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High Marginal Tax Rates on the Top 1%? Lessons from a
Life Cycle Model with Idiosyncratic Income Risk

By Fabian Kindermann and Dirk Krueger

A. Proofs of Propositions

A1. Proof of Proposition 1

We start from the definition of top 1% labor earnings tax revenue

T (τh) = τh(zh − z̄)−R,(A1)

which we can, for the purpose of notation, also write as

T (τh) = T (z̄) + τh(zh − z̄),(A2)

with T (z̄) = −R. Total differentiation yields

dT (τh) = dT (z̄) + dτh(zh − z̄) + τhdzh.(A3)

By some rearranging, we obtain

dT (τh) =
d
[
T (z̄)
z̄

]
d(1− τh)

· (1− τh)

T (z̄)/z̄
· T (z̄)

z̄
· z̄

1− τh
· d(1− τh)(A4)

− (zh − z̄)d(1− τh) +
dzh

d(1− τh)
· 1− τh

zh
· τhzh

1− τh
· d(1− τh).(A5)

With the definitions as in Proposition 1, we immediately get

dT (τh)

d(1− τh)
= ε(τa(z̄)) ·

τa(z̄)z̄

1− τh
− (zh − z̄) + ε(zh)zh ·

τh
1− τh

.(A6)

The peak of the Laffer curve can then be found by setting dT (τh)
d(1−τh)

!
= 0, which

yields

ε(τa(z̄)) ·
τa(z̄)

1− τh
−
(zh
z̄
− 1
)

+ ε(zh) · zh
z̄
· τh

1− τh
= 0.(A7)
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Using zh
z̄ = a

a−1 and solving for τh gives us

(a− 1) · ε(τa(z̄)) · τa(z̄)− (1− τh) + ε(zh) · a · τh = 0(A8)

from which we immediately get

τLaffer := τh =
1− (a− 1) · ε(τa(z̄)) · τa(z̄)

1 + a · ε(zh)
.(A9)

�

A2. Proof of Proposition 3

The optimization problem of a household with high labor productivity eh reads

max
ch,nh

c1−γ
h

1− γ
− λ

n
1+ 1

χ

h

1 + 1
χ

s.t. ch = ehnh − τh(ehnh − z̄) +R.(A10)

The first-order conditions of this problem are

c−γh = µ and λn
1
χ

h = µ(1− τh)eh,(A11)

where µ is the Lagrange multiplier on the budget constraint. Combining these
equations with the budget constraint yields the labor supply equation

nheh − τh(nheh − z̄) +R−
[

(1− τh)eh
λ

] 1
γ

n
− 1
γχ

h = 0.(A12)

Uncompensated labor supply elasticity. — Total differentiation with respect
to eh yields {

(1− τh)zh +
1

γχ
[zh − τh(zh − z̄) +R]

}
dnh
nh

(A13)

+

{
(1− τh)zh −

1

γ
[zh − τh(zh − z̄) +R]

}
deh
eh

= 0.(A14)
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Rearranging leads to

εuh =
dnh
deh
· eh
nh

=
−(1− τh)zh + 1

γ [zh − τh(zh − z̄) +R]

(1− τh)zh + 1
γχ [zh − τh(zh − z̄) +R]

(A15)

=
(1− γ)(1− τh)zh + τhz̄ +R(
γ + 1

χ

)
(1− τh)zh + τhz̄+R

χ

.(A16)

Income elasticity of labor supply. — Total differentiation of the labor supply
equation with respect to R yields{

(1− τh)zh +
1

γχ
[zh − τh(zh − z̄) +R]

}
dnh
nh

+ dR = 0(A17)

which immediately gives

ηh =
dzh
dR

(1− τh) =
eh · dnh
dR

(1− τh)(A18)

=
−(1− τh)zh

(1− τh)zh + 1
γχ [zh − τh(zh − z̄) +R]

(A19)

=
−γ(1− τh)zh(

γ + 1
χ

)
(1− τh)zh + τhz̄+R

χ

.(A20)

Policy elasticity. — Before taking the total differential with respect to our tax
reform, it is useful to formulate the labor supply equation in labor earnings terms
as

zh − T (z̄)− τh(zh − z̄)−
[

(1− τh)

λ

] 1
γ

· e
1
γ

[
1+ 1

χ

]
h z

− 1
γχ

h = 0.(A21)

Note that we again use the notation T (z̄) = −R from Appendix A.A1. Total
differentiation with respect to the policy experiment then yields

dzh − dT (z̄)− dτh(zh − z̄)− τhdzh(A22)

− 1

γ
· d(1− τh)

1− τh
·
[

(1− τh)

λ

] 1
γ

· e
1
γ

[
1+ 1

χ

]
h z

− 1
γχ

h(A23)

+
1

γχ
· dzh
zh
·
[

(1− τh)

λ

] 1
γ

· e
1
γ

[
1+ 1

χ

]
h z

− 1
γχ

h = 0.(A24)
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Some rearranging gives us{
γ(1− τh)zh +

1

χ
[(1− τh)zh + (τh − τa(z̄))z̄]

}
dzh
zh

(A25)

+
{
γ(1− τh)(zh − z̄)− [(1− τh)zh + (τh − τa(z̄))z̄]

}
· d(1− τh)

1− τh
(A26)

− γ dτa(z̄)

d(1− τh)
· 1− τh
τa(z̄)

· τa(z̄) · z̄ ·
d(1− τh)

1− τh
= 0.(A27)

