
Online appendix for “An Introductory

Guide to Event Study Models”

The supplemental materials for the paper contain Stata code that produces the Figures in

this appendix.
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A Data structures, and related designs

A.1 Connections to Difference-in-Difference models

Event study models fit within a family of related models that rely on a parallel trends

assumption for identification of causal effects. All of these employ panel fixed effects (or a

simplified version, such as dummies for “post” and “treated unit”) as key control variables. In

Table A.1, I summarize some related approaches within this family. The first column labels

the approach; the second column indicates the relevant estimating equation, the third and

fourth columns identify the relevant data structure.

Table A.1: Collection of ES and related models

Model Name
Estimation Event Date Never-treated

Equation Variation group(s)

1. 2x2 Difference-in-Difference DiD N/A Yes

2. 2xT Difference-in-Difference ES, DiD N/A Yes

3. NxT Difference-in-Difference ES, DiD Common Yes

4. NxT Generalized DiD DiD Varying Optional

5. Event Study, Timing based ES Varying No

6. Event Study, DiD style ES Common Yes

7. Event Study, Hybrid ES Varying Yes

The first row is the basic 2×2 difference in difference model. Here we have two units, one

treated and one control. And we have two time periods: one before treatment and one after.

Row 2 is the generalization of this where we have multiple time periods for each unit. In

this case, there is the possibility of creating an event-study type graph. The next extension

is to have many (N) units, some treated and some control; and for the treated units to have

a common event time. This is the N × T difference-in-difference setting. The essence of
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the identification is the same as the 2 × T DiD model; but the many units can allow for

difference in calculating standard errors (we can now estimate standard errors by clustering

on each unit).

The last four rows of the table are all characterized by settings where the event time

varies across units. The Generalized Difference-in-Difference estimates a single “treatment

effect” from this. This is the first model where it’s possible to have only “ever treated” units,

and to identify treatment effects based solely on the timing of the treatment. The three

event study setups build from earlier data structures, and produce our typical ES graphs.

The list above is incomplete, and there are many variations. One common situation is

when the variation in event dates Ei is neither cleanly “all at once” (Ei = E,∀i), but there

are important groupings of Ei across units. For example, a policy might be adopted by a

handful of states at different times; and then a federal policy might bring along all of the

remaining states all at once.

A.2 Showing the variation in your event dates

Because the data structure you are working with impacts specification choices, you should

clearly let your reader know which structure you have. Also, if you are working with a

timing-based or hybrid data structure, you should let your reader know the variation in the

event dates in your sample. This can be done with a tabulation of event dates, or graphically

as in the figures below. The figures represent a couple of different hypothetical data sets,

and show two ways of illustrating the data structure and variation in event date. Each pair

of graphs shows the same information in two different ways. For your paper, you can choose

whichever format you think is most clear for your readers.

Figure A.1 illustrates this for a timing-based data structure. The earliest treated units

have their event date in period 5, and the latest event date is period 15, by which point all

units have been treated. The graph on the right shows the same information, in the form of

a CDF across units of event dates.
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Figure A.1: Two ways of showing the variation in event dates: Timing-based data structure

Note: The left panel shows a histogram of event dates, with one observation per unit. The right panel shows the same
information as Cumulative Distribution Function. This data set has a timing-based data structure, with no “never
treated” units.
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Figure A.2: Two ways of showing the variation in event dates: Hybrid data structure

Note: The left panel shows a histogram of event dates, with one observation per unit. The right panel shows the same
information as Cumulative Distribution Function. This data set has a hybrid data structure, with variation in event
date among treated units, and many “never treated” units.

Figure A.2 shows a hybrid data structure. Here, half of the units are never-treated. Of

those that are treated, there is an early-block, with event dates 5-7, and a later block, with

event dates 10-12.

For each of the figures above, the two graphs on the left and right convey the same

information about the data structure. I recommend presenting one of these, choosing the

style that you think will be most informative to your readers.
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B Parameter restrictions

B.1 Timing-based Data Structures and parameter restrictions re-

quired

In DiD based data structures, in models with no trend controls, three restrictions on the

parameters are required. The regular panel fixed effects restrictions are typically (1) drop

the intercept, and (2) drop a unit fixed effect. These “make sense” and are unobjectionable.

The third restriction is (3a) the typical restriction to normalize an event time coefficient to

zero (e.g. set γ−1 = 0, or (3b) normalize an average of the “reference period” coefficients to

zero.

