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APPENDIX A: CALIBRATION

This appendix describes the details of the calibration exercise in Section IV.

APPROXIMATION OF THE KEYNESIAN MULTIPLIER EMBEDDED IN GHH PREFERENCES. —

In a model with GHH preferences, the labor wedge determines the local output multiplier

with respect to demand shocks. This result was obtained by Auclert and Rognlie (2017),

and in this appendix it is restated in the context of the current paper.

To see why the labor wedge is important, note that holding rt+1 (controlled by mon-

etary policy) and ct+1 (tomorrow’s net consumption) constant, ct is uniquely pinned

down by the Euler equation in (24). Now, equating production to demand, and writ-

ing xt ≡ kt+1 − (1− δk)kt + ih
t for non-consumption demand, we have

yt − v(lt) = F(kt , lt)− v(lt) = ct + xt

Assuming ct fixed due to the observation above, and holding capital kt fixed, totally

differentiating gives

dlt =
1

Fl(kt , lt)− v′(lt)
dxt

and noting that dyt = Fl(kt , lt)dlt , this implies

(A1) dyt =
1

1− v′(lt )
Fl (kt ,lt )

dxt ≡
1

τ t

dxt

where τ t is the (conventionally defined) labor wedge at time t .

Hence the local response of total output to changes in non-consumption demand (ei-

ther from residential or nonresidential investment), holding inherited capital, monetary

policy, and tomorrow’s net consumption fixed, is determined by the inverse of the labor

wedge. If the labor wedge is zero, the implied multiplier is infinite; to obtain a more

realistic multiplier in line with empirical evidence, the labor wedge must be sufficiently

high.

Why is this? If there is no labor wedge (τ = 0), then net output F(kt , lt) − v(lt) is

at a local maximum in lt , and the implied variation in lt needed to increase net output

is infinite. If there is more of a labor wedge (τ > 0), then net output is still increasing

in lt , implying that less movement in lt in response to a shock that changes net output is

needed.
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CHARACTERIZATION OF THE GENERALIZED MODEL FOR CALIBRATION PURPOSES. — As

described in the main text, we generalize the baseline model (with housing adjustment

costs) in two ways to make it more suitable for calibration. First, we make a distinction

between the risk-free rate and the return to capital. This modification affects the threshold

return at which the economy enters the liquidity trap region, as illustrated by Eq. (25),
but it otherwise does not change the analysis. Second, we also allow for a labor tax that

changes the firm’s problem as in (26). With the labor tax, the constrained efficient levels

of employment and output are determined by

L (kt) = arg max
l̃

(
1− τ l

)
F

(
kt , l̃

)
− v

(
l̃

)
,

and S (kt) = F (kt , L (kt))− v (L (kt)) .

In particular, the labor tax reduces the labor supply, which in turn lowers output. Note

also that, when output is supply determined, the tax parameter corresponds to the labor

wedge, τ l = τ t (cf. Eq. (13)). The remaining equilibrium allocations are characterized

by the following system,

u′ (ct) = β (1+ rt+1) u′ (ct+1) ,

ih
t = ih∗ +

u′ (ct)

ψ
(Qt − 1) and ht+1 = ht

(
1− δh

)
+ ih

t ,

Qt ≥
1− δh

1+ rt+1

Qt+1, ht+1 ≥ h∗ and one of the inequalities hold as equality,

R (k, L (k))− δk = rt+1,

yt = ct + kt+1 −
(
1− δk

)
kt + ih

t ,

and yt ≤ S (kt) , rt+1 ≥ φ − π and one of the inequalities hold as equality.

These conditions are analogous to the equilibrium conditions in Section III, with the

difference that the last condition incorporates the more general lower bound on the return

to capital in Eq. (25).

CALIBRATING THE OVERBUILDING SHOCK. — We calibrate the magnitude of the over-

building shock based on the analysis in Haughwout et al. (2013), who provide two

measures of the excess supply of housing units during the Great Recession. Their first

measure uses the Census data on housing vacancies. They calculate the stock of vacant

housing units in excess of a baseline vacancy rate that we would expect to see in normal

market conditions (which the authors estimate based on historical vacancy rates for each

housing category). According to this measure, the excess vacant housing units peaked

at around 3 million in mid-2010 and remained at around 2 million as of 2012 (see their

Figure 2.7).