Hence, we obtain with −τa(z̄)z̄ = R

ε(zh) =
dzh

d(1− τh)
· 1− τh

zh

(A28)

=
(1− γ)(1− τh)zh + (τh − τa(z̄))z̄(
γ + 1

χ

)
(1− τh)zh + (τh−τa(z̄))z̄

χ

+
γ(1− τh)z̄h + γτa(z̄)z̄ε(τa(z̄))(
γ + 1

χ

)
(1− τh)zh + (τh−τa(z̄))z̄

χ

(A29)

=
(1− γ)(1− τh)zh + τhz̄ +R(
γ + 1

χ

)
(1− τh)zh + τhz̄+R

χ

+
γ(1− τh)z̄h + γτa(z̄)z̄ε(τa(z̄))(
γ + 1

χ

)
(1− τh)zh + τhz̄+R

χ

(A30)

= εuh −
−γ(1− τh)zh(

γ + 1
χ

)
(1− τh)zh + τhz̄+R

χ

· z̄
zh
·
[
1 +

τa(z̄)

1− τh
· ε(τa(z̄))

]
(A31)

= εuh − ηh ·
z̄

z
·
[
1 +

τa(z̄)

1− τh
· ε(τa(z̄))

]
.(A32)

�

Comparison with the Saez (2001) result. — The formula for the Laffer tax
rate can hence be written as

τLaffer =
1− (a− 1) · τa(z̄) · ε(τa(z̄))

1 + a · εuh − ηh · (a− 1) ·
[
1 + τa(z̄)

1−τh · ε(τa(z̄))
] .(A33)

With ε(τa(z̄)) = 0 as in Saez (2001), the formula reduces to

τLaffer =
1

1 + aεuh − ηh · (a− 1)
=

1

1 + εuh +
[
εuh − ηh

]
· (a− 1)

=
1

1 + εuh + εch · (a− 1)
,

(A34)

with εuh = εch + η and εch being the compensated labor supply elasticity. This is
the same as in equation (9) in Saez (2001, p. 212) with ḡ = 0.
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A3. Further Discussion of the Policy Elasticity

In this appendix we discuss the implications of Proposition 3 in greater detail.
First, this proposition clarifies that the specific tax system and reform matters
for the size of the income effect and thus the policy elasticity. In contrast to
the purely proportional tax system studied in Corollary 4, if z̄ > 0, then the
income effect from the tax change is smaller since taxes are only lowered above
the threshold z̄. In fact, household exactly at the threshold zh = z̄ experience
no income effect at all (recall we still assume τa(z̄) = 0), and thus the policy
elasticity ε(zh) = εuh − ηh · z̄

zh
= εuh − ηh = εch is governed exclusively by the

Hicksian compensated labor supply elasticity. A household with a greater zh
experiences a larger negative income effect on leisure (a larger positive income
effect on labor). Consequently, the extra ηh · 1−a

a = ηh · z̄zh declines with zh, and
the labor earnings reaction becomes smaller. If zh is large relative to z̄, the labor
earnings reaction is approximately the same as in a proportional tax system, as
the tax payment T (z̄) on income below the threshold is small relative to the total
tax bill T (z).

Second, if in addition other parts of the tax schedule adjust to the change in the
top rate, then ε(τa(z̄)) 6= 0. Even if the top earner was exactly at the top threshold
z̄, she would experience an additional income effect on labor supply due to the
tax change for her income below the threshold. In the case of ε(τa(z̄)) < 0, these
additional income effects make labor supply more elastic to the tax reform (i.e.
increase the policy elasticity ε(zh)), and thus, ceteris paribus, reduce the maximal
tax revenue and tax rate at which the peak of the top Laffer curve is attained.

A4. Theoretical Welfare Results in Section 2.4

We proceed in four steps to prove the results in Section 2.4. First, in the next
subsection we characterize the peak of the Laffer curve for the specification of the
simple model used in Section 2.4, since it is needed for the proof of Proposition 5.
Then, in Section A.A4 we derive the condition in Proposition 5 that insures that
high-productivity individuals are at least as well-off as low-productivity individ-
uals even at that Laffer tax rate and that low-productivity individuals have labor
income zl < z̄. Then we prove Proposition 5 (in Section A.A4) and Proposition
ref(in Section A.A4).

Revenue Maximization: The Laffer Curve Revisited. — The revenue maxi-
mization problem, given the optimal labor supply choice of top income earners,
can be stated as

(A35) max
τh

τh

[
[(1− τh)]χ [eh]1+χ − z̄

]
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with first order condition

(A36) [(1− τh)]χ [eh]1+χ − z̄ = χτh [1− τh]χ−1 [eh]1+χ .

Thus45

(A37)
1− τh
τh

= χ+
z̄

τh [1− τh]χ−1 [eh]1+χ > χ

and thus the revenue maximizing tax rate satisfies

(A38) τLaffer
h <

1

1 + χ
= τLaffer

h (z̄. = 0)

To state the revenue-maximizing rate more concisely, recall that the Pareto coef-
ficient is defined as

(A39)
a

a− 1
=
ehnh
z̄

=
[1− τh]χ [eh]1+χ

z̄
or

a− 1

a
=

z̄

[1− τh]χ [eh]1+χ .

