42.4 30.3 6.9

∆EduSegr 722 -19.2 15.6 -1.4 2.8

Share of college graduates (1990) 722 0.05 0.39 0.20 0.06

Trade exposure 722 -0.08 25.41 1.14 1.00

Notes: Summary statistics are weighted by the number of households in the corresponding year.
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Figure A.1: Economic segregation: distribution across cities
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Notes: Histograms weighted by the number of households in 1990.
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Table A.2: Economic segregation in a selected sample of cities

IncSegr OccSegr EduSegr

1990 2010 ∆ 1990 2010 ∆ 1990 2010 ∆

Los Angeles, CA 24.0 27.2 +3.3 27.1 29.8 +2.6 35.7 38.3 +2.6

New York City, NY 27.3 30.9 +3.6 27.0 29.1 +2.1 37.5 36.0 -1.4

Chicago, IL 25.0 28.8 +3.8 25.2 26.3 +1.1 38.6 37.3 -1.3

Philadelphia, PA 22.7 29.0 +6.2 24.1 25.3 +1.1 37.4 36.4 -1.0

Newark, NJ 23.4 28.6 +5.2 23.2 25.4 +2.2 32.5 34.9 +2.4

Detroit, MI 24.3 27.5 +3.1 25.9 24.9 -1.0 39.5 36.8 -2.6

Boston, MA 19.4 25.8 +6.4 20.5 23.2 +2.7 31.7 33.6 +1.9

San Francisco, CA 23.0 28.2 +5.2 23.5 26.5 +2.9 33.1 35.9 +2.7

Baltimore, MD 22.7 29.6 +6.8 24.6 22.8 -1.8 37.4 35.1 -2.3

Houston, TX 26.6 28.2 +1.6 28.1 29.0 +0.9 40.9 40.2 -0.7

Miami, FL 21.0 28.3 +7.3 22.6 22.4 -0.1 29.5 28.8 -0.7

Bridgeport, CT 22.6 27.0 +4.4 19.7 21.9 +2.2 30.7 32.3 +1.6

Seattle, WA 17.6 23.9 +6.3 19.2 25.2 +6.0 30.2 34.1 +3.9

Pittsburgh, PA 21.3 22.2 +0.8 22.4 21.6 -0.8 34.8 32.0 -2.8

Atlanta, GA 12.2 12.3 +0.1 17.6 14.6 -3.0 27.6 19.7 -7.9

Notes: The table reports measures of economic segregation for the 15 largest commuting zones in 1990. For clarity,
commuting zone names refer to the largest city only.
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Table A.3: Structure of the instrument

1995 1996 ... 2003 2004 ˆ2005 ˆ2006 ... ˆ2013 ˆ2014

ˆ2005 d10 d9 ... d2 d1

ˆ2006 d10 ... d3 d2 d1

...

...

ˆ2013 d10 d9 d8 d7 ...

ˆ2014 d10 d9 d8 ... d1

Notes: Structure of the timing of the instrument. To obtain a prediction for patenting activity in 2005 (denoted
by ˆ2005), the coefficients of diffusion dτ are applied to the actual patenting between 1995 and 2004. To obtain a
prediction for patenting activity in 2006, the coefficients of diffusion dτ are applied to the actual patenting between
1996 and 2004 for τ = 2, ..., 10, and to predicted patenting in 2005 for τ = 1. This process continues for all years
up to 2014, where a prediction is obtained by applying the coefficient of diffusion dτ to the actual patenting in 2004
for τ = 10, and to predicted patenting between 2005 and 2013 for τ = 1, ..., 9.
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Figure A.2: Actual and predicted patenting growth, 1990–2010

Notes: Quantiles of actual patenting growth, 1990–2010

Notes: Quantiles of predicted patenting growth, 1990–2010
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Table A.4: Patenting growth and economic segregation: pre-trend analysis

(1) (2) (3) (4) (5) (6)

Panel A: ∆IncSegr, 1980-1990

Predicted patenting growth 0.16 -0.71 -0.72* -0.56 -0.57 -0.32
(0.35) (0.44) (0.41) (0.41) (0.40) (0.41)

Share of college graduates 9.95** 0.92 0.26 1.51 -0.94
(4.57) (4.78) (4.55) (6.40) (6.30)