In timing-based data structures, things get more complicated. With two event dates,

there are the same number of “effective limiting observations”, but now one or more extra

parameters (based on Emax − Emin) to be estimated (because we have more event-time

parameters). So one or more extra restrictions are needed. In one sense, this seems worse.

On the other hand, we can still identify the same number of parameters that we could

have with the DiD structure. (What did the DiD structure have to say about the novel

parameter? Nothing.) However, the restrictions we impose on the model will impact all of

the estimated parameters. It’s not like we can say “we ignore the extra parameter” like we do

in the DiD structure; instead we have to say something like “we think its value is the same

as its neighbor”, and that assumption has implications for all of our estimated parameters.

When we add extra unit types with extra event dates (Ei), each one apparently brings

with its T new limiting observations. However, there are lots of multicolliniearities; and

so the extra information (as measured by the rank of the X matrix) typically grows by

only 2 degrees of freedom. One of these is used to identify the level shift αi for that unit

type. And if our new unit type expands the event time parameter space (e.g. by increasing

Emax−Emin) then we are left with the same number of total extra restrictions needed. This

is still a situation of “good news”; for the same number of needed restrictions we can identify
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more and more γj.

When there is a gap between Emin and Emax, the location(s) of other event dates within

this gap are important for the amount of identifying information (as measured by the rank

of the regressors X, including all the dummy variables and event dummies). The patterns

here are complex; and while I would guess that there is a closed-form solution, I am not sure

what it is. The themes appear to be: (1) information decreases (more parameter restrictions

are required) as the minimum gap mini,j (Ei, Ej) grows; (2) In a data structure with three

events, information jumps to “max” when the interior event time is just-barely-offset (by 1

time period) from the mid-point of the range; (3) more unit-types typically helps, as they

add new event dates Ei to anchor event time around, and typically narrow gaps between

event dates.

This is illustrated in Figure A.3 below. The setting here is based on a timing-based

data structure, with no “untreated units”, and a panel length of T = 20. One of the unit

types is treated at T = 4, and a second unit type is treated at T = 16. If these were the

only unit types, the model would need Emax − Emin = 12 extra parameter restrictions to

be identified. Next, we consider having a third unit type, with treatment date somewhere

in between 4 and 10. This doesn’t change the number of parameters to identify; but it can

add additional non-collinear observations. In doing so it can reduce the number of needed

parameter restrictions. Depending on when the third unit’s event date is, we can calculate

the rank of the X matrix, and compare this rank to the number of parameters in the model.

The gap between these two gives the number of additional needed parameter restrictions to

identify the model.

The blue circles in the graph show how the number of needed restrictions changes when

we add a third unit type, as a function of the timing of the event for that unit type E3.

When its event date is 4 (the same date as our first unit type), we are still in the case of

really having only two unit types, and we need the full 12 parameter restrictions. With an

event date of 5, we now need only 1 parameter restriction. The patterns of the blue circles
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Figure A.3: Strange patterns in the number of needed parameter restrictions in timing-based
data structures

Note: The y-axis show the number of additional parameter restrictions (beyond those that would be requred for a
difference in difference data structure) that are required to identify the parameters of the model. For the blue circles
(“units3”) there are three unit types. One has an event date at t = 4, and the other at t = 16. The x-axis represents
the event date of the third unit type. For the red triangles (“units4”) there are four unit types, three of whom have
event dates at {4, 10, 16}. The x-axis represents the event date of the fourth unit type.

are strange and non-monotonic. I think that explaining these is a puzzle for future research.

The red triangles expand the thought experiment to conisder four unit types. In this

scenario, the fourth unit type receives treatment at the midpoint, E4 = 10. The x-axis is

based on the location of the third unit type, and the y-axis shows the number of additional

parameter restrictions needed to identify the model. As before, the patterns are strange and

intriguing.
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B.2 Implementing parameter restrictions in Stata with cnsreg

One way to implement parameter restrictions γj = 0 is to drop the associated variable. The

most common restriction used in event study models is γ−1 = 0, and this is implemented by

excluding the -1 event time dummy variable. To implement equality of coefficients across

event times, an easy way implement this is to create a pooled dummy variable. For example

to impose γ0 = γ1, we can include a dummy variable for “event time is zero or one”. This

idea extends to the “end cap” variables that are often used.