Note that if z̄ = 0, then a = 1 and as z̄ → zh then a → ∞. Then the revenue-
maximizing tax rate satisfies

1− τh
τh

= χ+
a− 1

a

1− τh
τh

or τh =
1

1 + a(τh)χ
.(A40)

precisely as predicted by the Saez formula. But it is important to note that

a− 1

a
=

z̄

[1− τh]χ [eh]1+χ =
a− 1

a
(τh) or(A41)

a(τh; z̄) =
[1− τh]χ [eh]1+χ

[1− τh]χ [eh]1+χ − z̄
=

1

1− z̄
[1−τh]χ[eh]1+χ

.(A42)

We observe that a(τh; z̄) is a strictly increasing function of the tax rate τh and a
strictly increasing function of the threshold z̄. Thus the right hand side of (A40)
is continuous and strictly decreasing in τh, strictly positive at τh = 0 and tends to
0 as τh tends to 1. Thus there is a unique positive revenue-maximizing tax rate
τLaffer
h characterized by (A40), and since the right hand side is strictly decreasing

in z̄, so is τLaffer
h . At z̄ = 0, we find τLaffer

h (z̄ = 0) = 1
1+χ .

45The previous equation also insures that at the revenue-maximizing tax rate (and thus at any tax
rate lower than that) labor income of the top income earners nheh is strictly higher than the threshold
z̄.
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Insuring that High Productivity Households Are Better Off. — In princi-
ple, a high-productivity worker could work at lower productivity el and not pay
taxes. We now state a condition insuring that this is not in their interest. Fur-
thermore, we maintained the assumption that low-productivity workers, at their
optimal labor supply, have income less than the tax threshold z̄. We now provide
a sufficient condition on parameters insuring that both assumptions implicit in
our analysis are satisfied

For a given tax rate τh a high-productivity worker is better off than working as
a low-productivity worker if

(A43)
[el]

1+χ

1 + χ
+R ≤ [(1− τh)eh]1+χ

1 + χ
+ τhz̄ +R

and thus

(A44)
[el]

1+χ

1 + χ
≤ [(1− τh)eh]1+χ

1 + χ
+ τhz̄.

Since the welfare-maximizing tax rate cannot exceed the revenue- and thus transfer-
maximizing tax rate, a sufficient (but by no means necessary) condition for the
welfare analysis that this condition is satisfied at the peak of the Laffer curve rate
τLaffer
h (z̄ = 0) = 1

1+χ since for all z̄ ≥ 0 and all τh ≤ τLaffer
h (z̄ = 0)

(A45)
[(1− τh)eh]1+χ

1 + χ
+ τhz̄ ≥

[
χ

1+χeh

]1+χ

1 + χ
.

Thus a sufficient condition such that (for all z̄) high-income individuals have
higher welfare from post-tax consumption and labor than low-income individuals
is

(A46)
[el]

1+χ

1 + χ
≤

[
χ

1+χeh

]1+χ

1 + χ

or

(A47) el ≤
χ

1 + χ
eh.

Note that this is a (potentially very loose) sufficient condition, and a much tighter
(but z̄-specific) condition could be obtained. Furthermore, for low-productivity
workers to have earnings below the threshold at their optimal labor supply re-
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quires that

(A48) elnl = e1+χ
l =≤ z̄

and thus

(A49) el ≤ z̄
1

1+χ .

Thus a sufficient condition insuring that both low-productivity workers do not
have taxable income, and that their realized utility does not dominate that of
high-productivity workers is, combining equations (A47) and (A49)

(A50) el ≤ min

{
z̄

1
1+χ ,

χ

1 + χ
eh

}
This is the sufficient condition imposed in Proposition

Utilitarian Optimum: Proof of Proposition 5. — Now turn to Utilitarian
welfare, defined in the main text as

W(τh) = Φl

(
[el]

1+χ

1+χ +R
)1−γ

1− γ
+ (1− Φl)

(
[(1−τh)eh]1+χ

1+χ + τhz̄ +R
)1−γ

1− γ
(A51)

R(τh) = (1− Φl)τh

[
[1− τh]χ [eh]1+χ − z̄

]
.(A52)

Trivially W(τh) is independent of Ψ (item 1 of the proposition).

Taking first order conditions with respect to the tax rate τh and rearranging
yields

Θ(τh) :=

(
[(1− τh)eh]1+χ + (1 + χ)τhz̄ + (1 + χ)R(τh)

[el]
1+χ + (1 + χ)R(τh)

)γ
(A53)

=
1− Φl

Φl

(
[eh]1+χ [1− τh]χ − z̄

dR(τh)
dτh

− 1

)
:= Γ(τh)(A54)

with

dR(τh)

dτh
= (1− Φl)

(
[1− τh]χ [eh]1+χ − z̄ − τhχ [1− τh]χ−1 [eh]1+χ

)
(A55)

= (1− Φl) [eh]1+χ [1− τh]χ
([

1− z̄

[1− τh]χ [eh]1+χ

]
− χτh

1− τh

)
(A56)
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and thus

Θ(τh) :=

(
[(1− τh)eh]1+χ + (1 + χ)τhz̄ + (1 + χ)R(τh)

[el]
1+χ + (1 + χ)R(τh)

)γ
(A57)

=
1− Φl

Φl

 1

(1− Φl)
(

1− a(τh)χτh
1−τh

) − 1

 := Γ(τh).(A58)

The existence, uniqueness and comparative statics in Proposition 5 then follow
the properties of the functions (Γ(τh),Θ(τh)).

