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A Balanced budget approximation

A.1 Preliminaries

We proceed with an approximation around the balanced budget by treating Φ as a state variable.

Let Φ∗ denote the value of the excess burden that leads to a balanced budget, τ(Φ∗) = Λ(Φ∗).

Whenever necessary, we use the asterisk ∗ to denote the evaluation of a function at Φ∗. Assume

shocks take N values and that they are ranked as s1 < s2 < ... < sN . To ease notation, we let

Ωi(Φ), zi(Φ) and Ui(Φ), Vi(Φ) denote the level of surplus and debt (in MU units), together with

the period and discounted value of utility when the excess burden of taxation is Φ and the shock

is st = si.
1 At the balanced budget we have obviously Ωi(Φ

∗) = zi(Φ
∗) = 0, ∀i. Since Φ∗ is an

absorbing state, we can also calculate Vi(Φ
∗) from the recursion

Vi(Φ
∗) = Ui(Φ

∗) +
β

σ
ln
∑
j

π(j|i) exp(σVj(Φ
∗)),∀i, (1)

which delivers the respective conditional distortions m∗j|i at Φ∗. The matrix of distortions and the

distorted transition matrix are defined respectively as

M ≡

 m∗1|1 ... m∗N |1

m∗1|N ... m∗N |N

 , Π∗ ≡ Π ◦M,

where ◦ denotes element-by-element multiplication. Furthermore, we collect the derivatives of the

excess burden of taxation in the N ×N matrix

Φ ≡


Φ′1|1(Φ∗) ... Φ′N |1(Φ∗)

...

Φ′1|N(Φ∗) ... Φ′N |N(Φ∗)


A.2 Approximate law of motion

Recall that the approximate law of motion of the excess burden takes the form

Φj|i(Φ) ' Φ∗ + Φ′j|i(Φ
∗)(Φ− Φ∗), i, j = 1, ..., N. (2)

To find the entries of Φ proceed as follows. Let the current shock be i and the current excess

1For simplicity we do not differentiate our notation in this section and still use Ω for the indirect function of
s,Φ. So Ωi does not stand anymore for the derivative of Ω with respect to c, h, g.
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burden of taxation Φ. Let Φj denote the excess burden of taxation next period at shock j. Define

Fj|i(Φ1,Φ2, ...,ΦN ,Φ) ≡ Φj

[
1 + σηj|i(Φ1,Φ2, ...,ΦN)Φ

]
− Φ,∀j.

where

ηj|i(Φ1,Φ2, ...,ΦN) ≡ zj(Φj)−
∑
k

π(k|i)mk|i(Φ1,Φ2, ...,ΦN)zk(Φk),∀j

mj|i(Φ1,Φ2, ...,ΦN) ≡ exp(σVj(Φj))∑
k π(k|i) exp(σVk(Φk))

,∀j

Define the vector function Fi ≡ [F1|i, ..., FN |i]
T ,∀i, where T denotes transpose. Given the

current shock i, the law of motion for the inverse of the excess burden of taxation implies the system

Fi = 0, where 0 is the N × 1 zero vector. Apply the implicit function theorem at Φi = Φ = Φ∗,∀i
to get the coefficients Φ′j|i(Φ

∗) of the approximate law of motion (2). In particular, we have N

systems

J∗i


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

 = −∂Fi
∗

∂Φ
, ∀i,

where J∗i the Jacobian of Fi evaluated at Φ∗,

J∗i ≡


∂F ∗

1|i
∂Φ1

...
∂F ∗

1|i
∂ΦN

∂F ∗
N|i

∂Φ1
...

∂F ∗
N|i

∂ΦN

 .

Derivatives of the system. The derivatives of the functions Fj|i are

∂Fj|i
∂Φ

= σηj|i(Φ1, ...,ΦN)Φj − 1⇒
∂F ∗j|i
∂Φ

= −1

∂Fj|i
∂Φj

= 1 + σηj|i(Φ1, ...,ΦN)Φ + σΦjΦ
∂ηj|i
∂Φj

⇒
∂F ∗j|i
∂Φj

= 1 + σ(Φ∗)2
∂η∗j|i
∂Φj

∂Fj|i
∂Φk

= σΦjΦ∂
ηj|i
∂Φk

, k 6= j ⇒
∂F ∗j|i
∂Φk

= σ(Φ∗)2
∂η∗j|i
∂Φk

, k 6= j

The simplifications at Φ∗ are coming from the fact that the relative debt positions are equal to
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zero, η∗j|i = 0,∀i, j. So we have