The second measure of oversupply in Haughwout et al. (2013) compares actual house-

hold production with an estimate of housing needs based on historical patterns of house-
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hold formation and depreciation. As we describe in the main text, this measure implies

around 3.4 million houses were overbuilt by mid-2007. We use this number to calibrate

the initial excess supply of housing (see Eq. (27)). Their analysis also suggests that it

would take the economy 6 years to work the excess supply (see their Figure 2.8). We

use this observation to calibrate the housing adjustment costs in the model so that the

adjustment in the model is also completed in 6 years (or 3 periods).

Haughwout et al. (2013) also analyze household formation rates, which speak to the

demand for housing in recent years. After adjusting for demographics, they predict that

the trend rate of growth of households since the mid-1990s should have been around

1.17 million per year. They then compare the cumulative household formation since

1995 relative to the predicted trend of 1.17 million per year. This analysis illustrates that

household formation has been roughly in line with the predicted level until 2007, but it

has been consistently below the predicted level in recent years. Using more recent Census

data, we find that the household formation averaged 780 thousand per year between the

first quarter of 2008 and the third quarter of 2016. This suggests that the low residential

investment in recent years is at least in part driven by unusually low demand for housing

in the aftermath of the bust (which could be due to, among other things, pessimism about

the housing market or credit constraints in the mortgage market). In our calibration

exercise, we abstract away from this additional demand shock for housing as it is difficult

to quantify.
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APPENDIX B: OMITTED EXTENSIONS

This appendix completes the analysis of the extensions of the baseline model discussed

in the main text. Appendix C contains the proofs of omitted results in the main text as

well as this appendix.

1. Comparative statics with respect to durability

A distinguishing feature of housing capital is its durability relative to other types of

capital. A natural question is whether durability is conducive to triggering a demand-

driven recession driven by overbuilding. In this section, we address this question in an

extension of the baseline model with two types of housing capital, one more durable than

the other. We show that overbuilding the more durable capital (relative to the less durable

capital) is more likely to trigger a demand-driven recession.

Consider a slight variant of the model in Section II in which there are two types of

housing capital that depreciate at different rates given by δhd

and δhn

, with δhd

< δhn

.

Thus, type d (durable) housing capital has a lower depreciation rate than type n (non-

durable) housing capital. Suppose the preferences in (2) are modified so that each type

has a target level h∗/2. Suppose also that
(
δhd

+ δhn
)
/2 = δh so that the average depre-

ciation rate is the same as before. Let hd
0 =

(
1+ bd

0

)
(h∗/2) and hn

0 =
(
1+ bn

0

)
(h∗/2),

so that bd
0 and bn

0 capture the overbuilding in respectively durable and nondurable capital.

The case with symmetric overbuilding, bd
0 = bn

0 = b0, results in the same equilibrium as

in Section II. Our next result investigates the effect of overbuilding one type of capital

more than the other.

PROPOSITION 5 (Role of Durability): Consider the model with two types of hous-

ing capital with different depreciation rates. Given the average overbuilding b0 =(
bd

0 + bn
0

)
/2, the incidence of a demand-driven recession 1 [l0 < L (k0)] is increasing

in overbuilding of the more durable housing capital bd
0 .

To obtain an intuition, consider the maximum aggregate demand at date 0, which can

be written as [cf. Eq. (19)],

(B.1) y0 = k −
(
1− δk

)
k0 + c0 + δ

hh∗ − bd
0

(
1− δhd

) h∗

2
− bn

0

(
1− δhn) h∗

2
.

Note that 1 − δhd

> 1 − δhn

, and thus, overbuilding of the durable housing capital

(relative to the nondurable capital) induces a greater reduction in aggregate demand at

date 0. Intuitively, depreciation helps to “erase” the overbuilt capital naturally, thereby

inducing a smaller reduction in investment and aggregate demand.

2. Investment hangover with exogenous monetary policy

A key ingredient of our analysis is constrained monetary policy. In the main text, we

focus on the zero lower bound (ZLB) as the source of the constraint. In this section,
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we derive the analogue of our main result in Section II in an environment in which the

money supply is determined by exogenous forces.

To introduce the money supply, we modify household preferences to introduce the

demand for money explicitly. Specifically, the household’s optimization problem can

now be written as,

max
{lt ,ĉt ,at+1,Mt}t

∞∑
t=0

β t u

(
ĉt − v (lt)+ η

(
Mt

Pt

))
+ uh1

[
ht ≥ h∗

]
(B.2)

s.t. Pt

(
ĉt + at+1 + ih

t

)
+ Mt = Pt (wt lt + at (1+ rt)+5t)+ Mt−1,

and ht+1 = ht

(
1− δh

)
+ ih

t .