Since a(τh) is strictly increasing in τh, the function Γ(τh) is continuous, strictly
increasing on [0, τ Laffer

h ) and with

Γ(τh = 0) =
1− Φl

Φl

(
1

1− Φl
− 1

)
= 1(A59)

lim
τh→τLaffer

h

Γ(τh) =
1− Φl

Φl

 1

(1− Φl)

(
1−

aχ
1+aχ
aχ

1+aχ

) − 1

 =∞.(A60)

Finally, Γ(τh) is independent of γ and eh/el, but depends on eh through a(τh).
Therefore, in the comparative statics results with respect to inequality eh/el we
had to state in the proposition that when changing eh the threshold z̄ is also
changed such that top income relative to threshold income nheh/z̄ = zh/z̄ and
thus a remains unchanged.

Turning to the function Θ(τh) we first note that it is continuous and strictly
decreasing46 on [0, τLaffer

h ], with

Θ(τh = τLaffer
h ) <∞(A62)

Θ(τh = 0) =

(
[eh]1+χ

[el]
1+χ

)γ
≥ 1,(A63)

46Θ(τh) is strictly decreasing in τh since, taking the derivatives of the numerator and the denominator,
we obtain

(A61)
d [(1− τh)eh]1+χ + (1 + χ)τhz̄ + (1 + χ)R(τh)

dτh

= −(1 + χ)(1− τh)χ [eh]1+χ + (1 + χ)z̄ + (1 + χ)
dR(τh)

dτh

≤ (1 + χ)
dR(τh)

dτh
=
d [el]

1+χ + (1 + χ)R(τh)

dτh

since for all τh ≤ τLaffer
h we have (1− τh)χ [eh]1+χ = zh ≥ z̄.
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with equality only if γ = 0. Thus, Θ(τh) and Γ(τh) intersect only once in [0, τLaffer
h ],

at τh = 0 if γ = 0 and at τh ∈ (0, τLaffer
h ) if γ > 0. This establishes item 2 in the

proposition.

Finally, the comparative statics properties in item 3 are established as follows.
Since the ratio defining Θ(τh) is strictly larger than 1, an increase in γ shifts
Θ(τh) up without changing Γ(τh), and thus increases the Utilitarian tax rate
τUh . Finally, assume that el/eh increases, reducing inequality, and maintain the
assumption that a = nheh/z̄ = zh/z̄ remains unchanged. Then Γ(τh) remains
unchanged and

Θ(τh) =

 [1−τh)eh]1+χ+τhz̄

[1−τh]χ[eh]1+χ + (1 + χ)Φhτh
[
1− a−1

a

]
[el]

1+χ

[1−τh]χ[eh]1+χ + (1 + χ)Φhτh
[
1− a−1

a

]
γ

(A64)

=

 1− τh
a + (1 + χ)Φh

τh
a

[el/eh]1+χ

[1−τh]χ
+ (1 + χ)Φh

τh
a

γ

(A65)

and thus the Θ(τh) curve shifts down, reducing the Utilitarian tax rate τUh .

Social Optimum: Proof of Proposition 6. — For part 1, the CEV transfers of

the ex-ante heterogeneous types are given by Tl = R and Th =
[
(1− τh)1+χ − 1

] (eh)1+χ

1+χ +

τhz̄ + R, and thus, exploiting the government budget constraint (17), direct cal-
culations give

V(τh,Ψ = 0) = ΦlTl(τh) + (1− Φl)Th(τh) =

= [1− Φl]
(eh)1+χ

1 + χ
[(1 + χτh)(1− τh)χ − 1] ,(A66)

and we readily observe that V(τh = 0; Ψ = 0) = 0 and V(τh; Ψ = 0) has a unique
maximum at τh = 0 with V ′(τh,Ψ = 0) = 0, unless of course χ = 0 (inelastic labor
supply, no distortions) or Φl = 1 (no rich households and thus no distortionary
taxation and no transfers) in which case V(τh; Ψ = 0) = 0 for all τh.

Part 2 follows directly from the fact that V(τh; Ψ = 1) = W(τh) and from
Proposition 5.

Now we prove part 3. We recall that our welfare measure is given by

V(τh; Ψ) = (1−Ψ) [ΦlTl(τh) + (1− Φl)Th(τh)] + ΨTu(τh)(A67)

= (1−Ψ)V(τh; Ψ = 0) + ΨTu(τh).(A68)

We have characterized V(τh; Ψ = 0) in equation A66, and see that it is contin-
uously differentiable and strictly decreasing in τh. Now we need to characterize
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Tu(τh), which solves the equation

LHS(Tu) = Φl

[
[el]

1+χ

1+χ + Tu

]1−γ

1− γ
+ (1− Φl)

[
[eh]1+χ

1+χ + Tu

]1−γ

1− γ
!

= Vu(τh) = ΦlVl(τh) + (1− Φl)Vh(τh) =W(τh).(A69)

Thus the right hand side of this equation is simply Utilitarian social welfare
characterized in Proposition 5, and thus is continuous and strictly increasing in
τh ∈ [0, τUh ), reaching its maximum at τUh and is strictly decreasing thereafter.
The left hand side is strictly increasing and continuous in Tu, and independent of
τh. Furthermore

(A70) LHS(Tu = 0) =W(τh = 0)

and thus Tu(τh = 0) = 0. By the implicit function theorem Tu(τh) defined implic-
itly in equation (A69) is a differentiable function with

(A71) T ′u(τh) =
W ′(τh)

Φl

[
[el]

1+χ

1+χ + Tu(τu)
]−γ

+ (1− Φl)
[

[eh]1+χ

1+χ + Tu(τh)
]−γ

and thus Tu(τu) is differentiable in τh, strictly increasing τh ∈ [0, τUh ) and strictly
decreasing for τh > τUh .