∂Fi
∗

∂Φ
= −1 and J∗i = I + σ · (Φ∗)2J∗ηi ,

where 1 the N × 1 unit vector, I the identity matrix and J∗ηi the Jacobian of the vector of the

relative debt positions ηi ≡ [η1|i, ..., ηN,i]
T , evaluated at Φ∗. Thus, the i-th system becomes

[
I + σ · (Φ∗)2J∗ηi

]
·


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

 = 1, ∀i. (3)

Derivatives of the relative debt position. Consider now the matrix J∗ηi . The derivatives of

the relative debt positions ηj|i are

∂ηj|i
∂Φj

= z′j(Φj)−
[∑

k

π(k|i)
∂mk|i

∂Φj

zk(Φk) + π(j|i)mj|iz
′
j(Φj)

]
⇒

∂η∗j|i
∂Φj

= (1− π(j|i)m∗j|i)z′j(Φ∗)

∂ηj|i
∂Φl

= −
∑
k

π(k|i)
∂mk|i

∂Φl

zk(Φk)− π(l|i)ml|iz
′
l(Φl), l 6= j ⇒

∂η∗j|i
∂Φl

= −π(l|i)m∗l|iz′l(Φ∗), l 6= j

Thus, the Jacobian of ηi takes the form

Jηi∗ =


[
1− π(1|i)m∗1|i

]
z′1(Φ∗) −π(2|i)m∗2|iz′2(Φ∗) ... −π(N |i)m∗N |iz′N(Φ∗)

−π(1|i)m∗1|iz′1(Φ∗)
[
1− π(2|i)m∗2|i

]
z′2(Φ∗) ... −π(N |i)m∗N |iz′N(Φ∗)

−π(1|i)m∗1|iz′1(Φ∗) −π(2|i)m∗2|iz′2(Φ∗) ...
[
1− π(N |i)m∗N |i

]
z′N(Φ∗)


=

[
I − 1 · (eTi Π∗)

]
diag {z′}, (4)

where diag denotes a diagonal matrix with the vector z′ ≡ [z′1(Φ∗), ..., z′N(Φ∗)]T on the diagonal.

Thus, in order to solve the system (3), we need the sensitivity of the debt positions with respect

to the excess burden of taxation z′.

We are going to work under the following assumption.

Assumption 1. Doubts about the model are such so that

1 + σ(Φ∗)2 max
i
z′i(Φ

∗) > 0 (5)
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This assumption imposes bounds on the doubts about the model if maxi z
′
i(Φ
∗) > 0, since in

that case σ has to be small enough in absolute value, σ > −1/((Φ∗)2 maxi z
′
i(Φ
∗)). The restriction

is implicit, in the sense that (5) depends on endogenous objects, which themselves depend on σ.

It was always holding for the σ that we considered numerically.

A.3 Three lemmata

Lemma 1. The excess burden of taxation is a martingale with respect to the worst-case transition

matrix Π∗ at a first-order approximation around Φ∗.

Proof. We will show that ∑
j

π(j|i)m∗j|iΦ′j|i(Φ∗) = 1,∀i (6)

If (6) holds, then the approximate law of motion (2) implies that
∑

j π(j|i)m∗j|iΦj|i(Φ) = Φ and

the result follows. To show (6) remember that the relative debt positions add to zero according to

the worst-case model,

∑
j

π(j|i)mj|i(Φ1|i(Φ), ...,ΦN |i(Φ))ηj|i(Φ1|i(Φ), ...,ΦN |i(Φ)) = 0,∀i.

Differentiate implicitly with respect to Φ to get

∑
j

π(j|i)
[∑

k

∂mj|i
∂Φk

Φ′k|i(Φ)
]
ηj|i +

∑
j

π(j|i)mj|i
[∑

k

∂ηj|i
∂Φk

Φ′k|i(Φ)
]

= 0

At Φ∗ this expression simplifies to

∑
j

π(j|i)m∗j|i
[∑

k

∂η∗j|i
∂Φk

Φ′k|i(Φ
∗)
]

= 0, or eTi Π∗J∗ηi ·


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

 = 0,∀i, (7)

where ei the vector with unity at position i and zero otherwise. Pre-multiply system (3) with

eTi Π∗ to get
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eTi Π∗ ·


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

+ σ · (Φ∗)2eTi Π∗J∗ηi ·


Φ′1|i(Φ

∗)
...