Here, Pt denotes the aggregate price level. The household money balances are denoted

by Mt , and the real money balances are given by Mt/Pt . The function, η (·) is strictly

increasing, which captures the transaction services provided by additional real money

balances. The household problem is the same as in Section I except for the presence of

money balances in preferences as well as the budget constraint. The optimality condition

for money balances, Mt , implies a money demand equation,

(B.3) η′
(

Mt

Pt

)
=

rn
t+1

1+ rn
t+1

.

Here, 1 + rn
t+1 = (1+ rt+1)

Pt+1

Pt
denotes the nominal interest rate, which captures the

opportunity cost of holding money balances (as opposed to interest-bearing assets). The

left hand side captures the marginal benefit of holding money balances.27 The rest of the

equilibrium is as described before.

We assume the money supply follows an exogenous path,
{

M t

}∞
t=0

. For analytical

tractability, we focus on the case in which the money supply is fixed, M t = M for each

t (the general case is similar). As before, the aggregate price level is also predetermined

and constant, Pt = P for each t . Combining these assumptions with Eq. (B.3) implies

that the nominal interest rate is also constant. There is one degree of freedom because

different choices for the aggregate price level (which is a given of this model) lead to

different levels for the interest rate. We assume the aggregate price level is such that the

interest rate is equal to its steady-state level, that is,28

(B.4) rt+1 = rn
t+1 = 1/β − 1 for each t .

27With our specification, the marginal benefit does not depend the household’s consumption or aggregate output. This

is slightly different than conventional specifications of money demand but it does not play an important role beyond

providing analytical tractability.
28This price level can be justified by assuming that the prices were set at a point in the past at which the economy was

(and was expected to remain) at a steady state. In view of a New-Keynesian Phillips curve, the firms would not want to

change their prices as long as they expected the discounted sum of the output gaps to be equal to zero. When the economy

is at a steady state, this requirement implies a zero output gap for each period, which in turn implies the interest rate given

by (B.4).
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The characterization of the remaining equilibrium allocations then parallels the base-

line analysis. We conjecture an equilibrium in which, starting date 1 onwards, the em-

ployment and output are at their efficient levels. As before, this implies capital earns its

marginal contribution to supply, R1 = S′ (k1) [cf. (9)]. Combining this with Eq. (6), and

using (B.4), we obtain k1 = k∗. That is, the economy reaches the steady-state level of

capital in a single period. This determines the investment at date 0 as

i k
0 = k1 −

(
1− δk

)
k0.

Next consider (net) consumption at date 0. Since the economy reaches the steady-state

at date 1, we have c1 = c∗. Combining this with the Euler equation and Eq. (B.4), we

also obtain c0 = c∗. It follows that aggregate demand and output at date 0 is given by

[cf. Eq. (19)],

y0 = k∗ −
(
1− δk

)
k0 + c∗ +

(
δh − b0

(
1− δh

))
h∗.

When y0 < S (k0), the economy features a demand-driven recession at date 0. This is

the case as long as the amount of overbuilding b0 exceeds a threshold level [cf. (20)],

b0 ≡
k∗ −

(
1− δk

)
k0 + c∗ + δhh∗ − S (k0)(
1− δh

)
h∗

.

It can also be checked that, it the initial capital stock is at its steady-state level k0 =
k∗, then the threshold is zero, b0 = 0: that is, any amount of overbuilding triggers a

recession.

Hence, our main result generalizes to a setting with exogenous (and fixed) money

supply. Intuitively, the key to the argument is that monetary policy is constrained and

cannot lower the interest rate sufficiently to counter the aggregate demand reduction due

to overbuilding. When monetary policy is exogenous—as in the case of an exogenous

money supply, it is naturally constrained and cannot lower the interest rate in response to

shocks. In fact, overbuilding in this case leads to a deeper recession because the nominal

interest rate remains above zero during the recession, whereas monetary policy in the

main text partially fights the recession by lowering the nominal interest rate to zero.

3. Policy analysis with separable preferences

We next complete the analysis of the model with separable preferences described and

used in Section V. We first establish the analog of Proposition 1 for this setting. To this

end, let c0 and k respectively denote the maximum level of consumption and investment

characterized in Section II. The aggregate demand is then bounded from above, y0 ≤ y0,

where

(B.5) y0 ≡ k −
(
1− δk

)
k0 + c0 +

(
δh − b0

(
1− δh

))
h∗.
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as in Eq. (19) in the main text.