Therefore

(A72) V(τh; Ψ) = (1−Ψ)V(τh; Ψ = 0) + ΨTu(τh)

is the convex combination of two continuous functions in τh, one with weight
(1−Ψ) that is strictly decreasing on [0, τUh ], the other with weight Ψ that strictly
increasing on [0, τUh ), and flat at τUh . Finally

V ′(τh = 0; Ψ) = (1−Ψ)V ′(τh = 0; Ψ = 0) + ΨT ′u(τh = 0)(A73)

= 0 + ΨT ′u(τh = 0) > 0(A74)

as long as Ψ > 0. Thus welfare is strictly increasing in τh at τh = 0 as long as
Ψ > 0. We conclude that

(A75) τ∗h(Ψ) = arg max
τh
V(τh; Ψ)

is continuous and strictly increasing on Ψ ∈ (0, 1) and satisfies τ∗h(Ψ) ∈ (0, τUh )
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and

lim
Ψ→0

τ∗h(Ψ) = τ∗h(Ψ = 0) = 0(A76)

lim
Ψ→1

τ∗h(Ψ) = τ∗h(Ψ = 1) = τUh .(A77)

B. Details of the Computational Approach

In order to solve the model outlined in this paper, we need three distinct al-
gorithms: one that determines policy and value functions, one that solves for
equilibrium quantities and prices, and one that delivers compensation payments.

B1. Computation of Policy and Value Functions

We solve for policy and value functions using the method of endogenous grid
points Formally, these functions exist on the state space

(j, s, α, η, a) ∈ {1, . . . , J} × {n, c} × {−σα,+σα} × {ηs,1, . . . , ηs,7} × [0,∞].
(B1)

In order to be able to represent them on a computer, we however have to discretize
the continuous elements of the state space, namely the asset dimension. For this
purpose we chose a set of discrete points {â1 . . . , â100} such that the state space
above can be approximated by

(j, s, α, η, a) ∈ {1, . . . , J} × {n, c} × {−σα,+σα} × {ηs,1, . . . , ηs,7} × {â1 . . . , â100}.
(B2)

Note that the choice of âi is not straightforward. Specifically we let

âi = ā · (1 + ga)
i−1 − 1

(1 + ga)99 − 1
,(B3)

which leaves us with two parameters that define our discrete grid space. ā is
the upper limit of the asset grid which we chose such that no individual in our
simulated model would like to save more than this amount.47 A ga of 0 would
result in equidistantly spaced grid points Setting ga > 0 the distance between
two successive grid points âi and âi+1 grows at the rate ga in i. In our preferred
parameterization we let ga = 0.08. We consequently located many grid points
at the lower end of the grid space where borrowing constraints may occur and
therefore policy functions may have kinks or be sharply curved. At the upper
end of the grid space where policy and value functions are almost linear, we

47In our model this leads to ā = 1800.
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Figure B1. Discretized asset state space

consequently use a much smaller amount of points. Figure B1 visualizes our
discrete asset grid.

The discretization of the asset state space makes the solution for policy and
value functions feasible via backward induction. We start out by solving the
optimization problem at the last possible age an individual may have J . Since
the agent is retired and dies with certainty, she will consume all her remaining
resources and work zero hours,

c(J, s, α, η, âi) =
(1 + rn)âi + p(s, α, η)

1 + τc
, n(J, s, α, η, âi) = 0 ,(B4)

a′(J, s, α, η, âi) = 0 for all i = 1, . . . , 100.(B5)

In order to simplify the computation of the value function we will actually keep
track of two different value functions, the one for consumption and the one for
labor. This is possible due to the additive separability assumption we made.
Consequently we have

vc(J, s, α, η, â
i) =

[c(J, s, α, η, âi)]1−γ

1− γ
and vn(J, s, α, η, âi) = 0.(B6)

Knowing the policy and value function in the last period of life, we can now
iterate backward over ages to determine the remaining household decisions. Since
the algorithm is very similar for retired and working individuals, we will restrict
ourselves to the case of workers. Assume that we had already calculated policy
and value functions at age j + 1. The problem we need to solve for an individual
at state (j, s, α, η, a) then reads

(B7) max
c,n,a′

c1−γ

1− γ
− α n

1+χ

1 + χ

+ βψj+1

∑
η′

πs(η
′|η)

[
vc(j + 1, s, α, η′, a′)− vl(j + 1, s, α, η′, a′)

]
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subject to the constraints

(B8) (1 + τc)c+ a′ + T (we(j, s, α, η)n) + Tss(we(j, s, α, η)n)

= (1 + rn)a+ bj(s, η) + we(j, s, α, η)n

as well as 0 ≤ n ≤ 1 and a′ ≥ 0. The first order conditions (ignoring the constraint
on n and the borrowing constraint) then are

c = [λ(1 + τc)]
−1/γ(B9)

αnχ = λwe(j, s, α, η)
[
1− T ′(we(j, s, α, η)n)− T ′ss(we(j, s, α, η)n)

]
(B10)

λ = βψj+1(1 + r′n)(1 + τ ′c)
∑
η′

c(j + 1, s, α, η′, a′−γ .(B11)

We now apply the method of endogenous grid points as follows: We assume that
savings for tomorrow would amount to a′ = âi for all i = 1, . . . , 100. Under this
assumption, we can compute for each combination of (s, α, η) the respective λ
from the last first-order condition. λ then defines a certain level of consumption
ce(j, s, α, η, âi) and labor supply ne(j, s, α, η, âi).48 Plugging these into the budget
constraint, we can determine the endogenous grid point as

(B12)

ae(j, s, α, η, âi) =
1

1 + rn

[
(1 + τc)c

e(j, s, α, η, âi) + a′ + T (we(j, s, α, η)n)+

Tss(we(j, s, α, η)n)− bj(s, η)− we(j, s, α, η)ne(j, s, α, η, âi)
]
.