Φ′N |i(Φ
∗)

 = eTi Π∗ · 1 = 1.

The second term at the left-hand side above is by (7) zero, a fact which delivers ultimately (6).

Lemma 2. Assume assumption 1 holds. We have

Φ′j|i(Φ
∗) =

1 + σ(Φ∗)2
∑

j π(j|i)m∗j|iΦ′j|i(Φ∗)z′j(Φ∗)
1 + σ(Φ∗)2z′j(Φ

∗)
,∀i, j. (8)

Therefore:

• If σ = 0, Φ′j|i(Φ
∗) = 1,∀i, j.

• More generally, we have Φ′j|i(Φ
∗) > 0, so (6) implies that A ≡ Π ◦M ◦ Φ is a stochastic

matrix.

• If there is no variation in the derivatives of debt, i.e. z′j(Φ
∗) = z′i(Φ

∗)∀i, j, then Φ′j|i(Φ
∗) =

1,∀i, j, so Φj|i(Φ) = Φ∀i, j.

• If z′k(Φ
∗) > z′l(Φ

∗) then Φ′k|i(Φ
∗) > Φ′l|i(Φ

∗).

• If z′j(Φ
∗) > (<)

∑
j π(j|i)m∗j|iΦ′j|i(Φ∗)z′j(Φ∗) then Φ′j|i(Φ

∗) > (<)1.

Proof. Use the expression for J∗ηi in system (3) to get

[
I + σ · (Φ∗)2

[
I − 1 · (eTi Π∗)

]
diag {z′}

]
·ΦT ei = 1

Rewrite the above as

[I + σ · (Φ∗)2 diag {z′}]ΦT ei = 1(1 + σ · (Φ∗)2eTi Π∗ diag {z′}ΦT ei),

The matrix that premultiplies the left-hand side is the sum of two diagonal so it is also diagonal.

We can express the system above as

ΦT ei = diag {1 + σ(Φ∗)2z′}−1
1(1 + σ · (Φ∗)2eTi Π∗ diag {z′}ΦT ei). (9)

The inverse of the diagonal matrix is
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diag {1 + σ(Φ∗)2z′}−1
=


1

1+σ(Φ∗)2z′1(Φ∗)
0 0

0 ... 0

0 0 1
1+σ(Φ∗)2z′N (Φ∗)


Furthermore, eTi Π∗ diag {z′}ΦT ei =

∑
j π(j|i)m∗j|iΦ′j|i(Φ∗)z′j(Φ∗). Thus, writing explicitly sys-

tem (9) delivers (8). For σ = 0 the result is obvious from (8). Furthemore, assumption 1 implies

that 1 + σ(Φ∗)2z′i(Φ
∗) > 0∀i. Therefore, (8) implies that Φ′j|i(Φ

∗) > 0. If there is no variation in

the sensitivity of the debt positions with respect to the excess burden of taxation, then formula

(8), implies again Φ′j|i(Φ
∗) = 1, by using (6). Furthermore, the same formula implies that the

monotonicity of the entries of each row i of the matrix Φ, and therefore the allocation of tax

distortions across shocks, depends on the monotonicity of the sensitivity of the debt positions,

z′j(Φ
∗). The same comment applies for the sensitivity of the debt positions and the size of the

Φ′j|i(Φ
∗) with respect to unity.

Formula (8) connects the allocation of distortions across states and states to the sensitivity of

the debt positions in the proximity of the balanced budget, z′j(Φ
∗). The relative debt sensitivity,

i.e. the sensitivity at j relative to the “average” sensitivity (average according to the probability

measure encoded in matrix Π ◦M ◦Φ), determines the increase or decrease of the excess burden

over time and states. Formula (8) provides also the direct analogue to the results of proposition

5 in the text: if there is no variation of the sensitivity of debt positions across shocks, then there

is no room for price manipulation through the worst-case beliefs, and therefore no reason to vary

the excess burden across states and dates.