Next consider the efficient level of employment at date 0. The efficiency implies the

household’s intratemporal condition holds, w0u′ (c0) = v′ (l0), and the equilibrium wage

level is determined by the labor’s marginal product, w0 = Fl (k0, l0). Combining these

conditions is equivalent to setting the labor wedge to zero, where the labor wedge is now

given by,

(B.6) τ 0 = 1−
v′0 (l0)

u′ (c0) Fl (k0, l0)
.

Let L0 (k0) denote the efficient level of output at date 0 (when there is a liquidity trap)

characterized by setting τ 0 = 0 when c0 = c0. This also implies an efficient level of

output denoted by, S0 (k0) = F (k0, L0 (k0)).

As in Section II, the equilibrium depends on a comparison of the maximum level of

demand, y0, with the efficient supply, S0 (k0). Let b
sep

0 denote the threshold level of

overbuilding that ensures y0 = S0 (k0), that is,

(B.7) b
sep

0 =
k −

(
1− δk

)
k0 + c0 + δhh∗ − S0 (k0)(
1− δh

)
h∗

.

We then have the following analogue of Proposition 1.

LEMMA 2: Consider the modified model with separable preferences at date 0. The

competitive equilibrium decumulates the excess housing capital in a single period, h1 =
h∗. If the overbuilding is sufficiently large, b0 > b

sep

0 (k0), then the date 0 equilibrium

features a demand-driven recession with,

r1 = 0, τ 0 > 0, y0 = y0 < S0 (k0) , and l0 < L0 (k0) .

EX-POST WELFARE ANALYSIS. — Next suppose the overbuilding is sufficiently large so

that the economy is in a recession. We next respectively define the household’s and

the planner’s value functions and derive their optimality conditions. Note that choosing

h1 < h∗ is sub-optimal in view of the preferences (2). We thus consider the value

functions over the region h1 ≥ h∗.

The household’s problem can then be written as (cf. problem (5)),

W0 (h1) = max
{ct ,at+1}t

∞∑
t=0

β t u (ct)

s.t. ct + at+1 + ht+1 = et + at (1+ rt)+5t +
(
1− δh

)
ht

given h0 ≥ h∗, h1 ≥ h∗ and ht = h∗ for each t ≥ 2.
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Using the envelope theorem, we obtain,

dW0 (h1)

dh1

|h1=h∗ = βu′ (c1)
(
1− δh

)
− u′ (c0) .

Combining this with the Euler equation, u′ (c0) = β (1+ r1) u′ (c1), establishes Eq. (28).

Next consider a constrained planner who can (only) control housing investment at date

0. When h1 is in a neighborhood of h∗, the constrained planning problem can be written

as,

W0,pl (h1) = max
c0,k1,y0,l0

u (c0)− v0 (l0)+ βV (k1, h1) ,(B.8)

s.t. k1 = k and u′ (c0) = βu′ (C (h1)) ,

and y0 = F (k0, l0) = k1 −
(
1− δk

)
k0 + c0 + h1 −

(
1− δh

)
(1+ b0) h∗.(B.9)

Here, V (k1, h1) denotes the efficient value function characterized as the solution to prob-

lem (C.1), and C (h1) denotes the efficient level of consumption. The second line cap-

tures the zero lower bound constraint, which implies that nonhousing investment and

consumption are determined by the zero interest rate. The third line captures that output

and employment are determined by the aggregate demand at date 0. Importantly, out-

put is increasing in h1 because a greater level of housing investment increases aggregate

demand.

To derive the optimality condition for problem (B.8), note that the capital stocks k0

and k1 = k are constant, and that the remaining variables, c0 (h1) , y0 (h1) , l0 (h1), are

determined as implicit functions of h1. Implicitly differentiating the aggregate demand

constraint (B.9) with respect to h1, we obtain,

dl0

dh1

=
1+ dc0

dh1

Fl (k0, l0)
=

(
1+

dc0

dh1

)
(1− τ 0) u′ (c0)

v′ (l0)
.

Here, the second equality substitutes the labor wedge from Eq. (B.6). Using problem

(C.1) along with the envelope theorem, we also obtain,

dV1 (k1, h1)

dh1

=
(
1− δh

)
u′ (c1) =

(
1− δh

) u′ (c0)

β
.

Here, the second equality uses the Euler equation. Differentiating the objective function

of problem (B.8) with respect to h1, and using these expressions, we obtain,

dW0,pl (h1)

dh1

= u′ (c0)
dc0

dh1

− v′0 (l0)
dl0

dh1

+ β
dV1 (k1, h1)

dh1

,

= u′ (c0)

(
dc0

dh1

−

(
1+

dc0

dh1

)
(1− τ 0)+ 1− δh

)
.