Log CTs 0.67** 1.58 1.58 1.75
(0.26) (1.03) (1.04) (1.10)

Log households -0.90 -0.85 -1.08
(1.07) (1.09) (1.16)

Log average income -0.66 -0.19
(2.11) (2.02)

Import exposure -0.46***
(0.12)

R2 0.00 0.05 0.17 0.18 0.18 0.22

Panel B: ∆OccSegr, 1980-1990

Predicted patenting growth 0.69* 0.82* 0.82 0.52 0.53 0.54
(0.39) (0.48) (0.50) (0.49) (0.50) (0.49)

Share of college graduates -1.48 0.85 2.11 1.13 1.10
(3.05) (4.35) (4.11) (6.37) (5.92)

Log CTs -0.17 -1.90* -1.90* -1.90*
(0.23) (1.07) (1.06) (1.10)

Log households 1.71 1.67 1.67
(1.13) (1.11) (1.16)

Log average income 0.52 0.53
(2.02) (1.91)

Import exposure -0.01
(0.25)

R2 0.02 0.02 0.03 0.05 0.05 0.05

Panel C: ∆EduSegr, 1980-1990

Predicted patenting growth 0.29 0.42 0.43 0.09 0.07 0.08
(0.48) (0.59) (0.61) (0.63) (0.65) (0.63)

Share of college graduates -1.57 1.32 2.74 5.08 4.93
(3.58) (5.27) (5.32) (7.46) (7.30)

Log CTs -0.22 -2.16 -2.15 -2.14
(0.28) (1.36) (1.37) (1.38)

Log households 1.93 2.02 2.01
(1.34) (1.33) (1.35)

Log average income -1.24 -1.21
(1.76) (1.73)

Import exposure -0.03
(0.20)

R2 0.00 0.00 0.01 0.03 0.03 0.03

# Obs. 310 310 310 310 310 310

Notes: Regressions are weighted by total number of households in 1990. Controls are at 1990 values, with the
exception of import exposure (provided by Autor et al., 2013). Standard errors clustered at the state level in
parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.
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Table A.5: Patenting growth and economic segregation: Sub-sample of cities with data on
1980 economic segregation

∆Segr, 1980-1990 ∆Segr, 1990-2010

Inc Occ Edu Inc Occ Edu

(1) (2) (3) (4) (5) (6)

Predicted patenting growth -0.32 0.54 0.08
(0.41) (0.49) (0.63)

Patenting growth 1.38*** 2.95*** 2.19***
(0.63) (0.61) (0.74)

Baseline controls X X X X X X

Estimation OLS OLS OLS 2SLS 2SLS 2SLS

# Obs. 310 310 310 310 310 310

R2 0.22 0.05 0.03

First stage F-stat 27.67 27.67 27.67

Notes: The sample only includes CZs for which data on economic segregation 1980 is available. Regressions are
weighted by total number of households in 1990. Controls are at 1990 values, with the exception of import exposure
(provided by Autor et al., 2013). Standard errors clustered at the state level in parenthesis. ***p < 0.01; **p < 0.05;
*p < 0.1.
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Table A.6: Patenting growth and economic segregation: unweighted

∆IncSegr ∆OccSegr ∆EduSegr

(1) (2) (3) (4) (5) (6)

Patenting growth 0.09 1.04* 0.83** 1.83*** 0.80** 1.29*
(0.24) (0.61) (0.37) (0.66) (0.39) (0.73)

Baseline controls X X X X X X

Estimation OLS 2SLS OLS 2SLS OLS 2SLS

# Obs. 259 259 259 259 259 259

R2 0.32 0.20 0.20

First stage F-stat 25.95 25.95 25.95

Notes: Observations are restricted to CZs with 1990 number of households above 60,000. Controls are at 1990
values, with the exception of import exposure (provided by Autor et al., 2013). Standard errors clustered at the
state level in parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.
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Table A.7: Patenting growth and economic segregation: Inverse hyperbolic sine transform-
ation

∆IncSegr ∆OccSegr ∆EduSegr

(1) (2) (3) (4) (5) (6)

Patenting growth (arcsinh) 0.14 1.27** 1.15** 2.90*** 1.15*** 2.16***
(0.29) (0.60) (0.43) (0.61) (0.41) (0.71)

