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This appendix formalizes claims made in the paper.

Claim 1. In the setting of Section “The Possibility of Heterogeneous Coeflicients,” the
expected value of the two-way fixed effects (TWFE) estimator of the exposure model,

given the data = {xy, ..., xs0} for states s € {1, ..., 5}, is given by

E (5!1’> _ Cov (65\(/2;(1%_0);8% — Z5))

where Cov (-, ) and Var (-) denote the sample covariance and variance, respectively,
and the expectation E B\x is taken with respect to the distribution of the errors e

conditional on the data x = {xyo, ..., Ts0}-

Proof. With only two time periods the TWFE estimator of the exposure model is

equivalent to an OLS estimator of the first-differenced model

Ys1 — Yso = 01 — 0o + B (1 — x50) + €51 — €50

Therefore the TWFE estimator based on the given sample is

B _ COV (ysl — Ys0, 1— st)
Var (1 — z) '
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From the heterogeneous model we have that

Yst — Yso = 01 — 0o + Bs (1 — 250) + €51 — €50

and therefore

COV (/85 (1_x80)71_x50) COV(&SI _85071 —Iso)

b= Var (1 — z4) Var (1 — z4)

If (651 —€50) is mean zero conditional on (1 — ) then the expected value of B

conditional on the data x = {10, ..., Zs0} is

5\ Cov(Bs (1 —250),1 — z40)
E <5|$> - Var (1 — z4) .

]

Corollary 1. In the setting of Section “The Possibility of Heterogeneous Coefficients,”
if Bs 1s independent of x4 across states s, then the expected value of the two-way fixed
effects (TWFE) estimator of the exposure model, given the data v = {x1g, ..., xs0} for
states s € {1,..., S}, is given by

E (Ble) = E(8)

for E(Bs) the expected value of Bs. Here the expectation E <B|:v> 15 taken with respect

to the distribution of the errors e and coefficients By conditional on the data x.

Proof. Based on a similar proof for Claim 1, we have that

A\ E(Cov (B, (1 —240),1 —240))
E <ﬁ|x) - Var (1 — x4)

where the expectation is now taken with respect to the distribution of the errors e
as well as [ conditional on the data x = {xj,...,x50}. By the independence of j;

and x4, we have that

E(Cov (Bs (1 —x50),1 —x5)) = Cov (E(5s) (1 —xs0),1 —x50) = E(Bs) Var (1 — z4),
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and therefore that
E(Ble) =E(8).
O]

Corollary 2. In the numerical example of Section “The Possibility of Heterogeneous
Coefficients,” the expected value of the two-way fized effects (TWFE) estimator of the
exposure model, given the data x = {10, ..., x50} for states s € {1,..., S}, lies outside
the range of coefficients [ming fs, max;, 3] if and only if X\ # 0. The same continues

to hold when the sample s extended to include a totally unaffected state.

Proof. From Claim 1 we have that

A ~ Cov (Bs (1 —w50),1 — z40)
E (ﬁll‘) - Var (1 — z) .

Because in the numerical example S5 = 1 4+ 0.5\ — Az, we have that
E (Byx) — 1405\ —\C

for
Cov (740 (1 — 250) , (1 = 250))

¢= Var (1 — z)

In the setting of Section “The Possibility of Heterogeneous Coefficients,” given the data
x = {10, ..., x50} where x4 = 0.245 + s/100 for s = 1,...,50, by direct calculation
we have that C' = 0, which means that

E (Bp;) = 1405\

If we add to the sample a totally unaffected state s = 0 with z¢oo = 1, and the
remaining states s = 1,...,50 continue to follow x5 = 0.245 + s/100, by direct

calculation we have that C' =~ 0.087, which means that
E (B|x) ~ 1+ 0.413).