ONLINE APPENDIX INVESTMENT HANGOVER A9

Rearranging terms establishes Eq. (29). Using this expression, Appendix C proves

Proposition 2 and completes the welfare analysis in Section V.A.

EX-ANTE WELFARE ANALYSIS. — Next consider the ex-ante welfare analysis in Section

V.B. Recall that the representative household optimally chooses h0 = h∗
(
1+ λH

)
, along

with k0 characterized as the solution to (30). The representative household recognizes

that the rental rate of capital in state L , RL
0 , is below its efficient level (due to the de-

mand shortage). This might induce her to choose a lower level of k0 as a precaution.

A sufficiently low level of k0 can, in turn, raise the aggregate demand and prevent the

demand-driven recession [cf. Eq. (B.7)]. Nonetheless, the following result establishes

that the economy experiences a recession in state L , as long as the probability of the

state is sufficiently low, and the demand for housing in the counterfactual state H is

sufficiently high.

LEMMA 3: Consider the modified model with the ex-ante date −1, with the initial

conditions, h−1 = h∗
(
1+ λH

)
and k−1 = k∗. Suppose λH > b

sep

0 (k∗), where b
sep

0 (k∗)
denotes the overbuilding threshold in (B.7) given k0 = k∗. There exists π < 1 such that,

if π H ∈ (π, 1), then the equilibrium features a demand-driven recession in state L of

date 0 (but not in any other dates or states).

The equilibrium path starting with the high-demand state H of date 0 is straightfor-

ward. It solves the neoclassical planning problem (C.1) with a steady level of housing

investment given by, ih
t = δ

(
1+ λH

)
h∗ for each t ≥ 0. The zero lower bound does

not bind and the rental rate of capital is given by RH
0 = S′ (k0). The equilibrium path

starting with the low-demand state L of date 0 is characterized as in Lemma 2 given the

(endogenous) level of overbuilding, b0 = λH .

Next consider a constrained planner who can (only) control households’ date −1 al-

locations. As described in the main text, the planner optimally chooses h0,pl = h0 =(
1+ λH

)
h∗. However, the planner’s choice of nonhousing capital, k0,pl , is potentially

different. To characterize this choice, let V H
0 (k0, h0) and V L

0 (k0, h0) denote the welfare

of the representative household in respectively states H and L of date 0. The ex-ante

constrained planning problem can then be written as,

max
c−1,k0

u (c−1)+ β
(
π H V H

0 (k0, h0)+
(
1− π H

)
V L

0 (k0, h0)
)

,(B.10)

s.t. c−1 + k0 + h0,pl = S (k−1)+
(
1− δk

)
k−1 +

(
1− δh

)
h−1.

In particular, the planner optimally trades off the ex-ante consumption, c−1, with invest-

ment, k0, evaluating the benefits of the latter in the competitive equilibrium that will

obtain in each state. The optimality condition for the problem is then given by

(B.11) u′ (c−1) = β

(
π H dV H

0 (k0, h0)

dk0

+
(
1− π H

) dV L
0 (k0, h0)

dk0

)
.
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We next derive
dV H

0 (k0,h0)

dk0
and

dV L
0 (k0,h0)

dk0
, and establish Eq. (31). If state H is realized,

then the equilibrium solves the analog of problem (C.1) (with appropriate modifications

to capture the higher target level,
(
1+ λH

)
h∗). Then, the envelope theorem implies,

dV H
0 (k0, h0)

dk0

=
(
S′ (k0)+ 1− δk

)
u′
(
cH

0

)
.

Suppose instead state L is realized. The continuation allocation is characterized by

Lemma 2, and it solves problem (B.8) with h1 = h∗ (since we rule out ex-post policies).

This problem implies that the following variables are constant, k1 = k, c0 = c0, h1 = h∗

(and thus, the continuation value V1 is also constant). In contrast, output and employ-

ment, y0 (k0) , l0 (k0), are determined as implicit functions of k0. Implicitly differentiat-

ing the aggregate demand constraint (B.9) with respect to k0, we obtain,

dl0

dk0

= −
Fk (k0, l0)+

(
1− δk

)
Fl (k0, l0)

= −
(
Fk (k0, l0)+

(
1− δk

)) (1− τ 0) u′ (c0)

v′ (l0)
.

Here, the second equality substitutes the labor wedge from Eq. (B.6). Differentiating

the objective function with respect to k0, and using this expression, we further obtain,

dV L
0 (k0, h0)

dk0

= −v′0 (l0)
dl0

dk0

= (1− τ 0)
(
Fk (k0, l0)+

(
1− δk

))
u′ (c0) .