Baseline controls X X X X X X

Estimation OLS 2SLS OLS 2SLS OLS 2SLS

# Obs. 722 722 722 722 722 722

R2 0.41 0.38 0.28

First stage F-stat 34.73 34.73 34.73

Notes: Regressions are weighted by total number of households in 1990. Controls are at 1990 values, with the
exception of import exposure (provided by Autor et al., 2013). Standard errors clustered at the state level in
parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.
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B Data description

B.1 Income distribution at the CT level

The NHGIS provides information on yearly household income at the CT level by dividing house-

holds into 15 income bins. The lower bounds of each income bin are: 0$, 15,000$, 20,000$, 25,000$,

30,000$, 35,000$, 40,000$, 45,000$, 50,000$, 60,000$, 75,000$, 100,000$, 125,000$, and 150,000$.

In order to measure inequality and segregation, we need to approximate the income distribution.

For each bracket except for the top one, we assume that all households in that bracket have income

equal to the midpoint of the bracket. The top bin is unbounded, with an average that potentially

varies substantially across CTs. Our measures will critically depend on the assumptions made

to approximate the income distribution within this bracket. The literature has dealt with this

issue by either fitting the parameters of an income distribution (usually assumed to be Pareto)

or assuming that the average is a fixed percentage above the amount reported in top coded data

(usually 40-50% more).3 These two methods have been subject to several critics.4

For our analysis, we design an alternative approach to assign a value to the top bin, and

validate our procedure by comparing the resulting segregation index with the corresponding index

we obtain by using information on average personal income, that does not require to make any

assumption. First, the 5-year 2008-2012 ACS provides CT-level Gini indices using households as

basic unit of analysis. For each census tract in 2010, we set the average of the top bin so that the

resulting Gini matches the one reported in the ACS.5 Second, we use the time series of individual-

level Gini data at the state level computed by Frank (2009a) and provided by Frank (2009b). From

there we collect estimates for the Gini index for all the states in 1990 and 2010 and calculate the

percentage change. Assuming that the state trends for individual-level Gini are mirrored by the

corresponding CT trends for household-level Gini, we set the average income in the top bin so that

3See for example Autor et al. (2008) and Lemieux (2006).
4Critics of the former approach have argued that if the underlying distribution is far from the assumed one, a

researcher would obtain better results by taking the bin averages. Critics of the latter have pointed to the fact that
the assumption of the average income for the last bin is arbitrary. Different methods to deal with binned income
data have been reviewed by von Hippel et al. (2016).

5Note that in 3,609 out of 98,032 CTs (3.7%) there is no value that allows us to exactly match the Gini reported
in the ACS. This might be due to measurement errors or the approximation that all the households earn the average
of the income braket. In this case, our algorithm diverges, either assigning values that are too low (i.e., smaller than
150,000$ which is the lower bound of the top bin) or too high (i.e., bigger than 1,000,000$). When this happens we
assign to the CTs in question a default value of 200,000$ which is in line with the 1.4-rule. We experimented with
different default values and the main results are robust. Another 908 CTs (or 0.9%) appear in the income data but
not in the Gini data. In that case, we try to match the 2010 national Gini (0.48).
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Figure B.3: Income segregation: household VS per capita income
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Notes: Scatter plots of the unconditional correlations between income segregation computed using household income
and per capita income in 1990 (left panel), 2010 (middle panel), and 1990–2010 difference (right panel). Circles
and regression lines are weighted by the total number of households in 1990.

the percentage change in the Gini index is equal to the one in Frank (2009a).6

To further validate our procedure, in Figure B.3 we show scatter plots of income segregation in

1990 (left panel), 2010 (middle panel), and 1990–2010 change (right panel), using the household

income distribution approximated using the procedure described above, and the same measure

computed using per capita income at the CT level, which does not require to make arbitrary

assumptions on the distribution of income within brackets. The correlation between the two

variables is equal to 93% in 1990 and 91% in 2010. The correlation between the 1990–2010 change

in the two variables is also remarkably high (44%).