In this subsection I discuss an alternative approach: the use of direct parameter restric-

tions in estimation. In Stata, this is implemented with the command cnsreg (“constrained

regression”). This is the command I use to create the figures in the Online Appendix, and

the supplementary materials for the paper include code which illustrates its use.

To use cnsreg, first you define the parameter restrictions in the form of linear constraints,

and then reference the constraints when calling the command. For example to implement

“set the reference period to be event times -1 and -2”, we want to constrain γ−1 + γ−2 = 0.

To implement this in Stata we do this as follows:

constraint define 1 Dm1 + Dm2 = 0

cnsreg y Dm3 Dm2 Dm1 Dp0 Dp1 Dp2 ibn.time i.id , constraints(1) collinear

One advantage of using cnsreg is that you can make sure that Stata is not dropping

unexpected collinear terms. In order to do this, you need to use the “collinear” option. And

if you are using Stata’s factor notation for your time or unit-dummies, you need to use the

no-base option: “ibn.time”.

Another use of cnsreg is to implement the proposed trend normalization in section 4.4.

of the paper. A third use can be used to implement a spline in the event time coefficients,

by imposing a “no concavity” constraint, so that the slope is equal across two segments of

the spline. For example: γ1 − γ0 = γ2 − γ1.
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For an alternative approach in Stata to estimating event study modesl, see Clarke and

Schythe (2020) who present a Stata add-on command.

C Illustration of alternative normalizations of the refer-

ence period

C.1 DiD Data Structure, alternative normalizations, and visual

pre-trends

This section illustrates some issues from Section 3.1.

In figure A.4, both graphs are estimated on the same data. They both employ one

panel-fixed-effects restriction in common: that the average unit-type coefficients are zero.

The figure on the left uses the more common event study normalization, that the coefficient

on the -1 term equals zero. The figure on the right uses the recommended event study

restriction, that the average coefficient in the reference period is zero. Here I use event times

-1 through -10 as the reference period. The difference in restrictions has the effect of shifting

up or down the whole pattern of coefficients. In this example, the shift is very small, because

the -1 coefficient is very close to the overall average for the pre-period. The other effect is on

the estimated standard errors. They are larger when using the -1 restriction, reflecting the

additional uncertainty driven by the noise in this term on its own. When the full reference

period is used, the standard errors are noticeably smaller.19

If we normalize to a broader reference period, we can still examine the pre-event coef-

ficients for a sign of a pre-trend. However, because we are normalizing these coefficients

to average to zero, the pre-trend will manifest differently than if we had normalized the -1

coefficient to zero. We need to assess the overall trend in coefficients, rather than examine
19The data in this example were selected so as to have results of statistical significance differ across the two

graphs, as a rhetorical trick to emphasize the main point. The general lesson is that using the full reference
period will (1) show increased precision, and (2) corresponds to our intuitive counterfactual, informed by
difference in difference models.

49



Figure A.4: Different counterfactual normalizations

Note: The y-axis show the estimated treatment effects and 95% confidence intervals. The x-axis shows event time.
The left panel normalizes event time -1 to zero; while the right panel normalizes the average of -10 to -1 to be zero.
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Figure A.5: Different counterfactual normalizations and pre-trends

Note: The y-axis show the estimated treatment effects and 95% confidence intervals. The x-axis shows event time.
The left panel normalizes event time -1 to zero; while the right panel normalizes the average of -10 to -1 to be zero.

point-wise coefficients and their difference from zero. This is illustrated in figure A.5. In

this data generating process, I have added in a systematic time trend for the treated units.

The graph on the left of figure A.5 shows the expected visual evidence of this pre-

trend. The graph on the right is shifted down (because it constrains the average pre-period

coefficient to be zero). The trend is just as apparent if we examine the overall pattern of

the pre-event coefficients. If we used tests of “are these coefficients different from zero”, the

graph on the right would reject less often. But this would be the wrong criterion to use for

pre-tests. Instead we need to examine the overall pattern of the pre-event coefficients. There

is a clear steady downward trend in these coefficients. Using this criterion, there is no loss

in moving to the broader reference period normalization.
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Figure A.6: Timing-based data structure and different restrictions

Note: The y-axis show the estimated treatment effects and 95% confidence intervals. The x-axis shows event time.
The four panels are based on different parameter restrictions.