Finally, we can compute the value functions as

vec(j, s, α, η, â
i) =

[ce(j, s, α, η, âi)]1−γ

1− γ
+ βψj+1

∑
η′

πs(η
′|η)vc(j + 1, s, α, η′, âi)

(B13)

ven(j, s, α, η, âi) =
α[ne(j, s, α, η, âi)]1+χ

1 + χ
+ βψj+1

∑
η′

πs(η
′|η)vn(j + 1, s, α, η′, âi).

(B14)

48Note that we can not solve for labor supply analytically due to the non linearity of the labor
earnings tax schedule. Instead we use a quasi-Newton root finding routine to determine the solution to
the respective first order condition. We thereby have to respect the constraint 0 ≤ n ≤ 1 as well as
the fact that there is a cap on contributions to the social security system. However, due to the additive
separability of the utility function in consumption and labor supply, the constraints on n will not affect
the individual’s choice of consumption c.



ONLINE APPENDIX: HIGH MARGINAL TAX RATES ON THE TOP 1%? 15

Using the interpolation data

{
ae(j, s, α, η, âi), ce(j, s, α, η, âi)

}100

i=1
,
{
ae(j, s, α, η, âi), ne(j, s, α, η, âi)

}100

i=1
,

(B15)

{
ae(j, s, α, η, âi), vec(j, s, α, η, â

i)
}100

i=1
,
{
ae(j, s, α, η, âi), ven(j, s, α, η, âi)

}100

i=1
,

(B16)

(B17)

we can finally determine the (discrete) policy and value functions

c(j, s, α, η, âi), n(j, s, α, η, âi), vc(j, s, α, η, â
i) and vn(j, s, α, η, âi)(B18)

for each today’s asset value âi, i = 1, . . . , 100 by piece-wise linear interpolation.49

Before applying this interpolation scheme, we however check for the occurrence
of liquidity constraints. Liquidity constraints occur if ae(j, s, α, η, 0) > 0. In
this case, we extend the above interpolation data by another point of value 0 on
the left. The policy and value functions at this point are determined under the
assumption that a = a′ = 0, i.e. the policy function values solve the equation
system

c−γ

1 + τc
= λ

(B19)

αnχ = λwe(j, s, α, η)
[
1− T ′(we(j, s, α, η)n)− T ′ss(we(j, s, α, η)n)

]
(B20)

(1 + τc)c = bj(s, η) + we(j, s, α, η)n− T (we(j, s, α, η)n)− Tss(we(j, s, α, η)n).
(B21)

B2. Determining Aggregate Quantities and Prices

Our algorithm to determine aggregate quantities and prices follows closely the
Gauss-Seidel method already proposed in Auerbach and Kotlikoff (1987). Specif-
ically, in order to determine an equilibrium path of the economy, we start with
an initial guess of quantities {Kt, Lt}t≥0 as well as tax rates {τl, τss,t}t≥0 and
transfers {Trt}t≥0. Our algorithm then iterates over the following steps:

1) Determine the factor prices {rt, wt}t≥0 that correspond to the quantities
{Kt, Lt}t≥0.

2) Solve the household optimization problem using these factor prices and the
guesses for tax rates. Determine the measure of households.

49We do not interpolate vec and ven directly, but rather [(1− γ)vec ]1/(1−γ) and [(1 + χ)ven]1/(1+χ) and
then transform them back to their original shape. This leads to much more accurate results in the high
curvature region of the asset grid.
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3) Solve for the tax rate τl that balances the intertemporal budget constraint
of the government by means of a quasi-Newton root finding method. Then
calculate the path of government debt {Bt}t≥0.

4) Determine the budget balancing payroll tax rates τss,t using the social se-
curity system’s sequential budget constraints.

5) Calculate lump-sum transfers Tr such that the sum of transfers equals the
sum of bequests left by the non-surviving households.

6) Determine the new quantities {Knew
t , Lnewt }t≥0 by aggregating individual

decisions. Calculate updated quantities through

Kt = (1− ω)Kt + ωKnew
t and Lt = (1− ω)Lt + ωLnewt .(B22)

ω thereby serves as a damping factor. Our preferred value for ω is 0.3.

7) Check whether the economy is in equilibrium, i.e.

max
t≥0

∣∣∣∣Yt − Ct − It −GtYt

∣∣∣∣ < ε.(B23)

This means that the relative difference between aggregate demand and sup-
ply of goods should be smaller than a given tolerance level. If this is not the
case, start with the updated guesses of quantities, tax rates and transfers
at step 1. If this is the case, we have found an equilibrium path of the
economy. To determine the initial equilibrium we use a tolerance level of
ε = 10−9 while for the transition path we set ε = 10−6.