B.2 Other data sources

Residents by occupation

The distribution of residents by occupation at the CT level is constructed as follows. First, from

the NHGIS we obtain information on the CT-level distribution of residents according to a coarse

definition of occupations, comprising 13 occupations in 1990 and 25 occupations in 2010. Then,

using IPUMS, we construct a city-specific crosswalk that maps the coarse definition of occupation

into the fine one (386 occupations in 1990 and 454 in 2010). To this end, we exploit the city-specific

frequency of each fine occupation code in each coarse category. We categorize occupations into two

classes:7 knowledge intensive and non-knowledge intensive. Knowledge intensive occupations are

defined according to Florida (2017) definition of “creative class”: “The creative class is made up of

6We are not able to match 20,966 (or 21%) of the 1990 CTs with the 2010 data. In this case, we assume that their
Gini is the same as the national one in 1990 (0.43). As we did in 2010, when the algorithm diverges or estimates
an implausible value, we assign to the top bin a default value of 200,000$.

7This categorization is available as part of the replication package of this paper.
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workers in occupations spanning computer science and mathematics; architecture and engineering,

the life, physical, and social sciences; the arts, design, music, entertainment, sports, and media;

management, business, and finance; and law, health care, education, and training.” (p. 217).

Workers by occupation

We assign workers to workplaces using the National Establishment Time Series (NETS). This data

set contains information about employment for the near universe of establishments between 1990

and 2010, as well as their location and NAICS code. The latitude and longitude is provided at 5

geographical levels (namely block face, block group, census tract centroid, ZIP code centroid or

street level). We allocate workers to each census tract according to the following procedure. First,

we assign to a census tract those establishments whose geographical coordinates are provided at

a block face, block group or census tract centroid level. Second, we assign the workers of each

establishment geo-located at ZIP code level based on the area of the census tracts it contains.8

We discard all those establishments whose coordinates are missing, more aggregated than the ZIP

level, or reported as ZIP codes that do not appear in the NHGIS files (e.g., P.O. boxes). The final

data set includes about 10.6 million establishments in 1990 and about 30.6 million establishments

in 2010. This procedure gives us an estimate of workers per NAICS at a census tract level.

Since the NETS is a relatively new data set in the literature and there might be some concerns

related to its validity, before assigning each NAICS to a distribution of occupations, we compare

our employment estimates with the distribution of workers obtained from the ZIP Code Business

Patterns (ZBP, U.S. Census Bureau, 2017).9 We aggregate the employment data obtained from

the NETS at the ZIP code level and we then check whether they systematically differ in the two

data sets. Note that we do expect them to somewhat differ for various reasons. For example, the

ZBP does not consider workers that are employed by the public sector. Therefore, the number

of workers in ZIP codes that contain public universities or government buildings is likely to be

significantly lower in the ZBP.10 Figure B.4 shows the correlation between total workers by ZIP

code estimated using the ZBP (horizontal axis) and the NETS (vertical axis) in 1994 (left panel)

8For example, if a certain ZIP code contains two census tracts that cover 40% and 60% of its area, respectively,
we assign 40% of the employment of an establishment assigned to that ZIP code to the first census tract and 60%
to the second one.

9The ZBP provides employment count by establishment in 7 bins, with the top bin including all establishments
with employment above 1,000. We assign to each establishment the number of workers corresponding to the
midpoint of each bin, and 1,500 workers for establishments in the top bin.

10Some other NAICS codes, for example agriculture, are excluded from the ZBP and the sampling frame differs
in the two data sets.
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Figure B.4: Total workers: NETS VS ZBP
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Notes: Correlation between total workers by ZIP code as reported in the ZBP (horizontal axis) and in the NETS
(vertical axis) in 1994 (left) and 2010 (right). The dashed red line is the 45-degree line.

and 2010 (right panel).11 As we expected, the NETS systematically reports more workers than

the ZBP, although the two measures are very close. Interestingly and in line with our prior

expectations, the difference between the two employment estimates is highest in ZIP codes that

contain public universities or government buildings. For example, the three largest differences

in 1994 come from ZIP codes 90012, 43215, and 77002 (92,662 vs. 21,060; 159,815 vs. 82,058;

and 159,847 vs. 79,047, respectively). ZIP code 90012 contains the Los Angeles City Hall as

well as other government buildings (e.g., the California Department of Transportation’s offices),

ZIP code 43215 contains the Ohio State house, and ZIP code 77002 contains the Houston City

Administration. In 1994, the NETS reports an estimate of 33,410 workers for ZIP code 43210 (UC

Berkeley), whereas the ZBP of only 2,924.