C.2 Timing-based Data Structure: E2 = E1 + 1

In this section, we consider a timing-based data structure with two unit types. The event

dates for the two units are off-set by 1. Because it is a timing-based data structure with no

control group, in addition to the basic constraints, we need at least one more. In figure A.6

I illustrate consequences for four different possibilities for the additional constraint(s). The

first and last graphs are “just identified”; graphs 2 and 3 have extra constraints.

Model 1 uses a minimal “end-cap” constraint, on the pre-period end-cap only. It looks

okay; but shows a lot of noise, which twists the estimates about the fulcrum of the two

points in the end-cap. It might be made worse because γ−10 only comes from one unit-type.

Model 2 extends the end cap to cover 3 periods. It looks much better, as it is much flatter.
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Model 4 implements my recommended constraint that the pre-event terms have zero trend.

It also looks good, and (like model 1) is “just identified”. Model 3 looks awful; this would

be a commonly estimated model using end-caps on both ends. This example is a cautionary

tale for standard practice.

D Getting closer to raw data

This appendix illustrates how we can show both our event study estimates, and also provide

additional context by showing results that are closer to the raw data. It illustrates some of

the suggestions in section 3.2

In figure A.7, we see an illustration of showing the counterfactual alongside the raw data.

The data structure in the figure below is a Difference-in-difference data structure, with two

unit types: (1) treated units sharing a common event date, and (2) control units. The first

graph shows the estimated event study treatment effects; with the true treatment effects (the

true γj from equation 1) superimposed in green hollow dots. The second graph shows the

raw means for the treated (blue) and control (red) groups, and also shows the counterfactual

untreated prediction for this group (orange hollow dots). The counterfactual is computed

by subtracting off the estimated event-study effects (γ̂j) from the raw means for the treated

group.

Next, figure A.8 shows a similar graph for a timing-based data structure. Here we have

two treated groups, with an event date of 8 for group 1 and an event date of 12 for group 2.

Here there are two counterfactuals, one for reach unit type.

E Pooling and Splines for event study coefficients

In this Appendix section I illustrate pooling event study coefficients, and imposing splines

on event study coefficients for improved statistical power. These are discussed in section 3.6

in the paper.
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Figure A.7: Event study coefficients vs. “getting closer to the raw data”

Note: In the left panel, the y-axis show the estimated (blue) and actual (green) treatment effects (γj). The x-axis
shows event time. In the right panel, the x-axis shows calendar time. The red dots show the mean outcomes for
the control unit. The blue connected line shows mean outcomes for the treated units. The orange dots show the
counterfactual (untreated) outcomes for the treated units.
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Figure A.8: Event study coefficients vs. “getting closer to the raw data”

Note: In the left panel, the y-axis show the estimated (blue) and actual (green) treatment effects (γj). The x-
axis shows event time. In the right panel, the x-axis shows calendar time. The blue connected lines shows mean
outcomes for each of two types of treated units (who receive treatment at different dates). The orange dots show the
counterfactual (untreated) outcomes for those treated units.
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There are two way to implement pooling of event study coefficients. The first is to create

pooled event time dummies, so that one dummy represents two or more adjacent event times.

The alternative is to directly impose the pooling constraints at the point of estimation (e.g.,

using “cnsreg” in Stata). These two approaches are equivalent in standard cases. They could

differ when other constraints are added in to the model: e.g. if imposing a “no pretrends”

constraint, this could be implemented differently depending on how you are pooling.

Figure A.9 shows the impact of pooling constraints on the estimated results. For this

illustration, the true treatment effects (shown in red) are designed to have a “jump, then

decay” pattern. The top left graph shows (blue connected dots) a standard event study

model, with no pooling. The top right model pools pairs of coefficients. For example, there

is one estimate for “event time 0 or 1”, and another estimate for “event time 2 or 3”, and so

forth. There is a noticeable shrinking of the width of the confidence intervals. The bottom

left and right graphs pool sets of three and four coefficients, respectively. For example in the

bottom right graph, there is one estimate for “event time 0 through 3”, another estimate for

“event time 4 through 7”, and so on. In this example, greater averaging leads to improved

statistical power (smaller confidence intervals), but worsening ability to capture the true

dynamics of the treatment effects. To my eyes, pooling 2 or 3 event times together seems to

be the best compromise for this data.

One alternative to pooling is to implement a spline model. This can be implemented by

imposing “no concavity” constraints at the point of estimation. These constraints take the

form of, e.g., γ1−γ0 = γ2−γ1 for connected segments of event time coefficients. Figure A.10

illustrates the use of splines to improve statistical power. The top left graph is the standard

event study model with no splines. The top right graph imposes linear splines of length

three. It allows for a break in coefficients between the pre-event and post-event coefficients.