Plugging in RL
0 = (1− τ 0) Fk (k0, l0) from Lemma 2 implies,

dV L
0 (k0, h0)

dk0

=
(
Rk

0 + (1− τ 0)
(
1− δk

))
u′ (c0) .

Plugging the expressions for
dV H

0 (k0,h0)

dk0
and

dV L
0 (k0,h0)

dk0
into (B.11) implies the planner’s

optimality condition (31). Appendix C proves Propositions 3 and 4, and completes the

welfare analysis in Section V.B.
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APPENDIX C: OMITTED PROOFS

This appendix presents the omitted characterizations and proofs.

1. Proofs for the baseline model analyzed in Sections I and II

Characterization of the efficient benchmark. Consider a planner that maximizes

households’ welfare starting date t onwards, given the initial state ht , kt , and the fea-

sibility constraints of the economy. The planner’s problem can then be written as,

max
{ĉt̃ ,lt̃ ,kt̃+1,h̃t+1,[lt̃ (ν),kt̃ (ν)]ν}

∞
t̃=t

∞∑
t̃=t

β t̃
(
u
(
ĉt̃ − ν (lt̃)

)
+ uh1

[
ht ≥ h∗

])
,

s.t. ĉt̃ + kt̃+1 + h t̃+1 ≤ ŷt̃ +
(
1− δk

)
kt̃ +

(
1− δh

)
h t̃ , where

ŷt̃ =

(∫ 1

0

(F (kt̃ (ν) , lt̃ (ν)))
ε−1
ε dν

)ε/(ε−1)

, kt̃ =

∫
kt̃ (ν) dν, and lt̃ =

∫
lt̃ (ν) dν.

By concavity, the planner chooses kt̃ (ν) = kt̃ and lt̃ (ν) = lt̃ for each t̃ . The optimality

condition for labor then implies Eq. (9). Combining these observations, the planner’s

problem reduces to the neoclassical planning problem,

V (kt , ht) = max
{ct̃ ,kt̃+1,ht+1}∞t̃=t

∞∑
t̃=t

β t̃
(
u (ct̃)+ uh1

[
ht ≥ h∗

])
,(C.1)

s.t. ct̃ + kt̃+1 −
(
1− δk

)
kt̃ + h t̃+1 −

(
1− δh

)
h t̃ = S (kt̃) .

Here, the function S (·) describes the supply-determined net output defined in (9).

Equilibrium in the aftermath of overbuilding. Suppose the economy reaches date 1

with h1 = h∗ and k1 ≤ k. We claim that the continuation equilibrium is the same the

efficient benchmark. To this end, consider the solution to the planner’s problem (C.1)
starting with h1 = h∗ and k1 ≤ k̄. We conjecture a solution in which ht+1 = h∗ for each

t ≥ 1, as in (3), and the remaining allocations are characterized as the solution to the

neoclassical system,

S (kt̃) = ct̃ + kt̃+1 −
(
1− δk

)
kt̃ + δ

hh∗,(C.2)

u′ (ct̃) = β
(
1+ S′ (kt̃)− δ

k
)

u′
(
ct̃+1

)
,

together with a standard transversality condition. The steady-state to this system is char-

acterized by,

β
(
1− δk + S′

(
k∗
))
= 1 and S

(
k∗
)
= c∗ + δkk∗ + δhh∗.

We assume the parameters satisfy, min (S (k0) , S (k∗)) > δkk∗ + δh∗, which ensures
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that the economy can afford the required investment at all periods. Then, using standard

arguments, there is a unique interior path that solves the system in (C.2) and converges

to the steady state. Moreover, since capital converges monotonically to its steady-state

level, and since we have k1 ≤ k and k∗ < k, we also have kt+1 ≤ k for each t ≥ 1. This

in turn implies the interest rate satisfies, rt+1 = S′ (kt+1)− 1 ≥ S′
(
k
)
− 1 = 0 for each

t ≥ 1.

In particular, the implied real interest rate is nonnegative along the socially optimal

path, which has two implications. First, the planner finds it optimal to choose ht+1 = h∗

as we have conjectured (since the gross return on investment, 1+rt+1, exceeds the return

on empty houses, 1 − δh). Second, and more importantly, the lower bound constraint

(7) does not bind along the socially optimal path. This implies that the monetary policy

rule in (10) replicates the dynamically efficient outcomes. That is, the competitive equi-

librium from date 1 onwards (starting h1 = h∗ and k1 ≤ k) coincides with the efficient

benchmark. This completes the characterization of the equilibrium in the aftermath of

overbuilding.