Lemma 3. The sensitivity of debt positions depends on the sensitivity of surplus in marginal utility

units through the present discounted value formula:

z′ =
(
I − β(Π∗ ◦Φ)

)−1

Ω′, (10)

where Ω′ ≡ [Ω′1(Φ∗), ...,Ω′N(Φ∗)]T , i.e. the vector that collects the sensitivity of the surplus in

marginal utility units, Ω′i(Φ
∗).

Proof. Consider the implementability constraints

zi(Φ) = Ωi(Φ) + β
∑
j

π(j|i)mj|i(Φ1|i(Φ), ...,ΦN |i(Φ))zj(Φj|i(Φ)),∀i
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Differentiate implicitly with respect to Φ to get

z′i(Φ) = Ω′i(Φ) + β
∑
j

π(j|i)
[∑

k

∂mj|i

∂Φk

Φ′k|i(Φ)
]
zj(Φj) + β

∑
j

π(j|i)mj|iz
′
j(Φj)Φ

′
j|i(Φ)

which at Φ∗ becomes

z′i(Φ
∗) = Ω′i(Φ

∗) + β
∑
j

π(j|i)m∗j|iΦ′j|i(Φ∗)z′j(Φ∗)∀i

The differentiated implementability constraints can be written as a system, z′ = Ω′+β(Π∗◦Φ)z′,

and the result follows.

A.4 Proof of proposition 7

Part 1 is a direct consequence of the approximate law of motion (2). Part 2 is proved in lemmata

1 and 2. To prove part 3 note that under the assumption of decreasing m∗j|i in j, the reference

model first-order stochastically dominates the worst-case model. Then, when Φ′j|i(Φ
∗) is increasing

in j, i.e. if the derivatives are increasing functions of the shock, we have
∑

j π(j|i)Φ′j|i(Φ∗) >∑
j π(j|i)m∗j|iΦ′j|i(Φ∗) = 1, where the first inequality comes from the properties of first-order

stochastic dominance and the second equality from lemma 1. The opposite inequality holds if

Φ′j|i(Φ
∗) is decreasing in j. Use the approximate law of motion (2) to get the corresponding

positive and negative drifts when Φ > Φ∗.

A.5 Proof of proposition 8

Write the surplus in marginal utility units as

Ωi(Φ) = Uc(i,Φ)(τ(Φ)− Λ(Φ))y(i,Φ)

Differentiating with respect to Φ and evaluating at Φ∗ delivers

Ω′i(Φ
∗) =

(
τ ′(Φ∗)− Λ′(Φ∗)

)
Uc(i,Φ

∗)y(i,Φ∗) (11)

Thus, when τ ′(Φ∗) > Λ′(Φ∗), the sensitivity of the surplus in marginal utility units across shocks,

Ω′i(Φ
∗), depends on the variation of output in marginal utility units, Uc(i,Φ

∗)y(i,Φ∗), at the

balanced budget.
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Part 1. Consider now the constant Frisch elasticity utility function. We showed in proposition

6 in the text that for ρ > 1, output in marginal utility units decreases as the shock increases, and

therefore Ω′i(Φ
∗) is decreasing in i. For ρ < 1, output in marginal utility units is procyclical, and

therefore Ω′i(Φ
∗) is increasing in i.

Expression (11) allows us to connect the monotonicity of Ω′i(Φ
∗) to the IES, which holds for

any number of shocks N . For the determination of distortions, we can connect the monotonicity of

Ω′i(Φ
∗) to z′i(Φ

∗) through lemma 3. We would like to show that if Ω′i(Φ
∗) is increasing (decreasing)

in i, then z′i(Φ
∗) is increasing (decreasing) in i. If the monotonicity of the sensitivity of surplus is

bequeathed to the sensitivity of debt, we can use lemma 2 and talk about countercyclicality and

procyclicality of distortions for the case of ρ > 1 and ρ < 1 respectively and get the results of the

proposition. The result on the negative or positive drift under a worst-case model that assigns

higher probability to bad (low TFP) shocks follows as in proposition 7.

Given the monotonicity of Ω′i(Φ
∗), the monotonicity of z′i(Φ

∗) depends in general on the per-

sistence properties of the stochastic matrix A ≡ Π ◦M ◦Φ in the present value formula (10). Let

N = 2 and let the vector y = [y1, y2]T be determined by the present value formula y = (I−βA)−1x

with x = [x1, x2]T and

A ≡

(
a 1− a

1− b b

)
, a, b ∈ (0, 1).