These splines improve statistical power moderately. The bottom left graph imposes splines

of length four. The bottom right graph returns to splines of length three, but has the pre-

and post-event time coefficients connected (the splines connect at the -1 segment). For this
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Figure A.9: Pooling event study coefficients

Note: The top left panel shows a standard event study model with one parameter γj per event time. The blue dots
show the estimated coefficients ( ˆgammaj), and the red dots show the true treatment effects (actual gammaj). The
top right panel pools (groups) the event study coefficients into two-periods. The bottom left panel pools into groups
of 3 periods, and the bottom right panel pools into groups of 4 periods.
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Figure A.10: Splines in event study coefficients

Note: The top left panel shows a standard event study model with one parameter γj per event time. The blue dots
show the estimated coefficients ( ˆgammaj), and the red dots show the true treatment effects (actual gammaj). The
top right panel constraints the event study coefficients to lie on a piecewise spline with segments of length 2. It allows
for a break in the spine segments between the “pre” and “post” periods. The bottom left panel uses splines with length
3. The bottom right panel returns to splines of lenght 2, but forces the “pre” and “post” spline segments to connect.

data generating process (DGP), this results in a mischaracterization of the effect at event

time 0.

F Controlling for trends

F.1 DiD Data Structure

The DiD data structure is a good place to start, because it’s easier to keep track of the

possibilities for different terms to be multicollinear with each other. The simplest case to

consider is one where we just add in one term: timet·Treatedi. However, this term is collinear
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Figure A.11: Parameter restrictions when trend controls are included

Note: Each panel estimates an event study model on the same data, which are from a DiD type data structure. The
true data generating process does not have any trends. The first graph does not include an estimated time trend for
treated units, but the other 8 graphs do include this estimated time trend. Each panel employs different parameter
restrictions in order to identify the model.

with the terms already in the model. So when we add this term some other constraint in

the model will need to be added; there is no difference in the content of the specifications.

What can be tricky is that depending on what the restriction is, the estimated event

study coefficients γ can look very different. To see this, consider Figure A.11. This shows 9

different models; many of which are equivalent.

The first graph has no trends included and serves as a baseline. Because the data gen-

erating process (DGP) here also has no trends, the event study coefficients (blue solid dots)

match the true effects (red hollow dots). The remaining graphs add in a trend term for

treated units; so each one needs one (or more) additional parameter constraints. The sec-
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ond, third, and fourth graphs each impose those parameter constraints by equating the

coefficients for adjacent terms. In the second graph we have an end-point for -10 and -9; in

the third graph we equate the coefficients for -2 and -1; and in the fourth graph we have

an end-point in the post-period, equating +8 and +9 terms. In each case, the event study

coefficients have a zero trend through the terms that are equated; and the full pattern of

coefficients pivots to reflect this normalization. As it happens, for none of these cases do the

results look satisfactory.

For graphs 5 and 6, we impose constraints with the intention of having a flat pre-trend.

Graph 5 equates the -10 and -1 terms. Graph 6 imposes a constraint that the pre-event

coefficients have a zero average trend. Both of these restrictions give results that look good.

The last three graphs build on the idea of having an end-point in the pre-period, pooling

terms. While graph 2 pooled only two terms (-10 and -9), graphs 7,8 and 9 each add in

an additional term that gets pooled in. These produce results that look increasingly good.

It might be the case that graph 9 is “too good”; once we’ve imposed that coefficients -10

through -6 are equal, and combine that with the pre-existing constraint that all the pre-

event coefficients average to zero, this might have an implicit “zero trend” constraint.

F.2 Timing-based data structures and linear trend controls

F.2.1 Two unit types

Let’s start from a data structure with two unit types, and E2 = E1 + 1. As noted above in

section B.1, we now have an extra event-time coefficient we can in principle estimate, and

so we need one additional restriction compared to the DiD data structure. Two common

choices are to equalize two or more end-point coefficients at the beginning and/or end of

possible event times; or to impose a flat pre-trend on event time coefficients.