Proof of Lemma 1. First consider the case rt+1 > 0. In this case, monetary policy imple-

ments the efficient allocation with lt = L (kt) and yt = S (kt). In addition, the first order

conditions for problems (9) and (4) further imply, Fl (kt , L (kt)) = v′ (L (kt)) = wt .

Combining this with Eq. (12) implies that the labor wedge is zero, τ t = 0. Combining

Eqs. (12) and (9) then imply the rental rate of capital is given by Fk (kt , L (kt)) = S′ (kt),
completing the proof for the first part.

Next consider the case rt+1 = 0. In this case, Eq. (12) implies Fl (kt , lt) ≥ v′ (lt).
This in turn implies that lt ∈ [0, L (kt)]. By feasibility, net output satisfies

yt = ct + ih
t + ih

t = F (kt , lt)− v (lt) .

This right hand side is strictly increasing in lt over the range [0, L (kt)]. The minimum

and the maximum are respectively given by 0 and S (kt), which implies yt ∈ [0, S (kt)].
Moreover, given yt that satisfies these resource constraints, there is a unique lt that solves

(11). Combining this with Eq. (12), we further obtain the labor wedge as, 1 − τ t =
v′(lt )

Fl (kt ,lt )
. Plugging this into Eq. (12) for capital, we obtain the rental rate of capital as,

R (kt , lt) =
v′(lt )

Fl (kt ,lt )
Fk (kt , lt). It can be checked that Rk < 0, Rl > 0 over l ∈ [0, L (kt)],

and that R (kt , L (kt)) = S′ (kt), completing the proof.

Proof of Proposition 1. As we have shown above, the equilibrium at date 1 starting

with h1 = h∗ and k1 ≤ k coincides with the efficient benchmark. Note also that, by

standard arguments, the neoclassical system in (C.2) can be described by an increasing

consumption function, c1 = C (k1).
To characterize the equilibrium at date 0, we define K1 (r0) for each r0 ≥ 0 as the

solution to

S′ (K1 (r0))− δ
k = r0.

Note that K1 (r0) is decreasing in the interest rate, with K1 (0) = k and
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limr0→∞ K1 (r0) = 0. Similarly, define the function C0 (r0) as the solution to the Euler

equation

u′ (C0 (r0)) = β (1+ r0) u′ (C (K1 (r0))) .

Note that C0 (r0) is decreasing in the interest rate, with C0 (0) = c0 and

limr0→∞ C0 (r0) = 0. Finally, define the aggregate demand function

Y0 (r0) = C0 (r0)+ K1 (r0)−
(
1− δk

)
k0 + ih

0 .

Note that Y0 (r0) is also decreasing in the interest rate, with

Y0 (0) = y0 and lim
r0→∞

Y0 (r0) = ih
0 −

(
1− δk

)
k0.

Next consider the date 0 equilibrium for the case b0 ≤ b0. Note that this implies

S (k0) ≤ y0 = Y0 (0), and that we also have limr0→∞ Y0 (r0) < S (k0) (since we assume

housing investment is feasible). By the intermediate value theorem, there is a unique

equilibrium interest rate r0 ∈ [0,∞) such that Y0 (r0) = S (k0). The equilibrium features

c0 = C0 (r0) and K1 (r0) = k1, along with y0 = S (k0) and l0 = L (k0).
Next consider the date 0 equilibrium for the case b0 > b0. In this case, Y0 (0) < S (k0).

Thus, the unique equilibrium features r0 = 0 and y0 = y0 < S (k0). Consumption and

investment are given by c0 = c0 and k1 = k1. Labor supply l0 is determined as the

unique solution to (11) over the range l0 ∈ (0, L (k0)). Finally, Eq. (B.5) implies the

equilibrium output, y0 = y0, is declining in the initial overbuilding b0.

In either case, it can also be checked that the economy reaches date 1 with h1 = h∗

and k1 ≥ min (k0, k∗). Thus, the continuation equilibrium is characterized as described

above, completing the proof.

Proof of Proposition 5. Note that the recession is triggered if y0 < S (k0), where

y0 is given by Eq. (B.1). Since 1 − δhd

> 1 − δhn

, increasing bd
0 (while keeping

b0 =
(
bd

0 + bn
0

)
/2 constant) reduces y0, proving the result.