We have then

y1 =
1

|I − βA|
[
(1− βb)x1 + β(1− a)x2

]
y2 =

1

|I − βA|
[
β(1− b)x1 + (1− βa)x2

]

where |I − βA| = (1 − β)
[
1 + β(1 − (a + b))

]
> 0 (the i.i.d. case corresponds to a + b = 1).

This implies that y1 > y2 ⇔ x1 > x2. Reinterpret then x as Ω′ and y as z′, and the result follows.

Thus, if ρ > 1 we have z′1(Φ∗) > z′2(Φ∗) and therefore Φ′1|i(Φ
∗) > Φ′2|i(Φ

∗). Note that since N = 2

and since the derivatives Φ′j|i(Φ
∗) > 0 sum to unity by (6), we have Φ′1|i(Φ

∗) > 1 and Φ′2|i(Φ
∗) < 1.

The opposite results hold for ρ < 1.

When we have more than two values of the shock, N > 2, z′i will inherit the monotonicity of Ω′i

depending on the persistence properties of the matrix A. It is obvious that if the induced measure

(which is more complicated than the worst-case measure at the balanced budget since it depends

on Φ′j|i(Φ
∗)) is i.i.d., then the monotonicity of Ω′i(Φ

∗) is directly bequeathed to the present value

of these coefficients, z′i(Φ
∗), for any N > 2. The same holds if the induced measure is also very
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persistent (which is something we expect).2

Part 2. The entire expansion is valid for any kind of period utility function that generates a tax

rate and a government share that are functions solely of Φ, i.e. τt = τ(Φt),Λt = Λ(Φ). In that

case, Φ∗ such that τ(Φ∗) = Λ(Φ∗) is always a fixed point of the law motion and all the results up

to now can be used.

Consider now the utility function U = u1−ρ−1
1−ρ , where u = cα1lα2gα3 , αi > 0,

∑
i αi = 1, which

satisfies balanced growth restrictions for the case also for ρ 6= 1. We show first that τ and Λ are

only functions of Φ. For these preferences the intratemporal marginal rates of substitution take

the form Ul
Uc

= α2

α1

c
l

and Ug
Uc

= α3

α1
κ−1, κ ≡ g/c. The elasticities of the utility function are

εcc = 1− α1(1− ρ)

εch = α2(1− ρ)
h

l

εhh = (1− α2(1− ρ))
h

l
εhc = α1(1− ρ)

εgc = α1(1− ρ)

εgh = −α2(1− ρ)
h

l

Remember that the public wedge for t ≥ 1 depends on the elasticities as follows:

χ =
Φ(1− εcc − εch − εgc − εgh)

1 + Φ(εgc + εgh)

and note that

εcc + εch + εgc + εgh = 1.

Thus, χ = 0 and the government share is the same as in the first-best. In particular, we have

κFB = α3

α1
and Λ = ΛFB ≡ α3

α1+α3
. So we have a constant Λ independent of Φ.3

The optimal tax rate depends on the labor/leisure ratio as follows:

2In numerical experiments we played around with N = 11 and we always faced the case where the monotonicity
of Ω′i was bequeathed. The induced matrix A was always very persistent.

3We were getting the same result for the basic parametric example of the paper when we had unitary elasticity
of substitution between c and g, ψ = 1. So the zero public wedge result extends for the non-separable case when
we allow also unitary elasticity substitution with leisure.
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τ =
Φ(1 + h

l
)

1 + Φ(1 + h
l

+ (1− ρ)[α1 − α2
h
l
])

Since we do not have a constant Frisch elasticity as in the basic parametric example, the tax

rate could in principle depend through labor on the shock s. This is not the case though. To see

that, consider the optimal wedge equation that takes the form

Ul
Uc

=
α2

α1

c

l
=

1 + Φ(1− εcc − εch)
1 + Φ(1 + εhh + εhc)

s

But since c = (1 − Λ)y = (1 − Λ)sh, we can eliminate the technology shock and finally get the

following equation

α2

α1

(1− Λ)
h

l
=

1 + Φ(1− ρ)(α1 − α2
h
l
)

1 + Φ(1 + h
l

+ (1− ρ)[α1 − α2
h
l
])

This equation determines a quadratic in h/l which allows to solve for labor as a function of

Φ, h = h(Φ). Thus, the optimal tax rate becomes function only of Φ, τ(Φ), and not of the shock

s. The reason behind this result is obviously the fact that the income and substitution effect in

labor supply cancel out for these preferences, making labor constant (given a constant Φ). Note

that output is then y = sh(Φ) and that the surplus takes the form S = (τ(Φ) − Λ)y(s,Φ). The

balanced budget Φ∗ satisfies τ(Φ∗) = Λ = ΛFB. Thus, the balanced budget approximation can be

used.