Next we consider: what if we also want to add in trend controls? Suppose we want to

control for time · 1 (Ei = E2), which allows for a different linear time trend for the unit-

type with the later event date. It turns out that extra covariate is multicollinear with the
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covariates already included in the model, in somewhat complicated ways. If we regress

time ·1 (Ei = E2) on the RHS variables in (1), we will find that the event time γj parameters

have a quadratic function in j; the δt have an opposite quadratic function in t; and the αi

parameters have a level shift based on unit-type. The result of this is for (Ei = E1) types,

the γj and δt offset one another, leading to no trend. But for the (Ei = E2) types, their γj

parameters are off-set, and so they have a linear time trend.

This complicated multicollinearity has two implications: (1) in order to get our model

to be estimable, we will have to impose additional restriction(s); (2) these restrictions can

interact with the complicated multicollinearity to produce unusual and unsettling results.

Specifically, controlling for a unit-type linear trend can induce a quadratic relationship into

the γj and δt parameters. This can interact with the additional parameter restrictions

imposed to estimate the model in unsatisfactory ways. Even if the parameter restrictions

are “true”, the noise from the model errors will load on to the restrictions, and this can

produce wildly incorrect counterfactuals. Figure A.12 shows estimated results from four

seemingly reasonable parameter restrictions (indeed; the parameter restrictions in models 1,

3, and 4 are each consistent with the true model). None of these are very good. These weird

results depend on the shape of the true treatment effect.

Next, figure A.13 shows results for the same restrictions as above, when the true treatment

effect is a nice constant treatment effects step function. In this case, Model 2 is looking the

best. But even there it’s not so good. The take away message from this is to be extremely

cautious when working with a timing based data structure and controlling for linear trends.

F.3 Getting closer to “raw data” when there are trends and trend

controls

As in the case without trends, it is informative to show both the direct treatment effect

estimates, as well as something that is closer to the raw data. Figure A.14 illustrates this,

for three different models applied to the same data. Each model is in a different column,
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Figure A.12: Timing based data structure and unit-specific time trends

Note: Each panel estimates an event study model on the same data, which are from a timing-based data structure,
with one unit treated at t = 10 and the other treated at t = 11. The true data generating process does not have
any underlying trends. The true treatment effects (in red) follow a “ramp” pattern. Each panel includes an estimated
unit-specific time trend, and employs different parameter restrictions in order to identify the model.
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Figure A.13: Timing based data structure and unit-specific time trends

Note: Each panel estimates an event study model on the same data, which are from a timing-based data structure,
with one unit treated at t = 10 and the other treated at t = 11. The true data generating process does not have any
underlying trends. The true treatment effects (in red) follow a constant “step function” pattern. Each panel includes
an estimated unit-specific time trend, and employs different parameter restrictions in order to identify the model.
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Figure A.14: Closer to raw data with estimated trends in a DiD data structure

Note: The top row shows estimated (blue) and actual (green) treatment effects, and the bottom row shows corre-
sponding raw data (and estimated counterfactuals). Each column relies on different parameter restrictions to identify
the model. The blue dots show estimated treatment effects (top row) or raw averages (bottom row). The green dots
in the top row show the true treatment effects (γj). The red dots in the bottom row show the raw averages for the
control units, and the orange dots show the estimated “untreated counterfactual” for the treated units.

with the top graph showing the estimated treatment effects (in blue) along with the true

treatment effects (in green), and the bottom graph showing the raw data (for treated and

control units, in blue and red) and the counterfactual outcome implied by the estimated

model (in orange).

In the data generating process, the treated units have a pre-existing time trend that

is different than the control units. They additionally have a “ramp” treatment effect that

increases in time once they are treated. The first model (top left and bottom left) are based

on a model with no trend controls. This model shows the diagnostic pre-trend problem

in its estimated coefficients; and that pre-trend translates into biased estimated treatment
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effects. The second model imposes a “flat pre-trend” constraint on the estimated event study

coefficients, but does not add in estimated unit-specific trend controls. This helps with the

model fit in the pre-period; but the estimated treatment effects are just as bad as the first

model. Without direct trend controls, the constraint on the event study coefficients does not

fix the problem of trends. The third model adds in a unit-type trend variable, and imposes

the “flat pre-trend” constraint on the event study coefficients. This is the preferred model,

and it performs well. In each case, the bottom panel shows the raw data as well as the

counterfactual implied by the model.

Next we consider the case of timing-based data structures and getting closer to the raw

data. In the figure below, there are two unit types, one treated starting in period 8 and the

other in period 12. The second unit type has a different underlying trend than the first. The

figure shows three different models, one in each column. The top graph shows the estimated

event study coefficients, and the bottom graph shows the raw data for the two groups, and

the implied counterfactuals for each group.