B3. Calculation of Compensating Transfers

The calculation of compensating transfers is straightforward. In order to do
so, we use a quasi-Newton root finding method that numerically determines the
solutions to the equations

(B24) v1(j, s, α, η, a+ Ψ0(j, s, α, η, a)) = v0(j, s, α, η, a)

and

(B25) Evt(j = 1, s, α, η̄,Ψt) = Ev0(j = 1, s, α, η̄, 0),

respectively. Note that in each iteration of the root finding method, we have to
solve for the optimal household decisions.
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C. Definition of a Stationary Recursive Competitive Equilibrium

DEFINITION 7: Given government expenditures G, government debt B, a tax
system characterized by (τc, τk, T ) and a social security system characterized by
(τss, z̄ss), a stationary recursive competitive equilibrium with population growth is
a collection of value and policy functions (v, c, n, a′) for the household, optimal
input choices (K,L) of firms, transfers b, prices (r, w) and an invariant probability
measure Φ with the following properties:

1) [Household maximization]: Given prices (r, w), transfers bj given by (29)
and government policies (τc, τk, T, τss, z̄ss), the value function v satisfies the
Bellman equation (24), and (c, n, a′) are the associated policy functions.

2) [Firm maximization]: Given prices (r, w), the optimal choices of the repre-
sentative firm satisfy

r = Ωε

[
L

K

]1−ε
− δk(C1)

w = Ω(1− ε)
[
K

L

]ε
.(C2)

3) [Government Budget Constraints]: Government policies satisfy the govern-
ment budget constraints (26) and (27).

4) [Market clearing]:

a) The labor market clears:

(C3) L =

∫
e(j, s, α, η)n(j, s, α, η, a)dΦ

b) The capital market clears

(C4) (1 + gn)(K +B) =

∫
a′(j, s, α, η, a)dΦ

c) The goods market clears

(C5) Y =

∫
c(j, s, α, η, a)dΦ + (gn + δ)K +G

5) [Consistency of Probability Measure Φ]: The invariant probability measure is
consistent with the population structure of the economy, with the exogenous
processes πs, and the household policy function a′(.). A formal definition is
provided in Appendix D.
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D. Definition of Invariant Probability Measure

First we construct the share of the population in each age group. Let µ̃1 = 1,
and for each j ∈ {2, . . . , J} define recursively

(D1) µ̃j =
ψjµ̃j−1

1 + gn
.

Then the share of the population in each age group is given by

(D2) µj =
µ̃j∑
ι µ̃ι

.

Next, we construct the measure of households of age 1 across characteristics
(s, α, η, a). By assumption (see the calibration section, Section III of the paper)
newborn households enter the economy with zero assets, a = 0 and at the mean
idiosyncratic productivity shock η̄. The share of college-educated households is
exogenously given by φc and φn = 1 − φc, and the fixed effect is drawn from a
discrete pdf φs(α). Thus

(D3) Φ({j = 1}, {α}, {s}, {η̄}, {0}) = µ1φsφs(α)

for s = {n, c} and zero else.
Finally we construct the probability measure for all ages j > 1. For all Borel

sets of assets A we have

(D4) Φ({j + 1}, {α}, {s}, {η′},A)

=
ψj+1πs(η

′|η)

1 + gn

∫
1{a′(j,s,α,η,a)∈A}Φ({j}, {α}, {s}, {η}, da)

where

(D5)

∫
1{a′(j,s,α,η,a)∈A}Φ({j}, {α}, {s}, {η}, da)

is the measure of assets a today such that, for fixed (j, s, α, η), the optimal choice
today of assets for tomorrow, a′(j, s, α, η, a) lies in A.
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E. Details of the Calibration

E1. Markov Chain for Labor Productivity

The Markov chain governing idiosyncratic labor productivity for both education
groups is given by

s = n

i, j 1 2 3 4 5 6 7

1 0.969909 0.029317 0.000332 0.000002 0.000000 0.000440 0.000000
2 0.007329 0.970075 0.021989 0.000166 0.000000 0.000440 0.000000
3 0.000055 0.014659 0.970130 0.014659 0.000055 0.000440 0.000000
4 0.000000 0.000166 0.021989 0.970075 0.007329 0.000440 0.000000
5 0.000000 0.000002 0.000332 0.029317 0.969909 0.000440 0.000000
6 0.000000 0.000000 0.002266 0.000000 0.000000 0.970000 0.027734
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.288746 0.711254

exp(ηn,i) 0.1354 0.3680 1.0000 2.7176 7.3853 19.7204 654.0124

and

s = c

i, j 1 2 3 4 5 6 7

1 0.960937 0.029046 0.000329 0.000002 0.000000 0.009686 0.000000
2 0.007261 0.961102 0.021786 0.000165 0.000000 0.009686 0.000000
3 0.000055 0.014524 0.961157 0.014524 0.000055 0.009686 0.000000
4 0.000000 0.000165 0.021786 0.961102 0.007261 0.009686 0.000000
5 0.000000 0.000002 0.000329 0.029046 0.960937 0.009686 0.000000
6 0.000000 0.000000 0.047247 0.000000 0.000000 0.949922 0.002831
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.288746 0.711254

exp(ηc,i) 0.2362 0.4860 1.0000 2.0575 4.2334 8.3134 654.0124

E2. Numerical Computation of Policy Elasticities

In order to be able to apply the formula for the Laffer tax rate proposed in
Proposition 1 in our full quantitative simulation model, we have to calculate the
policy elasticities ε(zh) and ε(τa(z̄)). To this end, we proceed in the following
steps:

1) We start from the initial equilibrium described in Section IV and compute
a transition path that results from keeping the top tax rate at its initial
equilibrium level of τh = 0.396, but setting the top tax threshold z̄h such
that exactly the top 1% earners are hit by the top rate. For each period
t ≥ 1 of the transition, we can then calculate average top 1% earnings as

(E1) z0
h,t =

∫
1zt(j,s,α,η,a)≥z̄t zt(j, s, α, η, a) dΦt

with zt(j, s, α, η, a) = wte(j, s, α, η)nt(j, s, α, η, a).
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The average tax rate at the top earnings threshold then is

τ0
a (z̄t) =

Tt(z̄t)

z̄t
.(E2)

2) We now increase the top marginal net-of-tax rate by an amount δ and
calculate a new equilibrium path. From this, we obtain a new value for
average top 1% earnings z1

h,t and a new value for the average tax rate τ1
a (z̄t).