To finish the proof of part 2, we need to associate the IES of the composite good 1/ρ to the

allocation of distortions. Note that marginal utility takes the form Uc = α1c
α1(1−ρ)−1lα2(1−ρ)gα3(1−ρ).

Using c = (1−Λ)y, g = Λy and the fact that leisure is only function of Φ, this can be rewritten as

Uc = K(Φ) · y(α1+α3)(1−ρ)−1

K(Φ) ≡ α1(1− Λ)α1(1−ρ)−1Λα3(1−ρ)l(Φ)α2(1−ρ) > 0

Thus, the optimal surplus in marginal utility units as function of the shock i and the excess

burden of taxation Φ is

Ωi(Φ) = K(Φ)(τ(Φ)− Λ)y(i,Φ)(α1+α3)(1−ρ)

Thus, for τ(Φ) > Λ, the surplus in marginal utility units is procyclical when ρ < 1 and countercycli-
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cal when ρ > 1, so the results of proposition 6 go through. Furthermore, since τ ′(Φ∗) > Λ′(Φ∗) = 0,

the monotonicity of Ω′i(Φ
∗) depends on output in marginal utility units, as seen from expression

(11) (there was no assumption for the utility function for its derivation). Given our derivation

above, the sensitivity with respect to shock s is controlled again by the parameter ρ: Ω′i(Φ
∗) is

increasing in i if ρ < 1 and decreasing in i if ρ > 1. The results of part 1 follow.

Period utility at the balanced budget. The results about the drifts according to the reference

measure in propositions 7 and 8 are based on the assumption (which always holds numerically)

that at the balanced budget the worst-case measure assigns higher probability on low technology

shocks. This would be so if we could show that Vi(Φ
∗) is increasing in shock i in (1). We will show

here that the period utility function is an increasing function of the shock, so Ui(Φ
∗) is increasing

in i. We show this result for any kind of utility functions that generate optimally a τ and Λ that

are solely functions of Φ, so both of our parametric examples are covered.

V(s,Φ) ≡ U(c(s,Φ), 1− h(s,Φ), g(s,Φ)) = U
(
(1− Λ(Φ))y(s,Φ), 1− h(s,Φ),Λ(Φ)y(s,Φ)

)
.

We obviously have Ui(Φ
∗) = V(si,Φ

∗). Differentiate with respect to s to get

∂V
∂s

= Uc(1− Λ(Φ))
∂y

∂s
− Ul

∂h

∂s
+ UgΛ(Φ)

∂y

∂s

= Uc

[∂y
∂s
− Ul
Uc

∂h

∂s
+ Λ(Φ)[

Ug
Uc
− 1]

∂y

∂s

]

Use now Ul/Uc = (1− τ)s and Ug/Uc = 1 + χ to get

∂V
∂s

= Uc

[∂y
∂s
− (1− τ)s

∂h

∂s
+ Λ(Φ)χ

∂y

∂s

]

Now, note that ∂y/∂s = h+ s∂h/∂s. Use this fact to get

∂V
∂s

= Uc
[
(τ(Φ) + χΛ(Φ))

∂y

∂s
+ (1− τ(Φ))h

]
Note that there could be a potentially negative effect of s to the period utility if there is a

negative public wedge (or a labor subsidy – which is not optimal for our parametric examples).

At the balanced budget the expression simplifies to
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∂V∗

∂s
= U∗c

[
(τ(Φ∗)(1 + χ∗)

∂y∗

∂s
+ (1− τ(Φ∗))h∗

]
> 0,

since 1 + χ = Ug/Uc > 0 and ∂y/∂s > 0. Thus, Ui(Φ
∗) is increasing in i.

A.6 An algorithm

The approximation can be used also for computational purposes, as long as we stay in the vicinity

of the balanced budget. To see how, we sketch here an algorithm.