In the first column, we do not control for any trends. The identifying restrictions are in

the form of a pre-event pooled end point, and a normalization that the mean coefficient for

the non-pooled pre-events is zero. We can see that (1) the model performs poorly, and (2)

this could be diagnosed by examining the pre-trends. The second column adds in a unit-

type specific trend shifter. Because this requires an additional constraint, it also imposes

the “pre-event coefficients have zero trend” constraint. This constraint is applied to the

same coefficients (-1 to -6) as the normalizing average-to-zero constraint. This model looks

much better; although it is not perfect. The third column adds in additional two pre-event

end-point constraints. This makes things look quite good.

F.4 Computational Issues with Unit-Specific Trends

In sistuations where it seems potentially useful to employ unit-specific trends, a useful ap-

proach is to “partial out” the unit-specific (or alternatively unit-type-specific) intercepts and
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Figure A.15: Closer to raw data with estimated trends in a timing-based data structure

Note: The top row shows estimated (blue) and actual (green) treatment effects, and the bottom row shows corre-
sponding raw data (and estimated counterfactuals). Each column relies on different parameter restrictions to identify
the model. The blue dots show estimated treatment effects (top row) or raw averages (bottom row). The green dots
in the top row show the true treatment effects (γj). The orange dots show the estimated “untreated counterfactual”
for the two types of treated units.
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trends. The partialing-out approach has the following steps. Step 1: For every variable z in

the event study formulation—that is, all the characteristics of the unit variables as well as the

indicator variables for when the event takes place, the dummy variables for each time period,

and any added control variables, regress z on a constant and time t, only for observations

in unit i. Then compute the residuals from this regression, z̃.20 Step 2: Take the residuals

from these regression equations, and then insert them into the event study model. Because

you have already adjusted for time trends in the first step, you don’t need to do any further

adjustments for time trends in the second step—which means that the set of covariates will

be modest in size. However, we need to take care in our second stage regression to impose

the same parameter constraints that would apply to the one-step approach.

One limitation of this approach as described is that it controls for “overall trends” rather

than “pre-trends,” but this approach can be modified to partial out pre-trends only. To do

so, in Step 1, estimate the model only on data up through the time period preceding the

event. Then use this model to make predictions (and residuals) over the whole time period.

For never-treated units, you can use the full time period. Step 2 is the same as described

above. Goodman-Bacon (2021b) implements a version of this approach.

F.5 Beyond linear unit-specific trends

In general, unit-specific linear time trends allow for greater modeling flexibility. But even

greater flexibility can be accommodated with more flexible unit-specific trends, like the use of

higher-order polynomial trends. The greater flexibility can be good for avoiding interpreting

secular time trends as a treatment effect. But it is a data-hungry approach, which requires

adding additional parameter restrictions. The risks of over-controlling based on data from the

post-period—and thus having estimates that are either biased, or less generalizable because

they are based on idiosyncrasies in the data—can grow with increased modeling flexibility.
20To further save computational burden, z can be partialed out just once per unit-type. If our panel is

balanced in calendar time, to save further computational burden, dummy variables for each time period can
be partialed out only once, instead of once per unit.
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An alternative approach is to control for covariates Wi that are defined at the unit level,

interacted with linear or higher-order polynomial trends in time. For a somewhat extreme

case, these covariates could be interacted with the calendar time dummies. I am not aware

of guidance for assessing the value and risks of these alternative approaches.

G Comparing DiD models and ES models

G.1 Basic comparisons

Because the Event Study model can be written as a generalization of the Difference-in-

Difference model, it is natural to compare the estimates from the two models. Roughly

speaking, our intuition is that an average of the “post” ES coefficients, minus an average

of the “pre” ES coefficients, should correspond to the DiD estimate. This lends itself to an

informal diagnostic practice, which is to compare the ES coefficients and the corresponding

DiD estimate. This can be done visually on your ES graph by plotting the DiD lines, with

the pre-treatment line set as an average of the s ≤ −1 coefficients, and the post-treatment

line set to reflect the DiD treatment estimate. If the ES coefficients and the DiD estimates

are meaningfully different, this can raise a warning flag for a potential problem, and is worth

further investigation.