In our numerical calculations, we use δ = 0.01.

3) The relevant elasticities for the Laffer tax rate formula then are

εt(zh,t) =
z1
h,t − z0

h,t

δ
· 0.604

z0
h,t

and εt(τa(z̄t)) =
τ1
a (z̄t)− τ0

a (z̄t)

δ
· 0.604

τ0
a (z̄t)

.

(E3)

The elasticities we derive from this procedure are listed in the columns initial
within Table 9. We then repeat the above exercise, but instead of starting from
the initial equilibrium tax rate τh = 0.396, we start from the actual Laffer tax
rate. The resulting elasticities are then shown in the columns final.

E3. The Social Security System

We use the pension formula for the US social security system to calculate pen-
sion payments. Specifically, for a given average labor earnings z̃ we set
(E4)

p(s, α, η) = f(z̃) =


r1z̃ if z̃ < b1y

med

r1b1y
med + r2(z̃ − b1ymed) if z̃ < b2y

med

r1b1y
med + r2(b2 − b1)ymed + r3(z̃ − b2ymed) otherwise

Here r1, r2, r3 are the respective replacement rates and b1 and b2 the bend points.
We express these points in terms of median household income ymed which is
the median of income from labor and assets (including bequests and pension
payments). We use ymed = 50, 000 as a reference value for this (see US Census
Bureau for 2009). Consequently, the bend points are b1 = 0.184 and b2 = 1.144
and the respective replacement rates are r1 = 0.90, r2 = 0.32 and r3 = 0.15. The
maximum amount of pension benefit a household can receive is therefore 30, 396,
or 0.608 times the median income. All data is taken from the information site of
the social security system for 2012. Finally, we calibrate the contribution cap of
the pension system z̄ss in order to obtain a contribution rate of 12.4 percent.
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F. Additional Figures
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Figure F1. Variance of Consumption and Hours over the Life Cycles, Entire Population
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G. Sensitivity analysis

When doing sensitivity analysis, we have to partly recalibrate the model in
order to make results comparable. For each different specification of the model
we therefore recalibrate the technology level Ω such that the wage rate for effective
labor is again equal to w = 1 as well as the depreciation rate δk such that the
interest rate remains at 4%. The former ensures stability of our computational
algorithm, the latter is necessary to guarantee equal weights of generations in
the social welfare function. Finally we recalibrate the taste parameter for the
disutility of labor λ so that average hours worked remain at 33% of the time
endowment. We furthermore do some specific adjustments for different sensitivity
scenarios which we outline in the following.

G1. Size of the Income Effect

When we impose log preferences the relationship between hours worked and
individual labor productivity changes dramatically. As a consequence we have to
completely recalibrate the total income process. The following table shows which
probabilities and productivity levels we have to choose in this case to obtain the
same fit for the earnings and wealth distribution in our model:

s = n

1 0.969945 0.029318 0.000332 0.000002 0.000000 0.000403 0.000000
2 0.007330 0.970111 0.021990 0.000166 0.000000 0.000403 0.000000
3 0.000055 0.014660 0.970166 0.014660 0.000055 0.000403 0.000000
4 0.000000 0.000166 0.021990 0.970111 0.007330 0.000403 0.000000
5 0.000000 0.000002 0.000332 0.029318 0.969945 0.000403 0.000000
6 0.000000 0.000000 0.012043 0.000000 0.000000 0.969903 0.018054
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.269999 0.730001

exp(ηn,i) 0.1722 0.4149 1.0000 2.4101 5.8085 18.0227 374.1023

and

s = c

i, j 1 2 3 4 5 6 7

1 0.960202 0.029024 0.000329 0.000002 0.000000 0.010444 0.000000
2 0.007256 0.960366 0.021769 0.000164 0.000000 0.010444 0.000000
3 0.000055 0.014513 0.960421 0.014513 0.000055 0.010444 0.000000
4 0.000000 0.000164 0.021769 0.960366 0.007256 0.010444 0.000000
5 0.000000 0.000002 0.000329 0.029024 0.960202 0.010444 0.000000
6 0.000000 0.000000 0.068922 0.000000 0.000000 0.928130 0.002948
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.269999 0.730001

exp(ηc,i) 0.2809 0.5300 1.0000 1.8867 3.5597 6.3118 374.1023

G2. Persistence of High Productivity States

To make the highest productivity state completely permanent we again have
to adjust the transition probabilities in our model. This time we assume that
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only at age 30 there is a certain probability that individuals can climb up to the
highest productivity region. This probability is the same for each individual of an
education level. In order to determine this probability we calculate the fraction
of individuals in the highest productivity region between the ages 30 and jr for
each education level in the benchmark model. We then choose the probability to
get a permanent very high income shock in the sensitivity model such that the
fraction of households in the highest income region is exactly the same as in the
benchmark model.