2. Proofs for the policy analysis in Section V and Appendix B.3

Proof of Lemma 2. Most of the proof is described in Appendix B.3. If b0 < b
sep

0 , then

the maximum aggregate demand is above the efficient level, y0 > S0 (k0). In this case,

the zero lower bound constraint does not bind and outcomes are efficient. If instead b0 >
b

sep

0 , then output is below the efficient level and it is determined by aggregate demand,

y0 = y0 < S0 (k0). The employment is also below the efficient level, l0 < L0 (k0), and

it is characterized by solving, y0 = y0 = F (k0, l0). The labor wedge is characterized by

solving, 1− τ 0 =
v′0(l0)

Fl (k0,l0)u′(c0)
, and it satisfies τ 0 > 0.

Proof of Proposition 2. We first show that the planner’s marginal utility,
d+W0,pl (h1)

dh1
|h1=h∗ ,

is increasing in the labor wedge, τ 0. Note that the Euler equation in problem (B.8)
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implies,
dc0

dh1

|h1=h∗ =
βu′′ (C (h∗))

u′′ (c0)
C ′
(
h∗
)
> 0.

Here, the inequality follows because the solution to the neoclassical problem (C.1) im-

plies C ′ (h∗) > 0. Note also that the derivative dc0

dh1
|h1=h∗ is independent of b0 or τ 0.

Combining this with Eq. (29) proves that
d+W0,pl (h1)

dh1
|h1=h∗ is increasing τ 0.

Next note from the proof of 2 that the labor wedge, τ 0, is strictly decreasing in ag-

gregate demand, y0 = y0. Since the maximum demand, y0, in Eq. (B.5) is strictly

decreasing in overbuilding, b0, this implies that the labor wedge is strictly increasing in

overbuilding, b0. This in turn implies that the planner’s marginal utility,
d+W0,pl (h1)

dh1
|h1=h∗ ,

is strictly increasing in b0. It can also be checked that
d+W0,pl (h1)

dh1
|h1=h∗ > 0 for suf-

ficiently high levels of b0. Let b̃0 > b
sep

0 denote the level of overbuilding such that
d+W0,pl (h1)

dh1
|h1=h∗ = 0. It follows that,

d+W0,pl (h1)

dh1
|h1=h∗ > 0 if and only if b0 > b̃0. This

also implies h1,pl > h∗ if and only if b0 > b̃0.

Proof of Lemma 3. First consider the limiting case with π H = 1. In this case, given the

initial conditions, the economy is at an efficient steady-state with,

ht = h∗
(
1+ λH

)
, kt = k∗ and c∗ = S

(
k∗
)
− δh

(
1+ λH

)
h∗ − δkk∗.

In particular, the competitive equilibrium features k0 = k∗. In this equilibrium, the

economy does not feature a demand shortage at date 0 or state H of date 1. In fact, we

have r1 = r H
2 = 1/β > 0. However, since λH > b

sep

0 (k∗), the economy features a

demand shortage in the (zero probability) state L .

Next note that the capital choice in competitive equilibrium is a continuous function

of the probability of the high state, k0

(
π H
)
. By Eq. (B.7), b

sep

0 (k0) is also a continuous

function of k0. It follows that there exists π1 (which could also be π1 = 0) such that

λH > b
sep

0 (k∗) if and only if π H > π1. Similarly, note that the interest rates r1 and r H
2

are also continuous functions of π H . Using continuity once again, there exists π2 < 1

(which could also be π2 = 0) such that the economy does not feature a demand shortage

at date 0 or at state H if and only if π H > π2. Taking π = max
(
π1, π2

)
proves the

statement.

Proof of Proposition 3. The planner’s optimality condition (31) implies k0,pl < k0 since

τ 0 > 0, π H > 0, and 1− δk > 0.

Proof of Proposition 4. In this case, the difference is that the planner can also control

the ex-ante employment and net output, l−1, y−1, by deviating from the monetary policy

in (10). Thus, the analogue of the planner’s problem in (B.10) is given by,
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max
l−1,y−1,c−1,k0

u (c−1)+ β
(
π H V H

0 (k0, h0)+
(
1− π H

)
V L

0 (k0, h0)
)

,

s.t. c−1 + k0 + h0,pl = S (k−1)+
(
1− δk

)
k−1 +

(
1− δh

)
h−1,

and y−1 = F (k−1, l−1)− v (l−1) ≤ S (k−1) .

It is easy to check that the first order conditions maximize the net output, y−1 = S (k−1)
and l−1 = L (k−1). This in turn leads to the same problem (B.10) as before, as well

as the same first order conditions (31). In particular, the planner sets the interest rate,

r0 = r∗0 , which (by definition) replicates the statically efficient allocations at date −1,

completing the proof.