Solve first for the worst-case measure at the balanced budget m∗j|i, by calculating utilities from

recursion (1). Solve afterwards for N2 +N unknowns (Φ′j|i(Φ
∗) and z′i(Φ

∗)) from N2 +N equations

((3) and (10)) through the following iterative procedure:

• Make a guess for Φ. Derive induced derivatives of the relative debt positions z′ from (10).

• Use z′ to get the Jacobian J∗ηi ,∀i from (4) and update the guess for Φ by solving the systems

(3).

• Iterate till convergence.

We use as a first guess Φ0 = 1N×N . When updating the guess we also use damping in order

to improve the convergence properties of the loop. For small σ (in absolute value), we could find

a solution that was also robust to different initial guesses. For large σ though the non-convexities

of the problem become pronounced and there is no guarantee of convergence of the algorithm.

We used this algorithm for N = 11 and for the various calibrations used in the text. Results are

available among request. The text features results from the global solution for N = 2.

It is sufficient to use the linear approximation around Φ∗ only for the excess burden of taxation

and for the debt in marginal utility units z. We choose the initial value Φ0 and the initial allocation

(c0, h0, g0) by using the optimality conditions at t = 0 and requiring that the implementability

constraint at t = 0 holds. For the allocation and policy at t ≥ 1, we can use the non-linear

functions for (τ(Φ),Λ(Φ)) and (c(Φ), h(Φ), g(Φ)), where Φ follows the approximate law of motion

(2). So the method we illustrate is “hybrid”.
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B Government consumption share

In our baseline experiments we abstracted from variation in the government consumption share Λ

and focused on ψ = 1. Consider now the case of substitutes (ψ < 1) and complements (ψ > 1).

We consider four pairs of (ρ, ψ) and calibrate all other parameters as previously. For each pair, we

always re-calibrate (α, ah), so that the same first-best government share and labor are targeted.

Table 1: Correlation of ∆Λ with the technology shock.

Substitutes (ψ = 0.9) Complements (ψ = 1.1)

Low IES (ρ = 2) 0.4884 -0.5364

High IES (ρ = 0.5) -0.5883 0.5543

The table depicts Corr(∆Λ, s) for 4 different sets of (ρ, ψ). For each set of parameters we generated 10,000
sample paths of 200-period length. The reported numbers are mean statistics across sample paths.

Table 1 displays the correlations of Λ with technology shocks. Recall from our analysis in

proposition 3 that a higher distortion (in the sense of Φ) implies a lower (higher) government share

Λ when we have substitutes (complements). Consider first the case of a low IES (ρ > 1), where

distortions are negatively correlated with the cycle and exhibit a negative drift. High distortions in

bad times and low distortions in good times imply a government share that decreases in bad times

and increases in good times if we have substitutes. The opposite happens for the complements

case.

So, changes in Λ are procyclical (countercyclical) if we have ψ < 1 (ψ > 1), as the first

row of table 1 shows. Furthermore, since the excess burden is reduced on average over time till

its balanced-budget value Φ∗ is reached, the respective distortions at the provision of government

consumption are also reduced till the rest point Λ(Φ∗). Hence, in the case of substitutes, where Λ is

initially below its balanced-budget value, we have a positive drift of the government share over time.

Consequently, front-loaded taxes are accompanied with back-loaded government expenditures. In

contrast, in the case of complements, where the share of government consumption is initially above

its balanced-budget value, Λ exhibits a negative drift over time.

When the IES is high (ρ < 1), distortions are procyclical and exhibit a positive drift over time.

Obviously, a higher distortion when the technology shock is high implies then a lower Λ in the

substitutes case and a higher Λ in the complements case, which explains the sign of the correlations

in the second row of the table. Similarly, Λ exhibits a negative drift for ψ < 1 and a positive drift

when ψ > 1.

Figure 1 summarizes the mean dynamics of the government share. We note that the changes

in the government share over time are small for all pairs of (ρ, ψ), a fact which may justify the

focus on ψ = 1.
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Figure 1: Evolution of the mean government share over time. The two graphs on the top consider the case of
ρ = 2. The two graphs on the bottom consider the case of ρ = 0.5. Graphs on the left correspond to the substitutes
case (ψ = 0.9) and graphs on the right to the complements case, (ψ = 1.1). When ρ = 2 we have convergence
to the balanced-budget government share that is either below (substitutes) or above (complements) the first-best
government share of 20%. When ρ = 0.5, the government share diverges.
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