We use the NETS data in conjunction with the Occupational Employment and Wage Statistics

(OEWS, Bureau of Labor Statistics, 2017) to get an estimate of the occupational distribution of

workers in each census tract. The OEWS reports the percentage of workers active in a certain

occupation for each NAICS (SIC90 for 1990) code.12 Similarly to what we did for residents,

occupations are then assigned to either the knowledge intensive or the non-knowledge intensive

category according to the procedure describe above.

11We used 1994 instead of 1990, since this is the first year for which the ZIP Code Business Patterns was made
available.

12Since in the 1990s only certain industry codes were reported in each year, we build the crosswalk for 1990 using
OEWS data from 1990 to 1993. Also, since the data are provided for SIC (instead of NAICS) codes, we first use a
crosswalk from NAICS to SIC (NAICS Association, 2012) and we then use the appropriate distributions reported
in the OEWS.
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Local consumption amenities

The establishment count for the three categories of consumption amenities used in Section 4.3

is also computed from NETS. The “Restaurants” category includes establishments from NAICS

722511 (“Full-Service Restaurants”). The “Food Shops” category includes establishments from all

the NAICS in 4452 (“Specialty Food Stores”). The “Fitness Centers” category includes establish-

ments from NAICS 71394 (“Fitness and Recreational Sports Centers”).

Commuting times

Commuting times between each pair of CTs are calculated using driving times between the

centroids of each census tract. Because of the high number of possible combinations we were

unable to use commercial routing services (e.g., Google Maps) and we relied on the Open Source

Routing Machine (OSRM).13 The advanatage of using the OSRM is that it is possible to run it

locally. This allows us to send queries without limits and in parallel. In particular, it was possible

to collect data on commuting times for each pair of neighborhoods withing each city (for a total of

almost 19.4 million pairs) in just few hours. The disadvantage is that the OSRM does not contain

any data on traffic which might underestimate the actual commuting times/costs faced by workers,

particularly during rush hour.14

13http://project-osrm.org/
14Note that, because of the lack of traffic data, commuting times are undirected, that is the time necessary to go

from A to B and from B to A is the same. The commuting matrices are therefore symmetric and overall contain
more than 38.8 million values.
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C Citation Network: Demand Pull or Supply Push?

In Section 3.2.1, we developed an instrument for local patenting activity that exploits a predeter-

mined network of knowledge flows. Our instrument is valid as long as these knowledge links are

determined by factors that are orthogonal to the local future economic activity. A possible concern

that would invalidate our identification strategy is that the channels captured through the network

of citations reflect demand instead of supply links. This would be problematic for the validity of

the model, since demand links are likely to be informative about the state of the local economy.

To fix ideas, suppose that an IT firm in San Jose supplies innovation to a car manufacturer in

Detroit under commission. In this case, our network would record a strong link from San Jose

to Detroit, but the associated knowledge flows would violate the orthogonality assumption, since

demand from Detroit is likely to be correlated with unobservable factors in Detroit.

The structure of our network and the long time series of patents data can be used to test for the

presence of demand-driven links. Formally, we proceed in three steps. First, we use the knowledge

network defined in Section 3.2.1 and the observed patenting activity in the period 1985-1994 to

get a forward estimate of the patenting activity between 1995 and 2004. Second, we reverse the

network and use the patents filed between 2005-2014 to get an upstream estimate of the patenting

activity we expect to observe in the period 1995-2004 if the citations were capturing demand links.