Therefore, with or without a totally unaffected state, when A > 0 we have
E (B |x> > [, for all s because maxy s = 1 4 0.245). Similarly, with or without

a totally unaffected state, when A\ < 0 we have E (B\x) < [, for all s because
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ming Bs = 1+ 0.245\. Finally, with or without a totally unaffected state, when A =0
we have E (B[x) =1=E(f;) = max, f; = ming f;. O

Claim 2. In the setting of Section “The Possibility of Heterogeneous Coeflicients,”
there exists no estimator 3 that can be expressed as a function of the data { (20, ¥s0, ¥s1)}>_,

and whose expected value is guaranteed to be contained in [min 35, max, 5] for any

heterogeneous model and any {Iso}le-

Proof. 1t is sufficient to establish this claim for a special case with S = 2, some x4’s
with 0 < x99 < 119 < 1, f1 < Pa, and dg known to be zero. The model for the data is
then

y802a5+/85'w50+550
%12%4‘51‘1'55‘1’551

with parameters § = ({(a, 8;)}2_,,01, Frix), for F.x the distribution of (e40,€41)
conditional on z,. Pick some estimator 4. Given any parameter 6, define the
distinct parameter 6’ = <{(a;,5;)}2 5/1,F5‘X> given by

s=1"

Az, A 2
0/:<{(as+1_20758_1_x )} 751+A7F€X>
s0 s0 s=1

for some A > (B3 — f1) - (1 — x90) > 0.

We show that the two parameter values f and 6" are observationally equivalent,

which means the expected value of B’ must be the same under # and 6. To see this,

note that the distribution of (ys0, ys1) conditional on x4 is the same under 6 and 6’
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FYO,Yl\X (3/071/1 | Ts0 = T 9)
IPr{<€so§y0—as—ﬁs'x, €s1 Syl—%—51—55|$30:$;9}
=Pr{cqo<wyo—as—0Fs 7, € —€s0 <1 —Yo— 01 — Bs (1 — ) |xs0 = x;6}

Py ESOSQO_(QS_}'lA__.i)_(ﬁS_I%Z T = x;0
ea—e0<y1—y— (1 +A)— (B — %) 1 —2)

Tso = T; 9’}

However, the A is chosen such that 5, = £ — 1 o < By — 1 o =By < B < B
Therefore the expected value of 3’ cannot be contained in both |51, B2] and [B1, 52,

because these intervals do not intersect. O

-x’

gso Syo—ol, — By x
Pr , ,
€s1 —Es0 <Y1 — Yo — 07 — B (1 —x)

=Fy, yi1x (Yo, y1 | 250 = 2;0') .

Claim 3. In the setting of Section “A Difference-in-Differences Perspective,” the exposure-
ADID ;

s,s’

is equivalent to the TWFE estimator

B based on the two states s and s’. Moreover, the expected value of DI,D , given the

adjusted difference-in-differences estimator

data © = {x4, xso} for states s and ¢, is given by

( sPsI/D ) (1 —250)Bs — (1 —wg0) By

Tsrg — Tso

where the expectation E (5’3[ b ]x) is taken with respect to the distribution of the

errors €4 conditional on the data x = {x0, 50}
Proof. For the first part of the claim, note that from the proof of Claim 1 we have

oV (Ys1 — Ys0, 1 — T40)
Var (1 — z4)

B =

where Cov (-,-) and Var (-) denote the sample covariance and variance, respectively.
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Since the sample includes only two states s and &', for the numerator we have

Cov (Ys1 — Ys0, 1 — Zs0)

L e = s0) = (o = 90)) (1= 0) + = (91 — o) — (1 — wi0)) (1 — )

4 4
1
T (1 =250) = (1 = 250)) ((Ys1 — Ys0) — (Ys1 — Ys0))
where the first equality applies the definition of sample covariance and a — “TH’ = “T’b

Similarly, for the denominator we have

Var (1 — z40) = = ((1 — z40) — (1 — z40))>.

=~ =

~

Plugging the above expressions into g gives the equivalence to
DID

s,s’

ADID

PP

Given the equivalence between B and B when the sample includes only two
states s and s’, we apply Claim 1 to derive the expected value of stl,D . Specifically,

Claim 1 implies that given the data x = {z, x40} for states s and s’, we have

A Cov (Bs (1 —zg), 1 — )
DpID|.\ _ :
£ <65’5' 33) B Var (1 — z4) '

DID

s,s’

Based on a similar simplification to the expression of B , we have

COV (ﬂs (]- - xSO) 5 1-— st) = ((1 - st) - (]- - xs’O)) ((1 - ISO) Bs - (1 - xs’O) ﬁs’)

1 =

and therefore

Cov (ﬁs (1 - st) ) 1— st) o (1 - 3750) 55 - (1 - xs’O) 65’ '

Var (1 — z4) Ts'0 — Ts0
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