Although it feels intuitive that the DiD estimates and the ES estimates should line up,

this is not necessarily the case. Several recent papers note how the two way fixed effects DiD

estimate can be written as a weighted average of underlying 2x2 comparisons across units.

In the presence of treatment effects that vary in time-since-treatment, the DiD averaging

of these may not be what we would intuitively want at all. For example, Goodman-Bacon

(2021a), Borusyak et al. (2022) and de Chaisemartin and D’Haultfoeuille (2020) all note that

the some of the underlying treatment effects can get negative weight in the averaging, which

can lead to strange results. Borusyak et al. (2022) and de Chaisemartin and D’Haultfoeuille

(2020) each propose alternative estimators that can recover the treatment effects of interest
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under some conditions.

G.2 Trending Treatment Effects can mess up a DiD specification,

when we control for unit-specific trends

This subsection further develops the discussion in the main paper’s section 4.3, which notes

that the presence of trending treatment effects and controlling for unit-specific time trends

can result in poor performance.

Figure A.16 considers a case where the treatment effect follows a “steady ramp” pattern.

The basic DiD model (equation 2 in the main text) gives a sensible approximation; an average

of the post-treatment effects. The ES model works well, as expected.

Suppose that we tried to control for unit-specific trends in our DiD estimation model.

Because the treated units are trending up in the post-period, the trends will aim to partially

capture that. This will narrow the estimated shift from pre-to-post; leading to downward

biased estimates of the treatment effects in this version of the DiD model. This is shown by

the unreasonably small estimates in yellow.

G.3 The Ben Olken Puzzle

This puzzle illustrates an example where DiD and ES coefficients give wildly different results.

In this case, the ES coefficients are valid, and the DiD coefficient gives an unreasonable weight

of zero to some of the ES terms.21

The simplest data structure to illustrate this puzzle is as follows: consider 2 units, each

treated at a different time, with 3 calendar time periods. The Event Dates vary across the

two units, Ei=1 = 2 and Ei=2 = 3. In the true DGP there are no calendar time effects or

unit-specific effects: yi,t = 1 ·Di,t−1 + γ2 ·Di,t−2 + εi,t. We consider the cases where γ2 = 1

and where γ2 = 2. We consider four estimation models, either an ES model or a DiD model,
21Many thanks to Ben Olken and Dan Fetter for conversations about this puzzle.
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Figure A.16: Estimating a DiD model with trend controls when there is trending treatment
effects can be problematic

Note: The hollow red dots are the true treatment effects (γj). The blue dots are the estimated treatment effects from
an event study model. The green line gives the estimated treatment effect from a difference-in-difference model without
unit-specific trend controls, and the yellow line gives the estimated treatment effect from a difference-in-difference
model with estimated unit specific trend controls.
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and either including or excluding calendar time dummy variables. To simplify, we omit

unit-specific fixed effects. This produces results as follows:

True DGP

Estimation Model γ2 = 1 γ2 = 2

ES Model (no δt) E [γ̂1] 1 1

E [γ̂2] 1 2

DiD Model (no δt) E [γ̂] 1 1.33 (OK)

ES Model (yes δt) E [γ̂1] 1 1

E [γ̂2] 1 2

DiD Model (yes δt) E [γ̂] 1 1 (uh-oh!!)

Here the Event Study models estimate coefficients that correspond to their true values.

The DiD model does just fine when either γ2 = 1 (constant treatment effects), or when there

are no time fixed effects modeled (in this case, it averages a treatment effect of 1 with weight

2/3, and of 2 with weight 1/3).

The problem arises in the last row, when time fixed effects are included. Here the DiD

model estimates a coefficient of 1, which places zero weight on the γ2 = 2 ES impact. What

is going on here? In the DiD model the “after*treated” coefficient is the same for both units

for period 3; and the period 3 time dummy will make sure that the average is predicted

correctly for period 3. So for period 3, two things are true: (1) there will be an unavoidable

gap between the prediction and the realized values (with errors of +0.5 and −0.5 for the

two units), and so (2) the treatment coefficient γ won’t depend on the values of the period 3

realizations. So then γ is set to fit the unit-1 period-2 value (γ̂ = 1). There is a pathological

collinearity between the time dummies and the model misspecification of the DiD model.

This example illustrates how a difference between the ES coefficients and the DiD coeffi-

cients can provide a nudge to dig deeper into the model, for a better understanding of what

variation is driving the estimated effects. In this case, the ES estimates are valid, while the

DiD estimate are distorted.
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