The reversed network closely mirrors the one defined in (5), but exploits citations received instead

of citations given:

oτ(b,µ)�(c,ν) =


∑

p∈P(b,µ)

˜ShareCit
τ
p�(c,ν)

˜TotPat
τ
c,ν

b 6= c

0 b = c

for τ ∈ {1, . . . , 10} , (C.1)

where ˜ShareCit
τ

p�(c,ν) denotes the share of citations received by patent p from patents from class

ν and commuting zone c filed τ years after p, and ˜TotPat
τ

c,ν denotes all the potential destination

patents in (c, ν) at diffusion lag τ . The coefficient oτ(b,µ)�(c,ν) represents the number of patents

of class µ in commuting zone b that we expect to observe upstream if τ years later we observe

one patent of class ν in commuting zone c downstream. We then compare the two models (the

one based on citations given and the one based on citations received) to see which one offers the

most accurate description of the innovation process. To do this, we follow Acemoglu et al. (2016)

and regress the actual 1995-2004 patenting activity on the patenting activity predicted by the two
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Table C.8: Predicting patents with “supply” and “demand” links

log(1 + P actual95−04, c)

log(1 + P̂ up95−04, c) 0.771***
(0.105)

log(1 + P̂ down95−04, c) -0.153***
(0.045)

log(1 + P actual85−94, c) 0.370***
(0.101)

R2 0.984

# Obs. 722

Notes: P̂up95−04, c is total 1995-2004 patents predicted with the “supply” links of Equation (5). P̂ down95−04, c is total
1995-2004 patents predicted with the “demand” links of Equation (C.1). Standard errors clustered at the state
level in parenthesis. ***p < 0.01; **p < 0.05; *p < 0.1.

procedures, and controlling for actual patenting in 1985-1994:

log(1 + P actual
95−04, c) = α + β log(1 + P̂ up

95−04, c) + γ log(1 + P̂ down
95−04, c) + δ log(1 + P actual

85−94, c) + εc,

where P̂ up
95−04, c is patenting activity predicted by the model in Equation (5), whereas P̂ down

95−04, c is

the patenting activity predicted by the model in Equation (C.1). The results, reported in Table

C.8, show that only “supply” links (P̂ up
95−04, c) have a strong predictive power, while “demand”

links (P̂ down
95−04, c) have a small negative impact on actual patenting. The sign and magnitude of

the estimates are consistent with the ones obtained by Acemoglu et al. (2016), who consider an

analogous setting but use the network of citations to predict patenting growth across technological

fields and do not consider its geographical dimension.
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D Stability of citation network

In this Section, we perform a comparison between the citation network in the early sample and

its counterpart in the late sample to verify that the channels of knowledge diffusion inferred from

the citations patterns are, at least to some extent, stable over time. We do this in three steps.

First, we build the network of citations and compute the coefficients of diffusion separately for the

two samples (1975-1994 and 1995-2014). For each τ = 1, ..., 10, we take the difference of the two

adjacency matrices and calculate its Frobenius norm as follows:

realτ =
∥∥D75−94

τ −D95−14
τ

∥∥
2
.

Second, for each year between 1975 and 2014, we reshuffle all the patents filed in that year

under the constraint that after the reshuffling each commuting zone is assigned the same amount

of patents as in the real dataset. We repeat the same exercise performed in the first step for this

new sample of patents and calculate

randomτ =
∥∥∥D̃75−94

τ − D̃95−14
τ

∥∥∥
2
,

where D̃75−94
τ and D̃95−14

τ are the citation networks built using the reshuffled patents.

Finally, we calculate the percentage difference between realτ and randomτ for each τ = 1, ..., 10.

This number captures the distance between the two actual networks (75-94 and 95-14) compared

to two networks that, while maintaining the same structure and properties of the original ones,

are by construction uninformative of each other. A positive value indicates that the networks built

using the actual data are more similar than the reshuffled ones. Figure D.5 plots the percentage

difference for all the values of τ together with the 95% confidence interval we obtained by repeating

this procedure 50 times. The difference of the random networks is more than 40% larger than the

one obtained with the actual networks for the first lag and it declines for larger lags. The decline

implies that the more years pass after a new idea is generated the less the citation patterns are

distinguishable from links that are distributed across cities at random. This result is intuitive.

With time a new technology becomes widespread and is embedded in patents produced in areas

that do not have any direct link with the origin city-class pair.
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Figure D.5: Proximity of 75-94 and 95-14 random relative to actual citation networks

0 2 4 6 8 10
Lags

0

10

20

30

40

50

Fr
ob

en
iu

s N
or

m
 (%

 c
ha

ng
e)

Notes: Percentage difference of the Frobenius norms randomτ and realτ for τ = 1, ..., 10.
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